1
|
Kadirvelu L, Sivaramalingam SS, Jothivel D, Chithiraiselvan DD, Karaiyagowder Govindarajan D, Kandaswamy K. A review on antimicrobial strategies in mitigating biofilm-associated infections on medical implants. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100231. [PMID: 38510214 PMCID: PMC10951465 DOI: 10.1016/j.crmicr.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Biomedical implants are crucial in providing support and functionality to patients with missing or defective body parts. However, implants carry an inherent risk of bacterial infections that are biofilm-associated and lead to significant complications. These infections often result in implant failure, requiring replacement by surgical restoration. Given these complications, it is crucial to study the biofilm formation mechanism on various biomedical implants that will help prevent implant failures. Therefore, this comprehensive review explores various types of implants (e.g., dental implant, orthopedic implant, tracheal stent, breast implant, central venous catheter, cochlear implant, urinary catheter, intraocular lens, and heart valve) and medical devices (hemodialyzer and pacemaker) in use. In addition, the mechanism of biofilm formation on those implants, and their pathogenesis were discussed. Furthermore, this article critically reviews various approaches in combating implant-associated infections, with a special emphasis on novel non-antibiotic alternatives to mitigate biofilm infections.
Collapse
Affiliation(s)
- Lohita Kadirvelu
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Sowmiya Sri Sivaramalingam
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Deepsikha Jothivel
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Dhivia Dharshika Chithiraiselvan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | | | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| |
Collapse
|
2
|
Ahmadian M, Maleki Kambakhsh S, Einollahi N, Babazadeh S, Tofangchiha M, D'Amato G, Patini R. Salivary Protein and Electrolyte Profiles during Primary Teeth Eruption: A Cross-Sectional Study. Diagnostics (Basel) 2023; 13:diagnostics13071335. [PMID: 37046552 PMCID: PMC10093475 DOI: 10.3390/diagnostics13071335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
This study aimed to assess the qualitative changes in the saliva during the process of primary teeth eruption. This cross-sectional study was conducted on 147 children from 2 to 48 months, of which 49 were in group A (no erupted primary teeth), 53 were in group B (at least one active erupting primary tooth), and 45 were in group C (eruption of all 20 primary teeth was completed). Salivary proteins were evaluated by sodium dodecyl sulfate electrophoresis with polyacrylamide gel, while the concentrations of salivary sodium, potassium, chloride, and calcium ions were evaluated by ion selective electrodes. The data were analyzed using ANOVA and Bonferroni tests (alpha = 0.05). The concentration of proteins with molecular weights of 20-30 KDa was significantly higher in group A, and it gradually decreased with age. The concentration of proteins with molecular weights of 50-60 KDa in group B was significantly lower than those of groups A and C. The calcium ion concentration in group A was significantly higher than that of the other groups. The concentration of potassium ions was minimal in group C. The proteins and electrolyte profiles of the subjects' saliva changed in the process of primary tooth eruption. The highest concentrations of proteins such as statherin, histatin, P-B peptide, and cystatin and the lowest concentrations of proteins such as amylase were present in group B.
Collapse
Affiliation(s)
- Mina Ahmadian
- School of Dentistry, Qazvin University of Medical Sciences, Qazvin 34199-15315, Iran
| | - Sara Maleki Kambakhsh
- School of Dentistry, Qazvin University of Medical Sciences, Qazvin 34199-15315, Iran
- Dental Caries Prevention Research Center, Qazvin University of Medical Sciences, Qazvin 34199-15315, Iran
| | - Nahid Einollahi
- Department of Clinical Laboratory Sciences, Faculty of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran 14197-33141, Iran
| | - Saber Babazadeh
- Dental Caries Prevention Research Center, Qazvin University of Medical Sciences, Qazvin 34199-15315, Iran
- Department of Community Oral Health, School of Dentistry, Mashhad University of Medical Sciences, Mashhad 91779-48959, Iran
| | - Maryam Tofangchiha
- Dental Caries Prevention Research Center, Qazvin University of Medical Sciences, Qazvin 34199-15315, Iran
| | - Giuseppe D'Amato
- Unicamillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Romeo Patini
- Department of Head, Neck and Sense Organs, School of Dentistry, Catholic University of Sacred Heart, 00135 Rome, Italy
| |
Collapse
|
3
|
Gunaratnam G, Dudek J, Jung P, Becker SL, Jacobs K, Bischoff M, Hannig M. Quantification of the Adhesion Strength of Candida albicans to Tooth Enamel. Microorganisms 2021; 9:2213. [PMID: 34835339 PMCID: PMC8624353 DOI: 10.3390/microorganisms9112213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 11/22/2022] Open
Abstract
Caries is one of the most prevalent diseases worldwide, which is caused by the degradation of the tooth enamel surface. In earlier research the opportunistic pathogen Candida albicans has been associated with the formation of caries in children. Colonization of teeth by C. albicans starts with the initial adhesion of individual yeast cells to the tooth enamel surface. In this study, we visualized the initial colonization of C. albicans yeast cells on pellicle-covered enamel by scanning electron microscopy. To quantitatively unravel the initial adhesion strength, we applied fluidic force microscopy-based single-cell force spectroscopy to examine the key adhesion parameters adhesion force, rupture length and de-adhesion work. We analyzed single saliva-treated or untreated yeast cells on tooth enamel specimens with or without salivary pellicle. Under all tested conditions, adhesion forces in the lower nanonewton range were determined. Furthermore, we have found that all adhesion parameters were enhanced on the pellicle-covered compared to the uncovered enamel. Our data suggest that initial adhesion occurs through a strong interaction between yeast cell wall-associated adhesins and the salivary pellicle. Future SCFS studies may show whether specific management of the salivary pellicle reduces the adhesion of C. albicans on teeth and thus contributes to caries prophylaxis.
Collapse
Affiliation(s)
- Gubesh Gunaratnam
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany; (P.J.); (S.L.B.); (M.B.)
| | - Johanna Dudek
- Clinic of Operative Dentistry and Periodontology, Saarland University, 66421 Homburg, Germany; (J.D.); (M.H.)
| | - Philipp Jung
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany; (P.J.); (S.L.B.); (M.B.)
| | - Sören L. Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany; (P.J.); (S.L.B.); (M.B.)
| | - Karin Jacobs
- Experimental Physics, Saarland University, 66123 Saarbrücken, Germany;
- Max Planck School Matter to Life, 69120 Heidelberg, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany; (P.J.); (S.L.B.); (M.B.)
| | - Matthias Hannig
- Clinic of Operative Dentistry and Periodontology, Saarland University, 66421 Homburg, Germany; (J.D.); (M.H.)
| |
Collapse
|
4
|
Sasaki M, Kodama Y, Shimoyama Y, Ishikawa T, Tajika S, Kimura S. Abiotrophia defectiva adhere to saliva-coated hydroxyapatite beads via interactions between salivary proline-rich-proteins and bacterial glyceraldehyde-3-phosphate dehydrogenase. Microbiol Immunol 2020; 64:719-729. [PMID: 32918493 DOI: 10.1111/1348-0421.12848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 11/27/2022]
Abstract
Abiotrophia defectiva is a species of nutritionally variant streptococci that is found in human saliva and dental plaques and that has been associated with infective endocarditis. In our previous study, it was found that A. defectiva could bind specifically to saliva-coated hydroxyapatite beads (SHA). This study identified a cell surface component of A. defectiva that promotes adherence to SHA beads. The binding of A. defectiva to SHA was reduced in the presence of antibodies against human proline-rich protein (PRP); these results suggested that PRP may be a critical component mediating interactions between A. defectiva and the salivary pellicle. Two-dimensional gel electrophoresis of whole A. defectiva cells followed by Far-Western blotting was conducted by probing with synthetic peptides analogous to the binding region of PRP known as PRP-C. The results indicate that an A. defectiva protein of 37 kDa interacts with PRP-C. The results of amino-terminal sequencing of the adhesive A. defectiva protein revealed significant similarity to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Recombinant GAPDH bound to immobilized PRP-C in a dose-dependent manner and binding of A. defectiva to SHA or to PRP was reduced in the presence of anti-GAPDH antiserum. Western blotting or electron immunomicroscopic observations with anti-GAPDH antiserum revealed that this protein was expressed in both cytosolic and cell wall fractions. These results suggest that A. defectiva could specifically bind to PRP via interactions with cell surface GAPDH; the findings suggest a mechanism underlying A. defectiva-mediated adherence to saliva-coated tooth surfaces.
Collapse
Affiliation(s)
- Minoru Sasaki
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Yoshitoyo Kodama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Yu Shimoyama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Taichi Ishikawa
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Shihoko Tajika
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Shigenobu Kimura
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Shiwa-gun, Iwate, Japan
| |
Collapse
|
5
|
Mukai Y, Torii M, Urushibara Y, Kawai T, Takahashi Y, Maeda N, Ohkubo C, Ohshima T. Analysis of plaque microbiota and salivary proteins adhering to dental materials. J Oral Biosci 2020; 62:182-188. [PMID: 32151606 DOI: 10.1016/j.job.2020.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 01/23/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Plaque causes oral diseases and aspiration-pneumonia in the elderly. It is not known whether pellicle-like attached salivary proteins and microbiota on dental materials are identical to those on teeth. The purpose of this study was to determine the properties of salivary proteins and microbiota that attach to dental materials. METHODS Eight subjects wore removable oral splints with pieces of pure-titanium, cobalt-chromium alloy, silver-palladium-copper-gold-alloy, denture-base-resin, and hydroxyapatite for 24 h. The bacteria that adhered to each material were analyzed using 16S rRNA sequencing simultaneously. Each material sample was then immersed in pooled saliva, and the attached proteins were collected. Salivary proteins were analyzed using MALDI-TOF/MS, and high molecular weight proteins were identified using peptide mass fingerprinting. RESULTS Among the dental materials, the α- and β-diversity of adherent flora were similar. The bacterial species that adhered easily to materials were Streptococcus sp. oral taxon 058, Neisseria mucosa, Gemella haemolysans, and Rothia dentocariosa. Regardless of material, the peaks or spots of attached salivary proteins had similar patterns, containing functioning proteins such as anchoring receptors for early colonizers. CONCLUSIONS There were no significant differences in microbiota and protein adherence in hydroxyapatite compared to the dental materials. Therefore, similar microbiota was determined to have formed on the similar pellicle-like proteins. In our study, the characteristics of plaque adhesion on both hydroxyapatite and dental materials were clarified. Based on this study, the creation of new methods of inhibiting plaque adhesion to prevent aspiration-pneumonia and oral infections can be undertaken.
Collapse
Affiliation(s)
- Yoko Mukai
- Department of Oral Microbiology, Tsurumi University, School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.
| | - Mana Torii
- Department of Removable Prosthodontics, Tsurumi University, School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Japan.
| | - Yu Urushibara
- Department of Removable Prosthodontics, Tsurumi University, School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Japan.
| | - Tomomi Kawai
- Department of Oral Microbiology, Tsurumi University, School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.
| | - Yasuharu Takahashi
- Department of Oral Microbiology, Tsurumi University, School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.
| | - Nobuko Maeda
- Department of Oral Microbiology, Tsurumi University, School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.
| | - Chikahiro Ohkubo
- Department of Removable Prosthodontics, Tsurumi University, School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, Japan.
| | - Tomoko Ohshima
- Department of Oral Microbiology, Tsurumi University, School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.
| |
Collapse
|
6
|
The role of natural salivary defences in maintaining a healthy oral microbiota. J Dent 2019; 80 Suppl 1:S3-S12. [DOI: 10.1016/j.jdent.2018.08.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/22/2018] [Indexed: 01/19/2023] Open
|
7
|
Cabras T, Manconi B, Castagnola M, Sanna MT, Arba M, Acharya S, Ekström J, Carlén A, Messana I. Proteomics of the acid-soluble fraction of whole and major gland saliva in burning mouth syndrome patients. Arch Oral Biol 2018; 98:148-155. [PMID: 30496935 DOI: 10.1016/j.archoralbio.2018.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVE In the present study the salivary proteome of burning mouth syndrome patients and healthy subjects was characterized by a top-down proteomic approach and compared to highlight possible qualitative and quantitative differences that may give suggestions about the causes of this pathology which are still unknown. MATERIALS AND METHODS Resting and stimulated whole saliva, stimulated parotid and submandibular/sublingual saliva samples were collected from burning mouth syndrome patients (n = 16) and age- and gender-matched healthy subjects (n = 14). An equal volume of 0.2% trifluoroacetic acid was added to each sample immediately after collection and the supernatants were analysed by liquid chromatography coupled to electrospray-ionisation mass spectrometry. Proteins and peptides were quantified using a label-free approach measuring the extracted ion current peak areas of the main salivary proteins and peptides. RESULTS The quantitation of the main salivary proteins and peptides revealed a higher concentration of cystatin SN in resting saliva of burning mouth syndrome patients with respect to healthy controls and no other conspicuous changes. CONCLUSIONS The reported data showed that the salivary protein profile was not affected, in composition and relative abundance, by the burning mouth syndrome, except for the cystatin SN, a protein up-regulated in several pathological conditions, that might be considered potentially indicative of the disease.
Collapse
Affiliation(s)
- Tiziana Cabras
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari, 09042, Monserrato, CA, Italy.
| | - Barbara Manconi
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Massimo Castagnola
- Institute of Chemistry of the Molecular Recognition - CNR, L.go F. Vito 1, 00168, Rome, Italy; Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore and/or Department of Laboratory Diagnostic and Infectious Diseases, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, L.go F. Vito 1, 00168, Rome, Italy
| | - Maria Teresa Sanna
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Morena Arba
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Shikha Acharya
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Box 431, SE-405 30 Göteborg, Sweden
| | - Jörgen Ekström
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 431, SE-405 30 Göteborg, Sweden
| | - Anette Carlén
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Box 431, SE-405 30 Göteborg, Sweden
| | - Irene Messana
- Institute of Chemistry of the Molecular Recognition - CNR, L.go F. Vito 1, 00168, Rome, Italy
| |
Collapse
|
8
|
Cross BW, Ruhl S. Glycan recognition at the saliva - oral microbiome interface. Cell Immunol 2018; 333:19-33. [PMID: 30274839 DOI: 10.1016/j.cellimm.2018.08.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/25/2023]
Abstract
The mouth is a first critical interface where most potentially harmful substances or pathogens contact the host environment. Adaptive and innate immune defense mechanisms are established there to inactivate or eliminate pathogenic microbes that traverse the oral environment on the way to their target organs and tissues. Protein and glycoprotein components of saliva play a particularly important role in modulating the oral microbiota and helping with the clearance of pathogens. It has long been acknowledged that glycobiological and glycoimmunological aspects play a pivotal role in oral host-microbe, microbe-host, and microbe-microbe interactions in the mouth. In this review, we aim to delineate how glycan-mediated host defense mechanisms in the oral cavity support human health. We will describe the role of glycans attached to large molecular size salivary glycoproteins which act as a first line of primordial host defense in the human mouth. We will further discuss how glycan recognition contributes to both colonization and clearance of oral microbes.
Collapse
Affiliation(s)
- Benjamin W Cross
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | - Stefan Ruhl
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
9
|
Revealing the Amylase Interactome in Whole Saliva Using Proteomic Approaches. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6346954. [PMID: 29662892 PMCID: PMC5831883 DOI: 10.1155/2018/6346954] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 12/24/2022]
Abstract
Understanding proteins present in saliva and their function when isolated is not enough to describe their real role in the mouth. Due to protein-protein interactions, structural changes may occur in macromolecules leading to functional modulation or modification. Besides amylase's function in carbohydrate breakdown, amylase can delay proteolytic degradation of protein partners (e.g., histatin 1) when complexed. Due to its biochemical characteristics and high abundance in saliva, amylase probably interacts with several proteins acting as a biological carrier. This study focused on identifying interactions between amylase and other proteins found in whole saliva (WS) using proteomic approaches. Affinity chromatography was used, followed by gel electrophoresis methods, sodium dodecyl sulfate and native, tryptic in-solution and in-gel digestion, and mass spectrometry. We identified 66 proteins that interact with amylase in WS. Characterization of the identified proteins suggests that acidic (pI < 6.8) and low molecular weight (MW < 56 kDa) proteins have preference during amylase complex formation. Most of the identified proteins present biological functions related to host protection. A new protein-amylase network was constructed using the STRING database. Further studies are necessary to investigate individualities of the identified amylase interactors. These observations open avenues for more comprehensive studies on not yet fully characterized biological function of amylase.
Collapse
|
10
|
Laputková G, Schwartzová V, Bánovčin J, Alexovič M, Sabo J. Salivary Protein Roles in Oral Health and as Predictors of Caries Risk. Open Life Sci 2018; 13:174-200. [PMID: 33817083 PMCID: PMC7874700 DOI: 10.1515/biol-2018-0023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
This work describes the current state of research on the potential relationship between protein content in human saliva and dental caries, which remains among the most common oral diseases and causes irreversible damage in the oral cavity. An understanding the whole saliva proteome in the oral cavity could serve as a prerequisite to obtaining insight into the etiology of tooth decay at early stages. To date, however, there is no comprehensive evidence showing that salivary proteins could serve as potential indicators for the early diagnosis of the risk factors causing dental caries. Therefore, proteomics indicates the promising direction of future investigations of such factors, including diagnosis and thus prevention in dental therapy.
Collapse
Affiliation(s)
- Galina Laputková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Vladimíra Schwartzová
- 1st Department of Stomatology, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Juraj Bánovčin
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, University of P. J. Šafárik in Košice, Rastislavova 43, Košice, 041 90, Slovakia
| | - Michal Alexovič
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| |
Collapse
|
11
|
Abstract
The proteome of whole saliva, in contrast to that of serum, is highly susceptible to a variety of physiological and biochemical processes. First, salivary protein secretion is under neurologic control, with protein output being dependent on the stimulus. Second, extensive salivary protein modifications occur in the oral environment, where a plethora of host- and bacteria-derived enzymes act on proteins emanating from the glandular ducts. Salivary protein biosynthesis starts with the transcription and translation of salivary protein genes in the glands, followed by post-translational processing involving protein glycosylation, phosphorylation, and proteolysis. This gives rise to salivary proteins occurring in families, consisting of structurally closely related family members. Once glandular secretions enter the non-sterile oral environment, proteins are subjected to additional and continuous protein modifications, leading to extensive proteolytic cleavage, partial deglycosylation, and protein-protein complex formation. All these protein modifications occur in a dynamic environment dictated by the continuous supply of newly synthesized proteins and removal by swallowing. Understanding the proteome of whole saliva in an environment of continuous turnover will be a prerequisite to gain insight into the physiological and pathological processes relevant to oral health, and be crucial for the identification of meaningful biomarkers for oral disease.
Collapse
Affiliation(s)
- E J Helmerhorst
- Boston University Goldman School of Dental Medicine, Department of Periodontology and Oral Biology, 700 Albany Street CABR W-201, Boston, MA 02118, USA.
| | | |
Collapse
|
12
|
Ruhl S, Sandberg AL, Cisar JO. Salivary Receptors for the Proline-rich Protein-binding and Lectin-like Adhesins of Oral Actinomyces and Streptococci. J Dent Res 2016; 83:505-10. [PMID: 15153461 DOI: 10.1177/154405910408300614] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Colonization of the tooth surface by actinomyces and viridans group streptococci involves the attachment of these bacteria to adsorbed salivary components of the acquired enamel pellicle. The hypothesis that this attachment depends on specific adhesins has now been assessed from the binding of bacteria with well-defined adhesive properties to blots of SDS-PAGE-separated parotid and submandibular-sublingual (SM-SL) saliva. Streptococcus sanguis and type 2 fimbriated Actinomyces naeslundii, which bound terminal sialic acid and Galβ1-3GalNAc, respectively, recognized only a few SM-SL salivary components, primarily MG2. In contrast, type 1 fimbriated A. naeslundii and S. gordonii, which bound purified proline-rich proteins (PRPs), recognized several other components from both SM-SL and parotid saliva. Significantly, bacteria that lacked PRP-binding and the lectin-like activities detected by binding to MG2 failed to bind any immobilized salivary component. These findings suggest the involvement of specific adhesins in bacterial recognition of many adsorbed salivary proteins and glycoproteins.
Collapse
Affiliation(s)
- S Ruhl
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, Building 30, Room 532, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
13
|
Prodan A, Brand H, Imangaliyev S, Tsivtsivadze E, van der Weijden F, de Jong A, Paauw A, Crielaard W, Keijser B, Veerman E. A Study of the Variation in the Salivary Peptide Profiles of Young Healthy Adults Acquired Using MALDI-TOF MS. PLoS One 2016; 11:e0156707. [PMID: 27258023 PMCID: PMC4892641 DOI: 10.1371/journal.pone.0156707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/18/2016] [Indexed: 12/16/2022] Open
Abstract
A cross-sectional observational study was conducted to evaluate the inter-individual variation in the MALDI-TOF MS peptide profiles of unstimulated whole saliva in a population of 268 systemically healthy adults aged 18-30 yr (150 males and 118 females) with no apparent caries lesions or periodontal disease. Using Spectral Clustering, four subgroups of individuals were identified within the study population. These subgroups were delimited by the pattern of variation in 9 peaks detected in the 2-15 kDa m/z range. An Unsupervised Feature Selection algorithm showed that P-C peptide, a 44 residue-long salivary acidic proline-rich protein, and three of its fragments (Fr. 1-25, Fr. 15-35 and Fr. 15-44) play a central role in delimiting the subgroups. Significant differences were found in the salivary biochemistry of the subgroups with regard to lysozyme and chitinase, two enzymes that are part of the salivary innate defense system (p < 0.001). These results suggest that MALDI-TOF MS salivary peptide profiles may relate information on the underlying state of the oral ecosystem and may provide a useful reference for salivary disease biomarker discovery studies.
Collapse
Affiliation(s)
- Andrei Prodan
- Top Institute Food and Nutrition, Wageningen, The Netherlands
- Department of Oral Biochemistry, Academic Center for Dentistry Amsterdam (ACTA) University of Amsterdam and Free University Amsterdam, Amsterdam, The Netherlands
| | - Henk Brand
- Top Institute Food and Nutrition, Wageningen, The Netherlands
- Department of Oral Biochemistry, Academic Center for Dentistry Amsterdam (ACTA) University of Amsterdam and Free University Amsterdam, Amsterdam, The Netherlands
| | - Sultan Imangaliyev
- Top Institute Food and Nutrition, Wageningen, The Netherlands
- MSB Group, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Evgeni Tsivtsivadze
- MSB Group, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Fridus van der Weijden
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, The Netherlands
| | - Ad de Jong
- Department CBRN Protection, The Netherlands Organization for Applied Scientific Research (TNO), Rijswijk, The Netherlands
| | - Armand Paauw
- Department CBRN Protection, The Netherlands Organization for Applied Scientific Research (TNO), Rijswijk, The Netherlands
| | - Wim Crielaard
- Top Institute Food and Nutrition, Wageningen, The Netherlands
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, The Netherlands
| | - Bart Keijser
- Top Institute Food and Nutrition, Wageningen, The Netherlands
- MSB Group, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Enno Veerman
- Department of Oral Biochemistry, Academic Center for Dentistry Amsterdam (ACTA) University of Amsterdam and Free University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Wang Y, Hao H, Zhang S. Lysozyme loading and release from Se doped hydroxyapatite nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:545-52. [DOI: 10.1016/j.msec.2015.12.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 11/14/2015] [Accepted: 12/28/2015] [Indexed: 12/15/2022]
|
15
|
Microbial Diversity in the Early In Vivo-Formed Dental Biofilm. Appl Environ Microbiol 2016; 82:1881-8. [PMID: 26746720 DOI: 10.1128/aem.03984-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/06/2016] [Indexed: 11/20/2022] Open
Abstract
Although the mature dental biofilm composition is well studied, there is very little information on the earliest phase of in vivo tooth colonization. Progress in dental biofilm collection methodologies and techniques of large-scale microbial identification have made new studies in this field of oral biology feasible. The aim of this study was to characterize the temporal changes and diversity of the cultivable and noncultivable microbes in the early dental biofilm. Samples of early dental biofilm were collected from 11 healthy subjects at 0, 2, 4, and 6 h after removal of plaque and pellicle from tooth surfaces. With the semiquantitative Human Oral Microbiome Identification Microarray (HOMIM) technique, which is based on 16S rRNA sequence hybridizations, plaque samples were analyzed with the currently available 407 HOMIM microbial probes. This led to the identification of at least 92 species, with streptococci being the most abundant bacteria across all time points in all subjects. High-frequency detection was also made with Haemophilus parainfluenzae, Gemella haemolysans, Slackia exigua, and Rothia species. Abundance changes over time were noted for Streptococcus anginosus and Streptococcus intermedius (P = 0.02), Streptococcus mitis bv. 2 (P = 0.0002), Streptococcus oralis (P = 0.0002), Streptococcus cluster I (P = 0.003), G. haemolysans (P = 0.0005), and Stenotrophomonas maltophilia (P = 0.02). Among the currently uncultivable microbiota, eight phylotypes were detected in the early stages of biofilm formation, one belonging to the candidate bacterial division TM7, which has attracted attention due to its potential association with periodontal disease.
Collapse
|
16
|
Gao X, Jiang S, Koh D, Hsu CYS. Salivary biomarkers for dental caries. Periodontol 2000 2015; 70:128-41. [DOI: 10.1111/prd.12100] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 12/20/2022]
|
17
|
Susewind S, Lang R, Hahnel S. Biofilm formation and Candida albicans morphology on the surface of denture base materials. Mycoses 2015; 58:719-27. [PMID: 26471334 DOI: 10.1111/myc.12420] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/17/2015] [Accepted: 09/24/2015] [Indexed: 11/26/2022]
Abstract
Fungal biofilms may contribute to the occurrence of denture stomatitis. The objective of the study was to investigate the biofilm formation and morphology of Candida albicans in biofilms on the surface of denture base materials. Specimens were prepared from different denture base materials. After determination of surface properties and salivary pellicle formation, mono- and multispecies biofilm formation including Candida albicans ATCC 10231 was initiated. Relative amounts of adherent cells were determined after 20, 44, 68 and 188 h; C. albicans morphology was analysed employing selective fluorescence microscopic analysis. Significant differences were identified in the relative amount of cells adherent to the denture base materials. Highest blastospore/hyphae index suggesting an increased percentage of hyphae was observed in mono- and multispecies biofilms on the soft denture liner, which did not necessarily respond to the highest relative amount of adherent cells. For both biofilm models, lowest relative amount of adherent cells was identified on the methacrylate-based denture base material, which did not necessarily relate to a significantly lower blastospore/hyphae index. The results indicate that there are significant differences in both biofilm formation as well as the morphology of C. albicans cells in biofilms on the surface of different denture base materials.
Collapse
Affiliation(s)
- Sabine Susewind
- Department of Prosthetic Dentistry, Regensburg University Medical Center, Regensburg, Germany
| | - Reinhold Lang
- Department of Prosthetic Dentistry, Regensburg University Medical Center, Regensburg, Germany
| | - Sebastian Hahnel
- Department of Prosthetic Dentistry, Regensburg University Medical Center, Regensburg, Germany
| |
Collapse
|
18
|
Park SN, Kook JK. Development of Streptococcus gordonii-specific quantitative real-time polymerase chain reaction primers based on the nucleotide sequence of rpoB. Microbiol Immunol 2014; 57:583-8. [PMID: 23647321 DOI: 10.1111/1348-0421.12063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/19/2013] [Accepted: 04/26/2013] [Indexed: 12/01/2022]
Abstract
In this study, Streptococcus gordonii-specific quantitative real-time polymerase chain reaction (qPCR) primers, RTSgo-F2/RTSgo-R2, were developed based on the nucleotide sequences of RNA polymerase β-subunit gene (rpoB). The specificity of the RTSgo-F2/RTSgo-R2 primers was assessed by conventional PCR on 99 strains comprising 63 oral bacterial species, including the type strain and eight clinical isolates of S. gordonii. PCR products were amplified from the genomic DNAs of only S. gordonii strains. The qPCR primers were able to detect as little as 40 fg of S. gordonii genomic DNA at a cycle threshold value of 33. These findings suggest that these qPCR primers detect S. gordonii with high specificity and sensitivity.
Collapse
Affiliation(s)
- Soon-Nang Park
- Korean Collection for Oral Microbiology, Department of Oral Biochemistry, School of Dentistry, Chosun University, 375 Seosuk-Dong, Dong-Gu, Gwangju, 501-759, Korea
| | | |
Collapse
|
19
|
Caseiro A, Ferreira R, Padrão A, Quintaneiro C, Pereira A, Marinheiro R, Vitorino R, Amado F. Salivary Proteome and Peptidome Profiling in Type 1 Diabetes Mellitus Using a Quantitative Approach. J Proteome Res 2013; 12:1700-9. [DOI: 10.1021/pr3010343] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Armando Caseiro
- QOPNA, Mass
Spectrometry Center, Department of Chemistry, University of Aveiro, Portugal
- College of Health Technology of Coimbra, Polytechnic Institute of Coimbra, Coimbra, Portugal
| | - Rita Ferreira
- QOPNA, Mass
Spectrometry Center, Department of Chemistry, University of Aveiro, Portugal
| | - Ana Padrão
- QOPNA, Mass
Spectrometry Center, Department of Chemistry, University of Aveiro, Portugal
| | | | - Amélia Pereira
- Figueira da Foz Hospital, Internal Medicine Service, Portugal
| | | | - Rui Vitorino
- QOPNA, Mass
Spectrometry Center, Department of Chemistry, University of Aveiro, Portugal
| | - Francisco Amado
- QOPNA, Mass
Spectrometry Center, Department of Chemistry, University of Aveiro, Portugal
- School of Health Sciences, University of Aveiro, Portugal
| |
Collapse
|
20
|
Zhu W, Gallo RL, Huang CM. Sampling human indigenous saliva peptidome using a lollipop-like ultrafiltration probe: simplify and enhance peptide detection for clinical mass spectrometry. J Vis Exp 2012:e4108. [PMID: 22895356 DOI: 10.3791/4108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Although human saliva proteome and peptidome have been revealed they were majorly identified from tryptic digests of saliva proteins. Identification of indigenous peptidome of human saliva without prior digestion with exogenous enzymes becomes imperative, since native peptides in human saliva provide potential values for diagnosing disease, predicting disease progression, and monitoring therapeutic efficacy. Appropriate sampling is a critical step for enhancement of identification of human indigenous saliva peptidome. Traditional methods of sampling human saliva involving centrifugation to remove debris may be too time-consuming to be applicable for clinical use. Furthermore, debris removal by centrifugation may be unable to clean most of the infected pathogens and remove the high abundance proteins that often hinder the identification of low abundance peptidome. Conventional proteomic approaches that primarily utilize two-dimensional gel electrophoresis (2-DE) gels in conjugation with in-gel digestion are capable of identifying many saliva proteins. However, this approach is generally not sufficiently sensitive to detect low abundance peptides/proteins. Liquid chromatography-Mass spectrometry (LC-MS) based proteomics is an alternative that can identify proteins without prior 2-DE separation. Although this approach provides higher sensitivity, it generally needs prior sample pre-fractionation and pre-digestion with trypsin, which makes it difficult for clinical use. To circumvent the hindrance in mass spectrometry due to sample preparation, we have developed a technique called capillary ultrafiltration (CUF) probes. Data from our laboratory demonstrated that the CUF probes are capable of capturing proteins in vivo from various microenvironments in animals in a dynamic and minimally invasive manner. No centrifugation is needed since a negative pressure is created by simply syringe withdrawing during sample collection. The CUF probes combined with LC-MS have successfully identified tryptic-digested proteins. In this study, we upgraded the ultrafiltration sampling technique by creating a lollipop-like ultrafiltration (LLUF) probe that can easily fit in the human oral cavity. The direct analysis by LC-MS without trypsin digestion showed that human saliva indigenously contains many peptide fragments derived from various proteins. Sampling saliva with LLUF probes avoided centrifugation but effectively removed many larger and high abundance proteins. Our mass spectrometric results illustrated that many low abundance peptides became detectable after filtering out larger proteins with LLUF probes. Detection of low abundance saliva peptides was independent of multiple-step sample separation with chromatography. For clinical application, the LLUF probes incorporated with LC-MS could potentially be used in the future to monitor disease progression from saliva.
Collapse
|
21
|
Ruhl S. The scientific exploration of saliva in the post-proteomic era: from database back to basic function. Expert Rev Proteomics 2012; 9:85-96. [PMID: 22292826 DOI: 10.1586/epr.11.80] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The proteome of human saliva can be considered as being essentially completed. Diagnostic markers for a number of diseases have been identified among salivary proteins and peptides, taking advantage of saliva as an easy-to-obtain biological fluid. Yet, the majority of disease markers identified so far are serum components and not intrinsic proteins produced by the salivary glands. Furthermore, despite the fact that saliva is essential for protecting the oral integuments and dentition, little progress has been made in finding risk predictors in the salivary proteome for dental caries or periodontal disease. Since salivary proteins, and in particular the attached glycans, play an important role in interactions with the microbial world, the salivary glycoproteome and other post-translational modifications of salivary proteins need to be studied. Risk markers for microbial diseases, including dental caries, are likely to be discovered among the highly glycosylated major protein species in saliva. This review will attempt to raise new ideas and also point to under-researched areas that may hold promise for future applicability in oral diagnostics and prediction of oral disease.
Collapse
Affiliation(s)
- Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA.
| |
Collapse
|
22
|
Susceptibility to dental caries and the salivary proline-rich proteins. Int J Dent 2011; 2011:953412. [PMID: 22190937 PMCID: PMC3235478 DOI: 10.1155/2011/953412] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/09/2011] [Indexed: 11/29/2022] Open
Abstract
Early childhood caries affects 28% of children aged 2–6 in the US and is not decreasing. There is a well-recognized need to identify susceptible children at birth. Caries-free adults neutralize bacterial acids in dental biofilms better than adults with severe caries. Saliva contains acidic and basic proline-rich proteins (PRPs) which attach to oral streptococci. The PRPs are encoded within a small region of chromosome 12. An acidic PRP allele (Db) protects Caucasian children from caries but is more common in African Americans. Some basic PRP allelic phenotypes have a three-fold greater frequency in caries-free adults than in those with severe caries. Early childhood caries may associate with an absence of certain basic PRP alleles which bind oral streptococci, neutralize biofilm acids, and are in linkage disequilibrium with Db in Caucasians. The encoding of basic PRP alleles is updated and a new technology for genotyping them is described.
Collapse
|
23
|
Salivary proteins as predictors and controls for oral health. J Cell Commun Signal 2011; 5:271-5. [PMID: 21927991 DOI: 10.1007/s12079-011-0151-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 01/13/2023] Open
Abstract
We will provide a translational view of using the recent technological advances in dental research for predicting, monitoring, and preventing the development of oral diseases by investigating the diagnostic and therapeutic role of salivary proteins. New analytical state-of-the-art technologies such as mass spectrometry and atomic force microscopy have revolutionized the field of oral biology. These novel technologies open avenues for a comprehensive characterization of the salivary proteins followed by the evaluation of the physiological functions which could make possible in a near future the development of a new series of synthetic protein for therapeutic propose able to prevent global oral diseases such as periodontal disease and dental caries, the two most prevalent oral diseases in the World.
Collapse
|
24
|
Uzel NG, Teles FR, Teles RP, Song XQ, Torresyap G, Socransky SS, Haffajee AD. Microbial shifts during dental biofilm re-development in the absence of oral hygiene in periodontal health and disease. J Clin Periodontol 2011; 38:612-20. [PMID: 21488936 DOI: 10.1111/j.1600-051x.2011.01730.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AIM To monitor microbial shifts during dental biofilm re-development. MATERIALS AND METHODS Supra- and subgingival plaque samples were taken separately from 28 teeth in 38 healthy and 17 periodontitis subjects at baseline and immediately after tooth cleaning. Samples were taken again from seven teeth in randomly selected quadrants during 1, 2, 4 and 7 days of no oral hygiene. Samples were analysed using checkerboard DNA-DNA hybridization. Species counts were averaged within subjects at each time point. Significant differences in the counts between healthy and periodontitis subjects were determined using the Mann-Whitney test. RESULTS The total supra- and subgingival counts were significantly higher in periodontitis on entry and reached or exceeded the baseline values after day 2. Supragingival counts of Veillonella parvula, Fusobacterium nucleatum ss vincentii and Neisseria mucosa increased from 2 to 7 days. Subgingival counts were greater for Actinomyces, green and orange complex species. Significant differences between groups in supragingival counts occurred for 17 of 41 species at entry, 0 at day 7; for subgingival plaque, these values were 39/41 taxa at entry, 17/41 at day 7. CONCLUSIONS Supragingival plaque re-development was similar in periodontitis and health, but subgingival species recolonization was more marked in periodontitis.
Collapse
Affiliation(s)
- Naciye G Uzel
- Department of Periodontology, The Forsyth Institute, Cambridge, MA 02142, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Helmerhorst EJ, Traboulsi G, Salih E, Oppenheim FG. Mass spectrometric identification of key proteolytic cleavage sites in statherin affecting mineral homeostasis and bacterial binding domains. J Proteome Res 2010; 9:5413-21. [PMID: 20731414 DOI: 10.1021/pr100653r] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human salivary statherin inhibits both primary and secondary calcium phosphate precipitation and, upon binding to hydroxyapatite, associates with a variety of oral bacteria. These functions, crucial in the maintenance of tooth enamel integrity, are located in defined regions within the statherin molecule. Proteases associated with saliva, however, cleave statherin effectively, and it is of importance to determine how statherin functional domains are affected by these events. Statherin was isolated from human parotid secretion by zinc precipitation and purified by reversed-phase high performance liquid chromatography (RP-HPLC). To characterize the proteolytic process provoked by oral proteases, statherin was incubated with whole saliva and fragmentation was monitored by RP-HPLC. The early formed peptides were structurally characterized by reversed phase liquid chromatography electrospray-ionization tandem mass spectrometry. Statherin was degraded 3.6× faster in whole saliva than in whole saliva supernatant. The main and primary cleavage sites were located in the N-terminal half of statherin, specifically after Arg(9), Arg(10), and Arg(13); after Phe(14) and Tyr(18); and after Gly(12), Gly(15), Gly(17) and Gly(19) while the C-terminal half of statherin remained intact. Whole saliva protease activities separated the charged N-terminus from the hydrophobic C-terminus, negatively impacting on full length statherin functions comprising enamel lubrication and inhibition of primary calcium phosphate precipitation. Cryptic epitopes for bacterial binding residing in the C-terminal domain were likewise affected. The full characterization of the statherin peptides generated facilitates the elucidation of their novel functional roles in the oral and gastro-intestinal environment.
Collapse
Affiliation(s)
- Eva J Helmerhorst
- Department of Periodontology and Oral Biology, Henry M. Goldman School of Dental Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
26
|
|
27
|
Hsu SD, Cisar JO, Sandberg AL, Kilian M. Adhesive Properties of Viridans Streptoccocal Species. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.3109/08910609409141342] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- S. D. Hsu
- Laboratory of Microbial Ecology, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland, 20892
| | - J. O. Cisar
- Laboratory of Microbial Ecology, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland, 20892
| | - A. L. Sandberg
- Laboratory of Microbial Ecology, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland, 20892
| | - M. Kilian
- Institute of Medical Microbiology, University of Aarhus, DK-8000, Aarhus C, Denmark
| |
Collapse
|
28
|
HUA SUMING, VESTLING MARTHAM, MURPHY CONSTANCEM, BRYAYT DUNCANK, HEIGHT JUDEJ, FENSELAU CATHERINE, THEIBERT JANET, COLLINS JOHNH. Mass balance strategy for protein sequencing. ACTA ACUST UNITED AC 2009. [DOI: 10.1111/j.1399-3011.1992.tb00439.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Amylase-binding protein B of Streptococcus gordonii is an extracellular dipeptidyl-peptidase. Infect Immun 2008; 76:4530-7. [PMID: 18678669 DOI: 10.1128/iai.00186-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oral commensal bacterium Streptococcus gordonii interacts with salivary amylase via two amylase-binding proteins, AbpA and AbpB. Based on sequence analysis, the 20-kDa AbpA protein is unique to S. gordonii, whereas the 82-kDa AbpB protein appears to share sequence homology with other bacterial dipeptidases. The aim of this study was to verify the peptidase activity of AbpB and further explore its potential functions. The abpB gene was cloned, and histidine-tagged AbpB (His-AbpB) was expressed in Escherichia coli and purified. Its amylase-binding activity was verified in an amylase ligand binding assay, and its cross-reactivity was verified with an anti-AbpB antibody. Both recombinant His-AbpB and partially purified native AbpB displayed dipeptidase activity and degraded human type VI collagen and fibrinogen, but not salivary amylase. Salivary amylase precipitates not only AbpA and AbpB but also glucosyltransferase G (Gtf-G) from S. gordonii supernatants. Since Streptococcus mutans also releases Gtf enzymes that could also be involved in multispecies plaque interactions, the effect of S. gordonii AbpB on S. mutans Gtf-B activity was also tested. Salivary amylase and/or His-AbpB caused a 1.4- to 2-fold increase of S. mutans Gtf-B sucrase activity and a 3- to 6-fold increase in transferase activity. An enzyme-linked immunosorbent assay verified the interaction of His-AbpB and amylase with Gtf-B. In summary, AbpB demonstrates proteolytic activity and interacts with and modulates Gtf activity. These activities may help explain the crucial role AbpB appears to play in S. gordonii oral colonization.
Collapse
|
30
|
Bodet C, Grenier D, Chandad F, Ofek I, Steinberg D, Weiss EI. Potential Oral Health Benefits of Cranberry. Crit Rev Food Sci Nutr 2008; 48:672-80. [DOI: 10.1080/10408390701636211] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Zakhary GM, Clark RM, Bidichandani SI, Owen WL, Slayton RL, Levine M. Acidic proline-rich protein Db and caries in young children. J Dent Res 2008; 86:1176-80. [PMID: 18037651 DOI: 10.1177/154405910708601207] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polymorphic, acidic proline-rich proteins (PRPs) in saliva influence the attachment of bacteria associated with caries. Our aims were to detect one of three acidic PRP alleles of the PRH1 locus (Db) using polymerase chain-reaction (PCR) on genomic DNA, and to determine its association with caries. DNA was obtained from buccal swabs from Caucasian and African-American children, and their caries experience was recorded. PCR primers designed around exon 3 of the PRH1 locus gave a 416-base product representing Db and a 353-base product representing the other two alleles (Pa or Pif). In Caucasians, Db gene frequency was 14%, similar to Db protein from parotid saliva. In African-Americans, however, it was 37%, 18% lower than Db from parotid saliva (reported previously). Compared with African-Americans, all Caucasians had significantly greater Streptococcus mutans colonization, but only Db-negative Caucasians had significantly more caries. Alleles linked to Db may explain racial differences in caries experience.
Collapse
Affiliation(s)
- G M Zakhary
- Department of Biochemistry and Molecular Biology, Colleges of Medicine, University of Oklahoma Health Sciences Center, 940 S.L. Young Blvd., BMSB 940A, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
32
|
Goobes G, Goobes R, Shaw WJ, Gibson JM, Long JR, Raghunathan V, Schueler-Furman O, Popham JM, Baker D, Campbell CT, Stayton PS, Drobny GP. The structure, dynamics, and energetics of protein adsorption-lessons learned from adsorption of statherin to hydroxyapatite. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2007; 45 Suppl 1:S32-S47. [PMID: 18172904 DOI: 10.1002/mrc.2123] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Proteins are found to be involved in interaction with solid surfaces in numerous natural events. Acidic proteins that adsorb to crystal faces of a biomineral to control the growth and morphology of hard tissue are only one example. Deducing the mechanisms of surface recognition exercised by proteins has implications to osteogenesis, pathological calcification and other proteins functions at their adsorbed state. Statherin is an enamel pellicle protein that inhibits hydroxyapatite nucleation and growth, lubricates the enamel surface, and is recognized by oral bacteria in periodontal diseases. Here, we highlight some of the insights we obtained recently using both thermodynamic and solid state NMR measurements to the adsorption process of statherin to hydroxyapatite. We combine macroscopic energy characterization with microscopic structural findings to present our views of protein adsorption mechanisms and the structural changes accompanying it and discuss the implications of these studies to understanding the functions of the protein adsorbed to the enamel surfaces.
Collapse
Affiliation(s)
- Gil Goobes
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Xie H, Lin X, Wang BY, Wu J, Lamont RJ. Identification of a signalling molecule involved in bacterial intergeneric communication. MICROBIOLOGY-SGM 2007; 153:3228-3234. [PMID: 17906122 PMCID: PMC2885614 DOI: 10.1099/mic.0.2007/009050-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development of complex multispecies communities such as biofilms is controlled by interbacterial communication systems. We have previously reported an intergeneric communication between two oral bacteria, Streptococcus cristatus and Porphyromonas gingivalis, that results in inhibition of fimA expression. Here, we demonstrate that a surface protein, arginine deiminase (ArcA), of S. cristatus serves as a signal that initiates intergeneric communication. An ArcA-deficient mutant of S. cristatus is unable to communicate with P. gingivalis. Furthermore, arginase activity is not essential for the communication, and ArcA retains the ability to repress expression of fimA in the presence of arginine deiminase inhibitors. These results present a novel mechanism by which intergeneric communication in dental biofilms is accomplished.
Collapse
Affiliation(s)
- Hua Xie
- School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
| | - Xinghua Lin
- School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
| | - Bing-Yan Wang
- Department of Periodontics and Endodontics, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Jie Wu
- School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA
| | - Richard J. Lamont
- Department of Oral Biology, University of Florida, Gainesville, FL 32610-0424, USA
| |
Collapse
|
34
|
Interaction of salivary alpha-amylase and amylase-binding-protein A (AbpA) of Streptococcus gordonii with glucosyltransferase of S. gordonii and Streptococcus mutans. BMC Microbiol 2007; 7:60. [PMID: 17593303 PMCID: PMC3225810 DOI: 10.1186/1471-2180-7-60] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 06/25/2007] [Indexed: 11/16/2022] Open
Abstract
Background Glucosyltransferases (Gtfs), enzymes that produce extracellular glucans from dietary sucrose, contribute to dental plaque formation by Streptococcus gordonii and Streptococcus mutans. The alpha-amylase-binding protein A (AbpA) of S. gordonii, an early colonizing bacterium in dental plaque, interacts with salivary amylase and may influence dental plaque formation by this organism. We examined the interaction of amylase and recombinant AbpA (rAbpA), together with Gtfs of S. gordonii and S. mutans. Results The addition of salivary alpha-amylase to culture supernatants of S. gordonii precipitated a protein complex containing amylase, AbpA, amylase-binding protein B (AbpB), and the glucosyltransferase produced by S. gordonii (Gtf-G). rAbpA was expressed from an inducible plasmid, purified from Escherichia coli and characterized. Purified rAbpA, along with purified amylase, interacted with and precipitated Gtfs from culture supernatants of both S. gordonii and S. mutans. The presence of amylase and/or rAbpA increased both the sucrase and transferase component activities of S. mutans Gtf-B. Enzyme-linked immunosorbent assay (ELISA) using anti-Gtf-B antibody verified the interaction of rAbpA and amylase with Gtf-B. A S. gordonii abpA-deficient mutant showed greater biofilm growth under static conditions than wild-type in the presence of sucrose. Interestingly, biofilm formation by every strain was inhibited in the presence of saliva. Conclusion The results suggest that an extracellular protein network of AbpA-amylase-Gtf may influence the ecology of oral biofilms, likely during initial phases of colonization.
Collapse
|
35
|
Goobes G, Stayton PS, Drobny GP. Solid State NMR Studies of Molecular Recognition at Protein-Mineral Interfaces. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2007; 50:71-85. [PMID: 19768124 PMCID: PMC2746069 DOI: 10.1016/j.pnmrs.2006.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Gil Goobes
- Department of Chemistry, University of Washington, Box 351700, Seattle WA 98195, USA, , Tel: 1 (206) 543 7760, Fax: 1 (206) 685 8665
| | - Patrick S. Stayton
- Department of Bioengineering, University of Washington, Box 355061, Seattle WA 98195, USA, , Tel: 1 (206) 685 8148, Fax: 1 (206) 685 8256
| | - Gary P. Drobny
- Department of Chemistry, University of Washington, Box 351700, Seattle WA 98195, USA, , Tel: 1 (206) 685 2052, Fax: 1 (206) 685 8665
| |
Collapse
|
36
|
Inzitari R, Vento G, Capoluongo E, Boccacci S, Fanali C, Cabras T, Romagnoli C, Giardina B, Messana I, Castagnola M. Proteomic Analysis of Salivary Acidic Proline-Rich Proteins in Human Preterm and At-Term Newborns. J Proteome Res 2007; 6:1371-7. [PMID: 17341109 DOI: 10.1021/pr060520e] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A 1 year follow-up investigation of salivary acidic proline-rich proteins (aPRPs) in preterm and at-term newborns using HPLC-ESI-IT-MS showed that (i) this class of proteins is constitutive rather than inducible, as it is still found in the oral cavity of preterm newborns from 180 days of postconception age (PCA); (ii) the expression of PRH-2 locus anticipates that of PRH-1, since Db isoforms are expressed some months after the PRP-1 and PRP-2 isoforms. The evaluation of the relative abundances of the different aPRPs isoforms and derivatives (differently phosphorylated and cleaved) as a function of PCA showed that (iii) the proteolytic enzymes generating truncated isoforms are also constitutive because they are fully active since 180 days of PCA; (iv) the kinase involved in aPRP phosphorylation is not fully mature in preterm newborns, but its activity increases with PCA, synchronizing with that of at-term newborns and reaching the adult levels at about 500-600 days of PCA, in concomitance with the beginning of deciduous dentition.
Collapse
Affiliation(s)
- Rosanna Inzitari
- Istituto di Biochimica e Biochimica Clinica, Istituto Scientifico Internazionale Paolo VI di ricerca sulla fertilità ed infertilità umana, Roma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nobbs AH, Zhang Y, Khammanivong A, Herzberg MC. Streptococcus gordonii Hsa environmentally constrains competitive binding by Streptococcus sanguinis to saliva-coated hydroxyapatite. J Bacteriol 2007; 189:3106-14. [PMID: 17277052 PMCID: PMC1855861 DOI: 10.1128/jb.01535-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Competition between pioneer colonizing bacteria may determine polymicrobial succession during dental plaque development, but the ecological constraints are poorly understood. For example, more Streptococcus sanguinis than Streptococcus gordonii organisms are consistently isolated from the same intraoral sites, yet S. gordonii fails to be excluded and survives as a species over time. To explain this observation, we hypothesized that S. gordonii could compete with S. sanguinis to adhere to saliva-coated hydroxyapatite (sHA), an in vitro model of the tooth surface. Both species bound similarly to sHA, yet 10- to 50-fold excess S. gordonii DL1 reduced binding of S. sanguinis SK36 by 85 to >95%. S. sanguinis, by contrast, did not significantly compete with S. gordonii to adhere. S. gordonii competed with S. sanguinis more effectively than other species of oral streptococci and depended upon the salivary film on HA. Next, putative S. gordonii adhesins were analyzed for contributions to interspecies competitive binding. Like wild-type S. gordonii, isogenic mutants with mutations in antigen I/II polypeptides (sspAB), amylase-binding proteins (abpAB), and Csh adhesins (cshAB) competed effectively against S. sanguinis. By contrast, an hsa-deficient mutant of S. gordonii showed significantly reduced binding and competitive capabilities, while these properties were restored in an hsa-complemented strain. Thus, Hsa confers a selective advantage to S. gordonii over S. sanguinis in competitive binding to sHA. Hsa expression may, therefore, serve as an environmental constraint against S. sanguinis, enabling S. gordonii to persist within the oral cavity, despite the greater natural prevalence of S. sanguinis in plaque and saliva.
Collapse
Affiliation(s)
- Angela H Nobbs
- Department of Diagnostic and Biological Sciences, University of Minnesota, 17-164 Moos Tower, 515 Delaware Street, S.E., Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Mary E Davey
- Department of Molecular Genetics, The Forsyth Institute, Boston, Massachusetts, USA
| | | |
Collapse
|
39
|
Goobes G, Goobes R, Schueler-Furman O, Baker D, Stayton PS, Drobny GP. Folding of the C-terminal bacterial binding domain in statherin upon adsorption onto hydroxyapatite crystals. Proc Natl Acad Sci U S A 2006; 103:16083-8. [PMID: 17060618 PMCID: PMC1637540 DOI: 10.1073/pnas.0607193103] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Statherin is an enamel pellicle protein that inhibits hydroxyapatite (HAP) nucleation and growth, lubricates the enamel surface, and is recognized by oral bacteria in periodontal diseases. We report here from solid-state NMR measurements that the protein's C-terminal region folds into an alpha-helix upon adsorption to HAP crystals. This region contains the binding sites for bacterial fimbriae that mediate bacterial cell adhesion to the surface of the tooth. The helical segment is shown through long-range distance measurements to fold back onto the intermediate region (residues Y16-P28) defining the global fold of the protein. Statherin, previously shown to be unstructured in solution, undergoes conformation selection on its substrate mineral surface. This surface-induced folding of statherin can be related to its functionality in inhibiting HAP crystal growth and can explain how oral pathogens selectively recognize HAP-bound statherin.
Collapse
Affiliation(s)
| | | | | | - David Baker
- Biochemistry, University of Washington, Seattle, WA 98195
| | | | - Gary P. Drobny
- Departments of Chemistry
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
40
|
Park WK, Chung JW, Kim YK, Chung SC, Kho HS. Influences of animal mucins on lysozyme activity in solution and on hydroxyapatite surfaces. Arch Oral Biol 2006; 51:861-9. [PMID: 16716246 DOI: 10.1016/j.archoralbio.2006.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/23/2005] [Accepted: 04/06/2006] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to investigate the influence of animal mucins on lysozyme activity in solution and on the surface of hydroxyapatite (HA) beads. The effects of animal mucins on lysozyme activity in solution were examined by incubating porcine gastric mucin (PGM) or bovine submaxillary mucin (BSM) with hen egg-white lysozyme (HEWL) or salivary samples. HA-immobilised animal mucins or lysozyme were used to determine the influence of animal mucins on lysozyme activity on HA surfaces. Lysozyme activity was determined by turbidity measurement of a Micrococcus lysodeikticus substrate suspension. Protein concentration was determined by ninhydrin assay. PGM inhibited the activity of HEWL and salivary lysozyme in solution. The amount of inhibition was dependent on mucin concentration, incubation time and temperature, and the structural integrity of the mucin. The inhibition of salivary lysozyme activity by PGM was greater in submandibular/sublingual saliva than in parotid saliva. The inhibition of lysozyme activity by PGM was markedly dependent on pH. However, BSM did not inhibit the in-solution lysozyme activities of HEWL and clarified saliva. Both PGM and BSM bound to HA surfaces, and HA-adsorbed animal mucins increased the subsequent adsorption of lysozyme. When HA beads were exposed to a mixture of HEWL and PGM or BSM, lysozyme activity on the HA surfaces was significantly increased. The results suggest that animal mucins affect lysozyme activity, and the effects are different on HA surfaces compared with in solution. Further research is needed to determine the effect of animal mucins on lysozyme activity in vivo.
Collapse
Affiliation(s)
- Won-Kyu Park
- Department of Oral Medicine and Oral Diagnosis, School of Dentistry and Dental Research Institute, Seoul National University, Yunkeun-Dong 28, Chongro-Ku, Seoul 110-749, South Korea
| | | | | | | | | |
Collapse
|
41
|
Drobni M, Li T, Krüger C, Loimaranta V, Kilian M, Hammarström L, Jörnvall H, Bergman T, Strömberg N. Host-derived pentapeptide affecting adhesion, proliferation, and local pH in biofilm communities composed of Streptococcus and Actinomyces species. Infect Immun 2006; 74:6293-9. [PMID: 16940141 PMCID: PMC1695511 DOI: 10.1128/iai.00068-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salivary proline-rich proteins (PRPs) attach commensal Actinomyces and Streptococcus species to teeth. Here, gel filtration, mass spectrometry and Edman degradation were applied to show the release of a pentapeptide, RGRPQ, from PRP-1 upon proteolysis by Streptococcus gordonii. Moreover, synthetic RGRPQ and derivatives were used to investigate associated innate properties and responsible motifs. The RGRPQ peptide increased 2.5-fold the growth rate of S. gordonii via a Q-dependent sequence motif and selectively stimulated oral colonization of this organism in a rat model in vivo. In contrast, the growth of Streptococcus mutans, implicated in caries, was not affected. While the entire RGRPQ sequence was required to block sucrose-induced pH-decrease by S. gordonii and S. mutans, the N-terminal Arg residue mediated the pH increase (i.e., ammonia production) by S. gordonii alone (which exhibits Arg catabolism to ammonia). Strains of commensal viridans streptococci exhibited PRP degradation and Arg catabolism, whereas cariogenic species did not. The RGRPQ peptide mediated via a differential Q-dependent sequence motif, adhesion inhibition, and desorption of PRP-1-binding strains of A. naeslundii genospecies 2 (5 of 10 strains) but not of S. gordonii (n=5). The inhibitable A. naeslundii strains alone displayed the same binding profile as S. gordonii to hybrid peptides terminating in RGRPQ or GQSPQ, derived from the middle or C-terminal segments of PRP-1. The present findings indicate the presence of a host-bacterium interaction in which a host peptide released by bacterial proteolysis affects key properties in biofilm formation.
Collapse
Affiliation(s)
- Mirva Drobni
- Department of Odontology/Cariology, Umeå University, SE-901 87 Umeå, and Division of Clinical Immunology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Drobni M, Olsson IM, Eriksson C, Almqvist F, Strömberg N. Multivariate design and evaluation of a set of RGRPQ-derived innate immunity peptides. J Biol Chem 2006; 281:15164-71. [PMID: 16595685 DOI: 10.1074/jbc.m511727200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oral commensal Streptococcus gordonii proteolytically cleave the salivary PRP-1 polypeptide into an RGRPQ innate peptide. The Arg and Gln termini are crucial for RGRPQ-mediated ammonia production and proliferation by S. gordonii SK12 and adhesion inhibition and desorption by Actinomyces naeslundii T14V, respectively. Here we have applied (i) a multivariate approach using RGRPQ-related peptides varied at amino acids 2, 3, and 4 simultaneously and (ii) size and N- and C-terminal modifications of RGRPQ to generate structure activity information. While the N-terminal arginine motif mediated ammonia production independent of peptide size, other responses required more or less full-length peptide motifs. The motifs for adhesion inhibition and desorption were the same. The adhesion and proliferation motifs required similarly a hydrophobic/low polarity amino acid 4 but differentially a hydrophilic or hydrophobic character of amino acids 2/3, respectively; polar peptides with small/hydrophilic and hydrophilic amino acids 2 and 3, respectively, had high adhesion inhibition/desorption activity, and lipophilic peptides with large/hydrophobic amino acids 2 and 3 had high proliferation activity. Accordingly, while RIWWQ had increased proliferation but abolished adhesion/desorption activity, peptides designed with hydrophilic amino acids 2 and 3 were predicted to behave in the opposite way. Moreover, a RGRPQ mimetic for all three responses should mimic small hydrophilic, large nitrogen-containing, and hydrophobic/low polarity amino acids 2, 3, and 4, respectively. Peptides fulfilling these criteria were 1-1.6-fold improved in all three responses. Thus, both mimetics and peptides with differential proliferation and adhesion activities may be generated for evaluation in biofilm models.
Collapse
Affiliation(s)
- Mirva Drobni
- Department of Odontology/Cariology, UmeA University, SE-901 87 UmeA, Sweden
| | | | | | | | | |
Collapse
|
43
|
Kho HS, Vacca Smith AM, Koo H, Scott-Anne K, Bowen WH. Interactions of Streptococcus mutans glucosyltransferase B with lysozyme in solution and on the surface of hydroxyapatite. Caries Res 2005; 39:411-6. [PMID: 16110214 DOI: 10.1159/000086849] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 12/09/2004] [Indexed: 11/19/2022] Open
Abstract
Several active enzymes have been identified as components of acquired enamel pellicle. In the present study, the interactions of Streptococcus mutans glucosyltransferase B (GtfB) with lysozyme in solution and on the surface of hydroxyapatite (HA) beads were studied. Experiments were also performed to investigate whether structural differences exist between glucans formed by GtfB enzyme in the presence or absence of lysozyme in solution and on the surface of HA. Hen egg-white lysozyme (HEWL) and saliva were used as the sources of lysozyme; lysozyme-depleted saliva was used as control. Lysozyme activity was significantly reduced when adsorbed onto HA beads compared with that in solution. The GtfB enzyme did not affect the activity of lysozyme in solution or that of adsorbed lysozyme onto HA. The presence of HEWL increased GtfB activity; bovine serum albumin had an even greater enhancing effect. Depletion of lysozyme from whole saliva increased GtfB activity in solution, but not on the surface of saliva-coated HA. The presence of lysozyme affected the amount of glucan formation by GtfB, but not the structure of glucans formed in solution and on the surface. Therefore, the interaction of lysozyme and GtfB enzymes on HA surface may modulate the formation of glucan and dental plaque.
Collapse
Affiliation(s)
- H-S Kho
- University of Rochester, Center for Oral Biology, Rochester, New York, N.Y., USA.
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Inzitari R, Cabras T, Onnis G, Olmi C, Mastinu A, Sanna MT, Pellegrini MG, Castagnola M, Messana I. Different isoforms and post-translational modifications of human salivary acidic proline-rich proteins. Proteomics 2005; 5:805-15. [PMID: 15693058 DOI: 10.1002/pmic.200401156] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The human salivary acidic proline-rich proteins (aPRPs) complex was investigated by different chromatographic and mass spectrometric approaches and the main aPRPs, namely PRP-1, PRP-2 and PIF-s (15,515 amu), Db-s (17,632 amu) and Pa (15,462 amu) proteins, were detected. All these isoforms are phosphorylated at Ser-8 and Ser-22 and have a pyroglutamic moiety at the N-terminus. Apart from Pa, all the other aPRPs undergo a proteolytic cleavage at Arg-106 residue (Arg-127 in Db-s protein), that generates the small PC peptide (4371 amu) and PRP-3, PRP-4, PIF-f (11,162 amu) and Db-f (13,280 amu) proteins, all of which were detected. With regard to the Pa protein, the main form detected was the dimeric derivative (Pa 2-mer, 30,922 amu) originated by a disulfide bond involving Cys-103 residue. Besides these known isoforms, several previously undetected aPRP derivatives were found (in minor amounts): (i) the triphosphorylated derivatives of PRP-1/PRP-2/PIF-s and Db-s, showing the additional phosphate group at Ser-17; (ii) the mono-phosphorylated forms at either Ser-22 or Ser-8 of PRP-1/PRP-2/PIF-s, PRP-3/PRP-4/PIF-f, Db-s and Db-f; (iii) a nonphosphorylated form of PRP-3/PRP-4/PIF-f; (iv) the triphosphorylated and diphosphorylated forms of Pa 2-mer. Moreover, minor quantities of PRP-3/PRP-4/PIF-f lacking the C-terminal Arg (11,006 amu), and of Pa 2-mer lacking the C-terminal Gln (30,793 amu) were found. By this approach the different phenotypes of PRH1 locus in 59 different subjects were characterized.
Collapse
Affiliation(s)
- Rosanna Inzitari
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Università Cattolica, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cai K, Bennick A. Processing of acidic proline-rich proprotein by human salivary gland convertase. Arch Oral Biol 2004; 49:871-9. [PMID: 15353242 DOI: 10.1016/j.archoralbio.2004.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2004] [Indexed: 10/26/2022]
Abstract
Previously it was found that proproteins for basic and glycosylated salivary proline-rich proteins (PRP) were cleaved prior to secretion from cells by furin, a well-known convertase. In contrast proproteins for acidic PRPs are not cleaved by furin or other convertases. To investigate the convertase responsible for in vivo processing of acidic PRP proproteins, homogenates of human sublingual glands were fractionated by centrifugation at 10,000 x g and 100,000 x g and activity demonstrated in all fractions. The 100,000 x g pellet was fractionated into Golgi, smooth endoplasmic reticulum and microsomal fractions with the latter containing the enzyme. Subfractionation of the microsomes revealed that the activity was located in the membrane proteins. Since the microsomes contain components of the secretory pathway the enzyme in this fraction may be responsible for intracellular cleavage of the acidic PRP proprotein. The enzyme was active at alkaline pH. It was strongly inhibited by metal chelators indicating that it is a metalloprotease. It was not inhibited by an acid protease inhibitor, but partly inhibited by some serine protease inhibitors indicating that serine proteases may play a role in degradation. Co2+ and to some extent Zn2+ activated the enzyme, but it was strongly inhibited by Hg2+ and Cu2+ as well as the organomercurial p-chloromercuribenzenesulfonic acid. Thus it appears that the enzyme contains an important -SH group. These characteristics indicate that the convertase is related to a group of metal- and thiol-dependent proteases known as thimet oligopeptidases, but in contrast to the latter enzymes the sublingual convertase was not inhibited by angiotensin antagonists.
Collapse
Affiliation(s)
- Kuihua Cai
- Department of Biochemistry, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Canada M5S 1A8
| | | |
Collapse
|
47
|
Takeuchi H, Yamanaka Y, Yamamoto K. Morphological analysis of subgingival biofilm formation on synthetic carbonate apatite inserted into human periodontal pockets. Aust Dent J 2004; 49:72-7. [PMID: 15293817 DOI: 10.1111/j.1834-7819.2004.tb00053.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Details of the development of human subgingival biofilm are unknown due to the difficulties in conducting experiments and especially in obtaining undisturbed materials. METHODS This study was performed using deposits on carbonate apatite that had been inserted into human periodontal pockets for up to three weeks. Scanning electron microscopy using the vertically sectioned method and transmission electron microscopy using the freeze-substitution method were adopted. RESULTS The development of subgingival biofilm occurred in five sequential phases: pellicle formation, microbial adherence, initial colonization, microbial organization, and establishment. Certain species in each of the initial, secondary and tertiary colonizers were considered to have a predilection for biofilm formation. Gram-positive, bacillary initial colonizers and gram-negative, filamentous secondary colonizers organized one stable structure that served as the framework for biofilm formation, and gram-negative, rod-shaped tertiary colonizers with cell-surface vesicles showed multigeneric coaggregation. The microbiota in the tertiary colonizers underwent repeated microflora alteration. CONCLUSIONS Subgingival biofilm is constituted by initial, secondary and tertiary colonizers. Microflora alteration which is suggested to be related to periodontal disease, frequently occurred in the tertiary colonizers.
Collapse
Affiliation(s)
- H Takeuchi
- Department of Oral Pathology, School of Dentistry, Asahi University, Gifu Pref, Japan.
| | | | | |
Collapse
|
48
|
Sekine S, Kataoka K, Tanaka M, Nagata H, Kawakami T, Akaji K, Aimoto S, Shizukuishi S. Active domains of salivary statherin on apatitic surfaces for binding to Fusobacterium nucleatum cells. MICROBIOLOGY-SGM 2004; 150:2373-2379. [PMID: 15256578 DOI: 10.1099/mic.0.27107-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fusobacterium nucleatum can bind to saliva-coated tooth surfaces. However, the nature of the domains of salivary protein that interact with F. nucleatum remains unclear. The ability of individual proteins in human submandibular-sublingual saliva (HSMSL) to bind F. nucleatum cells was examined by dot blot assay; statherin displayed the strongest binding activity. Statherin binding sites were determined based on binding of (125)I-labelled F. nucleatum to statherin-coated hydroxyapatite (sHAP) beads via inhibition assays using synthetic analogous peptide fragments of whole statherin. Analogous peptides corresponding to residues 19-26 and 32-39 of statherin inhibited binding by 77 % and 68 %, respectively. Synthetic peptides were also prepared by serial deletions of individual residues from N- and C-termini of the peptides GPYQPVPE (aa 19-26) and QPYQPQYQ (aa 32-39). The inhibitory effects of peptides YQPVPE (aa 21-26) and PYQPQYQ (aa 33-39) were very similar to those of GPYQPVPE and QPYQPQYQ, respectively. However, additional deletion of residues resulted in significant reduction of the inhibitory effect. Alanine-scan analysis of YQPVPE revealed that all tested peptides retained inhibitory activity; only YAPVPE exhibited significantly decreased inhibitory activity. These findings suggest that YQPVPE and PYQPQYQ may represent the minimal active segments of statherin for binding to F. nucleatum; moreover, Gln may be a key amino acid in the active segment.
Collapse
Affiliation(s)
- Shinichi Sekine
- Departments of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Kosuke Kataoka
- Departments of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Muneo Tanaka
- Departments of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Hideki Nagata
- Departments of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Toru Kawakami
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Kenichi Akaji
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Saburo Aimoto
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Satoshi Shizukuishi
- Departments of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita, Japan
| |
Collapse
|
49
|
Rudney JD, Chen R. Human salivary function in relation to the prevalence of Tannerella forsythensis and other periodontal pathogens in early supragingival biofilm. Arch Oral Biol 2004; 49:523-7. [PMID: 15126134 DOI: 10.1016/j.archoralbio.2004.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2004] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Previously, we screened 149 subjects and established four groups high or low for salivary killing of oral bacteria, and for aggregation and live and dead adherence of oral bacteria (as a combined factor). Caries scores were significantly lower in both High Aggregation-Adherence groups. Subsequently, we found that supragingival total biofilm DNA, total streptococci and two major streptococcal rRNA variants also were significantly lower in the High Aggregation-Adherence groups. In this study, we looked at the effects of those differences in salivary function on three periodontal pathogens. DESIGN Quantitative PCR was used to determine levels of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Tannerella forsythensis (formerly Bacteroides forsythus) in stored DNA extracts of overnight supragingival biofilm collected from buccal upper central incisors (UC), lingual lower central incisors (LC) and buccal upper and lower first molars (BM) and lingual upper and lower first molars (LM) of subjects in the four groups. RESULTS A. actinomycetemcomitans and P. gingivalis were almost completely absent from these samples. T. forsythensis was found in 11 of 35 persons at the buccal molar site. Only two of those subjects were in the High Aggregation-Adherence groups, and that difference was statistically significant. The mean quantity of T. forsythensis also was significantly lower in the High Aggregation-Adherence groups. CONCLUSIONS The difference between the Low and High Aggregation-Adherence groups might reflect direct interactions of salivary proteins with T. forsythensis. Alternatively, the higher levels of total biofilm and total streptococci seen in the Low Aggregation-Adherence groups might create a favourable environment for early secondary colonization of T. forsythensis.
Collapse
Affiliation(s)
- J D Rudney
- Department of Oral Science, School of Dentistry, University of Minnesota, 17-252 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
50
|
Niemi LD, Johansson I. Salivary statherin peptide-binding epitopes of commensal and potentially infectious Actinomyces spp. delineated by a hybrid peptide construct. Infect Immun 2004; 72:782-7. [PMID: 14742521 PMCID: PMC321590 DOI: 10.1128/iai.72.2.782-787.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adhesion of microorganisms to host receptor molecules such as salivary statherin molecules is a common event in oral microbial colonization. Here we used a hybrid peptide construct (with both a hydroxyapatite-binding portion and a test peptide portion) to map the interaction of Actinomyces species (and Candida albicans) with statherin. Adhesion to hybrid peptides and truncated statherin variants revealed three binding types, types I to III. (i) Type I strains of rat, hamster, and human infection origins bound C-terminal-derived QQYTF and PYQPQY peptides. The QQYTF peptide inhibited statherin binding for some strains but not for others. (ii) Type II strains of human and monkey tooth origins bound middle-region-derived YQPVPE and QPLYPQ peptides. Neither strain was inhibited by soluble peptides. (iii) Type III strains of human infection origins (and C. albicans) did not bind to either statherin-derived peptides or truncated statherin. Moreover, the type I strains inhibited by QQYTF were also inhibited by TF and QAATF peptides and were detached from statherin by the same peptides. In conclusion, it is suggested that commensal and potentially infectious microorganisms bind middle or C-terminal statherin differently and that other microbes might require discontinuous epitopes.
Collapse
|