1
|
Van Roy Z, Kielian T. Tumor necrosis factor regulates leukocyte recruitment but not bacterial persistence during Staphylococcus aureus craniotomy infection. J Neuroinflammation 2024; 21:179. [PMID: 39044282 PMCID: PMC11264501 DOI: 10.1186/s12974-024-03174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Craniotomy is a common neurosurgery used to treat intracranial pathologies. Nearly 5% of the 14 million craniotomies performed worldwide each year become infected, most often with Staphylococcus aureus (S. aureus), which forms a biofilm on the surface of the resected bone segment to establish a chronic infection that is recalcitrant to antibiotics and immune-mediated clearance. Tumor necrosis factor (TNF), a prototypical proinflammatory cytokine, has been implicated in generating protective immunity to various infections. Although TNF is elevated during S. aureus craniotomy infection, its functional importance in regulating disease pathogenesis has not been explored. METHODS A mouse model of S. aureus craniotomy infection was used to investigate the functional importance of TNF signaling using TNF, TNFR1, and TNFR2 knockout (KO) mice by quantifying bacterial burden, immune infiltrates, inflammatory mediators, and transcriptional changes by RNA-seq. Complementary experiments examined neutrophil extracellular trap formation, leukocyte apoptosis, phagocytosis, and bactericidal activity. RESULTS TNF transiently regulated neutrophil and granulocytic myeloid-derived suppressor cell recruitment to the brain, subcutaneous galea, and bone flap as evident by significant reductions in both cell types between days 7 to 14 post-infection coinciding with significant decreases in several chemokines, which recovered to wild type levels by day 28. Despite these defects, bacterial burdens were similar in TNF KO and WT mice. RNA-seq revealed enhanced lymphotoxin-α (Lta) expression in TNF KO granulocytes. Since both TNF and LTα signal through TNFR1 and TNFR2, KO mice for each receptor were examined to assess potential redundancy; however, neither strain had any impact on S. aureus burden. In vitro studies revealed that TNF loss selectively altered macrophage responses to S. aureus since TNF KO macrophages displayed significant reductions in phagocytosis, apoptosis, IL-6 production, and bactericidal activity in response to live S. aureus, whereas granulocytes were not affected. CONCLUSION These findings implicate TNF in modulating granulocyte recruitment during acute craniotomy infection via secondary effects on chemokine production and identify macrophages as a key cellular target of TNF action. However, the lack of changes in bacterial burden in TNF KO animals suggests the involvement of additional signals that dictate S. aureus pathogenesis during craniotomy infection.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA.
| |
Collapse
|
2
|
Zaman A, Diago Navarro E, Fries BC, Kim HK, Carpino N. Inactivation of the Sts enzymes promotes resistance to lethal Staphylococcus aureus infection. Infect Immun 2023; 91:e0026023. [PMID: 37725063 PMCID: PMC10580875 DOI: 10.1128/iai.00260-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 09/21/2023] Open
Abstract
Staphylococcus aureus is a highly infective Gram-positive bacterial pathogen that causes a wide range of diseases in both healthy and immunocompromised individuals. It can evade host immune defenses by expressing numerous virulence factors and toxins. Coupled with the inability of the human host to develop protective immunity against S. aureus, the emergence of antibiotic-resistant strains complicates treatment options. The non-canonical Sts phosphatases negatively regulate signaling pathways in varied immune cell types. To determine the role of the Sts proteins in regulating host responses to a Gram-positive microorganism, we investigated the response of mice lacking Sts expression to S. aureus infection. Herein, we demonstrate that Sts -/- animals are significantly resistant to lethal intravenous doses of S. aureus strain USA300. Resistance is characterized by significantly enhanced survival and accelerated bacterial clearance in multiple peripheral organs. Infected Sts -/- animals do not display increased levels of cytokines TNFα, IFNγ, and IL-6 in the spleen, liver, and kidney during the early stages of the infection, suggesting that a heightened pro-inflammatory response does not underlie the resistance phenotype. In vivo ablation of mononuclear phagocytes compromises the Sts -/- enhanced CFU clearance phenotype. Additionally, Sts -/- bone marrow-derived macrophages demonstrate significantly enhanced restriction of intracellular S. aureus following ex vivo infection. These results reveal the Sts enzymes to be critical regulators of host immunity to a virulent Gram-positive pathogen and identify them as therapeutic targets for optimizing host anti-microbial responses.
Collapse
Affiliation(s)
- Anika Zaman
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, USA
| | - Elizabeth Diago Navarro
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Bettina C. Fries
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, USA
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
| | - Hwan Keun Kim
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| | - Nick Carpino
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
3
|
Youn C, Pontaza C, Wang Y, Dikeman DA, Joyce DP, Alphonse MP, Wu MJ, Nolan SJ, Anany MA, Ahmadi M, Young J, Tocaj A, Garza LA, Wajant H, Miller LS, Archer NK. Neutrophil-intrinsic TNF receptor signaling orchestrates host defense against Staphylococcus aureus. SCIENCE ADVANCES 2023; 9:eadf8748. [PMID: 37327341 PMCID: PMC10275602 DOI: 10.1126/sciadv.adf8748] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/11/2023] [Indexed: 06/18/2023]
Abstract
Staphylococcus aureus is the leading cause of skin and soft tissue infections and is a major health burden due to the emergence of antibiotic-resistant strains. To address the unmet need of alternative treatments to antibiotics, a better understanding of the protective immune mechanisms against S. aureus skin infection is warranted. Here, we report that tumor necrosis factor (TNF) promoted protection against S. aureus in the skin, which was mediated by bone marrow-derived immune cells. Furthermore, neutrophil-intrinsic TNF receptor (TNFR) signaling directed immunity against S. aureus skin infections. Mechanistically, TNFR1 promoted neutrophil recruitment to the skin, whereas TNFR2 prevented systemic bacterial dissemination and directed neutrophil antimicrobial functions. Treatment with a TNFR2 agonist showed therapeutic efficacy against S. aureus and Pseudomonas aeruginosa skin infections, which involved increased neutrophil extracellular trap formation. Our findings revealed nonredundant roles for TNFR1 and TNFR2 in neutrophils for immunity against S. aureus and can be therapeutically targeted for protection against bacterial skin infections.
Collapse
Affiliation(s)
- Christine Youn
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Cristina Pontaza
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Dustin A. Dikeman
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Daniel P. Joyce
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Martin P. Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Meng-Jen Wu
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Sabrina J. Nolan
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Mohamed A. Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg 97080, Germany
- Department of Microbial Biotechnology, Institute of Biotechnology, National Research Center, El Buhouth Street, Dokki, 12622 Giza, Egypt
| | - Michael Ahmadi
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Jeremy Young
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Aron Tocaj
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Luis A. Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg 97080, Germany
| | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| |
Collapse
|
4
|
In Silico Genome-Scale Analysis of Molecular Mechanisms Contributing to the Development of a Persistent Infection with Methicillin-Resistant Staphylococcus aureus (MRSA) ST239. Int J Mol Sci 2022; 23:ijms232416086. [PMID: 36555727 PMCID: PMC9781258 DOI: 10.3390/ijms232416086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The increasing frequency of isolation of methicillin-resistant Staphylococcus aureus (MRSA) limits the chances for the effective antibacterial therapy of staphylococcal diseases and results in the development of persistent infection such as bacteremia and osteomyelitis. The aim of this study was to identify features of the MRSAST239 0943-1505-2016 (SA943) genome that contribute to the formation of both acute and chronic musculoskeletal infections. The analysis was performed using comparative genomics data of the dominant epidemic S. aureus lineages, namely ST1, ST8, ST30, ST36, and ST239. The SA943 genome encodes proteins that provide resistance to the host's immune system, suppress immunological memory, and form biofilms. The molecular mechanisms of adaptation responsible for the development of persistent infection were as follows: amino acid substitution in PBP2 and PBP2a, providing resistance to ceftaroline; loss of a large part of prophage DNA and restoration of the nucleotide sequence of beta-hemolysin, that greatly facilitates the escape of phagocytosed bacteria from the phagosome and formation of biofilms; dysfunction of the AgrA system due to the presence of psm-mec and several amino acid substitutions in the AgrC; partial deletion of the nucleotide sequence in genomic island vSAβ resulting in the loss of two proteases of Spl-operon; and deletion of SD repeats in the SdrE amino acid sequence.
Collapse
|
5
|
Li M, Bao Q, Zhang Z, Wang B, Liu Z, Wen J, Wan R, Shen Y, Zhang W. Exceptional response to PD-1 inhibition immunotherapy in advanced metastatic osteosarcoma with tumor site infection. J Immunother Cancer 2022. [PMCID: PMC9472102 DOI: 10.1136/jitc-2022-004673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Recent clinical trials have demonstrated a lack of activity of immune checkpoint inhibitors (ICIs) against osteosarcoma. Previous clinical observations have demonstrated a potential immune-stimulatory effect of tumor site infection for osteosarcoma patients. However, whether such infection could augment the efficacy of immunotherapy such as ICIs is currently unknown. Here we report a case of a heavily pretreated 14-year-old boy with pulmonary metastatic osteosarcoma, who has suffered from multiple wound infections and thoracic empyema after previous metastasectomy. Despite the ongoing tumor site infection, the patient had a rapid and durable (11 months) remission of the metastatic lesions after the administration of the Programmed cell death-1(PD-1) inhibitor camrelizumab. No serious ICI-related toxicities or worsening of the infection were noticed during the treatment. Correlative analysis suggested that intratumoral CD8+ T cell infiltration, Programmed death-ligand 1(PD-L1) expression and IFN-γ expression were increased in the tumor microenvironment postinfection versus preinfection. Furthermore, using RNA-seq gene expression analysis, we found a variety of checkpoint targets were also upregulated such as CD200, TIGIT, LAG3, etc. Our report supports the hypothesis of tumor site infection as a potential synergistic mechanism in the tumor microenvironment for ICI immunotherapy.
Collapse
Affiliation(s)
- Meng Li
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiyuan Bao
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Shanghai, China
| | - Zhusheng Zhang
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beichen Wang
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuochao Liu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junxiang Wen
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Shanghai, China
| | - Rong Wan
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Shanghai, China
| | - Yuhui Shen
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Shanghai, China
| | - Weibin Zhang
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Shanghai, China
| |
Collapse
|
6
|
Naik P, Naik MN, Mishra DK, Joseph J. Methicillin resistance in Staphylococcus aureus modulates the transcriptome and disease pathology in a murine model of endophthalmitis. Exp Eye Res 2022; 218:109016. [DOI: 10.1016/j.exer.2022.109016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/05/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022]
|
7
|
Karmakar S, Nath S, Sarkar B, Chakraborty S, Paul S, Karan M, Pal C. Insect vectors' saliva and gut microbiota as a blessing in disguise: probability versus possibility. Future Microbiol 2021; 16:657-670. [PMID: 34100305 DOI: 10.2217/fmb-2020-0239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drawing of host blood is a natural phenomenon during the bite of blood-probing insect vectors. Along with the blood meal, the vectors introduce salivary components and a trail of microbiota. In the case of infected vectors, the related pathogen accompanies the aforementioned biological components. In addition to Anopheles gambiae or Anopheles stephensi, the bites of other nonmalarial vectors cannot be ignored in malaria-endemic regions. Similarly, the bite incidence of Phlebotomus papatasi cannot be ignored in visceral leishmaniasis-endemic regions. Even the chances of getting bitten by uninfected vectors are higher than the infected vectors. We have discussed the probability or possibility of uninfected, infected, and/or nonvector's saliva and gut microbiota as a therapeutic option leading to the initial deterrent to pathogen establishment.
Collapse
Affiliation(s)
- Suman Karmakar
- Cellular Immunology & Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India.,Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India
| | - Supriya Nath
- Cellular Immunology & Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India.,Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India
| | - Biswajyoti Sarkar
- Cellular Immunology & Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India.,Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India
| | - Sondipon Chakraborty
- Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India
| | - Sharmistha Paul
- Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India
| | - Mintu Karan
- Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India
| | - Chiranjib Pal
- Cellular Immunology & Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India.,Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India
| |
Collapse
|
8
|
Guan Z, Liu Y, Liu C, Wang H, Feng J, Yang G. Staphylococcus aureus β-Hemolysin Up-Regulates the Expression of IFN-γ by Human CD56 bright NK Cells. Front Cell Infect Microbiol 2021; 11:658141. [PMID: 33854984 PMCID: PMC8039520 DOI: 10.3389/fcimb.2021.658141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/11/2021] [Indexed: 01/12/2023] Open
Abstract
IFN-γ is produced upon stimulation with S. aureus and may play a detrimental role during infection. However, whether hemolysins play a role in the mechanism of IFN-γ production has not been fully characterized. In this study, we demonstrated that Hlb, one of the major hemolysins of S. aureus, upregulated IFN-γ production by CD56bright NK cells from human peripheral blood mononuclear cells (PBMCs). Further investigation showed that Hlb increased calcium influx and induced phosphorylation of ERK1/2. Either blocking calcium or specifically inhibiting phosphorylation of ERK1/2 decreased the production of IFN-γ induced by Hlb. Moreover, we found that this process was dependent on the sphingomyelinase activity of Hlb. Our findings revealed a novel mechanism of IFN-γ production in NK cells induced by Hlb, which may be involved in the pathogenesis of S. aureus.
Collapse
Affiliation(s)
- Zhangchun Guan
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yu Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Chenghua Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Huiting Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Jiannan Feng
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Guang Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| |
Collapse
|
9
|
Complete Genome Sequence of Staphylococcus aureus Strain 834, Isolated from a Septic Patient in Japan. Microbiol Resour Announc 2021; 10:10/9/e01477-20. [PMID: 33664145 PMCID: PMC7936643 DOI: 10.1128/mra.01477-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the complete genome sequence of Staphylococcus aureus strain 834, which was isolated from a septic patient in Japan and showed strong virulence and methicillin resistance. The complete genome consists of a 2,838,668-bp chromosome and a 24,653-bp plasmid. Genome annotation predicts 2,670 coding sequences, 16 rRNAs, and 61 tRNAs.
Collapse
|
10
|
Pandey P, Karupiah G. Targeting tumour necrosis factor to ameliorate viral pneumonia. FEBS J 2021; 289:883-900. [PMID: 33624419 DOI: 10.1111/febs.15782] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 02/04/2023]
Abstract
Pneumonia is a serious complication associated with inflammation of the lungs due to infection with viral pathogens. Seasonal and pandemic influenza viruses, variola virus (agent of smallpox) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; agent of COVID-19) are some leading examples. Viral pneumonia is triggered by excessive inflammation associated with dysregulated cytokine production, termed 'cytokine storm'. Several cytokines have been implicated but tumour necrosis factor (TNF) plays a critical role in driving lung inflammation, severe lung pathology and death. Despite this, the exact role TNF plays in the aetiology and pathogenesis of virus infection-induced respiratory complications is not well understood. In this review, we discuss the pathological and immunomodulatory roles of TNF in contributing to immunopathology and resolution of lung inflammation, respectively, in mouse models of influenza- and smallpox (mousepox)-induced pneumonia. We review studies that have investigated dampening of inflammation on the outcome of severe influenza and orthopoxvirus infections. Most studies on the influenza model have evaluated the efficacy of treatment with anti-inflammatory drugs, including anti-TNF agents, in animal models on the day of viral infection. We question the merits of those studies as they are not transferable to the clinic given that individuals generally present at a hospital only after the onset of disease symptoms and not on the day of infection. We propose that research should be directed at determining whether dampening lung inflammation after the onset of disease symptoms will reduce morbidity and mortality. Such a treatment strategy will be more relevant clinically.
Collapse
Affiliation(s)
- Pratikshya Pandey
- Viral Immunology and Immunopathology Group, Tasmanian School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Gunasegaran Karupiah
- Viral Immunology and Immunopathology Group, Tasmanian School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
11
|
Liu B, Che Y, Zhang M, Ren W, Xia X, Liu H, Huang T, Huang J, Lei L. IFN-γ Activates the TLR4-CCL5 Signaling Through Reducing Arginine Level, Leading to Enhanced Susceptibility of Bovine Mammary Epithelial Cells to Staphylococcus aureus. Inflammation 2020; 43:2209-2221. [PMID: 32725514 DOI: 10.1007/s10753-020-01288-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dairy cow mastitis is a common bacterial infectious disease which seriously threatens the development of the dairy cow industry. Previous studies have found that increased IFN-γ expression in dairy cows makes dairy cows more susceptible to mastitis, but the underlying mechanism is still not known. In this study, we utilized the in vitro bovine mammary epithelial cells (BMECs) model to explore the molecular mechanism via transcriptome sequencing technology, immunofluorescence, and Western blotting. It was found that IFN-γ promoted the adhesion and invasion of Staphylococcus aureus to BMECs through increasing the expression of TLR4-mediated CCL5 in BMECs. IFN-γ increased the activity of arginase II and reduced the level of arginine in cells, while the addition of arginine inhibited the expression of TLR4 and CCL5. An invasion experiment in mice further validated that IFN-γ treatment significantly increased the bacterial load in mammary glands and blood. However, the colonization and diffusion of S. aureus were interestingly decreased after Arg supplement. These data reveal that increased IFN-γ reduces arginine levels and activates TLR4-CCL5 signaling, leading to enhanced susceptibility of BMECs to S. aureus. Our findings are helpful to understand the pathogenesis of dairy cow mastitis and provide a theoretical basis for improvement of mastitis resistance in dairy cows.
Collapse
Affiliation(s)
- Baijun Liu
- College of Veterinary Medicine, Jilin University, Changchun, Xi'an Road 5333, China
| | - Yanyi Che
- College of Veterinary Medicine, Jilin University, Changchun, Xi'an Road 5333, China
| | - Meina Zhang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Wenbo Ren
- The First Hospital, Jilin University, Xinmin street 71, Changchun, China
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongtao Liu
- College of Veterinary Medicine, Jilin University, Changchun, Xi'an Road 5333, China
| | - Tinghao Huang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Jing Huang
- The First Hospital, Jilin University, Xinmin street 71, Changchun, China.
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, Xi'an Road 5333, China. .,College of Animal Sciences, Yangtze University, Jingzhou, China.
| |
Collapse
|
12
|
Monocyte Distribution Width: A Novel Indicator of Sepsis-2 and Sepsis-3 in High-Risk Emergency Department Patients. Crit Care Med 2020; 47:1018-1025. [PMID: 31107278 PMCID: PMC6629174 DOI: 10.1097/ccm.0000000000003799] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supplemental Digital Content is available in the text. Objectives: Most septic patients are initially encountered in the emergency department where sepsis recognition is often delayed, in part due to the lack of effective biomarkers. This study evaluated the diagnostic accuracy of peripheral blood monocyte distribution width alone and in combination with WBC count for early sepsis detection in the emergency department. Design: An Institutional Review Board approved, blinded, observational, prospective cohort study conducted between April 2017 and January 2018. Setting: Subjects were enrolled from emergency departments at three U.S. academic centers. Patients: Adult patients, 18–89 years, with complete blood count performed upon presentation to the emergency department, and who remained hospitalized for at least 12 hours. A total of 2,212 patients were screened, of whom 2,158 subjects were enrolled and categorized per Sepsis-2 criteria, such as controls (n = 1,088), systemic inflammatory response syndrome (n = 441), infection (n = 244), and sepsis (n = 385), and Sepsis-3 criteria, such as control (n = 1,529), infection (n = 386), and sepsis (n = 243). Interventions: The primary outcome determined whether an monocyte distribution width of greater than 20.0 U, alone or in combination with WBC, improves early sepsis detection by Sepsis-2 criteria. Secondary endpoints determined monocyte distribution width performance for Sepsis-3 detection. Measurements and Main Results: Monocyte distribution width greater than 20.0 U distinguished sepsis from all other conditions based on either Sepsis-2 criteria (area under the curve, 0.79; 95% CI, 0.76–0.82) or Sepsis-3 criteria (area under the curve, 0.73; 95% CI, 0.69–0.76). The negative predictive values for monocyte distribution width less than or equal to 20 U for Sepsis-2 and Sepsis-3 were 93% and 94%, respectively. Monocyte distribution width greater than 20.0 U combined with an abnormal WBC further improved Sepsis-2 detection (area under the curve, 0.85; 95% CI, 0.83–0.88) and as reflected by likelihood ratio and added value analyses. Normal WBC and monocyte distribution width inferred a six-fold lower sepsis probability. Conclusions: An monocyte distribution width value of greater than 20.0 U is effective for sepsis detection, based on either Sepsis-2 criteria or Sepsis-3 criteria, during the initial emergency department encounter. In tandem with WBC, monocyte distribution width is further predicted to enhance medical decision making during early sepsis management in the emergency department.
Collapse
|
13
|
Visvabharathy L, Genardi S, Cao L, He Y, Alonzo F, Berdyshev E, Wang CR. Group 1 CD1-restricted T cells contribute to control of systemic Staphylococcus aureus infection. PLoS Pathog 2020; 16:e1008443. [PMID: 32343740 PMCID: PMC7188215 DOI: 10.1371/journal.ppat.1008443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/28/2020] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus (SA) is the causative agent of both skin/soft tissue infections as well as invasive bloodstream infections. Though vaccines have been developed to target both humoral and T cell-mediated immune responses against SA, they have largely failed due to lack of protective efficacy. Group 1 CD1-restricted T cells recognize lipid rather than peptide antigens. Previously found to recognize lipids derived from cell wall of Mycobacterium tuberculosis (Mtb), these cells were associated with protection against Mtb infection in humans. Using a transgenic mouse model expressing human group 1 CD1 molecules (hCD1Tg), we demonstrate that group 1 CD1-restricted T cells can recognize SA-derived lipids in both immunization and infection settings. Systemic infection of hCD1Tg mice showed that SA-specific group 1 CD1-restricted T cell response peaked at 10 days post-infection, and hCD1Tg mice displayed significantly decreased kidney pathology at this time point compared with WT control mice. Immunodominant SA lipid antigens recognized by group 1 CD1-restricted T cells were comprised mainly of cardiolipin and phosphatidyl glycerol, with little contribution from lysyl-phosphatidyl glycerol which is a unique bacterial lipid not present in mammals. Group 1 CD1-restricted T cell lines specific for SA lipids also conferred protection against SA infection in the kidney after adoptive transfer. They were further able to effectively control SA replication in vitro through direct antigen presentation by group 1 CD1-expressing BMDCs. Together, our data demonstrate a previously unknown role for group 1 CD1-restricted SA lipid-specific T cells in the control of systemic MRSA infection.
Collapse
Affiliation(s)
- Lavanya Visvabharathy
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Samantha Genardi
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Liang Cao
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Ying He
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Francis Alonzo
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, United States of America
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, United States of America
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| |
Collapse
|
14
|
Suppression of Staphylococcus aureus Superantigen-Independent Interferon Gamma Response by a Probiotic Polysaccharide. Infect Immun 2020; 88:IAI.00661-19. [PMID: 31932326 DOI: 10.1128/iai.00661-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/03/2020] [Indexed: 01/01/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive opportunistic pathogen that causes a variety of diseases. Bloodstream infection is the most severe, with mortality rates reaching 20 to 50%. Exopolysaccharide (EPS) from the probiotic Bacillus subtilis reduces bacterial burden and inflammation during S. aureus bloodstream infection in mice. Protection is due, in part, to hybrid macrophages that restrict S. aureus growth through reactive oxygen species and to limiting superantigen-induced T cell activation and interferon gamma (IFN-γ) production during infection. A decrease in IFN-γ production was observed within 24 h after infection, and here, we investigated how EPS abrogates its production. We discovered that S. aureus uses a rapid, superantigen-independent mechanism to induce host IFN-γ and that this is mediated by interleukin-12 (IL-12) activation of NK cells. Furthermore, we found that EPS limits IFN-γ production by modulating host immunity in a Toll-like receptor 4 (TLR4)-dependent manner, a signaling pathway that is required for EPS-mediated protection from S. aureus infection in vivo We conclude that EPS protects hosts from acute bloodstream S. aureus infection not only by inducing macrophages that restrict S. aureus growth and inhibit superantigen-activated T cells but also by limiting NK cell production of IFN-γ after S. aureus infection in a TLR4-dependent manner.
Collapse
|
15
|
Interleukin-10 (IL-10) Produced by Mutant Toxic Shock Syndrome Toxin 1 Vaccine-Induced Memory T Cells Downregulates IL-17 Production and Abrogates the Protective Effect against Staphylococcus aureus Infection. Infect Immun 2019; 87:IAI.00494-19. [PMID: 31358568 DOI: 10.1128/iai.00494-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/23/2019] [Indexed: 11/20/2022] Open
Abstract
Development of long-term memory is crucial for vaccine-induced adaptive immunity against infectious diseases such as Staphylococcus aureus infection. Toxic shock syndrome toxin 1 (TSST-1), one of the superantigens produced by S. aureus, is a possible vaccine candidate against infectious diseases caused by this pathogen. We previously reported that vaccination with less toxic mutant TSST-1 (mTSST-1) induced T helper 17 (Th17) cells and elicited interleukin-17A (IL-17A)-mediated protection against S. aureus infection 1 week after vaccination. In the present study, we investigated the host immune response induced by mTSST-1 vaccination in the memory phase, 12 weeks after the final vaccination. The protective effect and IL-17A production after vaccination with mTSST-1 were eliminated because of IL-10 production. In the presence of IL-10-neutralizing monoclonal antibody (mAb), IL-17A production was restored in culture supernatants of CD4+ T cells and macrophages sorted from the spleens of vaccinated mice. Vaccinated mice treated with anti-IL-10 mAb were protected against systemic S. aureus infection in the memory phase. From these results, it was suggested that IL-10 produced in the memory phase suppresses the IL-17A-dependent vaccine effect through downregulation of IL-17A production.
Collapse
|
16
|
Dual neutralization of TNFR-2 and MMP-2 regulates the severity of S. aureus induced septic arthritis correlating alteration in the level of interferon gamma and interleukin-10 in terms of TNFR2 blocking. Immunol Res 2019; 66:97-119. [PMID: 29218573 DOI: 10.1007/s12026-017-8979-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Severity of S. aureus septic arthritis is correlated to prolonged inflammation by inflammatory cytokines like TNF-α, IL-1β, and IL-6 even after successful elimination of bacteria. Role of TNF-α via TNFR2 is not well established in this aspect. IFN-γ induces TNF-α release from the macrophages augmenting the inflammatory arthritis. IL-10 modulates the levels of pro-inflammatory cytokines promoting resolution of inflammation. TNF-α-TNFR2 signaling upregulates both of these cytokines. Higher level of MMP-2 induction by inflammatory cytokines during arthritis promotes tissue destruction. Whether dual neutralization of TNFR-2 and MMP-2 regulates the severity of S. aureus arthritis by modulating local and systemic cytokine milieu mainly due to TNFR-2 blocking was an obvious question. Here, we attempted the effects of neutralization of MMP-2 and TNFR2 on S. aureus arthritis and its impact on pro-inflammatory cytokines and some other parameters related to tissue destruction. Reduction in arthritis index was noticed in infected mice treated with both MMP-2 inhibitor and TNFR2 antibody. Lowest levels of inflammatory cytokines, iNOS, RANKL, NF-κb, JNK kinase, ROS, and MPO, and lysozyme activity were observed in combined neutralization group at 9 and 15 dpi, but at 3 dpi, most of the above parameters remained elevated due to TNFR2 neutralization. Diminished IL-10 and IFN-γ levels as a result of TNFR2 neutralization at early and later phase of infection respectively might be responsible for these contrasting effects. Overall, it can be suggested that administration of MMP-2 inhibitor and TNFR2 antibody in combination is protective against the inflammation and tissue destruction associated with S. aureus infection during the arthritic episode.
Collapse
|
17
|
Paik W, Alonzo F, Knight KL. Probiotic Exopolysaccharide Protects against Systemic Staphylococcus aureus Infection, Inducing Dual-Functioning Macrophages That Restrict Bacterial Growth and Limit Inflammation. Infect Immun 2019; 87:e00791-18. [PMID: 30396894 PMCID: PMC6300633 DOI: 10.1128/iai.00791-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus causes severe systemic infection with high mortality rates. We previously identified exopolysaccharide (EPS) from a probiotic, Bacillus subtilis, that induces anti-inflammatory macrophages with an M2 phenotype and protects mice from Citrobacter rodentium-induced colitis. We tested if EPS could protect from systemic infection induced by S. aureus and found that EPS-treated mice had enhanced survival as well as reduced weight loss, systemic inflammation, and bacterial burden. While macrophages from EPS-treated mice display an M2 phenotype, they also restrict growth of internalized S. aureus through reactive oxygen species (ROS), reminiscent of proinflammatory phagocytes. These EPS-induced macrophages also limit T cell activation by S. aureus superantigens, and EPS abrogates systemic induction of gamma interferon after infection. We conclude that B. subtilis EPS is an immunomodulatory agent that induces hybrid macrophages that bolster antibacterial immunity and simultaneously limit inflammation, reducing disease burden and promoting host survival.
Collapse
Affiliation(s)
- Wonbeom Paik
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Katherine L Knight
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
18
|
Ledo C, Gonzalez CD, Poncini CV, Mollerach M, Gómez MI. TNFR1 Signaling Contributes to T Cell Anergy During Staphylococcus aureus Sepsis. Front Cell Infect Microbiol 2018; 8:259. [PMID: 30123776 PMCID: PMC6085448 DOI: 10.3389/fcimb.2018.00259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/12/2018] [Indexed: 12/29/2022] Open
Abstract
Early research on sepsis has focused on the initial hyper-inflammatory, cytokine mediated phase of the disorder whereas the events that govern the concomitant and subsequent anti-inflammatory compensatory response are not completely understood. In this context, the putative participation of TNFR1-mediated signaling in the immunosuppressive phase of Staphylococcus aureus sepsis has not been elucidated. The aim of this study was to determine the role of TNFR1 in directing the immune dysfunction during S. aureus sepsis and the potential contribution of MDSC to this process. Using a model of sepsis of peritoneal origin and tnfr1−/− mice, we demonstrated that during staphylococcal sepsis CD4+ T cell anergy is significantly dependent on TNFR1 expression and that signaling through this receptor has an impact on bacterial clearance in the spleen. MDSC played a major role in the generation of anergic CD4+ T cells and their accumulation in the spleen during S. aureus sepsis correlated with IL-6 induction. Although TNFR1 signaling was not required for MDSC accumulation and expansion in the spleen, it determined the in vivo expression of Arginase 1 and iNOS, enzymes known to participate in the suppressive function of this population. Moreover, our data indicate that TNFR1-mediated IL-10 production may modulate MDSC function during staphylococcal sepsis. Taken together these results indicate that TNFR1 plays a critical role on T cell dysfunction during S. aureus sepsis by regulating immunomodulatory mediators in MDSC. The role of TNFR1-mediated signaling during the immunosuppressive phase of staphylococcal sepsis should be considered when designing novel alternative therapeutic approaches.
Collapse
Affiliation(s)
- Camila Ledo
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Investigaciones Biomédicas y Biotecnológicas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico, Universidad Maimónides, Buenos Aires, Argentina
| | - Cintia D Gonzalez
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina V Poncini
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marta Mollerach
- Cátedra de Microbiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET, Buenos Aires, Argentina
| | - Marisa I Gómez
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Investigaciones Biomédicas y Biotecnológicas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico, Universidad Maimónides, Buenos Aires, Argentina
| |
Collapse
|
19
|
Contribution of toxic shock syndrome toxin-1 to systemic inflammation investigated by a mouse model of cervicovaginal infection with Staphylococcus aureus. Med Microbiol Immunol 2018; 207:297-306. [DOI: 10.1007/s00430-018-0551-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022]
|
20
|
Hirose S, Narita K, Asano K, Nakane A. Salmon cartilage proteoglycan promotes the healing process of Staphylococcus aureus-infected wound. Heliyon 2018; 4:e00587. [PMID: 29862350 PMCID: PMC5968139 DOI: 10.1016/j.heliyon.2018.e00587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/27/2018] [Accepted: 03/21/2018] [Indexed: 11/28/2022] Open
Abstract
Wound healing is the critical event for maintaining skin function and barrier. Inflammatory state in which a variety of cells are activated and accumulated is important for wound healing. Bacterial infection in cutaneous wound is a common problem and causes delay of wound healing. Our previous study demonstrated that the salmon nasal cartilage proteoglycan (PG) has an immunomodulatory effect in various mouse models of inflammatory disease. In this study, we investigated the effect of PG on healing process of Staphylococcus aureus-infected wound. PG accelerated wound closure in the initial phase of both infected and non-infected wound healing. In addition, the bacterial number in wounds of the PG-treated mice was significantly lower than that in the vehicle group. Neutrophil and macrophage infiltration was intensively observed in the PG-treated mice on day 2 after S. aureus inoculation, whereas neutrophil and macrophage influx was highly detected on day 6 in the vehicle control. Moreover, the production of TGF-β and IL-6 in the wound tissue was significantly promoted compared to the vehicle control on day 1. In contrast, the production of IL-1β and TNF-α in PG-treated mice was significantly decreased compared to the vehicle control on day 5. These data suggested that PG modulates the inflammatory state in infected wounds leading to promote wound healing.
Collapse
Affiliation(s)
- Shouhei Hirose
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.,Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Kouji Narita
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.,Institute for Animal Experimentation, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.,Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.,Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
21
|
Sultana S, Adhikary R, Bishayi B. Neutralization of MMP-2 and TNFR1 Regulates the Severity of S. aureus-Induced Septic Arthritis by Differential Alteration of Local and Systemic Proinflammatory Cytokines in Mice. Inflammation 2018; 40:1028-1050. [PMID: 28326455 DOI: 10.1007/s10753-017-0547-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite advancement in the field of antibiotics septic arthritis remains a serious concern till date. Staphylococcus aureus is the most common bacterium that causes septic arthritis. Severity of this disease is directly correlated with chronic inflammation induced by proinflammatory cytokines like TNF-α, interleukin (IL)-1β, IL-6, and induction of matrix metalloproteinases (MMPs) including MMP-2. The objective of our study was to evaluate the role of MMP-2 and tumor necrosis factor receptor 1 (TNFR1) in the pathogenesis of S. aureus infection-induced septic arthritis. Mice were infected with live S. aureus (5 × 106 cells/ml) followed by administration of MMP-2 inhibitor and TNFR1 antibody. Arthritis index showed highest reduction in severity of arthritis in mice treated with both MMP-2 inhibitor and TNFR1 antibody after infection. Combined neutralization of MMP-2 and TNFR1 led to marked diminution in bacterial count in the combined group. Lowest levels of pro inflammatory cytokines like TNF-α, IL-1β, IL-6, and IFN-γ were observed in both serum and synovial tissues indicating maximum protection in S. aureus arthritis during combination treatment. Increment in the level of IL-10 in the combination group could be positively correlated with the recovery of arthritis. Similarly, expressions of COX-2 and iNOS, markers of acute inflammation were also significantly reduced in the combination group due to resolution of inflammation. Levels of O2.- and NO also showed a significant fall in case of the group treated with MMP-2 inhibitor and TNFR1 antibody both. Neutralization of both MMP-2 and TNFR1 caused rapid decline in recruitment of neutrophil and macrophages in the synovial tissues as evident from reduced MPO and MCP-1 levels, respectively, compared to other groups. Overall, it can be suggested that administration of MMP-2 inhibitor and TNFR1 antibody in combination is protective against the severity of inflammation and cartilage destruction associated with S. aureus infection-induced septic arthritis by altering the levels of cytokines.
Collapse
Affiliation(s)
- Sahin Sultana
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, West Bengal, 700009, India
| | - Rana Adhikary
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, West Bengal, 700009, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, West Bengal, 700009, India.
| |
Collapse
|
22
|
Narita K, Asano K, Morimoto Y, Igarashi T, Hamblin MR, Dai T, Nakane A. Disinfection and healing effects of 222-nm UVC light on methicillin-resistant Staphylococcus aureus infection in mouse wounds. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:10-18. [PMID: 29101868 DOI: 10.1016/j.jphotobiol.2017.10.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/12/2017] [Accepted: 10/26/2017] [Indexed: 11/16/2022]
Abstract
UVC radiation is known to be highly germicidal. However, exposure to 254-nm-UVC light causes DNA lesions such as cyclobutane pyrimidine dimers (CPD) in human cells, and can induce skin cancer after long-term repeated exposures. It has been reported that short wavelength UVC is absorbed by proteins in the membrane and cytosol, and fails to reach the nucleus of human cells. Hence, irradiation with 222-nm UVC might be an optimum combination of effective disinfection and biological safety to human cells. In this study, the biological effectiveness of 222-nm UVC was investigated using a mouse model of a skin wound infected with methicillin-resistant Staphylococcus aureus (MRSA). Irradiation with 222-nm UVC significantly reduced bacterial numbers on the skin surface compared with non-irradiated skin. Bacterial counts in wounds evaluated on days 3, 5, 8 and 12 after irradiation demonstrated that the bactericidal effect of 222-nm UVC was equal to or more effective than 254-nm UVC. Histological analysis revealed that migration of keratinocytes which is essential for the wound healing process was impaired in wounds irradiated with 254-nm UVC, but was unaffected in 222-nm UVC irradiated wounds. No CPD-expressing cells were detected in either epidermis or dermis of wounds irradiated with 222-nm UVC, whereas CPD-expressing cells were found in both epidermis and dermis irradiation with 254-nm UVC. These results suggest that 222-nm UVC light may be a safe and effective way to reduce the rate of surgical site and other wound infections.
Collapse
Affiliation(s)
- Kouji Narita
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Institute for Animal Experimentation, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | | | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.
| |
Collapse
|
23
|
Narita K, Asano K, Nakane A. IL-17A plays an important role in protection induced by vaccination with fibronectin-binding domain of fibronectin-binding protein A against Staphylococcus aureus infection. Med Microbiol Immunol 2017; 206:225-234. [PMID: 28378247 DOI: 10.1007/s00430-017-0499-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 02/21/2017] [Indexed: 01/08/2023]
Abstract
Fibronectin-binding protein A (FnBPA) of Staphylococcus aureus is a microbial surface component recognizing adhesive matrix molecules and has been known as one of the most important virulence factors involved in the initiation step of S. aureus infection. Therefore, it has been considered as a potential vaccine candidate. Previous studies have reported that vaccination with FnBPA protects animals against S. aureus infection. In this study, we demonstrated that vaccination with fibronectin-binding domain of FnBPA (FnBPA541-870) protects wild-type mice but not interleukin-17A (IL-17A)-deficient mice against S. aureus infection. Moderate levels of antigen-specific immunoglobulins were produced in the sera of vaccinated wild-type and IL-17A-deficient mice. The spleen cells of vaccinated mice produced IL-17A by stimulation with the antigen, and IL-17A mRNA expression was increased in the spleens and livers of vaccinated mice after infection. CXCL1 and CXCL2 mRNA expression was increased in the spleens, and myeloperoxidase (MPO) activity in the spleens and livers was increased in the vaccinated mice after infection. These results suggest that vaccination with FnBPA541-870 induces the IL-17A-producing cells and that IL-17A-mediated cellular immunity is involved in the protective effect on S. aureus infection.
Collapse
Affiliation(s)
- Kouji Narita
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, 036-8652, Japan.,Institute for Animal Experimentation, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, 036-8652, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, 036-8652, Japan.
| |
Collapse
|
24
|
Itabashi T, Narita K, Ono A, Wada K, Tanaka T, Kumagai G, Yamauchi R, Nakane A, Ishibashi Y. Bactericidal and antimicrobial effects of pure titanium and titanium alloy treated with short-term, low-energy UV irradiation. Bone Joint Res 2017; 6:108-112. [PMID: 28246094 PMCID: PMC5331176 DOI: 10.1302/2046-3758.62.2000619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/17/2017] [Indexed: 11/25/2022] Open
Abstract
Objectives The surface of pure titanium (Ti) shows decreased histocompatibility over time; this phenomenon is known as biological ageing. UV irradiation enables the reversal of biological ageing through photofunctionalisation, a physicochemical alteration of the titanium surface. Ti implants are sterilised by UV irradiation in dental surgery. However, orthopaedic biomaterials are usually composed of the alloy Ti6Al4V, for which the antibacterial effects of UV irradiation are unconfirmed. Here we evaluated the bactericidal and antimicrobial effects of treating Ti and Ti6Al4V with UV irradiation of a lower and briefer dose than previously reported, for applications in implant surgery. Materials and Methods Ti and Ti6Al4V disks were prepared. To evaluate the bactericidal effect of UV irradiation, Staphylococcus aureus 834 suspension was seeded onto the disks, which were then exposed to UV light for 15 minutes at a dose of 9 J/cm2. To evaluate the antimicrobial activity of UV irradiation, bacterial suspensions were seeded onto the disks 0, 0.5, one, six, 24 and 48 hours, and three and seven days after UV irradiation as described above. In both experiments, the bacteria were then harvested, cultured, and the number of colonies were counted. Results No colonies were observed when UV irradiation was performed after the bacteria were added to the disks. When the bacteria were seeded after UV irradiation, the amount of surviving bacteria on the Ti and Ti6Al4V disks decreased at 0 hours and then gradually increased. However, the antimicrobial activity was maintained for seven days after UV irradiation. Conclusion Antimicrobial activity was induced for seven days after UV irradiation on both types of disk. Irradiated Ti6Al4V and Ti had similar antimicrobial properties. Cite this article: T. Itabashi, K. Narita, A. Ono, K. Wada, T. Tanaka, G. Kumagai, R. Yamauchi, A. Nakane, Y. Ishibashi. Bactericidal and antimicrobial effects of pure titanium and titanium alloy treated with short-term, low-energy UV irradiation. Bone Joint Res 2017;6:108–112. DOI: 10.1302/2046-3758.62.2000619.
Collapse
Affiliation(s)
- T Itabashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - K Narita
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - A Ono
- Department of Orthopaedic Surgery, Hirosaki Memorial Hospital, 59-1, Sakaizeki, Nishida, Hirosaki, Aomori, 036-8076, Japan
| | - K Wada
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - T Tanaka
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - G Kumagai
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - R Yamauchi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - A Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Y Ishibashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| |
Collapse
|
25
|
Collaborative Interferon-γ and Interleukin-17 Signaling Protects the Oral Mucosa from Staphylococcus aureus. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2337-52. [PMID: 27470712 DOI: 10.1016/j.ajpath.2016.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Infections with Staphylococcus aureus are a continuing and growing problem in community and hospital settings. Preclinical animal modeling of S. aureus relies on experimental infection, which carries some limitations. We describe here a novel, spontaneous model of oral staphylococcal infection in double knockout mice, deficient in the receptors for IL-17 (IL-17RA) and interferon (IFN)-γ (IFNγRI), beginning at 6 to 8 weeks of age. IFNγRI(-/-)IL17RA(-/-) (GRAKO) mice developed progressive oral abscesses. Cytometric methods revealed extensive neutrophilic infiltration of oral tissues in GRAKO mice; further investigation evidenced that IL-17 predominated neutrophil defects in these mice. To investigate the contribution of IFN-γ signaling to this native host defense to S. aureus, we observed perturbations of monocyte recruitment and macrophage differentiation in the oral tissues of GRAKO mice, and CXCL9/chemokine ligand receptor (CXCR)3-driven recruitment of T-cell oral tissues and draining lymph nodes. To address the former finding, we depleted macrophages and monocytes in vivo from IL17RA(-/-) mice using liposomes loaded with clodronate. This treatment elicited oral abscesses, recapitulating the phenotype of GRAKO mice. From these findings, we propose novel collaborative functions of IL-17 and IFN-γ, acting through neutrophils and macrophages, respectively, in native mucocutaneous host defenses to S. aureus.
Collapse
|
26
|
Hong X, Qin J, Li T, Dai Y, Wang Y, Liu Q, He L, Lu H, Gao Q, Lin Y, Li M. Staphylococcal Protein A Promotes Colonization and Immune Evasion of the Epidemic Healthcare-Associated MRSA ST239. Front Microbiol 2016; 7:951. [PMID: 27446000 PMCID: PMC4922140 DOI: 10.3389/fmicb.2016.00951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/02/2016] [Indexed: 11/19/2022] Open
Abstract
The highly successful epidemic of healthcare-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) ST239 is a growing concern worldwide, due to its progressive adaptation to the highly selective environment of the healthcare system. HA-MRSA ST239 display the reduced virulence and successfully colonize in hospital settings, while the emergent community-associated MRSA (CA-MRSA) maintain full virulence and cause infections in the community environment. Our aim was to investigate what enables S. aureus ST239 to be highly adaptive under hospital circumstances and gradually progress to a series of widespread invasive infections. We found that spa expression of HA-MRSA ST239 is much higher than that of CA-SA ST398. And we discovered that the highly production of staphylococcal protein A (SpA), having no concern with spa gene structure, enhances nasal colonization and cell adhesion in ST239. S. aureus ST239 defends against the adaptive immune response by resisting phagocytosis and inducing apoptosis of B cells through expression of surface-anchored and released protein A, facilitating its dissemination within the circulatory system to other organs. Protein A also plays another key role in subverting the host immune response through its ability to induce early shedding of TNF-α receptor 1 (TNFR1) from phagocytic cells. The increased levels of soluble TNFR1 present during experimental S. aureus ST239 infection may neutralize circulating TNF-α and impair the host inflammatory response. Protein A is also a virulence factor, as tested in our bacteremia model in mice, contributing to the durative tissue damage of abscess formation sites in ST239 infection. These functions of protein A eventually benefit to widespread infections of S. aureus ST239. We draw the conclusion that Staphylococcal Protein A may be a crucial determinant in the colonization and immune evasion of ST239 infections, contributing to persistent spread in the hospital settings. These results suggest that antibodies against protein A may provide insights into the development of novel treatments against S. aureus, especially HA-MRSA.
Collapse
Affiliation(s)
- Xufen Hong
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University Shanghai, China
| | - Juanxiu Qin
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Tianming Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Yingxin Dai
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Yanan Wang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Qian Liu
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Lei He
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Huiying Lu
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Qianqian Gao
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Yong Lin
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University Shanghai, China
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
27
|
Giai C, Gonzalez CD, Sabbione F, Garofalo A, Ojeda D, Sordelli DO, Trevani AS, Gómez MI. Staphylococcus aureus Induces Shedding of IL-1RII in Monocytes and Neutrophils. J Innate Immun 2016; 8:284-98. [PMID: 26967533 DOI: 10.1159/000443663] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/28/2015] [Indexed: 12/17/2022] Open
Abstract
Interleukin 1 (IL-1) β is a critical cytokine that orchestrates host defenses against Staphylococcus aureus and is crucial for the eradication of bacteria. The production and action of IL-1β are regulated by multiple control pathways. Among them, IL-1RII (the type II IL-1 receptor) acts as a decoy receptor and has been shown to regulate the biological effects of IL-1β. High levels of soluble IL-1RII are present in septic patients; however, the stimuli that regulate the expression and release of IL-1RII in pathological conditions are incompletely elucidated. In the present study, we demonstrated the ability of S. aureus and protein A to induce IL-1RII shedding in myeloid cells. The positive modulation of IL-1RII expression and cleavage was associated with the failure to detect IL-1β in response to S. aureus both in vitro and in vivo, suggesting that the soluble form of the receptor could be masking the availability of IL-1β. The absence of detectable IL-1β was associated with low levels of inflammatory cytokines and chemokines known to be regulated by IL-1β and with increased bacterial persistence. Modulation of decoy receptors during systemic S. aureus infection is proposed as a new strategy used by this bacterium to evade the immune response.
Collapse
Affiliation(s)
- Constanza Giai
- Instituto de Investigaciones en Microbiologia y Parasitologia Medica (IMPaM), Consejo Nacional de Investigaciones Cientx00ED;ficas y Tx00E9;cnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Dhama K, Karthik K, Tiwari R, Shabbir MZ, Barbuddhe S, Malik SVS, Singh RK. Listeriosis in animals, its public health significance (food-borne zoonosis) and advances in diagnosis and control: a comprehensive review. Vet Q 2015; 35:211-35. [PMID: 26073265 DOI: 10.1080/01652176.2015.1063023] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Listeriosis is an infectious and fatal disease of animals, birds, fish, crustaceans and humans. It is an important food-borne zoonosis caused by Listeria monocytogenes, an intracellular pathogen with unique potential to spread from cell to cell, thereby crossing blood-brain, intestinal and placental barriers. The organism possesses a pile of virulence factors that help to infect the host and evade from host immune machinery. Though disease occurrence is sporadic throughout the world, it can result in severe damage during an outbreak. Listeriosis is characterized by septicaemia, encephalitis, meningitis, meningoencephalitis, abortion, stillbirth, perinatal infections and gastroenteritis with the incubation period varying with the form of infection. L. monocytogenes has been isolated worldwide from humans, animals, poultry, environmental sources like soil, river, decaying plants, and food sources like milk, meat and their products, seafood and vegetables. Since appropriate vaccines are not available and infection is mainly transmitted through foods in humans and animals, hygienic practices can prevent its spread. The present review describes etiology, epidemiology, transmission, clinical signs, post-mortem lesions, pathogenesis, public health significance, and advances in diagnosis, vaccines and treatment of this disease. Special attention has been given to novel as well as prospective emerging therapies that include bacteriophage and cytokine therapy, avian egg yolk antibodies and herbal therapy. Various vaccines, including advances in recombinant and DNA vaccines and their modes of eliciting immune response, are also discussed. Due focus has also been given regarding appropriate prevention and control strategies to be adapted for better management of this zoonotic disease.
Collapse
Affiliation(s)
- Kuldeep Dhama
- a Division of Pathology , Indian Veterinary Research Institute (IVRI) , Izatnagar, Bareilly 243122 , UP , India
| | - Kumaragurubaran Karthik
- b Division of Bacteriology and Mycology , Indian Veterinary Research Institute (IVRI) , Izatnagar, Bareilly 243122 , UP , India
| | - Ruchi Tiwari
- c Department of Veterinary Microbiology and Immunology , College of Veterinary Sciences , Uttar Pradesh Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura 281001 , India
| | - Muhammad Zubair Shabbir
- d Quality Operations Laboratory , University of Veterinary and Animal Sciences , Lahore 54600, Pakistan
| | - Sukhadeo Barbuddhe
- e Indian Council of Agricultural Research Complex for Goa , Old Goa, Goa 403402, India
| | - Satya Veer Singh Malik
- f Division of Veterinary Public Health , Indian Veterinary Research Institute (IVRI) , Izatnagar, Bareilly 243122 , UP , India
| | - Raj Kumar Singh
- g Indian Veterinary Research Institute (IVRI) , Izatnagar, Bareilly 243122 , UP , India
| |
Collapse
|
29
|
Narita K, Hu DL, Asano K, Nakane A. Vaccination with non-toxic mutant toxic shock syndrome toxin-1 induces IL-17-dependent protection against Staphylococcus aureus infection. Pathog Dis 2015; 73:ftv023. [PMID: 25857736 DOI: 10.1093/femspd/ftv023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2015] [Indexed: 12/24/2022] Open
Abstract
Toxic shock syndrome toxin-1 (TSST-1) is one of superantigens produced by Staphylococcus aureus. We have previously demonstrated that vaccination with non-toxic mutant TSST-1 (mTSST-1) develops host protection to lethal S. aureus infection in mice. However, the detailed mechanism underlying this protection is necessary to elucidate because the passive transfer of antibodies against TSST-1 fails to provide complete protection against S. aureus infection. In this study, the results showed that interleukin-17A (IL-17A)-producing cells were increased in the spleen cells of mTSST-1-vaccinated mice. The main source of IL-17A in mTSST-1-vaccinated mice was T-helper 17 (Th17) cells. The protective effect of vaccination was induced when the vaccinated wild type but not IL-17A-deficient mice were challenged with S. aureus. Gene expression of chemokines, CCL2 and CXCL1, and infiltration of neutrophils and macrophages were increased in spleens and livers of vaccinated mice after infection. The IL-17A-dependent immune response was TSST-1 specific because TSST-1-deficient S. aureus failed to induce the response. The present study suggests that mTSST-1 vaccination is able to provide the IL-17A-dependent host defense against S. aureus infection which promotes chemokine-mediated infiltration of phagocytes into the infectious foci.
Collapse
Affiliation(s)
- Kouji Narita
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan Institute for Animal Experimentation, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Dong-Liang Hu
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan Laboratory of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Aomori 034-8628, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
30
|
Kook SH, Choi KC, Lee YH, Cho HK, Lee JC. Raphanus sativus L. seeds prevent LPS-stimulated inflammatory response through negative regulation of the p38 MAPK-NF-κB pathway. Int Immunopharmacol 2014; 23:726-34. [DOI: 10.1016/j.intimp.2014.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/29/2014] [Accepted: 11/03/2014] [Indexed: 02/02/2023]
|
31
|
Asano K, Asano Y, Ono HK, Nakane A. Suppression of starvation-induced autophagy by recombinant toxic shock syndrome toxin-1 in epithelial cells. PLoS One 2014; 9:e113018. [PMID: 25402468 PMCID: PMC4234639 DOI: 10.1371/journal.pone.0113018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 10/18/2014] [Indexed: 11/29/2022] Open
Abstract
Toxic shock syndrome toxin-1 (TSST-1), a superantigen produced from Staphylococcus aureus, has been reported to bind directly to unknown receptor(s) and penetrate into non-immune cells but its function is unclear. In this study, we demonstrated that recombinant TSST-1 suppresses autophagosomal accumulation in the autophagic-induced HeLa 229 cells. This suppression is shared by a superantigenic-deficient mutant of TSST-1 but not by staphylococcal enterotoxins, suggesting that autophagic suppression of TSST-1 is superantigenic-independent. Furthermore, we showed that TSST-1-producing S. aureus suppresses autophagy in the response of infected cells. Our data provides a novel function of TSST-1 in autophagic suppression which may contribute in staphylococcal persistence in host cells.
Collapse
Affiliation(s)
- Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yoshiya Asano
- Department of Neuroanatomy, Cell Biology and Histology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Hisaya K. Ono
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- * E-mail:
| |
Collapse
|
32
|
Nakane A. [Host responses to bacterial infections]. Nihon Saikingaku Zasshi 2014; 69:479-89. [PMID: 25186639 DOI: 10.3412/jsb.69.479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pathogenic bacteria and host defense system have been evolved by their offense and defense. In vivo research is crucial for elucidation of interactions between them. I have investigated their offence and defense by various standpoints using mouse models of Listeria monocytogenes and Staphylococcus aureus infections. Herein, the results of my research including the roles of endogenous cytokines in host defense, the attenuation of host defense mechanism in obesity and diabetes, the development of vaccines against S. aureus infection by staphylococcal enterotoxin (SE) family molecules, and the emesis-inducing mechanism of SEA are described.
Collapse
Affiliation(s)
- Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine
| |
Collapse
|
33
|
Expression of CXCR1 (Interleukin-8 Receptor) in Murine Macrophages After Staphylococcus aureus Infection and its Possible Implication on Intracellular Survival Correlating with Cytokines and Bacterial Anti-Oxidant Enzymes. Inflammation 2014; 38:812-27. [DOI: 10.1007/s10753-014-9991-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Tankersley A, Frank MB, Bebak M, Brennan R. Early effects of Staphylococcus aureus biofilm secreted products on inflammatory responses of human epithelial keratinocytes. JOURNAL OF INFLAMMATION-LONDON 2014; 11:17. [PMID: 24936153 PMCID: PMC4059087 DOI: 10.1186/1476-9255-11-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 05/30/2014] [Indexed: 01/20/2023]
Abstract
BACKGROUND Chronic wounds such as diabetic foot ulcers, pressure ulcers, and venous leg ulcers contribute to a considerable amount of mortality in the U.S. annually. The inability of these wounds to heal has now been associated with the presence of microbial biofilms. The aim of this study was to determine if products secreted by S. aureus biofilms play an active role in chronic wounds by promoting inflammation, which is a hallmark of chronic wounds. METHODS In vitro experiments were conducted to examine changes in gene expression profiles and inflammatory response of human epithelial keratinocytes (HEKa) exposed to products secreted by S. aureus grown in biofilms or products secreted by S. aureus grown planktonically. RESULTS After only two hours of exposure, gene expression microarray data showed marked differences in inflammatory, apoptotic, and nitric oxide responses between HEKa cells exposed to S. aureus biofilm conditioned media (BCM) and HEKa cells exposed to S. aureus planktonic conditioned media (PCM). As early as 4 hours post exposure, ELISA results showed significant increases in IL-6, IL-8, TNFα, and CXCL2 production by HEKa cells exposed to BCM compared to HEKa cells exposed to PCM or controls. Nitric oxide assay data also showed significant increases in nitric oxide production by HEKa cells treated with BCM compared to HEKa cells treated with PCM, or controls. CONCLUSIONS Taken together, these results support and extend previous findings that indicate products secreted by S. aureus biofilms directly contribute to the chronic inflammation associated with chronic wounds.
Collapse
Affiliation(s)
- Amy Tankersley
- Biology Department, University of Central Oklahoma, 100 North University Drive, Edmond, Oklahoma 73034, USA
| | - Mark Barton Frank
- Microarray Research Facility, Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Melissa Bebak
- Microarray Research Facility, Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Robert Brennan
- Biology Department, University of Central Oklahoma, 100 North University Drive, Edmond, Oklahoma 73034, USA
| |
Collapse
|
35
|
Hwang SA, Kruzel ML, Actor JK. Immunomodulatory effects of recombinant lactoferrin during MRSA infection. Int Immunopharmacol 2014; 20:157-63. [PMID: 24613206 DOI: 10.1016/j.intimp.2014.02.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/12/2014] [Accepted: 02/20/2014] [Indexed: 12/15/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection remains a serious hazard to global health. The use of immune modulatory therapy to combat infection is gaining an interest as a novel treatment alternative. Lactoferrin (LF), an iron binding protein with immune modulating properties, has the potential to modify the course of systemic MRSA infection. Specifically, LF is capable of limiting deleterious inflammatory responses while promoting the development of antigen specific T-cell activity. The efficacy of a novel recombinant mouse LF (rmLF) to protect against MRSA infection was examined in a mouse peritonitis model. BALB/c mice were infected with a lethal dose of MRSA and treated at 2h post-infection with rmLF. Effects of rmLF on MRSA-infected primary monocytes and granulocytes were analyzed for inflammatory mediators. The rmLF treated mice demonstrated a modest increase in survival of more than 24h, albeit with reduced bacteremia. Serum cytokines, IL-17 and IL-6, were significantly reduced post-challenge post-rmLF treatment. The rmLF led to a minor decrease in IL-1b, and a slight increase in TNF-a production. Preliminary investigation towards human clinical relevance was accomplished using human blood derived monocytes and granulocytes infected with MRSA and treated with homologous recombinant human LF (rhLF). Treatment with (rhLF) led to increased production of IFN-g and IL-2. The human cell studies also showed a concurrent decrease in TNF-a, IL-6, IL-1b, IL-12p40, and IL-10. These results indicate that the rmLF and rhLF have a high degree of overlap to modify inflammatory responses, although differences in activities were observed between the two heterologous recombinant molecules.
Collapse
Affiliation(s)
- Shen-An Hwang
- Department of Pathology, Medical School, University of Texas-Houston Medical School, Houston, TX, United States
| | - Marian L Kruzel
- Department of Integrative Biology and Pharmacology, University of Texas-Houston Medical School, Houston, TX, United States
| | - Jeffrey K Actor
- Department of Pathology, Medical School, University of Texas-Houston Medical School, Houston, TX, United States.
| |
Collapse
|
36
|
Shedding of tumor necrosis factor receptor 1 induced by protein A decreases tumor necrosis factor alpha availability and inflammation during systemic Staphylococcus aureus infection. Infect Immun 2013; 81:4200-7. [PMID: 24002060 DOI: 10.1128/iai.00593-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus infections are an important public health concern due to their increasing incidence and high rates of mortality. The success of S. aureus as a pathogen is highly related to its enormous capacity to evade the host immune response. The critical role of tumor necrosis factor alpha (TNF-α) in the initial host defense against systemic staphylococcal infection has been demonstrated in experimental models and may partially explain the lack of significant benefits observed in clinical trials attempting to neutralize this cytokine in septic patients. S. aureus protein A plays a key role in regulating inflammation through its ability to bind and signal through the TNF-α receptor 1 (TNFR1). In this study, we demonstrate that S. aureus, via protein A-mediated signaling, induces early shedding of TNFR1, which precedes the secretion of TNF-α in vitro and in vivo. The results obtained using a protein A-deficient mutant and tnfr1(-/-) mice strongly suggest that the increased levels of soluble TNFR1 present during experimental S. aureus infection may neutralize circulating TNF-α and impair the host inflammatory response. Early shedding of TNFR1 induced by protein A may constitute a novel mechanism by which S. aureus subverts the host immune response.
Collapse
|
37
|
Choi KC, Hwang JM, Bang SJ, Son YO, Kim BT, Kim DH, Lee SA, Chae M, Kim DH, Lee JC. Methanol extract of the aerial parts of barley (Hordeum vulgare) suppresses lipopolysaccharide-induced inflammatory responses in vitro and in vivo. PHARMACEUTICAL BIOLOGY 2013; 51:1066-1076. [PMID: 23746221 DOI: 10.3109/13880209.2013.768274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Recently, there has been renewed interest in barley (Hordeum vulgare L. Poaceae) as a functional food and for its medicinal properties. OBJECTIVE This study examines the anti-inflammatory potential of the active fractions of barley and the mechanisms involved. MATERIALS AND METHODS The macrophages were exposed to 100 μg/mL of each of the barley extracts in the presence of 1 μg/mL lipopolysaccharide (LPS) and after 24 or 48 h of incubation, cells or culture supernatants were analyzed by various assays. The anti-inflammatory potential of barley fractions was also investigated using the LPS-injected septic mouse model. The active constituents in the fractions were identified using gas chromatography-mass spectrometry (GC-MS). RESULTS The active fractions, named F₄, F₇, F₉ and F₁₂, inhibited almost completely the LPS-induced production of nitric oxide (NO) and inducible NO synthase. Pre-treatment with these fractions at 100 μg/mL diminished the tumor necrosis factor-α (TNF-α) levels to 19.8, 3.5, 1.2 and 1.7 ng/mL, respectively, compared to LPS treatment alone (41.5 ng/mL). These fractions at 100 μg/mL also suppressed apparently the secretion of interleukin (IL)-6 and IL-1β and the DNA-binding activity of nuclear factor-κB in LPS-stimulated cells. Mice injected intraperitoneally with LPS (30 mg/kg BW) showed 20% survival at 48 h after injection, whereas oral administration of the fractions improved the survival rates to 80%. GC-MS analysis revealed the presence of the derivatives of benzoic and cinnamic acids and fatty acids in the fractions. DISCUSSION AND CONCLUSION The aerial parts of barley are useful as functional food to prevent acute inflammatory responses.
Collapse
Affiliation(s)
- Ki-Choon Choi
- Grassland and Forages Research Center, National Institute of Animal Science, Cheonan, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Schreiner J, Kretschmer D, Klenk J, Otto M, Bühring HJ, Stevanovic S, Wang JM, Beer-Hammer S, Peschel A, Autenrieth SE. Staphylococcus aureus phenol-soluble modulin peptides modulate dendritic cell functions and increase in vitro priming of regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:3417-26. [PMID: 23460735 DOI: 10.4049/jimmunol.1202563] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The major human pathogen Staphylococcus aureus has very efficient strategies to subvert the human immune system. Virulence of the emerging community-associated methicillin-resistant S. aureus depends on phenol-soluble modulin (PSM) peptide toxins, which are known to attract and lyse neutrophils. However, their influences on other immune cells remain elusive. In this study, we analyzed the impact of PSMs on dendritic cells (DCs) playing an essential role in linking innate and adaptive immunity. In human neutrophils, PSMs exert their function by binding to the formyl peptide receptor (FPR) 2. We show that mouse DCs express the FPR2 homolog mFPR2 as well as its paralog mFPR1 and that PSMs are chemoattractants for DCs at noncytotoxic concentrations. PSMs reduced clathrin-mediated endocytosis and inhibited TLR2 ligand-induced secretion of the proinflammatory cytokines TNF, IL-12, and IL-6, while inducing IL-10 secretion by DCs. As a consequence, treatment with PSMs impaired the capacity of DCs to induce activation and proliferation of CD4(+) T cells, characterized by reduced Th1 but increased frequency of FOXP3(+) regulatory T cells. These regulatory T cells secreted high amounts of IL-10, and their suppression capacity was dependent on IL-10 and TGF-β. Interestingly, the induction of tolerogenic DCs by PSMs appeared to be independent of mFPRs, as shown by experiments with mice lacking mFPR2 (mFPR2(-/-)) and the cognate G protein (p110γ(-/-)). Thus, PSMs from highly virulent pathogens affect DC functions, thereby modulating the adaptive immune response and probably increasing the tolerance toward the pathogen.
Collapse
Affiliation(s)
- Jens Schreiner
- Interfaculty Institute for Cell Biology, Eberhard Karls University, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Epicutaneous model of community-acquired Staphylococcus aureus skin infections. Infect Immun 2013; 81:1306-15. [PMID: 23381997 DOI: 10.1128/iai.01304-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is one of the most common etiological agents of community-acquired skin and soft tissue infection (SSTI). Although the majority of S. aureus community-acquired SSTIs are uncomplicated and self-clearing in nature, some percentage of these cases progress into life-threatening invasive infections. Current animal models of S. aureus SSTI suffer from two drawbacks: these models are a better representation of hospital-acquired SSTI than community-acquired SSTI, and they involve methods that are difficult to replicate. For these reasons, we sought to develop a murine model of community-acquired methicillin-resistant S. aureus SSTI (CA-MRSA SSTI) that can be consistently reproduced with a high degree of precision. We utilized this model to begin to characterize the host immune response to this type of infection. We infected mice via epicutaneous challenge of the skin on the outer ear pinna using Morrow-Brown allergy test needles coated in S. aureus USA300. When mice were challenged in this model, they developed small, purulent, self-clearing lesions with predictable areas of inflammation that mimicked a human infection. CFU in the ear pinna peaked at day 7 before dropping by day 14. The T(h)1 and T(h)17 cytokines gamma interferon (IFN-γ), interleukin-12 (IL-12) p70, tumor necrosis factor alpha (TNF-α), IL-17A, IL-6, and IL-21 were all significantly increased in the draining lymph node of infected mice, and there was neutrophil recruitment to the infection site. In vivo neutrophil depletion demonstrated that neutrophils play a protective role in preventing bacterial dissemination and fatal invasive infection.
Collapse
|
40
|
Osanai A, Hu DL, Nakane A. Caenorhabditis elegansavoids staphylococcal superantigenic toxins via 5-hydroxytryptamine-dependent pathway. Can J Microbiol 2012; 58:1268-77. [DOI: 10.1139/w2012-107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Avoidance behavior of Caenorhabditis elegans, a nematode, towards Staphylococcus aureus, a pathogenic bacterium, was studied. Caenorhabditis elegans avoided S. aureus cultures and also their culture supernatants, suggesting that secretory molecules are involved in the repellent activity. We demonstrated that toxic shock syndrome toxin 1 (TSST-1) and staphylococcal enterotoxin C (SEC), the superantigenic toxins produced by S. aureus, are responsible for the nematode avoidance. By using TSST-1 and SEC mutants, the results indicated that the repellent activity of these toxins is independent of their superantigenic activity. The TSST-1 and SEC were found to locate at chemosensory neurons that are responsible for the recognition of repellents and avoidance of pathogenic bacteria. When mutants of C. elegans deficient in Toll/interleukin-1 receptor (TIR-1) and 5-hydroxytryptamine (5-HT) biosynthesis were used, avoidance behavior was attenuated. In the 5-HT biosynthesis deficient mutant nematodes, the avoidance activity was recovered when exogenous 5-HT was added. tph-1 expression and 5-HT production were upregulated when the nematodes were treated with TSST-1 or SEC. These results suggest that C. elegans avoids S. aureus by recognizing secretory molecules including TSST-1 and SEC and this avoidance is dependent on TIR and production of 5-HT.
Collapse
Affiliation(s)
- Arihiro Osanai
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, 036-8562, Japan
| | - Dong-Liang Hu
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, 036-8562, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, 036-8562, Japan
| |
Collapse
|
41
|
Maina EK, Hu DL, Asano K, Nakane A. Inhibition of emetic and superantigenic activities of staphylococcal enterotoxin A by synthetic peptides. Peptides 2012; 38:1-7. [PMID: 22955031 DOI: 10.1016/j.peptides.2012.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/17/2012] [Accepted: 08/17/2012] [Indexed: 11/25/2022]
Abstract
Staphylococcus aureus is a major human pathogen producing different types of toxins. Enterotoxin A (SEA) is the most common type among clinical and food-related strains. The aim of the present study was to estimate functional regions of SEA that are responsible for emetic and superantigenic activities using synthetic peptides. A series of 13 synthetic peptides corresponding to specific regions of SEA were synthesized, and the effect of these peptides on superantigenic activity of SEA including interferon γ (IFN-γ) production in mouse spleen cells, SEA-induced lethal shock in mice, spleen cell proliferation in house musk shrew, and emetic activity in shrews were assessed. Pre-treatment of spleen cells with synthetic peptides corresponding to the regions 21-40, 35-50, 81-100, or 161-180 of SEA significantly inhibited SEA-induced IFN-γ production and cell proliferation. These peptides also inhibited SEA-induced lethal shock. Interestingly, peptides corresponding to regions 21-40, 35-50 and 81-100 significantly inhibited SEA-induced emesis in house musk shrews, but region 161-180 did not. These findings indicated that regions 21-50 and 81-100 of SEA are important for both superantigenic and emetic activities of SEA molecule while region 161-180 is involved in superantigenic activity but not emetic activity of SEA. These regions could be important targets for therapeutic intervention against SEA exposure.
Collapse
Affiliation(s)
- Edward K Maina
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | | | | | | |
Collapse
|
42
|
Cytokine immunopathogenesis of enterovirus 71 brain stem encephalitis. Clin Dev Immunol 2012; 2012:876241. [PMID: 22956971 PMCID: PMC3432373 DOI: 10.1155/2012/876241] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/27/2012] [Indexed: 12/19/2022]
Abstract
Enterovirus 71 (EV71) is one of the most important causes of herpangina and hand, foot, and mouth disease. It can also cause severe complications of the central nervous system (CNS). Brain stem encephalitis with pulmonary edema is the severe complication that can lead to death. EV71 replicates in leukocytes, endothelial cells, and dendritic cells resulting in the production of immune and inflammatory mediators that shape innate and acquired immune responses and the complications of disease. Cytokines, as a part of innate immunity, favor the development of antiviral and Th1 immune responses. Cytokines and chemokines play an important role in the pathogenesis EV71 brain stem encephalitis. Both the CNS and the systemic inflammatory responses to infection play important, but distinctly different, roles in the pathogenesis of EV71 pulmonary edema. Administration of intravenous immunoglobulin and milrinone, a phosphodiesterase inhibitor, has been shown to modulate inflammation, to reduce sympathetic overactivity, and to improve survival in patients with EV71 autonomic nervous system dysregulation and pulmonary edema.
Collapse
|
43
|
Souza-Fonseca-Guimaraes F, Adib-Conquy M, Cavaillon JM. Natural killer (NK) cells in antibacterial innate immunity: angels or devils? Mol Med 2012; 18:270-85. [PMID: 22105606 DOI: 10.2119/molmed.2011.00201] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/09/2011] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells were first described as immune leukocytes that could kill tumor cells and soon after were reported to kill virus-infected cells. In the mid-1980s, 10 years after their discovery, NK cells were also demonstrated to contribute to the fight against bacterial infection, particularly because of crosstalk with other leukocytes. A wide variety of immune cells are now recognized to interact with NK cells through the production of cytokines such as interleukin (IL)-2, IL-12, IL-15 and IL-18, which boost NK cell activities. The recent demonstration that NK cells express pattern recognition receptors, namely Toll-like and nucleotide oligomerization domain (NOD)-like receptors, led to the understanding that these cells are not only under the control of accessory cells, but can be directly involved in the antibacterial response thanks to their capacity to recognize pathogen-associated molecular patterns. Interferon (IFN)-γ is the predominant cytokine produced by activated NK cells. IFN-γ is a key contributor to antibacterial immune defense. However, in synergy with other inflammatory cytokines, IFN-γ can also lead to deleterious effects similar to those observed during sepsis. Accordingly, as the main source of IFN-γ in the early phase of infection, NK cells display both beneficial and deleterious effects, depending on the circumstances.
Collapse
|
44
|
Fei Y, Wang W, Kwiecinski J, Josefsson E, Pullerits R, Jonsson IM, Magnusson M, Jin T. The combination of a tumor necrosis factor inhibitor and antibiotic alleviates staphylococcal arthritis and sepsis in mice. J Infect Dis 2011; 204:348-57. [PMID: 21742832 DOI: 10.1093/infdis/jir266] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Despite advances in medical practices, in recent decades permanent reductions in joint function have not been achieved, and the high mortality rate of patients with staphylococcal septic arthritis has not substantially improved. METHODS We evaluated the effects of a combined tumor necrosis factor (TNF) inhibitor and antibiotic therapy on the course of Staphylococcus aureus arthritis and sepsis in mice. RESULTS Treatment with the combination of a TNF inhibitor and an antibiotic resulted in a quicker relief of clinical arthritis in mice with septic arthritis, compared with an antibiotic monotherapy. Both histopathologically verified synovitis and the extent of joint destruction were reduced by this combined treatment. Importantly, anti-TNF treatment significantly improved the survival rate of mice with S. aureus sepsis and staphylococcal enterotoxin shock syndrome; this effect might be the result of a partial restoration of the hemostatic balance between coagulation and fibrinolysis. Finally, we demonstrated that anti-TNF treatment downregulates high-mobility group protein B1 in staphylococcal enterotoxin shock syndrome. CONCLUSIONS Thus, simultaneous systemic TNF inhibition and antibiotic therapy has beneficial effects on the outcome of S. aureus arthritis and sepsis in a mouse model, suggesting that the combination of a TNF inhibitor and antibiotics represents a novel therapeutic strategy for the treatment of staphylococcal infections.
Collapse
Affiliation(s)
- Ying Fei
- Department of Rheumatology and Inflammation Research, Institute of Clinical Sciences, Gothenburg University, Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chow AW. Adjuvant anti-tumor necrosis factor therapy for staphylococcal arthritis and sepsis: a cautionary note. J Infect Dis 2011; 204:332-4. [PMID: 21742828 DOI: 10.1093/infdis/jir272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
46
|
Red bean extract reduces inflammation and increases survival in a murine sepsis model. Food Sci Biotechnol 2011. [DOI: 10.1007/s10068-011-0153-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
47
|
Watkins RL, Pallister KB, Voyich JM. The SaeR/S gene regulatory system induces a pro-inflammatory cytokine response during Staphylococcus aureus infection. PLoS One 2011; 6:e19939. [PMID: 21603642 PMCID: PMC3094403 DOI: 10.1371/journal.pone.0019939] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 04/20/2011] [Indexed: 11/18/2022] Open
Abstract
Community-associated methicillin-resistant Staphylococcus aureus accounts for a large portion of the increased staphylococcal disease incidence and can cause illness ranging from mild skin infections to rapidly fatal sepsis syndromes. Currently, we have limited understanding of S. aureus-derived mechanisms contributing to bacterial pathogenesis and host inflammation during staphylococcal disease. Herein, we characterize an influential role for the saeR/S two-component gene regulatory system in mediating cytokine induction using mouse models of S. aureus pathogenesis. Invasive S. aureus infection induced the production of localized and systemic pro-inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), interleukin (IL)-6 and IL-2. In contrast, mice infected with an isogenic saeR/S deletion mutant demonstrated significantly reduced pro-inflammatory cytokine levels. Additionally, secreted factors influenced by saeR/S elicited pro-inflammatory cytokines in human blood ex vivo. Our study further demonstrated robust saeR/S-mediated IFN-γ production during both invasive and subcutaneous skin infections. Results also indicated a critical role for saeR/S in promoting bacterial survival and enhancing host mortality during S. aureus peritonitis. Taken together, this study provides insight into specific mechanisms used by S. aureus during staphylococcal disease and characterizes a relationship between a bacterial global regulator of virulence and the production of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Robert L. Watkins
- Department of Immunology/Infectious Diseases, Montana State University-Bozeman, Bozeman, Montana, United States of America
| | - Kyler B. Pallister
- Department of Immunology/Infectious Diseases, Montana State University-Bozeman, Bozeman, Montana, United States of America
| | - Jovanka M. Voyich
- Department of Immunology/Infectious Diseases, Montana State University-Bozeman, Bozeman, Montana, United States of America
- * E-mail:
| |
Collapse
|
48
|
Role of fibronectin-binding proteins A and B in in vitro cellular infections and in vivo septic infections by Staphylococcus aureus. Infect Immun 2011; 79:2215-23. [PMID: 21422173 DOI: 10.1128/iai.00133-11] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fibronectin-binding protein A (FnBPA) and FnBPB are important adhesins for Staphylococcus aureus infection. We constructed fnbA and/or fnbB mutant strains from S. aureus SH1000, which possesses intact rsbU, and studied the role of these adhesins in in vitro and in vivo infections. In intravenous infection, all fnb mutants caused a remarkable reduction in the colonization rate in kidneys and the mortality rate of mice. fnbB mutant caused a more severe decrease in body weight than that caused by fnbA mutant. Serum levels of interleukin-6 and nuclear factor κB (NF-κB) activation in spleen cells were remarkably reduced in fnbA or fnbA fnbB mutant infections; however, there was no significant reduction in fnbB mutant infections. In in vitro cellular infection, FnBPA was shown to be indispensable for adhesion to and internalization by nonprofessional phagocytic cells upon ingestion by inflammatory macrophages and NF-κB activation. However, both FnBPs were required for efficient cellular responses. The results showed that FnBPA is more important for in vitro and in vivo infections; however, cooperation between FnBPA and FnBPB is indispensable for the induction of severe infection resulting in septic death.
Collapse
|
49
|
Li SJ, Hu DL, Maina E, Shinagawa K, Omoe K, Nakane A. Superantigenic activity of toxic shock syndrome toxin-1 is resistant to heating and digestive enzymes. J Appl Microbiol 2011; 110:729-36. [DOI: 10.1111/j.1365-2672.2010.04927.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Li SJ, Hu DL, Maina E, Shinagawa K, Omoe K, Nakane A. Superantigenic activity of toxic shock syndrome toxin-1 is resistant to heating and digestive enzymes. J Appl Microbiol 2011. [DOI: 10.1111/j.1365-2672.2011.04927.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|