1
|
Ogunniyi AD, Dandie CE, Brunetti G, Drigo B, Aleer S, Hall B, Ferro S, Deo P, Venter H, Myers B, Donner E, Lombi E. Neutral electrolyzed oxidizing water is effective for pre-harvest decontamination of fresh produce. Food Microbiol 2021; 93:103610. [PMID: 32912583 DOI: 10.1016/j.fm.2020.103610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
Pre-harvest sanitization of irrigation water has potential for reducing pathogen contamination of fresh produce. We compared the sanitizing effects of irrigation water containing neutral electrolyzed oxidizing water (EOW) or sodium hypochlorite (NaClO) on pre-harvest lettuce and baby spinach leaves artificially contaminated with a mixture of Escherichia coli, Salmonella Enteritidis and Listeria innocua (~1 × 108 colony-forming units/mL each resuspended in water containing 100 mg/L dissolved organic carbon, simulating a splash-back scenario from contaminated soil/manure). The microbial load and leaf quality were assessed over 7 days, and post-harvest shelf life evaluated for 10 days. Irrigation with water containing EOW or NaClO at 50 mg/L free chlorine significantly reduced the inoculated bacterial load by ≥ 1.5 log10, whereas tap water irrigation reduced the inoculated bacterial load by an average of 0.5 log10, when compared with untreated leaves. There were no visual effects of EOW or tap water irrigation on baby spinach or lettuce leaf surfaces pre- or post-harvest, whereas there were obvious negative effects of NaClO irrigation on leaf appearance for both plants, including severe necrotic zones and yellowing/browning of leaves. Therefore, EOW could serve as a viable alternative to chemical-based sanitizers for pre-harvest disinfection of minimally processed vegetables.
Collapse
Affiliation(s)
- Abiodun D Ogunniyi
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia.
| | - Catherine E Dandie
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Gianluca Brunetti
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Barbara Drigo
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Samuel Aleer
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Barbara Hall
- Plant Health and Biosecurity, SARDI, Adelaide, South Australia, Australia
| | - Sergio Ferro
- Ecas4 Australia Pty Ltd, 8/1 London Road, Mile End South, South Australia, Australia
| | - Permal Deo
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Baden Myers
- Australian Flow Management Group & UniSA STEM, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| |
Collapse
|
2
|
Ogunniyi AD, Tenzin S, Ferro S, Venter H, Pi H, Amorico T, Deo P, Trott DJ. A pH-neutral electrolyzed oxidizing water significantly reduces microbial contamination of fresh spinach leaves. Food Microbiol 2020; 93:103614. [PMID: 32912586 DOI: 10.1016/j.fm.2020.103614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/14/2020] [Accepted: 07/30/2020] [Indexed: 11/30/2022]
Abstract
There are growing demands globally to use safe, efficacious and environmentally friendly sanitizers for post-harvest treatment of fresh produce to reduce or eliminate spoilage and foodborne pathogens. Here, we compared the efficacy of a pH-neutral electrolyzed oxidizing water (Ecas4 Anolyte; ECAS) with that of an approved peroxyacetic acid-based sanitizer (Ecolab Tsunami® 100) in reducing the total microbial load and inoculated Escherichia coli, Salmonella Enteritidis and Listeria innocua populations on post-harvest baby spinach leaves over 10 days. The impact of both sanitizers on the overall quality of the spinach leaves during storage was also assessed by shelf life and vitamin C content measurements. ECAS at 50 ppm and 85 ppm significantly reduced the bacterial load compared to tap water-treated or untreated (control) leaves, and at similar levels (approx. 10-fold reduction) to those achieved using 50 ppm of Ecolab Tsunami® 100. While there were no obvious deleterious effects of treatment with 50 ppm Tsunami® 100 or ECAS at 50 ppm and 85 ppm on plant leaf appearance, tap water-treated and untreated leaves showed some yellowing, bruising and sliming. Given its safety, efficacy and environmentally-friendly characteristics, ECAS could be a viable alternative to chemical-based sanitizers for post-harvest treatment of fresh produce.
Collapse
Affiliation(s)
- Abiodun D Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, Australia.
| | - Sangay Tenzin
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, Australia
| | - Sergio Ferro
- Ecas4 Australia, Unit 8 / 1 London Road, Mile End South, 5031, Australia
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Hongfei Pi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, Australia
| | - Tony Amorico
- Ecas4 Australia, Unit 8 / 1 London Road, Mile End South, 5031, Australia
| | - Permal Deo
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia.
| | - Darren J Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, Australia
| |
Collapse
|
3
|
Ogunniyi AD, Dandie CE, Ferro S, Hall B, Drigo B, Brunetti G, Venter H, Myers B, Deo P, Donner E, Lombi E. Comparative antibacterial activities of neutral electrolyzed oxidizing water and other chlorine-based sanitizers. Sci Rep 2019; 9:19955. [PMID: 31882630 PMCID: PMC6934530 DOI: 10.1038/s41598-019-56248-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/29/2019] [Indexed: 12/16/2022] Open
Abstract
There is increasing demand for safe and effective sanitizers for irrigation water disinfection to prevent transmission of foodborne pathogens to fresh produce. Here we compared the efficacy of pH-neutral electrolyzed oxidizing water (EOW), sodium hypochlorite (NaClO) and chlorine dioxide (ClO2) against single and mixed populations of E. coli, Listeria and Salmonella under a range of pH and organic matter content. EOW treatment of the mixed bacterial suspension resulted in a dose-dependent (<1 mg/L free chlorine), rapid (<2 min) and effective (4-6 Log10) reduction of the microbial load in water devoid of organic matter under the range of pH conditions tested (pH, 6.0, 7.0, 8.4 and 9.2). The efficacy of EOW containing 5 mg/L free chlorine was unaffected by increasing organic matter, and compared favourably with equivalent concentrations of NaClO and ClO2. EOW at 20 mg/L free chlorine was more effective than NaClO and ClO2 in reducing bacterial populations in the presence of high (20-100 mg/L) dissolved organic carbon, and no regrowth or metabolic activity was observed for EOW-treated bacteria at this concentration upon reculturing in rich media. Thus, EOW is as effective or more effective than other common chlorine-based sanitizers for pathogen reduction in contaminated water. EOW's other characteristics, such as neutral pH and ease of handling, indicate its suitability for fresh produce sanitation.
Collapse
Affiliation(s)
- Abiodun D Ogunniyi
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia.
| | - Catherine E Dandie
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Sergio Ferro
- Ecas4 Australia Pty Ltd, 8/1 London Road, Mile End South, South Australia, Australia
| | - Barbara Hall
- Plant Health and Biosecurity, SARDI, Adelaide, South Australia, Australia
| | - Barbara Drigo
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Gianluca Brunetti
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Henrietta Venter
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Baden Myers
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Permal Deo
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| |
Collapse
|
4
|
Yang Y, Zhang J, Zhu C, Meng X, Sun S, Zhu G. A promising detection candidate for flagellated Salmonella spp. AMB Express 2019; 9:128. [PMID: 31414324 PMCID: PMC6694378 DOI: 10.1186/s13568-019-0851-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/02/2019] [Indexed: 12/23/2022] Open
Abstract
Salmonella is a common and important pathogen for both human and animals. All Salmonella except Salmonella pullorum and Salmonella gallinarum have flagellum. Flagellin (FliC) is the main subunit protein forming the bacterial filament, which is present in large amounts on the surface of all flagellated Salmonella. After bioinformatics analysis, the most highly conserved region (locates position from 1 to 102 amino acid residue of FliC, we named it as FliC') was selected, and corresponding recombinant FliC' (rFliC') protein was tailored as an immunogen to generate monoclonal antibodies (MAbs) against Salmonella flagellin. BALB/c mice were immunized with the purified recombinant protein rFliC', which were prepared by prokaryotic expression system pET22b (+) expressing FliC'. After fusion of spleen cells from the immunized mice and SP2/0 cells, three hybridoma cells (1D6, 2G6 and 3E2) producing MAbs against targeted flagellate Salmonella FliC' were generated and screened. The ability of MAb 3E2 to recognize and bind to Salmonella flagella was demonstrated by immunogold electron microscopy (IEM) method. Western blot (WB) analysis demonstrated that MAb 3E2 could specifically recognize flagellated Salmonella strains. Moreover, MAb 3E2 has a direct agglutination activity against Salmonella strains with visible agglutination reaction. To further verify this agglutination activity, a total of 52 flagellated Salmonella strains (23 serovars), 8 non-flagellate Salmonella strains (2 serovars) and 16 other non-Salmonella bacteria strains were used to evaluate the specificity of the MAb by direct Slide Agglutination Test (SAT). Results showed that MAb 3E2 reacted with all Salmonella strains possessing flagellum and had no cross-reaction with non-flagellate Salmonella strains or other non-Salmonella bacteria strains. Sequentially, the ability to detect the presence of Salmonella in raw samples of the MAb 3E2-based SAT method was evaluated. The conventional culture-based detection method was performed as the standard reference method for detection of Salmonella. Altogether, 369 samples collected from laying hens were tested, and the results indicated that the MAb 3E2-based SAT method could specifically detect Salmonella. Furthermore, the SAT results were obtained more quickly, as compared with the standard method. As a whole, the MAbs against the tailored conserved region of Salmonella flagellin were prepared in this study, and MAb 3E2-based SAT is a promising candidate for the flagellated Salmonella spp. rapid detection.
Collapse
Affiliation(s)
- Yi Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jiangying Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Chunhong Zhu
- Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shuhong Sun
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
5
|
Abstract
The interaction betweenSalmonella and its host is complex and dynamic: the host mounts an immune defense against the pathogen, which in turn acts to reduce, evade, or exploit these responses to successfully colonize the host. Although the exact mechanisms mediating protective immunity are poorly understood, it is known that T cells are a critical component of immunity to Salmonella infection, and a robust T-cell response is required for both clearance of primary infection and resistance to subsequent challenge. B-cell functions, including but not limited to antibody production, are also required for generation of protective immunity. Additionally, interactions among host cells are essential. For example, antigen-presenting cells (including B cells) express cytokines that participate in CD4+ T cell activation and differentiation. Differentiated CD4+ T cells secrete cytokines that have both autocrine and paracrine functions, including recruitment and activation of phagocytes, and stimulation of B cell isotype class switching and affinity maturation. Multiple bacterium-directed mechanisms, including altered antigen expression and bioavailability and interference with antigen-presenting cell activation and function, combine to modify Salmonella's "pathogenic signature" in order to minimize its susceptibility to host immune surveillance. Therefore, a more complete understanding of adaptive immune responses may provide insights into pathogenic bacterial functions. Continued identification of adaptive immune targets will guide rational vaccine development, provide insights into host functions required to resist Salmonella infection, and correspondingly provide valuable reagents for defining the critical pathogenic capabilities of Salmonella that contribute to their success in causing acute and chronic infections.
Collapse
|
6
|
Jaglic Z, Desvaux M, Weiss A, Nesse LL, Meyer RL, Demnerova K, Schmidt H, Giaouris E, Sipailiene A, Teixeira P, Kačániová M, Riedel CU, Knøchel S. Surface adhesins and exopolymers of selected foodborne pathogens. MICROBIOLOGY-SGM 2014; 160:2561-2582. [PMID: 25217529 DOI: 10.1099/mic.0.075887-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ability of bacteria to bind different compounds and to adhere to biotic and abiotic surfaces provides them with a range of advantages, such as colonization of various tissues, internalization, avoidance of an immune response, and survival and persistence in the environment. A variety of bacterial surface structures are involved in this process and these promote bacterial adhesion in a more or less specific manner. In this review, we will focus on those surface adhesins and exopolymers in selected foodborne pathogens that are involved mainly in primary adhesion. Their role in biofilm development will also be considered when appropriate. Both the clinical impact and the implications for food safety of such adhesion will be discussed.
Collapse
Affiliation(s)
- Zoran Jaglic
- Veterinary Research Institute, Brno, Czech Republic
| | - Mickaël Desvaux
- INRA, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France
| | - Agnes Weiss
- Department of Food Microbiology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | | | - Rikke L Meyer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Katerina Demnerova
- Institute of Chemical Technology, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 5, Prague, 166 28, Czech Republic
| | - Herbert Schmidt
- Department of Food Microbiology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Efstathios Giaouris
- Department of Food Science and Nutrition, Faculty of the Environment, University of the Aegean, 81400 Myrina, Lemnos Island, Greece
| | | | - Pilar Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | | | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Susanne Knøchel
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, Frederiksberg C 1958, Denmark
| |
Collapse
|
7
|
Zhu C, Meng X, Duan X, Tao Z, Gong J, Hou H, Zhu G. SEF14 fimbriae from Salmonella enteritidis play a role in pathogenitic to cell model in vitro and host in vivo. Microb Pathog 2013; 64:18-22. [DOI: 10.1016/j.micpath.2013.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/22/2013] [Accepted: 07/29/2013] [Indexed: 11/25/2022]
|
8
|
Zhu CH, Wu J, Chen WW, Hassan HM, Zhu GQ. Difference and variation of the sef14 operon gene clusters in Salmonella pullorum. J Basic Microbiol 2011; 50 Suppl 1:S120-3. [PMID: 20806242 DOI: 10.1002/jobm.200900262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 04/07/2010] [Indexed: 11/10/2022]
Abstract
SEF14 fimbriae are only found in some strains of serogroup-D Salmonella such as S. enteritidis, suggesting that SEF14 fimbriae may affect serovar-specific virulence traits. In this study, we found that prevalence of sefA, sefD and sefR genes in S. dublin and S. enteritidis was 100%. In 18 isolates of S. pullorum, the prevalence of sefA gene was 100%, while the prevalence of sefD and sefR genes was 38.9% (7/18), and 11 strains isolated after 1980s did not contain any gene sefD or sefR. Interestingly, among the 7 strains of S. pullorum before 1980s, the sefD sequence has a missing base pair at position 196 and caused open reading frame (ORF) shift, resulting in a stop codon (TAG) at position 71 amino acid residual (Leu of TTA at position 214-216 shift into stop codon of TAG at position 215-217). Unlike S. pullorum, all S. enteritidis and S. dublin tested could express SEF14 fimbriae in vitro.
Collapse
Affiliation(s)
- C H Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | | | | | | | | |
Collapse
|
9
|
Rank DL, Saeed MA, Muriana PM. Cloning of Salmonella enterica serovar Enteritidis fimbrial protein SefA as a surface protein in Escherichia coli confers the ability to attach to eukaryotic cell lines. Appl Environ Microbiol 2009; 75:6622-5. [PMID: 19700549 PMCID: PMC2765155 DOI: 10.1128/aem.00639-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 08/14/2009] [Indexed: 11/20/2022] Open
Abstract
The gene for the Salmonella enterica serovar Enteritidis fimbrial protein SefA was cloned into an Escherichia coli surface expression vector and confirmed by Western blot assay. E. coli clones expressing SefA attached to avian ovary granulosa cells and HEp-2 cells, providing evidence for the involvement of SefA in the ability of Salmonella to attach to eukaryotic cells.
Collapse
Affiliation(s)
- Douglas L Rank
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
10
|
Fahy OL, Townley SL, McColl SR. CXCL16 regulates cell-mediated immunity to Salmonella enterica serovar Enteritidis via promotion of gamma interferon production. Infect Immun 2006; 74:6885-94. [PMID: 16982830 PMCID: PMC1698091 DOI: 10.1128/iai.01065-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CXCL16 is a recently discovered multifaceted chemokine that has been shown not only to recruit activated T lymphocytes but also to play a direct role in the binding and phagocytosis of bacteria by professional antigen-presenting cells. In this study, we investigated the role of CXCL16 in vivo in the regulation of the immune response using a murine model of Salmonella enterica serovar Enteritidis infection. The expression of CXCL16 was strongly upregulated in the spleens and livers of animals developing an immune response to a primary acute infection but not in the Peyer's patches. Animals developing a secondary response after reexposure to the bacteria displayed a similar pattern of expression. During the primary response, prior treatment with neutralizing antibodies to CXCL16 induced a significant increase in bacterial burden in the spleen and liver. The production of gamma interferon (IFN-gamma) by the lymphocytes in the spleen was decreased by anti-CXCL16 treatment. In comparison, during the secondary response, anti-CXCL16 treatment also significantly increased bacterial burden in both the spleen and liver but had no effect on IFN-gamma production. No role was found for CXCL16 in the production of antibody against SefA, a major surface antigen of S. enteritidis. Together, these results demonstrate a role for CXCL16 in the control of bacterial colonization of target organs and, more specifically, in the regulation of the cell-mediated arm of the primary response to S. enteritidis.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/immunology
- Antibodies, Blocking/pharmacology
- Chemokine CXCL10
- Chemokine CXCL11
- Chemokine CXCL16
- Chemokine CXCL6
- Chemokine CXCL9
- Chemokines, CXC/antagonists & inhibitors
- Chemokines, CXC/genetics
- Chemokines, CXC/metabolism
- Chemokines, CXC/physiology
- Female
- Interferon-gamma/analysis
- Interferon-gamma/metabolism
- Lymphocytes/immunology
- Mice
- Mice, Inbred BALB C
- Receptors, Scavenger/antagonists & inhibitors
- Receptors, Scavenger/genetics
- Receptors, Scavenger/physiology
- Salmonella Infections/genetics
- Salmonella Infections/immunology
- Salmonella enteritidis
- Up-Regulation
Collapse
Affiliation(s)
- Olivier L Fahy
- Department of Molecular and Biomedical Science, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| | | | | |
Collapse
|
11
|
Shah DH, Lee MJ, Park JH, Lee JH, Eo SK, Kwon JT, Chae JS. Identification of Salmonella gallinarum virulence genes in a chicken infection model using PCR-based signature-tagged mutagenesis. Microbiology (Reading) 2005; 151:3957-3968. [PMID: 16339940 DOI: 10.1099/mic.0.28126-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salmonella gallinarum (SG) is a non-motile host-adapted salmonella that causes fowl typhoid, a severe systemic disease responsible for significant economic losses to the poultry industry worldwide. This study describes the application of a PCR-based signature-tagged mutagenesis system to identify in vivo-essential genes of SG. Ninety-six pools representing 1152 SG mutants were screened in a natural-host chicken infection model. Twenty presumptive attenuated mutants were identified and examined further. The identity of the disrupted gene in each mutant was determined by cloning of the DNA sequences adjacent to the transposon, followed by sequencing and comparison with the bacterial genome database. In vitro and in vivo competition indices were determined for each identified mutant and a total of 18 unique, attenuating gene disruptions were identified. These mutations represented six broad genomic classes: Salmonella pathogenicity island-1 (SPI-1), SPI-2, SPI-10, SPI-13, SPI-14 and non-SPI-encoded virulence genes. SPI-13 and SPI-14 are newly identified and designated in this study. Most of the genes identified in this study were not previously believed or known to play a role in the pathogenesis of SG infection in chickens. Each STM identified mutant showed competitiveness and/or virulence defects, confirmed by in vitro and in vivo assays, and challenge tests. This study should contribute to a better understanding of the pathogenic mechanisms involved in progression of disease caused by SG, and identification of novel live vaccine candidates and new potential antibiotic targets.
Collapse
Affiliation(s)
- Devendra H Shah
- Biosafety Research Institute and College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Korea
| | - Mi-Jin Lee
- Biosafety Research Institute and College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Korea
| | - Jin-Ho Park
- Biosafety Research Institute and College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Korea
| | - John-Hwa Lee
- Biosafety Research Institute and College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Korea
| | - Seong-Kug Eo
- Biosafety Research Institute and College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Korea
| | - Jung-Thek Kwon
- Halim Inc., 13-14 Euryang-Ri, Samgi-Myeon, Iksan 570-883, Korea
| | - Joon-Seok Chae
- Biosafety Research Institute and College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Korea
| |
Collapse
|
12
|
Ochoa-Repáraz J, García B, Solano C, Lasa I, Irache JM, Gamazo C. Protective ability of subcellular extracts from Salmonella Enteritidis and from a rough isogenic mutant against salmonellosis in mice. Vaccine 2005; 23:1491-501. [PMID: 15670885 DOI: 10.1016/j.vaccine.2004.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 09/07/2004] [Indexed: 11/19/2022]
Abstract
We evaluated the efficacy of surface components enriched hot saline extracts (HE) from parental and two isogenic rough mutant strains of Salmonella Enteritidis as subcellular vaccine candidates. By a randomized mutagenesis approach from a clinical isolate of S. Enteritidis there were selected two rough mutants defective in LPS synthesis (R1 and R2 mutants). The mutations mapped to the wcaI gene and gmd gene, respectively, of the O-antigen gene cluster involved in O-antigen synthesis. BALB/c mice received intraperitoneally one single dose of 30 microg of HE from parental and mutant strains, and the protection against a lethal infection with S. Enteritidis was determined. In contrast to the wild type extract, immunization with rough extracts did not induce any distress symptoms in the mice. HE extract from wild type and R1 strains induced the highest immunogenic response with respect IFN-gamma eliciting splenic cells, in contrast with HE-R2. These results correlated with the obtained levels of protection. Thus, at day 63 post-infection, HE from parental strain rendered an 80% level of protection; HE-R1 conferred a 60% level of protection, whereas HE-R2 did not protect the mice. Any of the antigenic extracts elicited systemic IgG1 and IgG2a responses, although these antibodies did not, however, correlate with protection. These results put forward the importance of cellular immune response mediated by IFN-gamma in protection against salmonellosis. The significantly different protective capacity between HE extracts from both rough mutants suggest that other factors independent of the O-chain, like outer membrane proteins and fimbrial antigens, may be involved in protection. In summary, the HE is a good candidate acellular extract for evaluation of its protective ability against salmonellosis following vaccination in poultry.
Collapse
|
13
|
Fahy OL, Townley SL, Coates NJ, Clark-Lewis I, McColl SR. Control of Salmonella dissemination in vivo by macrophage inflammatory protein (MIP)-3alpha/CCL20. J Transl Med 2004; 84:1501-11. [PMID: 15448707 DOI: 10.1038/labinvest.3700176] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
While chemokines are clearly important in the generation of protective immunity, the role of individual chemokines in the control of bacterial infection is still poorly understood. In this study, we investigated the role of macrophage inflammatory protein (MIP)-3alpha/CCL20, a chemokine that attracts activated T and B lymphocytes and immature dendritic cells, in host responses to bacterial infection. CCL20 production was induced in subcutaneous tissue in the BALB/c mouse in response to Salmonella enteritidis, Staphylococcus aureus and zymosan, with S. enteritidis being the most potent. S. enteritidis induced CCL20 production in the spleen following either oral administration or injection into the peritoneal cavity. In contrast, no increase was observed in the Peyer's patches. In this model, following intraperitoneal injection, dose-dependent colonization of the spleen and Peyer's patches by S. enteritidis, expression of IFNgamma and IL-4, and production of antibodies against the S. enteritidis surface antigen SefA were observed. Prior treatment with neutralizing antibodies against CCL20 enhanced bacterial dissemination to the spleen and Peyer's patches and strongly biased the IFNgamma/IL-4 ratio towards a type 2 profile in the spleen, while the humoral response was unaffected. In contrast, treatment with neutralizing anti-MIP-1alpha/CCL3 antibodies enhanced the bacterial burden in the Peyer's patches but not in the spleen, had no significant effect on the cytokine ratio, but significantly inhibited anti-SefA production. Together, these results demonstrate an important role for CCL20 in the control of bacterial infection and more specifically in the regulation of cell-mediated immunity against intracellular bacteria such as S. enteritidis.
Collapse
Affiliation(s)
- Olivier L Fahy
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia.
| | | | | | | | | |
Collapse
|
14
|
Abstract
Salmonella enterica serovar Typhi (S. typhi) causes human typhoid fever, a serious and widespread disease in developing countries. Other Salmonella serovars are associated with food-borne infections. The recent emergence of multi-drug-resistant Salmonella strains highlights the need for better preventive measures, including vaccination. The available vaccines against Salmonella infection do not confer optimal protection. The design of new Salmonella vaccines must be based on the identification of suitable virulence genes and on knowledge of the immunological mechanisms of resistance to the disease. Control and clearance of a vaccine strain rely on the phagocyte oxidative burst, reactive nitrogen intermediates, inflammatory cytokines and CD4(+) TCR-alphabeta(+) T cells and are controlled by genes including NRAMP1 and MHC class II. Vaccine-induced resistance to reinfection requires the presence of Th1-type immunological memory and anti-Salmonella antibodies. The interaction between T and B cells is essential for the development of resistance following vaccination. The identification of immunodeficiencies that render individuals more susceptible to salmonellosis must be taken into consideration when designing and testing live attenuated Salmonella vaccines. An ideal live Salmonella vaccine should therefore be safe, regardless of the immunological status of the vaccinee, but still immunogenic.
Collapse
Affiliation(s)
- Pietro Mastroeni
- Bacterial Infection Group, Centre for Veterinary Science, Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Nathalie Ménager
- Bacterial Infection Group, Centre for Veterinary Science, Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
15
|
Strindelius L, Degling Wikingsson L, Sjöholm I. Extracellular antigens from Salmonella enteritidis induce effective immune response in mice after oral vaccination. Infect Immun 2002; 70:1434-42. [PMID: 11854230 PMCID: PMC127788 DOI: 10.1128/iai.70.3.1434-1442.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied polyacryl starch microparticles as an adjuvant in oral vaccination in mice. Secreted antigens from Salmonella enterica serovar Enteritidis were administered covalently conjugated to microparticles, or as free antigens, orally or intramuscularly and evaluated for their immunogenicity and ability to elicit protective immune response against an oral challenge with live serovar Enteritidis. The highest immunoglobulin M (IgM)-plus-IgG titers were obtained in the groups immunized with antigen-conjugated microparticles. The subclass profile switched to a stronger Th1 influence in the oral groups after booster, while the intramuscular group showed a constant Th1/Th2 profile. A strong specific IgA response was seen in feces in the oral groups, which was further confirmed in an enzyme-linked immunospot assay. The delayed-type hypersensitivity test, as a measure of the cellular response, showed a significant increase in ear thickness in all the immunized groups, except for the group that received free antigen orally, compared to the nonimmunized group. The cytokines released from in vitro-stimulated spleens showed a strong gamma interferon response in all immunized groups. A significant reduction in CFU in liver and spleen was seen in the orally immunized groups compared to the nonimmunized group after oral challenge with serovar Enteritidis. Western blotting analysis with both sera and feces revealed that antibodies against three bands, 53, 56, and 60 kDa, dominated the oral groups, and an electrospray-mass spectroscopy analysis of these bands showed amino acid sequences coinciding with those of phase-1 flagellin and hook-associated protein 2.
Collapse
Affiliation(s)
- Lena Strindelius
- Department of Pharmacy, Biomedical Center, Uppsala University, SE-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
16
|
Humphries AD, Townsend SM, Kingsley RA, Nicholson TL, Tsolis RM, Bäumler AJ. Role of fimbriae as antigens and intestinal colonization factors of Salmonella serovars. FEMS Microbiol Lett 2001; 201:121-5. [PMID: 11470349 DOI: 10.1111/j.1574-6968.2001.tb10744.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- A D Humphries
- Department of Medical Microbiology and Immunology, College of Medicine, Texas A&M University System Health Science Center, 407 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | | | | | | | | | | |
Collapse
|
17
|
Collighan RJ, Woodward MJ. The SEF14 fimbrial antigen of Salmonella enterica serovar Enteritidis is encoded within a pathogenicity islet. Vet Microbiol 2001; 80:235-45. [PMID: 11337139 DOI: 10.1016/s0378-1135(01)00309-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The DNA sequence of the chromosomal gene cluster encoding the SEF14 fimbriae of Salmonella enterica serovar Enteritidis was determined. Five contiguous open reading frames, sefABCDE, were identified. The sefE gene shared significant homology with araC-like positive regulators. Serovar-associated virulence plasmid (SAP) genes orf7,8,9 and pefI were identified immediately adjacent to the sef operon. The pefI gene encoded a putative regulator of the Plasmid-encoded fimbrial antigen (PEF) expression. The entire sef--pef region, flanked by two IS-like elements, was inserted adjacent to leuX that encoded a transfer RNA molecule. The organisation of this region was suggestive of a classic pathogenicity islet. Southern hybridisation confirmed two copies of the SAP derived orf7,8,9 and pefI region in S. Enteritidis, one in the chromosome and one on the SAP. Of other group D Salmonella, only S. Blegdam and S. Moscow harboured both chromosomal and plasmid copies of pefI--orf9 region although polymorphism was evident.
Collapse
Affiliation(s)
- R J Collighan
- Department of Bacterial Diseases, Veterinary Laboratories Agency (Weybridge), New Haw, Addlestone, Surrey KT15 3NB, UK
| | | |
Collapse
|
18
|
Mastroeni P, Chabalgoity JA, Dunstan SJ, Maskell DJ, Dougan G. Salmonella: immune responses and vaccines. Vet J 2001; 161:132-64. [PMID: 11243685 DOI: 10.1053/tvjl.2000.0502] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Salmonella infections are a serious medical and veterinary problem world-wide and cause concern in the food industry. Vaccination is an effective tool for the prevention of Salmonella infections. Host resistance to Salmonella relies initially on the production of inflammatory cytokines leading to the infiltration of activated inflammatory cells in the tissues. Thereafter T- and B-cell dependent specific immunity develops allowing the clearance of Salmonella microorganisms from the tissues and the establishment of long-lasting acquired immunity to re-infection. The increased resistance that develops after primary infection/ vaccination requires T-cells cytokines such as IFNgamma TNFalpha and IL12 in addition to opsonising antibody. However for reasons that are not fully understood seroconversion and/or the presence of detectable T-cell memory do not always correlate with the development of acquired resistance to infection.Whole-cell killed vaccines and subunit vaccines are used in the prevention of Salmonella infection in animals and in humans with variable results. A number of early live Salmonella vaccines derived empirically by chemical or u.v. mutagenesis proved to be immunogenic and protective and are still in use despite the need for repeated parenteral administration. Recent progress in the knowledge of the genetics of Salmonella virulence and modern recombinant DNA technology offers the possibility to introduce multiple defined attenuating and irreversible mutations into the bacterial genome. This has recently allowed the development of Salmonella strains devoid of significant side effects but still capable of inducing solid immunity after single oral administration. Live attenuated Salmonella vaccines have been used for the expression of heterologous antigens/proteins that can be successfully delivered to the immune system. Furthermore Salmonella can transfer plasmids encoding foreign antigens under the control of eukaryotic promoters (DNA vaccines) to antigen-presenting cells resulting in targeted delivery of DNA vaccines to these cells. Despite the great recent advances in the development of Salmonella vaccines a large proportion of the work has been conducted in laboratory rodents and more research in other animal species is required.
Collapse
Affiliation(s)
- P Mastroeni
- Centre for Veterinary Science, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK.
| | | | | | | | | |
Collapse
|
19
|
Rajashekara G, Munir S, Alexeyev MF, Halvorson DA, Wells CL, Nagaraja KV. Pathogenic role of SEF14, SEF17, and SEF21 fimbriae in Salmonella enterica serovar enteritidis infection of chickens. Appl Environ Microbiol 2000; 66:1759-63. [PMID: 10742278 PMCID: PMC92059 DOI: 10.1128/aem.66.4.1759-1763.2000] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Very little is known about the contribution of surface appendages of Salmonella enterica serovar Enteritidis to pathogenesis in chickens. This study was designed to clarify the role of SEF14, SEF17, and SEF21 fimbriae in serovar Enteritidis pathogenesis. Stable, single, defined sefA (SEF14), agfA (SEF17), and fimA (SEF21) insertionally inactivated fimbrial gene mutants of serovar Enteritidis were constructed. All mutant strains invaded Caco-2 and HT-29 enterocytes at levels similar to that of the wild type. Both mutant and wild-type strains were ingested equally well by chicken macrophage cell lines HD11 and MQ-NCSU. There were no significant differences in the abilities of these strains to colonize chicken ceca. The SEF14(-) strain was isolated in lower numbers from the livers of infected chickens and was cleared from the spleens faster than other strains. No significant differences in fecal shedding of these strains were observed.
Collapse
Affiliation(s)
- G Rajashekara
- Department of Veterinary PathoBiology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | | | |
Collapse
|
20
|
Edwards RA, Schifferli DM, Maloy SR. A role for Salmonella fimbriae in intraperitoneal infections. Proc Natl Acad Sci U S A 2000; 97:1258-62. [PMID: 10655518 PMCID: PMC15588 DOI: 10.1073/pnas.97.3.1258] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Enteric bacteria possess multiple fimbriae, many of which play critical roles in attachment to epithelial cell surfaces. SEF14 fimbriae are only found in Salmonella enterica serovar Enteritidis (S. enteritidis) and closely related serovars, suggesting that SEF14 fimbriae may affect serovar-specific virulence traits. Despite evidence that SEF14 fimbriae are expressed by S. enteritidis in vivo, previous studies showed that SEF14 fimbriae do not mediate adhesion to the intestinal epithelium. Therefore, we tested whether SEF14 fimbriae are required for virulence at a stage in infection after the bacteria have passed the intestinal barrier. Polar mutations that disrupt the entire sef operon decreased virulence in mice more than 1,000-fold. Nonpolar mutations that disrupted sefA (encoding the major structural subunit) did not affect virulence, but mutations that disrupted sefD (encoding the putative adhesion subunit) resulted in a severe virulence defect. The results indicate that the putative SEF14 adhesion subunit is specifically required for a stage of the infection subsequent to transit across the intestinal barrier. Therefore, we tested whether SefD is required for uptake or survival in macrophages. The majority of wild-type bacteria were detected inside macrophages soon after i.p. infection, but the sefD mutants were not readily internalized by peritoneal macrophages. These results indicate that the potential SEF14 adhesion subunit is essential for efficient uptake or survival of S. enteritidis in macrophages. This report describes a role of fimbriae in intracellular infection, and indicates that fimbriae may be required for systemic infections at stages beyond the initial colonization of host epithelial surfaces.
Collapse
Affiliation(s)
- R A Edwards
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 Chemical and Life Sciences Building, 601 S. Goodwin Avenue, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
21
|
Collighan RJ, Woodward MJ. Sequence analysis and distribution of an IS3-like insertion element isolated from Salmonella enteritidis. FEMS Microbiol Lett 1997; 154:207-13. [PMID: 9311118 DOI: 10.1111/j.1574-6968.1997.tb12645.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nucleotide sequence of a 3 kb region immediately upstream of the sef operon of Salmonella enteritidis was determined. A 1230 base pair insertion sequence which shared sequence identity (> 75%) with members of the IS3 family was revealed. This element, designated IS1230, had almost identical (90% identity) terminal inverted repeats to Escherichia coli IS3 but unlike other IS3-like sequences lacked the two characteristic open reading frames which encode the putative transposase. S. enteritidis possessed only one copy of this insertion sequence although Southern hybridisation analysis of restriction digests of genomic DNA revealed another fragment located in a region different from the sef operon which hybridised weakly which suggested the presence of an IS1230 homologue. The distribution of IS1230 and IS1230-like elements was shown to be widespread amongst salmonellas and the patterns of restriction fragments which hybridised differed significantly between Salmonella serotypes and it is suggested that IS1230 has potential for development as a differential diagnostic tool.
Collapse
Affiliation(s)
- R J Collighan
- Bacteriology Department, Central Veterinary Laboratory, Addlestone, Surrey, UK.
| | | |
Collapse
|
22
|
Ogunniyi AD, Kotlarski I, Morona R, Manning PA. Role of SefA subunit protein of SEF14 fimbriae in the pathogenesis of Salmonella enterica serovar Enteritidis. Infect Immun 1997; 65:708-17. [PMID: 9009334 PMCID: PMC176117 DOI: 10.1128/iai.65.2.708-717.1997] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In this study, the role of the SefA subunit protein of SEF14 fimbriae in the pathogenesis of Salmonella enterica serovar Enteritidis was investigated. This was accomplished by mutating the sefA gene in the chromosome of two strains of S. enterica serovar Enteritidis by allelic exchange with a copy that has been inactivated by interruption with a nonpolar kanamycin resistance (aphA-3) cassette. The effect of this mutation on the ability of the S. enterica serovar Enteritidis strains to colonize the intestinal epithelium and to invade other tissues was assessed in BALB/c mice and in vitro by adherence and invasion of HeLa cells. Our results show that an avirulent S. enterica serovar Enteritidis vaccine strain, 11RX (no somatic antigen; flagellum antigen phase 1, g,m; flagellum antigen phase 2, -), colonized better and persisted longer in the Peyer's patches of these mice than did its SefA-deficient counterpart. However, no such difference was observed between a highly virulent S. enterica serovar Enteritidis strain, 7314 (somatic antigen, O1, O9, O12; flagellum antigen phase 1, g,m; flagellum antigen phase 2 [1,7]), and its SefA-deficient isogenic mutant. These findings were correlated with in vitro adherence and invasion of HeLa cells. Furthermore, we could not demonstrate a role for SefA in the virulence of S. enterica serovar Enteritidis as assessed by 50% lethal dose determinations. The implications of these findings are discussed.
Collapse
Affiliation(s)
- A D Ogunniyi
- Department of Microbiology and Immunology, The University of Adelaide, South Australia
| | | | | | | |
Collapse
|
23
|
Henderson B, Poole S, Wilson M. Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis. Microbiol Rev 1996; 60:316-41. [PMID: 8801436 PMCID: PMC239446 DOI: 10.1128/mr.60.2.316-341.1996] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cytokines are a diverse group of proteins and glycoproteins which have potent and wide-ranging effects on eukaryotic cell function and are now recognized as important mediators of tissue pathology in infectious diseases. It is increasingly recognized that for many bacterial species, cytokine induction is a major virulence mechanism. Until recent years, the only bacterial component known to stimulate cytokine synthesis was lipopolysaccharide (LPS). It is only within the past decade that it has been clearly shown that many components associated with the bacterial cell wall, including proteins, glycoproteins, lipoproteins, carbohydrates, and lipids, have the capacity to stimulate mammalian cells to produce a diverse array of cytokines. It has been established that many of these cytokine-inducing molecules act by mechanisms distinct from that of LPS, and thus their activities are not due to LPS contamination. Bacteria produce a wide range of virulence factors which cause host tissue pathology, and these diverse factors have been grouped into four families: adhesins, aggressins, impedins, and invasins. We suggest that the array of bacterial cytokine-inducing molecules represents a new class of bacterial virulence factor, and, by analogy with the known virulence families, we suggest the term "modulin" to describe these molecules, because the action of cytokines is to modulate eukaryotic cell behavior. This review summarizes our current understanding of cytokine biology in relation to tissue homeostasis and disease and concisely reviews the current literature on the cytokine-inducing molecules produced by gram-negative and gram-positive bacteria, with an emphasis on the cellular mechanisms responsible for cytokine induction. We propose that modulins, by controlling the host immune and inflammatory responses, maintain the large commensal flora that all multicellular organisms support.
Collapse
Affiliation(s)
- B Henderson
- Maxillofacial Surgery Research Unit, University College London, United Kingdom.
| | | | | |
Collapse
|
24
|
Hormaeche CE, Mastroeni P, Harrison JA, Demarco de Hormaeche R, Svenson S, Stocker BA. Protection against oral challenge three months after i.v. immunization of BALB/c mice with live Aro Salmonella typhimurium and Salmonella enteritidis vaccines is serotype (species)-dependent and only partially determined by the main LPS O antigen. Vaccine 1996; 14:251-9. [PMID: 8744548 DOI: 10.1016/0264-410x(95)00249-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The role of the main LPS O antigen in the specificity of protection as mediated by systemic mechanisms following immunization with live attenuated Aro Salmonella vaccines was studied in mice. Innately Salmonella-susceptible (Itys) BALB/c mice were immunized intravenously with a single dose of either Salmonella typhimurium SL3261 aroA (LPS O4,5,12) or Salmonella enteritidis Se795aroA (LPS O1,9,12), and challenged orally 2-3 months later with either S. typhimurium C5 or S. enteritidis Thirsk. Nearly isogenic transductants of the two challenge strains expressing either their own LPS or that of the other serotype (S. typhimurium C5 O4 or O9, and S. enteritidis Thirsk O9 or O4) were also used. Both vaccines conferred similar high protection against the virulent strain of the homologous serotype expressing its own LPS. There was no protection against the heterologous serotype expressing its own LPS. However, when vaccinated mice were challenged with either the same serotype as the vaccine but expressing the heterologous LPS, or with the heterologous serotype expressing the LPS of the vaccine, protection was always lower than protection against the fully homologous serotype. Anti-smooth LPS antibodies showed higher titres against the homologous LPS, but with significant crossreactivity with the heterologous LPS. Antibodies to O-rough S. typhimurium and S. enteritidis LPS were present following immunization with either of the two vaccine strains. The LPS alone cannot fully account for the specificity of protection in this model; other (protein) antigens may be responsible. It remains to be seen whether there is a T-cell mediated component to the specificity of protection conferred by live Salmonella vaccines.
Collapse
Affiliation(s)
- C E Hormaeche
- Department of Microbiology, Medical School, University of Newcastle, UK
| | | | | | | | | | | |
Collapse
|