1
|
Devanga Ragupathi NK, Muthuirulandi Sethuvel DP, Ganesan A, Murugan D, Baskaran A, Wannigama DL, Monk PN, Karunakaran E, Veeraraghavan B. Evaluation of mrkD, pgaC and wcaJ as biomarkers for rapid identification of K. pneumoniae biofilm infections from endotracheal aspirates and bronchoalveolar lavage. Sci Rep 2024; 14:23572. [PMID: 39384811 PMCID: PMC11464835 DOI: 10.1038/s41598-024-69232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/01/2024] [Indexed: 10/11/2024] Open
Abstract
Klebsiella pneumoniae has been identified as one of the most important opportunistic pathogens responsible for nosocomial infections. Antibiotic resistance and the ability to form biofilms are the two main factors involved in the persistence of infections. Conventional detection methods involve culture isolation and identification followed by biofilm assay that takes 48-72 h. Timely detection of biofilm-forming resistant pathogens is essential to appropriately treat the infection with the right dose and combinations. The present study focuses on evaluating an RT-PCR panel using mrkD, pgaC, and wcaJ genes to screen for biofilm-forming K. pneumoniae from ETA/BAL specimens. The assay accurately identified K. pneumoniae harboring samples with a limit of detection of 1 ng/µl total RNA. Representative culture-negative-PCR-positive samples were subjected to metagenomics which identified K. pneumoniae reads in these samples confirming the specificity of RT-PCR. mrkD and pgaC act as K. pneumoniae specific identification whereas wcaJ acts as a negative marker for biofilm-forming K. pneumoniae. In addition, RT-PCR results correlated well with the phenotypic biofilm-forming assay. This RT-PCR assay is the first of its kind for rapid identification of biofilm-forming K. pneumoniae. The result of this study highlights that the rapid detection of K. pneumoniae biofilms based on the RT-PCR results coupled with clinical conditions would be appropriate to treat emerging infections or to prevent re-infections in clinical settings.
Collapse
Affiliation(s)
- Naveen Kumar Devanga Ragupathi
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, UK.
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries (BARCOD), The University of Sheffield, Sheffield, UK.
- Department of Clinical Microbiology, Christian Medical College, Vellore, India.
| | | | - Anju Ganesan
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Dhivya Murugan
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | | | - Dhammika Leshan Wannigama
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries (BARCOD), The University of Sheffield, Sheffield, UK
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Peter N Monk
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries (BARCOD), The University of Sheffield, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, UK
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries (BARCOD), The University of Sheffield, Sheffield, UK
| | - Balaji Veeraraghavan
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries (BARCOD), The University of Sheffield, Sheffield, UK
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| |
Collapse
|
2
|
Bakhtiari R, Javadi A, Aminzadeh M, Molaee-Aghaee E, Shaffaghat Z. Association between Presence of RmpA, MrkA and MrkD Genes and Antibiotic Resistance in Clinical Klebsiella pneumoniae Isolates from Hospitals in Tehran, Iran. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:1009-1016. [PMID: 34183959 PMCID: PMC8223560 DOI: 10.18502/ijph.v50i5.6118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background: Klebsiella pneumoniae is an opportunistic pathogen causing nosocomial infection in human. This study aimed to investigate the relationship between the presence of genes involved in biofilm formation in K. pneumoniae isolated from patients and the presence of antibiotic resistance genes. Methods: Biochemical tests were used for the identification of K. pneumonia isolated from urine samples referred to hospitals in Tehran, Iran, from Sep 2018 to Jan 2020. The antibiotic resistance pattern was performed and biofilm formation was assessed phenotypically. Finally, β-lactamase genes and adhesion genes were detected by the PCR method. Results: We collected 457 K. pneumoniae isolates from hospitals in Tehran, Iran. 110 isolates were resistant to imipenem. Fifty isolates were positive for metallo-β-lactamases that thirty-nine isolates (35.45%) has blaKPC gene, 18 isolates (16.36%) had blaVIM-1 gene and 9 isolates (8.18%) had blaIMP-1 gene detected by PCR. Sixty isolates (54.54%) had strong biofilm, 35 isolates (31.81%) had moderate biofilm and 15 isolates (13.63%) had weak biofilm. The presence of adhesion genes in K. pneumoniae isolates significantly correlated with resistance genes (P<0.001). Conclusion: It is clear antibacterial resistance has been significant association with biofilm formation in K. pneumoniae isolates. Therefore, understanding resistance pattern and mechanisms leading to biofilm formation can facilitate efficient treatment of infections caused by K. pneumoniae.
Collapse
Affiliation(s)
- Ronak Bakhtiari
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Javadi
- Department of Medical Sciences, Qom Branch, Islamic Azad University, Qom, Iran
| | - Malihe Aminzadeh
- Department of Education Office, Mostafa Khomeini Hospital, Shahed University, Tehran, Iran
| | - Ebrahim Molaee-Aghaee
- Department of Environmental Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Shaffaghat
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Jeng WY, Panjaitan NSD, Horng YT, Chung WT, Chien CC, Soo PC. The Negative Effects of KPN00353 on Glycerol Kinase and Microaerobic 1,3-Propanediol Production in Klebsiella pneumoniae. Front Microbiol 2017; 8:2441. [PMID: 29375490 PMCID: PMC5770620 DOI: 10.3389/fmicb.2017.02441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/24/2017] [Indexed: 01/25/2023] Open
Abstract
1,3-Propanediol (1,3-PD) is a valuable chemical intermediate in the synthesis of polyesters, polyethers, and polyurethanes, which have applications in various products such as cloth, bottles, films, tarpaulins, canoes, foam seals, high-resilience foam seating, and surface coatings. Klebsiella pneumoniae can produce 1,3-PD from glycerol. In this study, KPN00353, an EIIA homologue in the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS), was found to play a negative regulatory role in 1,3-PD production under microaerobic conditions via binding to glycerol kinase (GlpK). The primary sequence of KPN00353 is similar to those of the fructose-mannitol EIIA (EIIFru and EIIAMtl) family. The interaction between KPN00353 and GlpK resulted in inhibition of the synthesis of glycerol-3-phosphate (G3P) and correlated with reductions in glycerol uptake and the production of 1,3-PD. Based on structure modeling, we conclude that residue H65 of KPN00353 plays an important role in the interaction with GlpK. We mutated this histidine residue to aspartate, glutamate, arginine and glutamine to assess the effects of each KPN00353 variant on the interaction with GlpK, on the synthesis of G3P and on the production of 1,3-PD. Our results illuminate the role of KPN00353 in 1,3-PD production by K. pneumoniae under microaerobic conditions.
Collapse
Affiliation(s)
- Wen-Yih Jeng
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
| | - Novaria S D Panjaitan
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yu-Tze Horng
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Ting Chung
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Po-Chi Soo
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
4
|
Additional regulatory activities of MrkH for the transcriptional expression of the Klebsiella pneumoniae mrk genes: Antagonist of H-NS and repressor. PLoS One 2017; 12:e0173285. [PMID: 28278272 PMCID: PMC5344390 DOI: 10.1371/journal.pone.0173285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/07/2017] [Indexed: 11/19/2022] Open
Abstract
Klebsiella pneumoniae is a common opportunistic pathogen causing nosocomial infections. One of the main virulence determinants of K. pneumoniae is the type 3 pilus (T3P). T3P helps the bacterial interaction to both abiotic and biotic surfaces and it is crucial for the biofilm formation. T3P is genetically organized in three transcriptional units: the mrkABCDF polycistronic operon, the mrkHI bicistronic operon and the mrkJ gene. MrkH is a regulatory protein encoded in the mrkHI operon, which positively regulates the mrkA pilin gene and its own expression. In contrast, the H-NS nucleoid protein represses the transcriptional expression of T3P. Here we reported that MrkH and H-NS positively and negatively regulate mrkJ expression, respectively, by binding to the promoter of mrkJ. MrkH protein recognized a sequence located at position -63.5 relative to the transcriptional start site of mrkJ gene. Interestingly, our results show that, in addition to its known function as classic transcriptional activator, MrkH also positively controls the expression of mrk genes by acting as an anti-repressor of H-NS; moreover, our results support the notion that high levels of MrkH repress T3P expression. Our data provide new insights about the complex regulatory role of the MrkH protein on the transcriptional control of T3P in K. pneumoniae.
Collapse
|
5
|
Ares MA, Fernández-Vázquez JL, Rosales-Reyes R, Jarillo-Quijada MD, von Bargen K, Torres J, González-y-Merchand JA, Alcántar-Curiel MD, De la Cruz MA. H-NS Nucleoid Protein Controls Virulence Features of Klebsiella pneumoniae by Regulating the Expression of Type 3 Pili and the Capsule Polysaccharide. Front Cell Infect Microbiol 2016; 6:13. [PMID: 26904512 PMCID: PMC4746245 DOI: 10.3389/fcimb.2016.00013] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/22/2016] [Indexed: 12/14/2022] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen causing nosocomial infections. Main virulence determinants of K. pneumoniae are pili, capsular polysaccharide, lipopolysaccharide, and siderophores. The histone-like nucleoid-structuring protein (H-NS) is a pleiotropic regulator found in several gram-negative pathogens. It has functions both as an architectural component of the nucleoid and as a global regulator of gene expression. We generated a Δhns mutant and evaluated the role of the H-NS nucleoid protein on the virulence features of K. pneumoniae. A Δhns mutant down-regulated the mrkA pilin gene and biofilm formation was affected. In contrast, capsule expression was derepressed in the absence of H-NS conferring a hypermucoviscous phenotype. Moreover, H-NS deficiency affected the K. pneumoniae adherence to epithelial cells such as A549 and HeLa cells. In infection experiments using RAW264.7 and THP-1 differentiated macrophages, the Δhns mutant was less phagocytized than the wild-type strain. This phenotype was likely due to the low adherence to these phagocytic cells. Taken together, our data indicate that H-NS nucleoid protein is a crucial regulator of both T3P and CPS of K. pneumoniae.
Collapse
Affiliation(s)
- Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Hospital de PediatríaMexico City, Mexico; Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico
| | - José L Fernández-Vázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Ma Dolores Jarillo-Quijada
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | | | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Hospital de Pediatría Mexico City, Mexico
| | - Jorge A González-y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| | - María D Alcántar-Curiel
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Hospital de Pediatría Mexico City, Mexico
| |
Collapse
|
6
|
Khater F, Balestrino D, Charbonnel N, Dufayard JF, Brisse S, Forestier C. In silico analysis of usher encoding genes in Klebsiella pneumoniae and characterization of their role in adhesion and colonization. PLoS One 2015; 10:e0116215. [PMID: 25751658 PMCID: PMC4353729 DOI: 10.1371/journal.pone.0116215] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/05/2014] [Indexed: 12/21/2022] Open
Abstract
Chaperone/usher (CU) assembly pathway is used by a wide range of Enterobacteriaceae to assemble adhesive surface structures called pili or fimbriae that play a role in bacteria-host cell interactions. In silico analysis revealed that the genome of Klebsiella pneumoniae LM21 harbors eight chromosomal CU loci belonging to γκп and ϭ clusters. Of these, only two correspond to previously described operons, namely type 1 and type 3-encoding operons. Isogenic usher deletion mutants of K. pneumoniae LM21 were constructed for each locus and their role in adhesion to animal (Intestine 407) and plant (Arabidopsis thaliana) cells, biofilm formation and murine intestinal colonization was investigated. Type 3 pili usher deleted mutant was impaired in all assays, whereas type 1 pili usher deleted mutant only showed attenuation in adhesion to plant cells and in intestinal colonization. The LM21ΔkpjC mutant was impaired in its capacity to adhere to Arabidopsis cells and to colonize the murine intestine, either alone or in co-inoculation experiments. Deletion of LM21kpgC induced a significant decrease in biofilm formation, in adhesion to animal cells and in colonization of the mice intestine. The LM21∆kpaC and LM21∆kpeC mutants were only attenuated in biofilm formation and the adhesion abilities to Arabidopsis cells, respectively. No clear in vitro or in vivo effect was observed for LM21∆kpbC and LM21∆kpdC mutants. The multiplicity of CU loci in K. pneumoniae genome and their specific adhesion pattern probably reflect the ability of the bacteria to adhere to different substrates in its diverse ecological niches.
Collapse
Affiliation(s)
- Fida Khater
- LMGE—UMR CNRS 6023- Clermont Ferrand, 63000, France
| | | | | | | | - Sylvain Brisse
- Institut Pasteur, Microbial Evolutionary Genomics, 75015 Paris, France
- CNRS, UMR 3525, Paris, France
| | | |
Collapse
|
7
|
Positive autoregulation of mrkHI by the cyclic di-GMP-dependent MrkH protein in the biofilm regulatory circuit of Klebsiella pneumoniae. J Bacteriol 2015; 197:1659-67. [PMID: 25733612 DOI: 10.1128/jb.02615-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/22/2015] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial colonization on host tissues. Expression of type 3 fimbriae by K. pneumoniae facilitates surface adherence, a process strongly activated by the cyclic di-GMP (c-di-GMP)-dependent transcriptional activator MrkH. In this study, we demonstrated the critical importance of MrkH in facilitating K. pneumoniae attachment on a variety of medically relevant materials and demonstrated the mechanism by which bacteria activate expression of type 3 fimbriae to colonize these materials. Sequence analysis revealed a putative MrkH recognition DNA sequence ("MrkH box"; TATCAA) located in the regulatory region of the mrkHI operon. Mutational analysis, electrophoretic mobility shift assay, and quantitative PCR experiments demonstrated that MrkH binds to the cognate DNA sequence to autoregulate mrkHI expression in a c-di-GMP-dependent manner. A half-turn deletion, but not a full-turn deletion, between the MrkH box and the -35 promoter element rendered MrkH ineffective in activating mrkHI expression, implying that a direct interaction between MrkH and RNA polymerase exists. In vivo analyses showed that residues L260, R265, N268, C269, E273, and I275 in the C-terminal domain of the RNA polymerase α subunit are involved in the positive control of mrkHI expression by MrkH and revealed the regions of MrkH required for DNA binding and transcriptional activation. Taken together, the data suggest a model whereby c-di-GMP-dependent MrkH recruits RNA polymerase to the mrkHI promoter to autoactivate mrkH expression. Increased MrkH production subsequently drives mrkABCDF expression when activated by c-di-GMP, leading to biosynthesis of type 3 fimbriae and biofilm formation. IMPORTANCE Bacterial biofilms can cause persistent infections that are refractory to antimicrobial treatments. This study investigated how a commonly encountered hospital-acquired pathogen, Klebsiella pneumoniae, controls the expression of MrkH, the principal regulator of type 3 fimbriae and biofilm formation. We discovered a regulatory circuit whereby MrkH acts as a c-di-GMP-dependent transcriptional activator of both the gene cluster of type 3 fimbriae and the mrkHI operon. In this positive-feedback loop, whereby MrkH activates its own production, K. pneumoniae has evolved a mechanism to ensure rapid MrkH production, expression of type 3 fimbriae, and subsequent biofilm formation under favorable conditions. Deciphering the molecular mechanisms of biofilm formation by bacterial pathogens is important for the development of innovative treatment strategies for biofilm infections.
Collapse
|
8
|
Structural and population characterization of MrkD, the adhesive subunit of type 3 fimbriae. J Bacteriol 2013; 195:5602-13. [PMID: 24123820 DOI: 10.1128/jb.00753-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Type 3 fimbriae are adhesive organelles found in enterobacterial pathogens. The fimbriae promote biofilm formation on biotic and abiotic surfaces; however, the exact identity of the receptor for the type 3 fimbriae adhesin, MrkD, remains elusive. We analyzed naturally occurring structural and functional variabilities of the MrkD adhesin from Klebsiella pneumoniae and Escherichia coli isolates of diverse origins. We identified a total of 33 allelic variants of mrkD among 90 K. pneumoniae isolates and 10 allelic variants among 608 E. coli isolates, encoding 11 and 9 protein variants, respectively. Based on the level of accumulated silent variability between the alleles, mrkD was acquired a relatively long time ago in K. pneumoniae but recently in E. coli. However, unlike K. pneumoniae, mrkD in E. coli is actively evolving under a strong positive selection by accumulation of mutations, often targeting the same positions in the protein. Several naturally occurring MrkD protein variants from E. coli were found to be significantly less adherent when tested in a mannan-binding assay and showed reduced biofilm-forming capacity. Functional examination of the MrkD adhesin in flow chamber experiments determined that it interacts with Saccharomyces cerevisiae cells in a shear-dependent manner, i.e., the binding is catch-bond-like and enhanced under increasing shear conditions. Homology modeling strongly suggested that MrkD has a two-domain structure, comprising a pilin domain anchoring the adhesin to the fimbrial shaft and a lectin domain containing the binding pocket; this is similar to structures found in other catch-bond-forming fimbrial adhesins in enterobacteria.
Collapse
|
9
|
Role of Klebsiella pneumoniae type 1 and type 3 fimbriae in colonizing silicone tubes implanted into the bladders of mice as a model of catheter-associated urinary tract infections. Infect Immun 2013; 81:3009-17. [PMID: 23753626 DOI: 10.1128/iai.00348-13] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Catheter-associated urinary tract infections are biofilm-mediated infections that cause a significant economic and health burden in nosocomial environments. Using a newly developed murine model of this type of infection, we investigated the role of fimbriae in implant-associated urinary tract infections by the Gram-negative bacterium Klebsiella pneumoniae, which is a proficient biofilm former and a commonly isolated nosocomial pathogen. Studies have shown that type 1 and type 3 fimbriae are involved in attachment and biofilm formation in vitro, and these fimbrial types are suspected to be important virulence factors during infection. To test this hypothesis, the virulence of fimbrial mutants was assessed in independent challenges in which mouse bladders were inoculated with the wild type or a fimbrial mutant and in coinfection studies in which the wild type and fimbrial mutants were inoculated together to assess the results of a direct competition in the urinary tract. Using these experiments, we were able to show that both fimbrial types serve to enhance colonization and persistence. Additionally, a double mutant had an additive colonization defect under some conditions, indicating that both fimbrial types have unique roles in the attachment and persistence in the bladder and on the implant itself. All of these mutants were outcompeted by the wild type in coinfection experiments. Using these methods, we are able to show that type 1 and type 3 fimbriae are important colonization factors in the murine urinary tract when an implanted silicone tube is present.
Collapse
|
10
|
Alcántar-Curiel MD, Blackburn D, Saldaña Z, Gayosso-Vázquez C, Iovine NM, De la Cruz MA, Girón JA. Multi-functional analysis of Klebsiella pneumoniae fimbrial types in adherence and biofilm formation. Virulence 2013; 4:129-38. [PMID: 23302788 DOI: 10.4161/viru.22974] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen frequently associated with nosocomially acquired infections. Host cell adherence and biofilm formation of K. pneumoniae isolates is mediated by type 1 (T1P) and type 3 (MR/K) pili whose major fimbrial subunits are encoded by the fimA and mrkA genes, respectively. The E. coli common pilus (ECP) is an adhesive structure produced by all E. coli pathogroups and a homolog of the ecpABCDE operon is present in the K. pneumoniae genome. In this study, we aimed to determine the prevalence of these three fimbrial genes among a collection of 69 clinical and environmental K. pneumoniae strains and to establish a correlation with fimbrial production during cell adherence and biofilm formation. The PCR-based survey demonstrated that 96% of the K. pneumoniae strains contained ecpA and 94% of these strains produced ECP during adhesion to cultured epithelial cells. Eighty percent of the strains forming biofilms on glass produced ECP, suggesting that ECP is required, at least in vitro, for expression of these phenotypes. The fim operon was found in 100% of the strains and T1P was detected in 96% of these strains. While all the strains examined contained mrkA, only 57% of them produced MR/K fimbriae, alone or together with ECP. In summary, this study highlights the ability of K. pneumoniae strains to produce ECP, which may represent a new important adhesive structure of this organism. Further, it defines the multi-fimbrial nature of the interaction of this nosocomial pathogen with host epithelial cells and inert surfaces.
Collapse
Affiliation(s)
- María D Alcántar-Curiel
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., México.
| | | | | | | | | | | | | |
Collapse
|
11
|
Murphy CN, Clegg S. Klebsiella pneumoniae and type 3 fimbriae: nosocomial infection, regulation and biofilm formation. Future Microbiol 2013; 7:991-1002. [PMID: 22913357 DOI: 10.2217/fmb.12.74] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Gram-negative opportunistic pathogen Klebsiella pneumoniae is responsible for causing a spectrum of nosocomial and community-acquired infections. Globally, K. pneumoniae is a frequently encountered hospital-acquired opportunistic pathogen that typically infects patients with indwelling medical devices. Biofilm formation on these devices is important in the pathogenesis of these bacteria, and in K. pneumoniae, type 3 fimbriae have been identified as appendages mediating the formation of biofilms on biotic and abiotic surfaces. The factors influencing the regulation of type 3 fimbrial gene expression are largely unknown but recent investigations have indicated that gene expression is regulated, at least in part, by the intracellular levels of cyclic di-GMP. In this review, we have highlighted the recent studies that have worked to elucidate the mechanism by which type 3 fimbrial expression is controlled and the studies that have established the importance of type 3 fimbriae for biofilm formation and nosocomial infection by K. pneumoniae.
Collapse
Affiliation(s)
- Caitlin N Murphy
- Department of Microbiology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | |
Collapse
|
12
|
Singh B, Fleury C, Jalalvand F, Riesbeck K. Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev 2012; 36:1122-80. [PMID: 22537156 DOI: 10.1111/j.1574-6976.2012.00340.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 02/08/2012] [Accepted: 03/29/2012] [Indexed: 01/11/2023] Open
Abstract
Laminin (Ln) and collagen are multifunctional glycoproteins that play an important role in cellular morphogenesis, cell signalling, tissue repair and cell migration. These proteins are ubiquitously present in tissues as a part of the basement membrane (BM), constitute a protective layer around blood capillaries and are included in the extracellular matrix (ECM). As a component of BMs, both Lns and collagen(s), thus function as major mechanical containment molecules that protect tissues from pathogens. Invasive pathogens breach the basal lamina and degrade ECM proteins of interstitial spaces and connective tissues using various ECM-degrading proteases or surface-bound plasminogen and matrix metalloproteinases recruited from the host. Most pathogens associated with the respiratory, gastrointestinal, or urogenital tracts, as well as with the central nervous system or the skin, have the capacity to bind and degrade Lns and collagen(s) in order to adhere to and invade host tissues. In this review, we focus on the adaptability of various pathogens to utilize these ECM proteins as enhancers for adhesion to host tissues or as a targets for degradation in order to breach the cellular barriers. The major pathogens discussed are Streptococcus, Staphylococcus, Pseudomonas, Salmonella, Yersinia, Treponema, Mycobacterium, Clostridium, Listeria, Porphyromonas and Haemophilus; Candida, Aspergillus, Pneumocystis, Cryptococcus and Coccidioides; Acanthamoeba, Trypanosoma and Trichomonas; retrovirus and papilloma virus.
Collapse
Affiliation(s)
- Birendra Singh
- Medical Microbiology, Department of Laboratory Medicine Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | | | | |
Collapse
|
13
|
van Aartsen JJ, Stahlhut SG, Harrison EM, Crosatti M, Ou HY, Krogfelt KA, Struve C, Rajakumar K. Characterization of a novel chaperone/usher fimbrial operon present on KpGI-5, a methionine tRNA gene-associated genomic island in Klebsiella pneumoniae. BMC Microbiol 2012; 12:59. [PMID: 22520965 PMCID: PMC3419637 DOI: 10.1186/1471-2180-12-59] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 04/20/2012] [Indexed: 01/11/2023] Open
Abstract
Background Several strain-specific Klebsiella pneumoniae virulence determinants have been described, though these have almost exclusively been linked with hypervirulent liver abscess-associated strains. Through PCR interrogation of integration hotspots, chromosome walking, island-tagging and fosmid-based marker rescue we captured and sequenced KpGI-5, a novel genomic island integrated into the met56 tRNA gene of K. pneumoniae KR116, a bloodstream isolate from a patient with pneumonia and neutropenic sepsis. Results The 14.0 kb KpGI-5 island exhibited a genome-anomalous G + C content, possessed near-perfect 46 bp direct repeats, encoded a γ1-chaperone/usher fimbrial cluster (fim2) and harboured seven other predicted genes of unknown function. Transcriptional analysis demonstrated expression of three fim2 genes, and suggested that the fim2A-fim2K cluster comprised an operon. As fimbrial systems are frequently implicated in pathogenesis, we examined the role of fim2 by analysing KR2107, a streptomycin-resistant derivative of KR116, and three isogenic mutants (Δfim, Δfim2 and ΔfimΔfim2) using biofilm assays, human cell adhesion assays and pair-wise competition-based murine models of intestinal colonization, lung infection and ascending urinary tract infection. Although no statistically significant role for fim2 was demonstrable, liver and kidney CFU counts for lung and urinary tract infection models, respectively, hinted at an ordered gradation of virulence: KR2107 (most virulent), KR2107∆fim2, KR2107∆fim and KR2107∆fim∆fim2 (least virulent). Thus, despite lack of statistical evidence there was a suggestion that fim and fim2 contribute additively to virulence in these murine infection models. However, further studies would be necessary to substantiate this hypothesis. Conclusion Although fim2 was present in 13% of Klebsiella spp. strains investigated, no obvious in vitro or in vivo role for the locus was identified, although there were subtle hints of involvement in urovirulence and bacterial dissemination from the respiratory tract. Based on our findings and on parallels with other fimbrial systems, we propose that fim2 has the potential to contribute beneficially to pathogenesis and/or environmental persistence of Klebsiella strains, at least under specific yet-to-be identified conditions.
Collapse
Affiliation(s)
- Jon J van Aartsen
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Klebsiella pneumoniae type 3 fimbriae agglutinate yeast in a mannose-resistant manner. J Med Microbiol 2012; 61:317-322. [DOI: 10.1099/jmm.0.036350-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Type 3 fimbriae and biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella pneumoniae. J Bacteriol 2011; 193:3453-60. [PMID: 21571997 DOI: 10.1128/jb.00286-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen which frequently causes hospital-acquired urinary and respiratory tract infections. K. pneumoniae may establish these infections in vivo following adherence, using the type 3 fimbriae, to indwelling devices coated with extracellular matrix components. Using a colony immunoblot screen, we identified transposon insertion mutants which were deficient for type 3 fimbrial surface production. One of these mutants possessed a transposon insertion within a gene, designated mrkI, encoding a putative transcriptional regulator. A site-directed mutant of this gene was constructed and shown to be deficient for fimbrial surface expression under aerobic conditions. MrkI mutants have a significantly decreased ability to form biofilms on both abiotic and extracellular matrix-coated surfaces. This gene was found to be cotranscribed with a gene predicted to encode a PilZ domain-containing protein, designated MrkH. This protein was found to bind cyclic-di-GMP (c-di-GMP) and regulate type 3 fimbrial expression.
Collapse
|
16
|
Ong CLY, Beatson SA, Totsika M, Forestier C, McEwan AG, Schembri MA. Molecular analysis of type 3 fimbrial genes from Escherichia coli, Klebsiella and Citrobacter species. BMC Microbiol 2010; 10:183. [PMID: 20576143 PMCID: PMC2900259 DOI: 10.1186/1471-2180-10-183] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 06/24/2010] [Indexed: 12/04/2022] Open
Abstract
Background Catheter-associated urinary tract infection (CAUTI) is the most common nosocomial infection in the United States and is caused by a range of uropathogens. Biofilm formation by uropathogens that cause CAUTI is often mediated by cell surface structures such as fimbriae. In this study, we characterised the genes encoding type 3 fimbriae from CAUTI strains of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Citrobacter koseri and Citrobacter freundii. Results Phylogenetic analysis of the type 3 fimbrial genes (mrkABCD) from 39 strains revealed they clustered into five distinct clades (A-E) ranging from one to twenty-three members. The majority of sequences grouped in clade A, which was represented by the mrk gene cluster from the genome sequenced K. pneumoniae MGH78578. The E. coli and K. pneumoniae mrkABCD gene sequences clustered together in two distinct clades, supporting previous evidence for the occurrence of inter-genera lateral gene transfer. All of the strains examined caused type 3 fimbriae mediated agglutination of tannic acid treated human erythrocytes despite sequence variation in the mrkD-encoding adhesin gene. Type 3 fimbriae deletion mutants were constructed in 13 representative strains and were used to demonstrate a direct role for type 3 fimbriae in biofilm formation. Conclusions The expression of functional type 3 fimbriae is common to many Gram-negative pathogens that cause CAUTI and is strongly associated with biofilm growth. Our data provides additional evidence for the spread of type 3 fimbrial genes by lateral gene transfer. Further work is now required to substantiate the clade structure reported here by examining more strains as well as other bacterial genera that make type 3 fimbriae and cause CAUTI.
Collapse
Affiliation(s)
- Cheryl-lynn Y Ong
- Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
17
|
Identification of a conserved chromosomal region encoding Klebsiella pneumoniae type 1 and type 3 fimbriae and assessment of the role of fimbriae in pathogenicity. Infect Immun 2009; 77:5016-24. [PMID: 19703972 DOI: 10.1128/iai.00585-09] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Type 3 fimbriae are expressed by most clinical Klebsiella pneumoniae isolates and mediate adhesion to host structures in vitro. However, the role of type 3 fimbriae in K. pneumoniae virulence has not been evaluated by use of in vivo infection models. In this study, the type 3 fimbrial gene cluster (mrk) of the clinical isolate C3091 is described in detail. The mrk gene cluster was revealed to be localized in close proximity to the type 1 fimbrial gene cluster. Thus, a 20.4-kb fimbria-encoding region was identified and found to be highly conserved among different K. pneumoniae isolates. Interestingly, a homologue to PecS, known as a global regulator of virulence in Erwinia chrysanthemi, was identified in the fimbria-encoding region. Comparison to the previously characterized plasmid encoded mrk gene cluster revealed significant differences, and it is established here that the putative regulatory gene mrkE is not a part of the chromosomally encoded type 3 fimbrial gene cluster. To evaluate the role of type 3 fimbriae in virulence, a type 3 fimbria mutant and a type 1 and type 3 fimbria double mutant was constructed. Type 3 fimbria expression was found to strongly promote biofilm formation. However, the fimbria mutants were as effective at colonizing the intestine as the wild type, and their virulence was not attenuated in a lung infection model. Also, in a urinary tract infection model, type 3 fimbriae did not influence the virulence, whereas type 1 fimbriae were verified as an essential virulence factor. Thus, type 3 fimbriae were established not to be a virulence factor in uncomplicated K. pneumoniae infections. However, since type 3 fimbriae promote biofilm formation, their role in development of infections in catheterized patients needs to be elucidated.
Collapse
|
18
|
Burmølle M, Bahl MI, Jensen LB, Sørensen SJ, Hansen LH. Type 3 fimbriae, encoded by the conjugative plasmid pOLA52, enhance biofilm formation and transfer frequencies in Enterobacteriaceae strains. MICROBIOLOGY-SGM 2008; 154:187-195. [PMID: 18174137 DOI: 10.1099/mic.0.2007/010454-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The conjugative plasmid pOLA52, which confers resistance to olaquindox and other antimicrobial agents through a multidrug efflux pump, was investigated for its ability to promote biofilm formation in Escherichia coli. Screening of a transposon-mutagenized pOLA52 clone library revealed several biofilm-deficient mutants, which all mapped within a putative operon with high homology to the mrkABCDF operon of Klebsiella pneumoniae, where these genes are responsible for type 3 fimbriae expression, attachment to surfaces and biofilm formation. Biofilm formation in microtitre plates and in urinary catheters of clones containing pOLA52 with a disrupted putative mrk operon was reduced by more than 100-fold and 2-fold, respectively, compared to mutants with an intact mrk operon. The conjugative transfer rate of pOLA52 was also significantly lower when the mrk operon was disrupted. Through reverse transcriptase analysis, it was demonstrated that the genes contained in the putative mrk operon were linked and likely to be expressed as a single operon. Immunoblotting with type 3 fimbriae (MrkA)-specific antibodies further verified expression of type 3 fimbriae. When transferred to other, potentially pathogenic, members of the family Enterobacteriaceae, including Klebsiella pneumoniae, Salmonella Typhimurium, Kluyvera sp. and Enterobacter aerogenes, pOLA52 facilitated increased biofilm formation. pOLA52 is believed to represent the first example of a conjugative plasmid encoding type 3 fimbriae, resulting in enhanced conjugation frequencies and biofilm formation of the plasmid-harbouring strain.
Collapse
Affiliation(s)
- Mette Burmølle
- Department of Microbiology, University of Copenhagen, 1307 Copenhagen K, Denmark
| | - Martin Iain Bahl
- Department of Microbiology, University of Copenhagen, 1307 Copenhagen K, Denmark
| | - Lars Bogø Jensen
- Unit for Antimicrobial Resistance, The National Food Institute, DTU, Denmark
| | - Søren J Sørensen
- Department of Microbiology, University of Copenhagen, 1307 Copenhagen K, Denmark
| | | |
Collapse
|
19
|
Identification of type 3 fimbriae in uropathogenic Escherichia coli reveals a role in biofilm formation. J Bacteriol 2007; 190:1054-63. [PMID: 18055599 DOI: 10.1128/jb.01523-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Catheter-associated urinary tract infection (CAUTI) is the most common nosocomial infection in the United States. Uropathogenic Escherichia coli (UPEC), the most common cause of CAUTI, can form biofilms on indwelling catheters. Here, we identify and characterize novel factors that affect biofilm formation by UPEC strains that cause CAUTI. Sixty-five CAUTI UPEC isolates were characterized for phenotypic markers of urovirulence, including agglutination and biofilm formation. One isolate, E. coli MS2027, was uniquely proficient at biofilm growth despite the absence of adhesins known to promote this phenotype. Mini-Tn5 mutagenesis of E. coli MS2027 identified several mutants with altered biofilm growth. Mutants containing insertions in genes involved in O antigen synthesis (rmlC and manB) and capsule synthesis (kpsM) possessed enhanced biofilm phenotypes. Three independent mutants deficient in biofilm growth contained an insertion in a gene locus homologous to the type 3 chaperone-usher class fimbrial genes of Klebsiella pneumoniae. These type 3 fimbrial genes (mrkABCDF), which were located on a conjugative plasmid, were cloned from E. coli MS2027 and could complement the biofilm-deficient transconjugants when reintroduced on a plasmid. Primers targeting the mrkB chaperone-encoding gene revealed its presence in CAUTI strains of Citrobacter koseri, Citrobacter freundii, Klebsiella pneumoniae, and Klebsiella oxytoca. All of these mrkB-positive strains caused type 3 fimbria-specific agglutination of tannic acid-treated red blood cells. This is the first description of type 3 fimbriae in E. coli, C. koseri, and C. freundii. Our data suggest that type 3 fimbriae may contribute to biofilm formation by different gram-negative nosocomial pathogens.
Collapse
|
20
|
Huang YJ, Wu CC, Chen MC, Fung CP, Peng HL. Characterization of the type 3 fimbriae with different MrkD adhesins: Possible role of the MrkD containing an RGD motif. Biochem Biophys Res Commun 2006; 350:537-42. [PMID: 17022945 DOI: 10.1016/j.bbrc.2006.09.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 09/14/2006] [Indexed: 11/23/2022]
Abstract
Four novel mrkD alleles namely mrkD(V1), mrkD(V2), mrkD(V3), and mrkD(V4) were identified in seventeen Klebsiella pneumoniae meningitis strains using PCR-RFLP and sequence determination. Comparative analysis revealed a most variable region containing an RGD motif in the receptor domain of MrkD(V3). In order to determine if the sequence confers the K. pneumoniae mrkD(V3) the highest level of the fimbrial activity, a type 3 fimbriae display system was constructed in Escherichia coli. The E. coli JM109[pmrkABCD(V3)F] displaying meshwork-like fimbriae also had the most fimbrial activity, supporting a possible role of the varied sequences. In a dose-dependent manner, the GRGDSP hexapeptide appeared to inhibit the adhesion of the E. coli JM109[pmrkABCD(V3)F] to HCT-8, an ileocecal epithelial cell line. In addition, the adhesion activity was reduced by the addition of anti-alpha5beta1 integrin monoclonal antibody, indicating that the RGD containing region in MrkD(V3) is responsible for the binding of type 3 fimbriae to integrin.
Collapse
Affiliation(s)
- Ying-Jung Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu 30050, Taiwan, ROC
| | | | | | | | | |
Collapse
|
21
|
Boddicker JD, Anderson RA, Jagnow J, Clegg S. Signature-tagged mutagenesis of Klebsiella pneumoniae to identify genes that influence biofilm formation on extracellular matrix material. Infect Immun 2006; 74:4590-7. [PMID: 16861646 PMCID: PMC1539622 DOI: 10.1128/iai.00129-06] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae causes urinary tract infections, respiratory tract infections, and septicemia in susceptible individuals. Strains of Klebsiella frequently produce extended-spectrum beta-lactamases, and infections with these strains can lead to relatively high mortality rates (approximately 15%). Other virulence factors include production of an antiphagocytic capsule and outer membrane lipopolysaccharide (LPS), which mediates serum resistance, as well as fimbriae on the surface of the bacteria. Type 1 fimbriae mediate adherence to many types of epithelial cells and may facilitate adherence of the bacteria to the bladder epithelium. Type 3 fimbriae can bind in vitro to the extracellular matrix of urinary and respiratory tissues, suggesting that they mediate binding to damaged epithelial surfaces. In addition, type 3 fimbriae are required for biofilm formation by Klebsiella pneumoniae on plastics and human extracellular matrix; thus, they may facilitate the formation of treatment-resistant biofilm on indwelling plastic devices, such as catheters and endotracheal tubing. The presence of these devices may cause tissue damage, allowing Klebsiella to grow as a biofilm on exposed tissue basement membrane components. Though in vivo biofilm growth may be an important step in the infection process, little is known about the genetic factors required for biofilm formation by Klebsiella pneumoniae. Thus, we performed signature-tagged mutagenesis to identify factors produced by K. pneumoniae strain 43816 that are required for biofilm formation. We identified mutations in the cps capsule gene cluster, previously unidentified transcriptional regulators, fimbrial, and sugar phosphotransferase homologues, as well as genetic loci of unknown function, that affect biofilm formation.
Collapse
Affiliation(s)
- Jennifer D Boddicker
- Department of Microbiology, College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
22
|
Jenney AW, Clements A, Farn JL, Wijburg OL, McGlinchey A, Spelman DW, Pitt TL, Kaufmann ME, Liolios L, Moloney MB, Wesselingh SL, Strugnell RA. Seroepidemiology of Klebsiella pneumoniae in an Australian Tertiary Hospital and its implications for vaccine development. J Clin Microbiol 2006; 44:102-7. [PMID: 16390956 PMCID: PMC1351949 DOI: 10.1128/jcm.44.1.102-107.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 09/06/2005] [Accepted: 10/17/2005] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to determine the diversity of Klebsiella pneumoniae capsular serotypes in an Australian setting. Consecutive (n = 293) nonrepetitive isolates of K. pneumoniae from a large teaching hospital laboratory were analyzed. The majority of isolates were from urinary specimens (60.8%); the next most common source was sputum (14.3%), followed by blood (14%). Serotyping revealed a wide range of capsule types. K54 (17.1%), K28 (4.1%), and K17 (3.1%) were the most common, and K54 isolates displayed a high degree of clonality, suggesting a common, nosocomial source. In vitro, one K54 isolate was more adherent to urinary catheters and HEp-2 cells than four other tested isolates; it was slightly more resistant to chlorhexidine but was more susceptible to drying than heavily encapsulated strains. This is the first seroprevalence survey of K. pneumoniae to be performed on Australian isolates, and the high level of diversity of serotypes suggests that capsule-based immunoprophylaxis might not be useful for Australia. In addition there are significant differences in the predominance of specific serotypes compared to the results of surveys performed overseas, which has important implications for capsule-based immunoprophylaxis aimed at a global market.
Collapse
Affiliation(s)
- Adam W Jenney
- CRC for Vaccine Technology, Herston, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jagnow J, Clegg S. Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2397-2405. [PMID: 12949165 DOI: 10.1099/mic.0.26434-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The type 3 fimbriae of Klebsiella pneumoniae are comprised of the major fimbrial subunit (MrkA) and the adhesin (MrkD) that has previously been shown to mediate binding to collagen. The ability of adhesive and non-adhesive derivatives of K. pneumoniae to form biofilms on collagen-coated surfaces in continuous-flow chambers was investigated. Unlike biofilm formation on abiotic plastic surfaces, the presence of the MrkD adhesin was necessary for growth on collagen-coated surfaces. Fimbriate strains lacking the MrkD adhesin did not efficiently adhere to and grow on these surfaces. Similarly, purified human extracellular matrix and the extracellular matrix formed by human bronchial epithelial cells grown in vitro provided a suitable substrate for MrkD-mediated biofilm formation, whereas direct binding to the respiratory cells was not observed. Type 3 fimbriae may therefore have two roles in the early stages of adherence and growth on in-dwelling devices such as endotracheal tubes. The MrkA polypeptide could facilitate adsorption to abiotic polymers of recently implanted devices and the MrkD adhesin could enable bacteria to adhere to and grow on polymers coated with host-derived proteins.
Collapse
Affiliation(s)
- Jennifer Jagnow
- Department of Microbiology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Steven Clegg
- Department of Microbiology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
24
|
Langstraat J, Bohse M, Clegg S. Type 3 fimbrial shaft (MrkA) of Klebsiella pneumoniae, but not the fimbrial adhesin (MrkD), facilitates biofilm formation. Infect Immun 2001; 69:5805-12. [PMID: 11500458 PMCID: PMC98698 DOI: 10.1128/iai.69.9.5805-5812.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isolates of Klebsiella pneumoniae are responsible for opportunistic infections, particularly of the urinary tract and respiratory tract, in humans. These bacteria express type 3 fimbriae that have been implicated in binding to eucaryotic cells and matrix proteins. The type 3 fimbriae mediate binding to target tissue using the MrkD adhesin that is associated with the fimbrial shaft comprised of the MrkA protein. The formation of biofilms in vitro by strains of K. pneumoniae was shown to be affected by the production of fimbriae on the bacterial surface. However, a functional MrkD adhesin was not necessary for efficient biofilm formation. Nonfimbriate strains were impaired in their ability to form biofilms. Using isogenic fimbriate and nonfimbriate strains of K. pneumoniae expressing green fluorescent protein it was possible to demonstrate that the presence of type 3 fimbriae facilitated the formation of dense biofilms in a continuous-flowthrough chamber. Transformation of nonfimbriate mutants with a plasmid possessing an intact mrk gene cluster restored the fimbrial phenotype and the rapid ability to form biofilms.
Collapse
Affiliation(s)
- J Langstraat
- Department of Microbiology, College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
25
|
Sebghati TA, Clegg S. Construction and characterization of mutations within the Klebsiella mrkD1P gene that affect binding to collagen type V. Infect Immun 1999; 67:1672-6. [PMID: 10085002 PMCID: PMC96512 DOI: 10.1128/iai.67.4.1672-1676.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fimbria-associated MrkD1P protein mediates adherence of type 3 fimbriate strains of Klebsiella pneumoniae to collagen type V. Currently, three different MrkD adhesins have been described in Klebsiella species, and each possesses a distinctive binding pattern. Therefore, the binding abilities of mutants possessing defined mutations within the mrkD1P gene were examined in order to determine whether specific regions of the adhesin molecule were responsible for collagen binding. Both site-directed and chemically induced mutations were constructed within mrkD1P, and the ability of the gene products to be incorporated into fimbrial appendages or bind to collagen was determined. Binding to type V collagen was not associated solely with one particular region of the MrkD1P protein, and two classes of nonadhesive mutants were isolated. In one class of mutants, the MrkD adhesin was not assembled into the fimbrial shaft, whereas in the second class of mutants, the adhesin was associated with fimbriae but did not bind to collagen. Both hemagglutinating and collagen-binding activities were associated with the MrkD1P molecule, since P pili and type 3 fimbriae carrying adhesive MrkD proteins exhibited identical binding properties.
Collapse
Affiliation(s)
- T A Sebghati
- Department of Microbiology, College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
26
|
Sebghati TA, Korhonen TK, Hornick DB, Clegg S. Characterization of the type 3 fimbrial adhesins of Klebsiella strains. Infect Immun 1998; 66:2887-94. [PMID: 9596764 PMCID: PMC108286 DOI: 10.1128/iai.66.6.2887-2894.1998] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Klebsiella pneumoniae fimbrial adhesin, MrkD, mediates adherence to the basolateral surfaces of renal and pulmonary epithelia and to the basement membranes of tissues. Although all isolates possessing the MrkD adhesin mediate the agglutination, in vitro, of erythrocytes treated with tannic acid, the mrkD gene is not conserved within species. The ability of a plasmid-borne mrkD gene product to mediate binding to type V collagen is associated frequently with strains of K. oxytoca and rarely with strains of K. pneumoniae. In K. pneumoniae, the MrkD adhesin is located within a chromosomally borne gene cluster and mediates binding to collagen types IV and V. The plasmid-borne determinant, mrkD1P, and the chromosomally borne gene, mrkD1C, are not genetically related. Some strains of enterobacteria possess a mrkD1C allele that is associated with hemagglutinating activity but does not bind to either type IV or type V collagen.
Collapse
Affiliation(s)
- T A Sebghati
- Departments of Microbiology, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
27
|
Tarkkanen AM, Westerlund-Wikström B, Erkkilä L, Korhonen TK. Immunohistological localization of the MrkD adhesin in the type 3 fimbriae of Klebsiella pneumoniae. Infect Immun 1998; 66:2356-61. [PMID: 9573131 PMCID: PMC108205 DOI: 10.1128/iai.66.5.2356-2361.1998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/1997] [Accepted: 02/04/1998] [Indexed: 02/07/2023] Open
Abstract
The adhesive minor protein MrkD of the type 3 fimbria of Klebsiella pneumoniae was expressed and purified from Escherichia coli as a fusion protein with an N-terminal polyhistidine tail. Polyclonal antibodies raised against MrkD specifically recognized the MrkD peptide in Western blots of fimbrial preparations. Immunoelectron microscopic analyses showed that the anti-MrkD immunoglobulins bound to the tip of the plasmid-encoded variant of the type 3 fimbria of K. pneumoniae, whereas no binding to the chromosomally encoded MrkD-deficient type 3 fimbrial variant of K. pneumoniae was detected. Immunoglobulins from an antiserum raised against purified type 3 fimbrial filaments bound laterally to both type 3 fimbrial variants. The anti-MrkD antibodies also bound to the tip of a papG deletion derivative of the E. coli P fimbria complemented with mrkD, indicating that MrkD structurally complements a PapG mutation in the P fimbria of E. coli.
Collapse
Affiliation(s)
- A M Tarkkanen
- Department of Biosciences, University of Helsinki, Finland
| | | | | | | |
Collapse
|
28
|
Fumagalli O, Tall BD, Schipper C, Oelschlaeger TA. N-glycosylated proteins are involved in efficient internalization of Klebsiella pneumoniae by cultured human epithelial cells. Infect Immun 1997; 65:4445-51. [PMID: 9353018 PMCID: PMC175639 DOI: 10.1128/iai.65.11.4445-4451.1997] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Klebsiella pneumoniae obtained from patients with urinary tract infections is able to invade cultured human epithelial cells. The internalization process is dependent upon both microfilaments and microtubules. To better understand the interaction of these invasive bacteria with the host cell receptor(s), bladder, lung, and ileocecal epithelial cells were infected with K. pneumoniae in the presence of various lectins possessing multiple glycan specificities. It was found that the N-acetylglucosamine (GlcNAc)-specific lectins concanavalin A, Datura stramonium agglutinin, and wheat germ agglutinin significantly inhibited the invasion of K. pneumoniae into these cells but did not interfere with the internalization of an invasive strain of Salmonella typhimurium. Conversely, internalization of K. pneumoniae but not S. typhimurium was also significantly inhibited when the bacteria were pretreated with GlcNAc or chitin hydrolysate, a GlcNAc polymer, prior to the gentamicin invasion assay. Other carbohydrates such as glucose, galactose, mannose, fucose, and N-acetylneuraminic acid had no inhibitory effects on K. pneumoniae uptake. Furthermore, internalization of K. pneumoniae but not S. typhimurium by HCT8 cells was also significantly inhibited when eukaryotic protein glycosylation was interrupted by tunicamycin or when host N-linked surface glycans were removed by pretreatment with N-glycosidase F. These studies suggest that a N-glycosylated protein receptor is involved in the internalization of K. pneumoniae by human epithelial cells in vitro. The results also indicate that internal GlcNAc residues might be a carbohydrate component of the receptor.
Collapse
Affiliation(s)
- O Fumagalli
- Institut für Molekulare Infektionsbiologie, Würzburg, Germany
| | | | | | | |
Collapse
|
29
|
Kil KS, Darouiche RO, Hull RA, Mansouri MD, Musher DM. Identification of a Klebsiella pneumoniae strain associated with nosocomial urinary tract infection. J Clin Microbiol 1997; 35:2370-4. [PMID: 9276418 PMCID: PMC229970 DOI: 10.1128/jcm.35.9.2370-2374.1997] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To differentiate between relapse of infection and reinfection of the urinary tract due to Klebsiella pneumoniae, 33 K. pneumoniae isolates collected from 20 patients with spinal cord injury (SCI) over 2 years were typed by genomic fingerprinting by repetitive-element PCR. Clinical isolates obtained from the same patients with recurrent episodes of urinary tract infection (UTI) revealed identical genomic fingerprints indicating relapse of UTI due to K. pneumoniae, despite appropriate antibiotic therapy. Seventeen isolates obtained from 8 of the 20 SCI patients shared a common genotype, termed RD6. Among non-SCI patients residing in other nursing units, the RD6 genotype was found in 5 of 10 patients with K. pneumoniae UTI but in only 1 of 20 patients with K. pneumoniae infection that did not involve the urinary tract, suggesting a strong association of this genotype with UTI. All RD6 isolates exhibited strong adherence (> or =50 adherent bacteria per cell) to HEp-2 cells, whereas other K. pneumoniae isolates generally did not adhere to or adhered very weakly to HEp-2 cells (< or =5 adherent bacteria per cell). Adherence was inhibited either by 4% D-mannose or by anti-type 1 fimbrial rabbit serum. These results suggest that the capacity of K. pneumoniae RD6 isolates to cause UTI may be mediated by its striking adherence to mammalian cells.
Collapse
Affiliation(s)
- K S Kil
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine and the Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
30
|
Tarkkanen AM, Virkola R, Clegg S, Korhonen TK. Binding of the type 3 fimbriae of Klebsiella pneumoniae to human endothelial and urinary bladder cells. Infect Immun 1997; 65:1546-9. [PMID: 9119502 PMCID: PMC175168 DOI: 10.1128/iai.65.4.1546-1549.1997] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Binding of the two identified type 3 fimbrial variants of Klebsiella pneumoniae to human endothelial EA-hy926 and bladder T24 cells was assessed. The recombinant Escherichia coli strain LE392(pFK12), expressing plasmid-encoded type 3 fimbriae of K. pneumoniae, adhered to both cell lines, and the fimbriae purified from the strain bound to both cell lines in a dose-dependent manner. Adhesiveness to both cell lines of chromosomally encoded type 3 fimbriae from K. pneumoniae IApc35 was lower. No binding was detected with type 1 fimbriae of K. pneumoniae. Both type 3 fimbrial variants exhibited a significantly lower affinity for the cell lines than did S fimbriae of meningitis-associated E. coli.
Collapse
Affiliation(s)
- A M Tarkkanen
- Department of Biosciences, FIN-00014 University of Helsinki, Finland
| | | | | | | |
Collapse
|
31
|
Livrelli V, De Champs C, Di Martino P, Darfeuille-Michaud A, Forestier C, Joly B. Adhesive properties and antibiotic resistance of Klebsiella, Enterobacter, and Serratia clinical isolates involved in nosocomial infections. J Clin Microbiol 1996; 34:1963-9. [PMID: 8818891 PMCID: PMC229163 DOI: 10.1128/jcm.34.8.1963-1969.1996] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Intestinal colonization by Klebsiella, Enterobacter, and Serratia (KES) strains is a crucial step in the development of nosocomial infections. We studied the adhesive properties, antibiotic resistance, and involvement in colonization or infection of 103 KES clinical isolates: 30 Klebsiella pneumoniae (29%), 16 Klebsiella oxytoca (15%), 30 Enterobacter aerogenes (29%), 14 Enterobacter cloacae (14%), and 13 Serratia sp. (13%) isolates. Half of them were resistant to several antimicrobial agents, including aminoglycosides and beta-lactam antibiotics. A total of 27 of 30 K. pneumoniae isolates (90%) adhered to the human cell line Intestine-407 (Int-407), while none of the K. oxytoca or E. aerogenes isolates and only 2 of the E. cloacae isolates adhered. Three adhesive patterns were observed for K. pneumoniae: an aggregative adhesion in 57% of the isolates, a diffuse adhesion in only one isolate, and a new pattern, localized adhesion, in 30% of the isolates. While most of the sensitive strains adhered with the aggregative phenotype, the localized pattern was associated with resistant K. pneumoniae isolates producing the CAZ-5 beta-lactamase. Furthermore, 45% of such localized-adhesion isolates were involved in severe infections. The distributions of type 1 and type 3 fimbriae, enteroaggregative E. coli, and cf29, pap, and afa/Dr adhesin-encoding genes were determined by using specific DNA probes. No relationship was found between the adhesive pattern and the production of specific fimbriae, suggesting that several unrecognized adhesive factors are involved. Our study indicates that special adhesive properties associated with resistance to antimicrobial agents could account for the pathogenicity of certain nosocomial strains.
Collapse
Affiliation(s)
- V Livrelli
- Laboratoire de Bactériologie, Faculté de Pharmacie, Université d'Auvergne, France
| | | | | | | | | | | |
Collapse
|
32
|
Di Martino P, Livrelli V, Sirot D, Joly B, Darfeuille-Michaud A. A new fimbrial antigen harbored by CAZ-5/SHV-4-producing Klebsiella pneumoniae strains involved in nosocomial infections. Infect Immun 1996; 64:2266-73. [PMID: 8675336 PMCID: PMC174065 DOI: 10.1128/iai.64.6.2266-2273.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We purified and characterized a new fimbria termed KPF-28 (Klebsiella pneumoniae fimbria with a fimbrin molecular mass of 28 kDa) involved in K. pneumoniae adherence to the human carcinoma cell line Caco-2. Electron microscopy of bacterial surface protein preparations and immunogold labeling of bacterial cells showed that KPF-28 was a long, thin, and flexible fimbria about 4 to 5 nm in diameter and 0.5 to 2 microm long. The N-terminal amino acid sequence of the KPF-28 major fimbrial subunit showed no homology with type 1 and type 3 pili of K. pneumoniae but showed 61.7% identity with residues 6 to 19 of the N-terminal amino acid sequence of PapA, the Pap major pilus subunit expressed by uropathogenic Escherichia coli strains. Total amino acid content determination showed that the KPF-28 major subunit composition was close to that of the GVVPQ fimbrial family major subunits expressed by pathogenic E. coli strains. The study of the prevalence of KPF-28 among K. pneumoniae strains involved in nosocomial infections revealed that KPF-28 was found in the great majority of the K. pneumoniae strains producing the CAZ-5/SHV-4 extended-spectrum beta-lactamase. As shown by curing and mating experiments, the R plasmid encoding the CAZ-5/SHV-4 enzyme was found to be involved in but not solely responsible for KPF-28 expression. Hybridization experiments using an oligonucleotide probe corresponding to the N-terminal part of the 28-kDa protein revealed that the structural gene encoding the KPF-28 major subunit was localized on this R plasmid. KPF-28 is a putative colonization factor of the human gut, since the ceftazidine-sensitive derivative strain CF914-1C no longer adhered and since the Fab fragments of antibodies raised against KPF-28 inhibited adhesion of K. pneumoniae CF914-1 to the Caco-2 cell line.
Collapse
Affiliation(s)
- P Di Martino
- Laboratoire de Bactériologie, Facultés de Pharmacie et Médecine, Clermont-Ferrand, France
| | | | | | | | | |
Collapse
|
33
|
Hornick DB, Thommandru J, Smits W, Clegg S. Adherence properties of an mrkD-negative mutant of Klebsiella pneumoniae. Infect Immun 1995; 63:2026-32. [PMID: 7729917 PMCID: PMC173260 DOI: 10.1128/iai.63.5.2026-2032.1995] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The role of the mrkD gene in attachment by a type 3 fimbriate Klebsiella pneumoniae strain was further characterized. A clinical isolate, K. pneumoniae IA565, was found to contain two copies of the gene encoding the fimbrial subunit, mrkA, and one copy of the gene encoding the adhesin subunit, mrkD. One copy of mrkA was located on the bacterial chromosome, and the other copy was associated with mrkD and located on a plasmid. The plasmid-borne mrk gene cluster was lost when K. pneumoniae IA565 was subcultured serially in broth at 44 degrees C. The resulting mrkD-negative strain, designated K. pneumoniae IApc35, did not exhibit the following adherence characteristics associated with K. pneumoniae possessing MrkD-positive fimbriae: agglutination of tannic acid-treated human erythrocytes and attachment to trypsinized human buccal cells. However, K. pneumoniae IApc35 produced type 3 fimbriae that were composed of the characteristic 21.5-kDa major fimbrial subunit, were reactive with specific serum, and were visualized specifically by immunoelectron microscopy. K. pneumoniae IApc35 retained a copy of the mrkA gene on its chromosome. This mrkA-containing gene cluster could be complemented by a recombinant plasmid carrying only the mrkD gene, resulting in restoration of the K. pneumoniae IA565-like adhesive phenotype and demonstration of type 3 filament-associated MrkD subunits by using colloidal gold labeling and immunoelectron microscopy. These data indicate that K. pneumoniae may contain multiple copies of the mrk genes which may be present simultaneously on both plasmid and chromosomal DNAs and which may encode fimbriae with different binding specificities.
Collapse
Affiliation(s)
- D B Hornick
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242-1081, USA
| | | | | | | |
Collapse
|