1
|
Ortiz SC, Easter T, Valero C, Bromley MJ, Bertuzzi M. A microscopy-based image analysis pipeline for the quantification of germination of filamentous fungi. Fungal Genet Biol 2025; 176:103942. [PMID: 39615829 DOI: 10.1016/j.fgb.2024.103942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 12/22/2024]
Abstract
Germination is the fundamental process whereby fungi transition from the dormant and stress resistant spores into actively replicating cells such as hyphae. Germination is essential for fungal colonization of new environments and pathogenesis, yet this differentiation process remains relatively poorly understood. For filamentous fungi, the study of germination has been limited by the lack of high-throughput, temporal, low cost, and easy-to-use methods of quantifying germination. To this end we have developed an image analysis pipeline to automate the quantification of germination from microscopy images. We have optimized this tool for the fungal pathogen Aspergillus fumigatus and demonstrated its potential applications by evaluating different strains, germination inhibitors, and auxotrophic and antifungal resistant mutants. Finally, we have expanded this tool to a variety of filamentous fungi and developed an easy-to-use web app for the fungal research community.
Collapse
Affiliation(s)
- Sébastien C Ortiz
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Thomas Easter
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Clara Valero
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Michael J Bromley
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Margherita Bertuzzi
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK.
| |
Collapse
|
2
|
Yu P, Ye S, Zhou M, Zhang L, Zhang Z, Sun X, Li S, Hu C. PWWP domain-containing protein Crf4-3 specifically modulates fungal azole susceptibility by regulating sterol C-14 demethylase ERG11. mSphere 2025; 10:e0070324. [PMID: 39670730 PMCID: PMC11774033 DOI: 10.1128/msphere.00703-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024] Open
Abstract
The widespread use of azole antifungals in agriculture and clinical settings has led to serious drug resistance. Overexpression of the azole drug target 14α-demethylase ERG11 (CYP51) is the most common fungal resistance mechanism. However, the presence of additional regulatory proteins in the transcriptional response of erg11 is not yet fully elucidated. In this study, leveraging the identified key promoter region of erg11 that controls its response to azoles in Neurospora crassa, we pinpointed a protein, Crf4-3, which harbors a PWWP domain and exerts a positive regulatory influence on azole resistance, as determined by DNA pulldown assays. The removal of Crf4-3 results in heightened sensitivity to azoles while remaining unaffected by other stressors tested. Additionally, the deletion leads to the abolition of transcriptional responses of genes such as erg11 and erg6 to ketoconazole. Interestingly, the basal expression of erg1, erg11, erg25, and erg3A is also affected by the deletion of crf4-3, indicating its role in sterol homeostasis. Crf4-3 homologs are broadly distributed across the Pezizomycotina fungi. The gene deletion for its homologous protein in Aspergillus fumigatus also significantly improves sensitivity to azoles such as voriconazole, primarily through the attenuation of the transcriptional response of erg11. Our data, for the first time, identified Crf4-3 as a novel regulatory protein in the azole stress response of filamentous fungi, offering fresh insights into the mechanisms of azole resistance.IMPORTANCETranscriptional control of pivotal genes, such as erg11, stands as the primary driver of azole resistance. Although considerable effort has been dedicated to identifying transcription factors involved, our knowledge regarding the use of transcriptional regulation strategies to combat azole resistance is currently limited. In this study, we reveal that a PWWP domain-containing protein Crf4-3, which is conserved in Pezizomycotina fungi, modulates fungal azole sensitivity by transcriptionally regulating sterol biosynthetic genes, including erg11. These results also broaden the understanding of fungal PWWP domain-containing proteins regarding their roles in regulating resistance against azole antifungals. Considering research on small molecules targeting the PWWP domain in humans, Crf4-3 homolog emerges as a promising target for designing fungal-specific drugs to combat azole resistance.
Collapse
Affiliation(s)
- Pengju Yu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Ye
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mi Zhou
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Long Zhang
- Shandong Jinniu Group Co., Ltd., Jinan, China
| | | | - Xianyun Sun
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shaojie Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Hu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Navarro-Mendoza MI, Pérez-Arques C, Parker J, Xu Z, Kelly S, Heitman J. Alternative ergosterol biosynthetic pathways confer antifungal drug resistance in the human pathogens within the Mucor species complex. mBio 2024; 15:e0166124. [PMID: 38980037 PMCID: PMC11323496 DOI: 10.1128/mbio.01661-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
Mucormycoses are emerging fungal infections caused by a variety of heterogeneous species within the Mucorales order. Among the Mucor species complex, Mucor circinelloides is the most frequently isolated pathogen in mucormycosis patients and despite its clinical significance, there is an absence of established genome manipulation techniques to conduct molecular pathogenesis studies. In this study, we generated a spontaneous uracil auxotrophic strain and developed a genetic transformation procedure to analyze molecular mechanisms conferring antifungal drug resistance. With this new model, phenotypic analyses of gene deletion mutants were conducted to define Erg3 and Erg6a as key biosynthetic enzymes in the M. circinelloides ergosterol pathway. Erg3 is a C-5 sterol desaturase involved in growth, sporulation, virulence, and azole susceptibility. In other fungal pathogens, erg3 mutations confer azole resistance because Erg3 catalyzes the production of a toxic diol upon azole exposure. Surprisingly, M. circinelloides produces only trace amounts of this toxic diol and yet, it is still susceptible to posaconazole and isavuconazole due to alterations in membrane sterol composition. These alterations are severely aggravated by erg3Δ mutations, resulting in ergosterol depletion and, consequently, hypersusceptibility to azoles. We also identified Erg6a as the main C-24 sterol methyltransferase, whose activity may be partially rescued by the paralogs Erg6b and Erg6c. Loss of Erg6a function diverts ergosterol synthesis to the production of cholesta-type sterols, resulting in resistance to amphotericin B. Our findings suggest that mutations or epimutations causing loss of Erg6 function may arise during human infections, resulting in antifungal drug resistance to first-line treatments against mucormycosis. IMPORTANCE The Mucor species complex comprises a variety of opportunistic pathogens known to cause mucormycosis, a potentially lethal fungal infection with limited therapeutic options. The only effective first-line treatments against mucormycosis consist of liposomal formulations of amphotericin B and the triazoles posaconazole and isavuconazole, all of which target components within the ergosterol biosynthetic pathway. This study uncovered M. circinelloides Erg3 and Erg6a as key enzymes to produce ergosterol, a vital constituent of fungal membranes. Absence of any of those enzymes leads to decreased ergosterol and consequently, resistance to ergosterol-binding polyenes such as amphotericin B. Particularly, losing Erg6a function poses a higher threat as the ergosterol pathway is channeled into alternative sterols similar to cholesterol, which maintain membrane permeability. As a result, erg6a mutants survive within the host and disseminate the infection, indicating that Erg6a deficiency may arise during human infections and confer resistance to the most effective treatment against mucormycoses.
Collapse
Affiliation(s)
- María Isabel Navarro-Mendoza
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Carlos Pérez-Arques
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Josie Parker
- Molecular Biosciences Division, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ziyan Xu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Steven Kelly
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, United Kingdom
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
4
|
Wassano NS, da Silva GB, Reis AH, A Gerhardt J, Antoniel EP, Akiyama D, Rezende CP, Neves LX, Vasconcelos EJR, de Figueiredo FL, Almeida F, de Castro PA, Pinzan CF, Goldman GH, Paes Leme AF, Fill TP, Moretti NS, Damasio A. Sirtuin E deacetylase is required for full virulence of Aspergillus fumigatus. Commun Biol 2024; 7:704. [PMID: 38851817 PMCID: PMC11162503 DOI: 10.1038/s42003-024-06383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/24/2024] [Indexed: 06/10/2024] Open
Abstract
Aspergillus fumigatus represents a public health problem due to the high mortality rate in immunosuppressed patients and the emergence of antifungal-resistant isolates. Protein acetylation is a crucial post-translational modification that controls gene expression and biological processes. The strategic manipulation of enzymes involved in protein acetylation has emerged as a promising therapeutic approach for addressing fungal infections. Sirtuins, NAD+-dependent lysine deacetylases, regulate protein acetylation and gene expression in eukaryotes. However, their role in the human pathogenic fungus A. fumigatus remains unclear. This study constructs six single knockout strains of A. fumigatus and a strain lacking all predicted sirtuins (SIRTKO). The mutant strains are viable under laboratory conditions, indicating that sirtuins are not essential genes. Phenotypic assays suggest sirtuins' involvement in cell wall integrity, secondary metabolite production, thermotolerance, and virulence. Deletion of sirE attenuates virulence in murine and Galleria mellonella infection models. The absence of SirE alters the acetylation status of proteins, including histones and non-histones, and triggers significant changes in the expression of genes associated with secondary metabolism, cell wall biosynthesis, and virulence factors. These findings encourage testing sirtuin inhibitors as potential therapeutic strategies to combat A. fumigatus infections or in combination therapy with available antifungals.
Collapse
Affiliation(s)
- Natália S Wassano
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil
| | - Gabriela B da Silva
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil
- Department of Microbiology, Immunology and Parasitology, Paulist School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Artur H Reis
- Department of Microbiology, Immunology and Parasitology, Paulist School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Jaqueline A Gerhardt
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Everton P Antoniel
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniel Akiyama
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Caroline P Rezende
- Department of Biochemistry and Immunology, Faculty of Medicine from Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Leandro X Neves
- Brazilian Bioscience National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | - Fernanda L de Figueiredo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Faculty of Medicine from Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Patrícia A de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila F Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H Goldman
- National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Adriana F Paes Leme
- Brazilian Bioscience National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Taicia P Fill
- National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Nilmar S Moretti
- Department of Microbiology, Immunology and Parasitology, Paulist School of Medicine, Federal University of São Paulo, São Paulo, Brazil.
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Canada.
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Canada.
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
- National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil.
| |
Collapse
|
5
|
Navarro-Mendoza MI, Pérez-Arques C, Parker J, Xu Z, Kelly S, Heitman J. Alternative ergosterol biosynthetic pathways confer antifungal drug resistance in the human pathogens within the Mucor species complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569667. [PMID: 38076934 PMCID: PMC10705545 DOI: 10.1101/2023.12.01.569667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Mucormycoses are emerging fungal infections caused by a variety of heterogeneous species within the Mucorales order. Among the Mucor species complex, Mucor circinelloides is the most frequently isolated pathogen in mucormycosis patients and despite its clinical significance, there is an absence of established genome manipulation techniques to conduct molecular pathogenesis studies. In this study, we generated a spontaneous uracil auxotrophic strain and developed a genetic transformation procedure to analyze molecular mechanisms conferring antifungal drug resistance. With this new model, phenotypic analyses of gene deletion mutants were conducted to define Erg3 and Erg6a as key biosynthetic enzymes in the M. circinelloides ergosterol pathway. Erg3 is a C-5 sterol desaturase involved in growth, sporulation, virulence, and azole susceptibility. In other fungal pathogens, erg3 mutations confer azole resistance because Erg3 catalyzes the production of a toxic diol upon azole exposure. Surprisingly, M. circinelloides produces only trace amounts of this toxic diol and yet, it is still susceptible to posaconazole and isavuconazole due to alterations in membrane sterol composition. These alterations are severely aggravated by erg3Δ mutations, resulting in ergosterol depletion and consequently, hypersusceptibility to azoles. We also identified Erg6a as the main C-24 sterol methyltransferase, whose activity may be partially rescued by the paralogs Erg6b and Erg6c. Loss of Erg6a function diverts ergosterol synthesis to the production of cholesta-type sterols, resulting in resistance to amphotericin B. Our findings suggest that mutations or epimutations causing loss of Erg6 function may arise during human infections, resulting in antifungal drug resistance to first-line treatments against mucormycosis.
Collapse
|
6
|
Dabholkar A, Pandit S, Devkota R, Dhingra S, Lorber S, Puel O, Calvo AM. Role of the osaA Gene in Aspergillus fumigatus Development, Secondary Metabolism and Virulence. J Fungi (Basel) 2024; 10:103. [PMID: 38392775 PMCID: PMC10890407 DOI: 10.3390/jof10020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Aspergillus fumigatus is the leading cause of aspergillosis, associated with high mortality rates, particularly in immunocompromised individuals. In search of novel genetic targets against aspergillosis, we studied the WOPR transcription factor OsaA. The deletion of the osaA gene resulted in colony growth reduction. Conidiation is also influenced by osaA; both osaA deletion and overexpression resulted in a decrease in spore production. Wild-type expression levels of osaA are necessary for the expression of the conidiation regulatory genes brlA, abaA, and wetA. In addition, osaA is necessary for normal cell wall integrity. Furthermore, the deletion of osaA resulted in a reduction in the ability of A. fumigatus to adhere to surfaces, decreased thermotolerance, as well as increased sensitivity to oxidative stress. Metabolomics analysis indicated that osaA deletion or overexpression led to alterations in the production of multiple secondary metabolites, including gliotoxin. This was accompanied by changes in the expression of genes in the corresponding secondary metabolite gene clusters. These effects could be, at least in part, due to the observed reduction in the expression levels of the veA and laeA global regulators when the osaA locus was altered. Importantly, our study shows that osaA is indispensable for virulence in both neutropenic and corticosteroid-immunosuppressed mouse models.
Collapse
Affiliation(s)
- Apoorva Dabholkar
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA; (A.D.); (S.P.)
| | - Sandesh Pandit
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA; (A.D.); (S.P.)
| | - Ritu Devkota
- Department of Biological Sciences and Eukaryotic Pathogen Innovation Center, Clemson University, Clemson, SC 29634, USA; (R.D.); (S.D.)
| | - Sourabh Dhingra
- Department of Biological Sciences and Eukaryotic Pathogen Innovation Center, Clemson University, Clemson, SC 29634, USA; (R.D.); (S.D.)
| | - Sophie Lorber
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (S.L.); (O.P.)
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (S.L.); (O.P.)
| | - Ana M. Calvo
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA; (A.D.); (S.P.)
| |
Collapse
|
7
|
Kelty MT, Beattie SR. Development of a murine model to study the cerebral pathogenesis of Aspergillus fumigatus. mSphere 2023; 8:e0046823. [PMID: 38010145 PMCID: PMC10732035 DOI: 10.1128/msphere.00468-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Molds are environmental fungi that can cause disease in immunocompromised individuals. The most common pathogenic mold is Aspergillus fumigatus, which is typically inhaled into the lungs and causes invasive pulmonary disease. In a subset of these patients, this infection can spread from the lungs to other organs including the brain, resulting in cerebral aspergillosis. How A. fumigatus causes brain disease is not well understood and these infections are associated with extremely high mortality rates. Thus, we developed an animal model to study the pathogenesis of cerebral aspergillosis to better understand this disease and develop better treatments for these life-threatening infections.
Collapse
Affiliation(s)
- Martin T. Kelty
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Sarah R. Beattie
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Wassano NS, da Silva GB, Reis AH, Gerhardt JA, Antoniel EP, Akiyama D, Rezende CP, Neves LX, Vasconcelos E, Figueiredo FL, Almeida F, de Castro PA, Pinzan CF, Goldman GH, Leme AFP, Fill TP, Moretti NS, Damasio A. Deacetylation by sirtuins is important for Aspergillus fumigatus pathogenesis and virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.558961. [PMID: 37808717 PMCID: PMC10557594 DOI: 10.1101/2023.09.25.558961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Protein acetylation is a crucial post-translational modification that controls gene expression and a variety of biological processes. Sirtuins, a prominent class of NAD + -dependent lysine deacetylases, serve as key regulators of protein acetylation and gene expression in eukaryotes. In this study, six single knockout strains of fungal pathogen Aspergillus fumigatus were constructed, in addition to a strain lacking all predicted sirtuins (SIRTKO). Phenotypic assays suggest that sirtuins are involved in cell wall integrity, secondary metabolite production, thermotolerance, and virulence. AfsirE deletion resulted in attenuation of virulence, as demonstrated in murine and Galleria infection models. The absence of AfSirE leads to altered acetylation status of proteins, including histones and non-histones, resulting in significant changes in the expression of genes associated with secondary metabolism, cell wall biosynthesis, and virulence factors. These findings encourage testing sirtuin inhibitors as potential therapeutic strategies to combat A. fumigatus infections or in combination therapy with available antifungals.
Collapse
|
9
|
Chen Y, Yang J, Cai C, Shi J, Song Y, Ma J, Ju J. Development of Marker Recycling Systems for Sequential Genetic Manipulation in Marine-Derived Fungi Spiromastix sp. SCSIO F190 and Aspergillus sp. SCSIO SX7S7. J Fungi (Basel) 2023; 9:jof9030302. [PMID: 36983470 PMCID: PMC10059709 DOI: 10.3390/jof9030302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Marine-derived fungi are emerging as prolific workhorses of structurally novel natural products (NPs) with diverse bioactivities. However, the limitation of available selection markers hampers the exploration of cryptic NPs. Recyclable markers are therefore valuable assets in genetic engineering programs for awaking silent SM clusters. Here, both pyrG and amdS-based recyclable marker cassettes were established and successfully applied in marine-derived fungi Aspergillus sp. SCSIO SX7S7 and Spiromastix sp. SCSIO F190, respectively. Using pyrG recyclable marker, a markerless 7S7-∆depH strain with a simplified HPLC background was built by inactivating a polyketide synthase (PKS) gene depH and looping out the pyrG recyclable marker after depH deletion. Meanwhile, an amdS recyclable marker system was also developed to help strains that are difficult to use pyrG marker. By employing the amdS marker, a backbone gene spm11 responsible for one major product of Spiromastix sp. SCSIO F190 was inactivated, and the amdS marker was excised after using, generating a relatively clean F190-∆spm11 strain for further activation of novel NPs. The collection of two different recycle markers will guarantee flexible application in marine-derived fungi with different genetic backgrounds, enabling the exploitation of novel structures in various fungi species with different genome mining strategies.
Collapse
Affiliation(s)
- Yingying Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Jiafan Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Cunlei Cai
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Junjie Shi
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Correspondence: (J.M.); (J.J.); Tel.: +86-20-8902-3028 (J.J.)
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Correspondence: (J.M.); (J.J.); Tel.: +86-20-8902-3028 (J.J.)
| |
Collapse
|
10
|
A Preliminary Pilot Study: Metabolomic Analysis of Saliva in Oral Candidiasis. Metabolites 2022; 12:metabo12121294. [PMID: 36557332 PMCID: PMC9786753 DOI: 10.3390/metabo12121294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Early detection of oral candidiasis is essential. However, most currently available methods are time-consuming and useful only for screening patients. Previous studies on the relationship between oral candidiasis and saliva have focused on saliva volume and not on its components. Therefore, to clarify the effects of oral candidiasis on salivary metabolites, the relationship between salivary components and oral candidiasis was investigated by comparing the salivary metabolites of oral candidiasis patients and those not previously diagnosed with candidiasis. Forty-five participants visiting our university hospital were included and classified into two groups, the Candida group and the control group, based on the Candida detection test results. The unstimulated saliva was collected using the spitting method over 15 min, and the stimulated saliva was collected using the gum-chewing method over 10 min. The saliva volume was measured, and the saliva samples were frozen and analyzed metabolomically. Metabolome analysis revealed 51 metabolites with peak detection rates exceeding 50%. There was no significant difference in age and sex between the Candida and control groups. In the Candida group, five metabolites (tyrosine, choline, phosphoenolpyruvate, histidine, and 6-phosphogluconate) were significantly elevated in the unstimulated, two (octanoic acid and uridine monophosphate(UMP)) were significantly increased, and four (ornithine, butyrate, aminovalerate and aminolevulinate) were significantly decreased in the stimulated saliva. This study suggests the possibility of identifying metabolites specific to patients with oral candidiasis, which could aid prompt diagnosis.
Collapse
|
11
|
Peres da Silva R, Brock M. NIH4215: A mutation-prone thiamine auxotrophic clinical Aspergillus fumigatus isolate. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:908343. [PMID: 37746208 PMCID: PMC10512395 DOI: 10.3389/ffunb.2022.908343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/30/2022] [Indexed: 09/26/2023]
Abstract
Aspergillus fumigatus is the main cause of life-threatening invasive aspergillosis. Despite the availability of various antifungals, therapy remains challenging and requires further studies. Accordingly, the clinical A. fumigatus isolate NIH4215 deriving from a fatal case of human pulmonary aspergillosis has frequently been used in drug efficacy studies. Unexpectedly, our initial attempts to generate a bioluminescent reporter of strain NIH4215 for in vivo drug efficacy studies failed, as NIH4215 was unable to grow on defined minimal medium. Subsequent analyses discovered a previously undescribed thiamine auxotrophy of strain NIH4215 and transformation with thiamine biosynthesis genes from A. fumigatus strain Af293 identified the nmt1 gene as cause of the thiamine auxotrophy. Sequencing of the defective nmt1 gene revealed the loss of a cysteine codon within an essential iron-binding motif. Subsequently, the wild-type nmt1 gene was successfully used to generate a bioluminescent reporter strain in NIH4215 by simultaneously deleting the akuB locus. The resulting bioluminescent ΔakuB strains showed a high frequency of homologous integration as confirmed by generation of pyrG and niaD deletion mutants. When tested in a Galleria mellonella infection model, neither thiamine auxotrophy nor the deletion of the akuB locus had a significant effect on virulence. However, besides thiamine auxotrophy, sectors with altered morphology and albino mutants frequently arose on colony edges of strain NIH4215 and its derivatives, and stable albino mutants were successfully isolated. A proposed increased mutation rate of NIH4215 was confirmed by screening for spontaneous occurrence of fluoorotic acid resistant mutants. Independent mutations in the pyrG and pyrE gene were identified in the fluoroorotic acid resistant NIH4215 isolates and the frequency of mutation was by at least one order of magnitude higher than that observed for the clinical A. fumigatus isolate CBS144.89. In summary, despite its virulence in animal models, strain NIH4215 is a thiamine auxotroph and prone to accumulate mutations. Our results suggest that thiamine biosynthesis is dispensable for host infection and mutation-prone strains such as NIH4215 could potentially facilitate the evolution of azole resistant strains as increasingly observed in the environment.
Collapse
Affiliation(s)
| | - Matthias Brock
- University of Nottingham, School of Life Sciences, University Park, Nottingham, United Kingdom
| |
Collapse
|
12
|
Zhen C, Lu H, Jiang Y. Novel Promising Antifungal Target Proteins for Conquering Invasive Fungal Infections. Front Microbiol 2022; 13:911322. [PMID: 35783432 PMCID: PMC9243655 DOI: 10.3389/fmicb.2022.911322] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Invasive fungal infections (IFIs) pose a serious clinical problem, but the antifungal arsenal is limited and has many disadvantages, such as drug resistance and toxicity. Hence, there is an urgent need to develop antifungal compounds that target novel target proteins of pathogenic fungi for treating IFIs. This review provides a comprehensive summary of the biological functions of novel promising target proteins for treating IFIs in pathogenic fungi and their inhibitors. Inhibitors of inositol phosphoramide (IPC) synthases (such as Aureobasidin A, Khafrefungin, Galbonolide A, and Pleofungin A) have potent antifungal activities by inhibiting sphingolipid synthesis. Disrupting glycosylphosphatidylinositol (GPI) biosynthesis by Jawsamycin (an inhibitor of Spt14), M720 (an inhibitor of Mcd4), and APX001A (an inhibitor of Gwt1) is a promising strategy for treating IFIs. Turbinmicin is a natural-compound inhibitor of Sec14 and has extraordinary antifungal efficacy, broad-antifungal spectrum, low toxicity, and is a promising new compound for treating IFIs. CMLD013075 targets fungal heat shock protein 90 (Hsp90) and has remarkable antifungal efficacy. Olorofim, as an inhibitor of dihydrolactate dehydrogenase, is a breakthrough drug treatment for IFIs. These novel target proteins and their inhibitors may overcome the limitations of currently available antifungal drugs and improve patient outcomes in the treatment of IFIs.
Collapse
Affiliation(s)
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
13
|
Lax C, Cánovas-Márquez JT, Tahiri G, Navarro E, Garre V, Nicolás FE. Genetic Manipulation in Mucorales and New Developments to Study Mucormycosis. Int J Mol Sci 2022; 23:3454. [PMID: 35408814 PMCID: PMC8998210 DOI: 10.3390/ijms23073454] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
The study of the Mucoralean fungi physiology is a neglected field that the lack of effective genetic tools has hampered in the past. However, the emerging fungal infection caused by these fungi, known as mucormycosis, has prompted many researchers to study the pathogenic potential of Mucorales. The main reasons for this current attraction to study mucormycosis are its high lethality, the lack of effective antifungal drugs, and its recent increased incidence. The most contemporary example of the emergence character of mucormycosis is the epidemics declared in several Asian countries as a direct consequence of the COVID-19 pandemic. Fortunately, this pressure to understand mucormycosis and develop new treatment strategies has encouraged the blossoming of new genetic techniques and methodologies. This review describes the history of genetic manipulation in Mucorales, highlighting the development of methods and how they allowed the main genetic studies in these fungi. Moreover, we have emphasized the recent development of new genetic models to study mucormycosis, a landmark in the field that will configure future research related to this disease.
Collapse
Affiliation(s)
- Carlos Lax
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.T.C.-M.); (G.T.); (E.N.); (V.G.)
| | | | | | | | | | - Francisco Esteban Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.T.C.-M.); (G.T.); (E.N.); (V.G.)
| |
Collapse
|
14
|
Buil JB, Oliver JD, Law D, Baltussen T, Zoll J, Hokken MWJ, Tehupeiory-Kooreman M, Melchers WJG, Birch M, Verweij PE. Resistance profiling of Aspergillus fumigatus to olorofim indicates absence of intrinsic resistance and unveils the molecular mechanisms of acquired olorofim resistance. Emerg Microbes Infect 2022; 11:703-714. [PMID: 35109772 PMCID: PMC8890541 DOI: 10.1080/22221751.2022.2034485] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Olorofim (F901318) is a new antifungal currently under clinical development that shows both in vitro and in vivo activity against a number of filamentous fungi including Aspergillus fumigatus. In this study, we screened A. fumigatus isolates for intrinsic olorofim-resistant A. fumigatus and evaluated the ability of A. fumigatus to acquire an olorofim-resistant phenotype. No intrinsic resistance was found in 975 clinical A. fumigatus isolates. However, we found that isolates with increased olorofim MICs (> 8 mg/L) could be selected using a high number of conidia and olorofim exposure under laboratory conditions. Assessment of the frequency of acquired olorofim resistance development of A. fumigatus was shown to be higher than for voriconazole but lower than for itraconazole. Sequencing the PyrE gene of isogenic isolates with olorofim MICs of >8 mg/L identified various amino acid substitutions with a hotspot at locus G119. Olorofim was shown to have reduced affinity to mutated target protein dihydroorotate dehydrogenase (DHODH) and the effect of these mutations was proven by introducing the mutations directly in A. fumigatus. We then investigated whether G119 mutations were associated with a fitness cost in A. fumigatus. These experiments showed a small but significant reduction in growth rate for strains with a G119V substitution, while strains with a G119C substitution did not exhibit a reduction in growth rate. These in vitro findings were confirmed in an in vivo pathogenicity model.
Collapse
Affiliation(s)
- Jochem B Buil
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
| | | | - Derek Law
- F2G Ltd, Lankro Way, Manchester, United Kingdom
| | - Tim Baltussen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Zoll
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
| | - Margriet W J Hokken
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marlou Tehupeiory-Kooreman
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
| | - Mike Birch
- F2G Ltd, Lankro Way, Manchester, United Kingdom
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Lax C, Navarro-Mendoza MI, Pérez-Arques C, Navarro E, Nicolás FE, Garre V. Stable and reproducible homologous recombination enables CRISPR-based engineering in the fungus Rhizopus microsporus. CELL REPORTS METHODS 2021; 1:100124. [PMID: 35475217 PMCID: PMC9017206 DOI: 10.1016/j.crmeth.2021.100124] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/20/2021] [Accepted: 11/09/2021] [Indexed: 04/22/2023]
Abstract
Mucormycosis is a lethal and emerging disease that has lacked a genetic model fulfilling both high virulence and the possibility of performing stable and reproducible gene manipulation by homologous recombination (HR). Here, we developed a new methodology to successfully perform HR in Rhizopus microsporus. We isolated an uracil auxotrophic recipient strain and optimized the critical steps in the genetic transformation of this fungus. This was followed by an adaptation of a plasmid-free CRISPR-Cas9 system coupled with microhomology repair templates. We reproducibly generated stable mutants in the genes leuA and crgA, encoding a 3-isopropylmalate dehydratase and an ubiquitin ligase, respectively. Our new genetic model showed that mutations in the gene pyrF, a key virulence gene in several bacterial and fungal pathogens, correlated with an avirulent phenotype in an immunocompetent murine host. This was reverted by gene complementation, showing the broad possibilities of our methodology.
Collapse
Affiliation(s)
- Carlos Lax
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | | | - Carlos Pérez-Arques
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Eusebio Navarro
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Francisco Esteban Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
16
|
Sun R, Xu H, Feng Y, Hou X, Zhu T, Che Q, Pfeifer B, Zhang G, Li D. An efficient marker recycling system for sequential gene deletion in a deep sea-derived fungus Acremonium sp. HDN16-126. Synth Syst Biotechnol 2021; 6:127-133. [PMID: 34141909 PMCID: PMC8187431 DOI: 10.1016/j.synbio.2021.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
Acremonium species are prolific producers of therapeutic molecules which include the widely used beta-lactam antibiotic, cephalosporin. In light of their significant medical value, an efficient gene disruption method is required for the physiological and biochemical studies on this genus of fungi. However, the number of selection markers that can be used for gene targeting is limited, which constrain the genetic analysis of multiple functional genes. In this study, we established a uridine auxotrophy based marker recycling system which achieves scarless gene deletion, and allows the use of the same selection marker in successive transformations in a deep sea-derived fungus Acremonium sp. HDN16-126. We identified one homologue of Acremonium chrysogenum pyrG (also as a homologous gene of the yeast URA3) from HDN16-126, designated as pyrG-A1, which can be used as a selection marker on uridine free medium. We then removed pyrG-A1 from HDN16-126 genome via homologous recombination (HR) on MM medium with 5-fluoroortic acid (5-FOA), a chemical that can be converted into a toxin of 5-flurouracil by pyrG-A1 activity, thus generating the HDN16-126-△pyrG mutant strain which showed auxotrophy for uridine but insensitivity to 5-FOA and enabled the use of exogenous pyrG gene as both positive and negative selection marker to achieve the scarless deletion of target DNA fragments. We further applied this marker recycling system to successfully disrupt two target genes pepL (encodes a putative 2OG-Fe (II) dioxygenase) and pepM (encodes a putative aldolase) identified from HDN16-126 genome, which are proposed to be functional genes related to 2-aminoisobutyric acid metabolism in fungi. This work is the first application of uridine auxotrophy based scarless gene deletion method in Acremonium species and shows promising potential in assisting sequential genetic analysis of filamentous fungi.
Collapse
Affiliation(s)
- Ruonan Sun
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Hengyi Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Yanyan Feng
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Xuewen Hou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Tianjiao Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Qian Che
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Blaine Pfeifer
- Department of Chemical and Biological Engineering, The State University of New York at Buffalo, Buffalo, NY, 14260, United States
| | - Guojian Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China
- Corresponding author. School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.
| | - Dehai Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China
- Corresponding author. Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
17
|
The Future of Antifungal Drug Therapy: Novel Compounds and Targets. Antimicrob Agents Chemother 2021; 65:AAC.01719-20. [PMID: 33229427 DOI: 10.1128/aac.01719-20] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fungal infections are a universal problem and are routinely associated with high morbidity and mortality rates in immunocompromised patients. Existing therapies comprise five different classes of antifungal agents, four of which target the synthesis of ergosterol and cell wall glucans. However, the currently available antifungals have many limitations, including poor oral bioavailability, narrow therapeutic indices, and emerging drug resistance resulting from their use, thus making it essential to investigate the development of novel drugs which can overcome these limitations and add to the antifungal armamentarium. Advances have been made in antifungal drug discovery research and development over the past few years as evidenced by the presence of several new compounds currently in various stages of development. In the following minireview, we provide a comprehensive summary of compounds aimed at one or more novel molecular targets. We also briefly describe potential pathways relevant for fungal pathogenesis that can be considered for drug development in the near future.
Collapse
|
18
|
van Rhijn N, Furukawa T, Zhao C, McCann BL, Bignell E, Bromley MJ. Development of a marker-free mutagenesis system using CRISPR-Cas9 in the pathogenic mould Aspergillus fumigatus. Fungal Genet Biol 2020; 145:103479. [PMID: 33122116 PMCID: PMC7768092 DOI: 10.1016/j.fgb.2020.103479] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Aspergillus fumigatus is a saprophytic fungal pathogen that is the cause of more than 300,000 life-threatening infections annually. Our understanding of pathogenesis and factors contributing to disease progression are limited. Development of rapid and versatile gene editing methodologies for A. fumigatus is essential. CRISPR-Cas9 mediated transformation has been widely used as a novel genome editing tool and has been used for a variety of editing techniques, such as protein tagging, gene deletions and site-directed mutagenesis in A. fumigatus. However, successful genome editing relies on time consuming, multi-step cloning procedures paired with the use of selection markers, which can result in a metabolic burden for the host and/or unintended transcriptional modifications at the site of integration. We have used an in vitro CRISPR-Cas9 assembly methodology to perform selection-free genome editing, including epitope tagging of proteins and site-directed mutagenesis. The repair template used during this transformation use 50 bp micro-homology arms and can be generated with a single PCR reaction or by purchasing synthesised single stranded oligonucleotides, decreasing the time required for complex construct synthesis.
Collapse
Affiliation(s)
- Norman van Rhijn
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Takanori Furukawa
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Can Zhao
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Bethany L McCann
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Elaine Bignell
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Michael J Bromley
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, CTF Building, 46 Grafton Street, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
19
|
Oliver JC, Laghi L, Parolin C, Foschi C, Marangoni A, Liberatore A, Dias ALT, Cricca M, Vitali B. Metabolic profiling of Candida clinical isolates of different species and infection sources. Sci Rep 2020; 10:16716. [PMID: 33028931 PMCID: PMC7541501 DOI: 10.1038/s41598-020-73889-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
Candida species are the most common cause of opportunistic fungal infections. Rapid identification and novel approaches for the characterization of these fungi are of great interest to improve the diagnosis and the knowledge about their pathogenic properties. This study aimed to characterize clinical isolates of Candida spp. by proteomics (MALDI-TOF MS) and metabolomics (1H-NMR), and to correlate their metabolic profiles with Candida species, source of infection and different virulence associated parameters. In particular, 49 Candida strains from different sources (blood, n = 15; vagina, n = 18; respiratory tract, n = 16), belonging mainly to C. albicans complex (61%), C. glabrata (20%) and C. parapsilosis (12%) species were used. Several extracellular and intracellular metabolites showed significantly different concentrations among isolates recovered from different sources of infection, as well as among different Candida species. These metabolites were mainly related to the glycolysis or gluconeogenesis, tricarboxylic acid cycle, nucleic acid synthesis and amino acid and lipid metabolism. Moreover, we found specific metabolic fingerprints associated with the ability to form biofilm, the antifungal resistance (i.e. caspofungin and fluconazole) and the production of secreted aspartyl proteinase. In conclusion, 1H-NMR-based metabolomics can be useful to deepen Candida spp. virulence and pathogenicity properties.
Collapse
Affiliation(s)
- Josidel Conceição Oliver
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Microbiology and Immunology, Federal University of Alfenas, Minas Gerais, Brazil
| | - Luca Laghi
- Centre of Foodomics, Department of Agro-Food Science and Technology, Alma Mater Studiorum, University of Bologna, Cesena, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Claudio Foschi
- Microbiology, DIMES, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Antonella Marangoni
- Microbiology, DIMES, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Andrea Liberatore
- Microbiology, DIMES, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Monica Cricca
- Microbiology, DIMES, Alma Mater Studiorum, University of Bologna, Bologna, Italy.
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Lockhart DEA, Stanley M, Raimi OG, Robinson DA, Boldovjakova D, Squair DR, Ferenbach AT, Fang W, van Aalten DMF. Targeting a critical step in fungal hexosamine biosynthesis. J Biol Chem 2020; 295:8678-8691. [PMID: 32341126 PMCID: PMC7324522 DOI: 10.1074/jbc.ra120.012985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/22/2020] [Indexed: 01/06/2023] Open
Abstract
Aspergillus fumigatus is a human opportunistic fungal pathogen whose cell wall protects it from the extracellular environment including host defenses. Chitin, an essential component of the fungal cell wall, is synthesized from UDP-GlcNAc produced in the hexosamine biosynthetic pathway. As this pathway is critical for fungal cell wall integrity, the hexosamine biosynthesis enzymes represent potential targets of antifungal drugs. Here, we provide genetic and chemical evidence that glucosamine 6-phosphate N-acetyltransferase (Gna1), a key enzyme in this pathway, is an exploitable antifungal drug target. GNA1 deletion resulted in loss of fungal viability and disruption of the cell wall, phenotypes that could be rescued by exogenous GlcNAc, the product of the Gna1 enzyme. In a murine model of aspergillosis, the Δgna1 mutant strain exhibited attenuated virulence. Using a fragment-based approach, we discovered a small heterocyclic scaffold that binds proximal to the Gna1 active site and can be optimized to a selective submicromolar binder. Taken together, we have provided genetic, structural, and chemical evidence that Gna1 is an antifungal target in A. fumigatus.
Collapse
Affiliation(s)
- Deborah E A Lockhart
- School of Life Sciences, University of Dundee, Dundee, United Kingdom; Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, United Kingdom.
| | - Mathew Stanley
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Olawale G Raimi
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David A Robinson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Dominika Boldovjakova
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, United Kingdom
| | - Daniel R Squair
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | | - Wenxia Fang
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | |
Collapse
|
21
|
CRISPR-Cas9-Based Mutagenesis of the Mucormycosis-Causing Fungus Lichtheimia corymbifera. Int J Mol Sci 2020; 21:ijms21103727. [PMID: 32466287 PMCID: PMC7279233 DOI: 10.3390/ijms21103727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Lichtheimia corymbifera is considered as one of the most frequent agents of mucormycosis. The lack of efficient genetic manipulation tools hampers the characterization of the pathomechanisms and virulence factors of this opportunistic pathogenic fungus. Although such techniques have been described for certain species, the performance of targeted mutagenesis and the construction of stable transformants have remained a great challenge in Mucorales fungi. In the present study, a plasmid-free CRISPR-Cas9 system was applied to carry out a targeted gene disruption in L. corymbifera. The described method is based on the non-homologous end-joining repair of the double-strand break caused by the Cas9 enzyme. Using this method, short, one-to-five nucleotide long-targeted deletions could be induced in the orotidine 5′-phosphate decarboxylase gene (pyrG) and, as a result, uracil auxotrophic strains were constructed. These strains are applicable as recipient strains in future gene manipulation studies. As we know, this is the first genetic modification of this clinically relevant fungus.
Collapse
|
22
|
Xie M, Zhao X, Lü Y, Jin C. Chitin deacetylases Cod4 and Cod7 are involved in polar growth of Aspergillus fumigatus. Microbiologyopen 2019; 9:e00943. [PMID: 31602821 PMCID: PMC6957412 DOI: 10.1002/mbo3.943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/07/2019] [Accepted: 09/16/2019] [Indexed: 01/01/2023] Open
Abstract
Chitin is one of the key components of fungal cell wall, and chitin deacetylases (CDAs) have been found in fungi; however, their functions remain unknown. Aspergillus fumigatus is known to cause fatal invasive aspergillosis (IA) among immunocompromised patients with a high mortality rate. Although the A. fumigatus cell wall has long been taken as a unique target for drug development, its dynamic remodeling is complicated and not well understood. Seven putative CDAs are annotated in the A. fumigatus genome. In this study, we analyzed the function of the putative CDAs, Cod4 and Cod7, in A. fumigatus. Biochemical analysis of recombinant proteins showed that Cod4 preferentially deacetylated (GlcNAc)4 and was less active on chitooligosaccharides with DP > 5, whereas Cod7 was unable to catalyze deacetylation. Simulation of three‐dimensional structure revealed that both Cod4 and Cod7 shared a similar folding pattern with HyPgdA from Helicobacter pylori and, similar to HyPgdA, a substitution of Thr8 by Ala8 in Cod7 abolished its CDA activity. Deletion of the cod4, cod7, or both in A. fumigatus led to polarity abnormality and increased conidiation. Furthermore, the expression level of the genes related to polarity was upregulated in the mutants. Our results demonstrated that Cod4 and Cod7 were involved in polarity, though Cod4 was inactive.
Collapse
Affiliation(s)
- Mingming Xie
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Yang Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,National Engineering Research Center for Non-food Bio-refinery, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
23
|
Dihydroorotate dehydrogenase inhibitors in anti-infective drug research. Eur J Med Chem 2019; 183:111681. [PMID: 31557612 DOI: 10.1016/j.ejmech.2019.111681] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/01/2019] [Accepted: 09/05/2019] [Indexed: 01/08/2023]
Abstract
Pyrimidines are essential for the cell survival and proliferation of living parasitic organisms, such as Helicobacter pylori, Plasmodium falciparum and Schistosoma mansoni, that are able to impact upon human health. Pyrimidine building blocks, in human cells, are synthesised via both de novo biosynthesis and salvage pathways, the latter of which is an effective way of recycling pre-existing nucleotides. As many parasitic organisms lack pyrimidine salvage pathways for pyrimidine nucleotides, blocking de novo biosynthesis is seen as an effective therapeutic means to selectively target the parasite without effecting the human host. Dihydroorotate dehydrogenase (DHODH), which is involved in the de novo biosynthesis of pyrimidines, is a validated target for anti-infective drug research. Recent advances in the DHODH microorganism field are discussed herein, as is the potential for the development of DHODH-targeted therapeutics.
Collapse
|
24
|
Manfiolli AO, Mattos EC, de Assis LJ, Silva LP, Ulaş M, Brown NA, Silva-Rocha R, Bayram Ö, Goldman GH. Aspergillus fumigatus High Osmolarity Glycerol Mitogen Activated Protein Kinases SakA and MpkC Physically Interact During Osmotic and Cell Wall Stresses. Front Microbiol 2019; 10:918. [PMID: 31134001 PMCID: PMC6514138 DOI: 10.3389/fmicb.2019.00918] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/11/2019] [Indexed: 11/30/2022] Open
Abstract
Aspergillusfumigatus, a saprophytic filamentous fungus, is a serious opportunistic pathogen of mammals and it is the primary causal agent of invasive aspergillosis (IA). Mitogen activated protein Kinases (MAPKs) are important components involved in diverse cellular processes in eukaryotes. A. fumigatus MpkC and SakA, the homologs of the Saccharomyces cerevisiae Hog1 are important to adaptations to oxidative and osmotic stresses, heat shock, cell wall damage, macrophage recognition, and full virulence. We performed protein pull-down experiments aiming to identify interaction partners of SakA and MpkC by mass spectrometry analysis. In presence of osmotic stress with sorbitol, 118, and 213 proteins were detected as possible protein interactors of SakA and MpkC, respectively. Under cell wall stress caused by congo red, 420 and 299 proteins were detected interacting with SakA and MpkC, respectively. Interestingly, a group of 78 and 256 proteins were common to both interactome analysis. Co-immunoprecipitation (Co-IP) experiments showed that SakA::GFP is physically associated with MpkC:3xHA upon osmotic and cell wall stresses. We also validated the association between SakA:GFP and the cell wall integrity MAPK MpkA:3xHA and the phosphatase PtcB:3xHA, under cell wall stress. We further characterized A. fumigatus PakA, the homolog of the S. cerevisiae sexual developmental serine/threonine kinase Ste20, as a component of the SakA/MpkC MAPK pathway. The ΔpakA strain is more sensitive to cell wall damaging agents as congo red, calcofluor white, and caspofungin. Together, our data supporting the hypothesis that SakA and MpkC are part of an osmotic and general signal pathways involved in regulation of the response to the cell wall damage, oxidative stress, drug resistance, and establishment of infection. This manuscript describes an important biological resource to understand SakA and MpkC protein interactions. Further investigation of the biological roles played by these protein interactors will provide more opportunities to understand and combat IA.
Collapse
Affiliation(s)
- Adriana Oliveira Manfiolli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Eliciane Cevolani Mattos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Leandro José de Assis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Mevlüt Ulaş
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Neil Andrew Brown
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
25
|
Silva R, Aguiar TQ, Oliveira C, Domingues L. Physiological characterization of a pyrimidine auxotroph exposes link between uracil phosphoribosyltransferase regulation and riboflavin production in Ashbya gossypii. N Biotechnol 2018; 50:1-8. [PMID: 30590201 DOI: 10.1016/j.nbt.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 01/13/2023]
Abstract
The blockage of the de novo pyrimidine biosynthetic pathway at the orotidine-5'-phosphate decarboxylase level was previously demonstrated to affect riboflavin production in the industrial producer fungus Ashbya gossypii. However, the molecular basis for the unusual sensitivity to uracil displayed by the pyrimidine auxotroph A. gossypii Agura3 was unknown. Here, uridine was shown to be the only intermediate of the pyrimidine salvage pathway able to fully restore this mutant's growth. Conversely, uracil, which is routinely used to rescue pyrimidine auxotrophs, had a dose-dependent growth-inhibitory effect. Uracil phosphoribosyltransferase (UPRT) is the pyrimidine salvage pathway enzyme responsible for converting uracil to uridine monophosphate in the presence of phosphoribosyl pyrophosphate (PRPP). Characterization of the A. gossypii UPRT, as produced and purified from Escherichia coli, revealed that uracil concentrations above 1 mM negatively affected its activity, thus explaining the hypersensitivity of the Agura3 mutant to uracil. Accordingly, overexpression of the AgUPRT encoding-gene in A. gossypii Agura3 led to similar growth on rich medium containing 5 mM uracil or uridine. Decreased UPRT activity ultimately favors the preservation of PRPP, which otherwise may be directed to other pathways. In A. gossypii, increased PRPP availability promotes overproduction of riboflavin. Thus, this UPRT modulation mechanism reveals a putative means of saving precursors essential for riboflavin overproduction by this fungus. A similar uracil-mediated regulation mechanism of the UPRT activity is reported only in two protozoan parasites, whose survival depends on the availability of PRPP. Physiological evidence here discussed indicate that it may be extended to other distantly related flavinogenic fungi.
Collapse
Affiliation(s)
- Rui Silva
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Tatiana Q Aguiar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Carla Oliveira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
26
|
Rosowski EE, Knox BP, Archambault LS, Huttenlocher A, Keller NP, Wheeler RT, Davis JM. The Zebrafish as a Model Host for Invasive Fungal Infections. J Fungi (Basel) 2018; 4:jof4040136. [PMID: 30551557 PMCID: PMC6308935 DOI: 10.3390/jof4040136] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022] Open
Abstract
The zebrafish has become a widely accepted model host for studies of infectious disease, including fungal infections. The species is genetically tractable, and the larvae are transparent and amenable to prolonged in vivo imaging and small molecule screening. The aim of this review is to provide a thorough introduction into the published studies of fungal infection in the zebrafish and the specific ways in which this model has benefited the field. In doing so, we hope to provide potential new zebrafish researchers with a snapshot of the current toolbox and prior results, while illustrating how the model has been used well and where the unfulfilled potential of this model can be found.
Collapse
Affiliation(s)
- Emily E Rosowski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
| | - Benjamin P Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
| | - Linda S Archambault
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Robert T Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| | - J Muse Davis
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
27
|
Binder U, Navarro-Mendoza MI, Naschberger V, Bauer I, Nicolas FE, Pallua JD, Lass-Flörl C, Garre V. Generation of A Mucor circinelloides Reporter Strain-A Promising New Tool to Study Antifungal Drug Efficacy and Mucormycosis. Genes (Basel) 2018; 9:E613. [PMID: 30544643 PMCID: PMC6315630 DOI: 10.3390/genes9120613] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 02/04/2023] Open
Abstract
Invasive fungal infections caused by Mucorales (mucormycosis) have increased worldwide. These life-threatening infections affect mainly, but not exclusively, immunocompromised patients, and are characterized by rapid progression, severe tissue damage and an unacceptably high rate of mortality. Still, little is known about this disease and its successful therapy. New tools to understand mucormycosis and a screening method for novel antimycotics are required. Bioluminescent imaging is a powerful tool for in vitro and in vivo approaches. Hence, the objective of this work was to generate and functionally analyze bioluminescent reporter strains of Mucor circinelloides, one mucormycosis-causing pathogen. Reporter strains were constructed by targeted integration of the firefly luciferase gene under control of the M. circinelloides promoter Pzrt1. The luciferase gene was sufficiently expressed, and light emission was detected under several conditions. Phenotypic characteristics, virulence potential and antifungal susceptibility were indifferent to the wild-type strains. Light intensity was dependent on growth conditions and biomass, being suitable to determine antifungal efficacy in vitro. This work describes for the first time the generation of reporter strains in a basal fungus that will allow real-time, non-invasive infection monitoring in insect and murine models, and the testing of antifungal efficacy by means other than survival.
Collapse
Affiliation(s)
- Ulrike Binder
- Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Schöpfstrasse 41, 6020 Innsbruck, Austria.
| | | | - Verena Naschberger
- Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Schöpfstrasse 41, 6020 Innsbruck, Austria.
| | - Ingo Bauer
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Francisco E Nicolas
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain.
| | - Johannes D Pallua
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria.
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Schöpfstrasse 41, 6020 Innsbruck, Austria.
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain.
| |
Collapse
|
28
|
Rosowski EE, Raffa N, Knox BP, Golenberg N, Keller NP, Huttenlocher A. Macrophages inhibit Aspergillus fumigatus germination and neutrophil-mediated fungal killing. PLoS Pathog 2018; 14:e1007229. [PMID: 30071103 PMCID: PMC6091969 DOI: 10.1371/journal.ppat.1007229] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/14/2018] [Accepted: 07/18/2018] [Indexed: 01/11/2023] Open
Abstract
In immunocompromised individuals, Aspergillus fumigatus causes invasive fungal disease that is often difficult to treat. Exactly how immune mechanisms control A. fumigatus in immunocompetent individuals remains unclear. Here, we use transparent zebrafish larvae to visualize and quantify neutrophil and macrophage behaviors in response to different A. fumigatus strains. We find that macrophages form dense clusters around spores, establishing a protective niche for fungal survival. Macrophages exert these protective effects by inhibiting fungal germination, thereby inhibiting subsequent neutrophil recruitment and neutrophil-mediated killing. Germination directly drives fungal clearance as faster-growing CEA10-derived strains are killed better in vivo than slower-growing Af293-derived strains. Additionally, a CEA10 pyrG-deficient strain with impaired germination is cleared less effectively by neutrophils. Host inflammatory activation through Myd88 is required for killing of a CEA10-derived strain but not sufficient for killing of an Af293-derived strain, further demonstrating the role of fungal-intrinsic differences in the ability of a host to clear an infection. Altogether, we describe a new role for macrophages in the persistence of A. fumigatus and highlight the ability of different A. fumigatus strains to adopt diverse modes of virulence. Immunocompromised patients are susceptible to invasive fungal infections, including aspergillosis. However, healthy humans inhale spores of the fungus Aspergillus fumigatus from the environment every day without becoming sick, and how the immune system clears this infection is still obscure. Additionally, there are many different strains of A. fumigatus, and whether the pathogenesis of these different strains varies is also largely unknown. To investigate these questions, we infected larval zebrafish with A. fumigatus spores derived from two genetically diverse strains. Larval zebrafish allow for visualization of fungal growth and innate immune cell behavior in live, intact animals. We find that differences in the rate of growth between strains directly affect fungal persistence. In both wild-type and macrophage-deficient zebrafish larvae, a fast-germinating strain is actually cleared better than a slow-germinating strain. This fungal killing is driven primarily by neutrophils while macrophages promote fungal persistence by inhibiting spore germination. Our experiments underline different mechanisms of virulence that pathogens can utilize—rapid growth versus dormancy and persistence—and inform future strategies for fighting fungal infections in susceptible immunocompromised patients.
Collapse
Affiliation(s)
- Emily E. Rosowski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nicholas Raffa
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Benjamin P. Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Netta Golenberg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
29
|
Effect of the Novel Antifungal Drug F901318 (Olorofim) on Growth and Viability of Aspergillus fumigatus. Antimicrob Agents Chemother 2018; 62:AAC.00231-18. [PMID: 29891595 DOI: 10.1128/aac.00231-18] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/02/2018] [Indexed: 11/20/2022] Open
Abstract
F901318 (olorofim) is a novel antifungal drug that is highly active against Aspergillus species. Belonging to a new class of antifungals called the orotomides, F901318 targets dihydroorotate dehydrogenase (DHODH) in the de novo pyrimidine biosynthesis pathway. In this study, the antifungal effects of F901318 against Aspergillus fumigatus were investigated. Live cell imaging revealed that, at a concentration of 0.1 μg/ml, F901318 completely inhibited germination, but conidia continued to expand by isotropic growth for >120 h. When this low F901318 concentration was applied to germlings or vegetative hyphae, their elongation was completely inhibited within 10 h. Staining with the fluorescent viability dye bis-(1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC) showed that prolonged exposure to F901318 (>24 h) led to vegetative hyphal swelling and a decrease in hyphal viability through cell lysis. The time-dependent killing of F901318 was further confirmed by measuring the fungal biomass and growth rate in liquid culture. The ability of hyphal growth to recover in drug-free medium after 24 h of exposure to F901318 was strongly impaired compared to that of the untreated control. A longer treatment of 48 h further improved the antifungal effect of F901318. Together, the results of this study indicate that F901318 initially has a fungistatic effect on Aspergillus isolates by inhibiting germination and growth, but prolonged exposure is fungicidal through hyphal swelling followed by cell lysis.
Collapse
|
30
|
Choera T, Zelante T, Romani L, Keller NP. A Multifaceted Role of Tryptophan Metabolism and Indoleamine 2,3-Dioxygenase Activity in Aspergillus fumigatus-Host Interactions. Front Immunol 2018; 8:1996. [PMID: 29403477 PMCID: PMC5786828 DOI: 10.3389/fimmu.2017.01996] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022] Open
Abstract
Aspergillus fumigatus is the most prevalent filamentous fungal pathogen of humans, causing either severe allergic bronchopulmonary aspergillosis or often fatal invasive pulmonary aspergillosis (IPA) in individuals with hyper- or hypo-immune deficiencies, respectively. Disease is primarily initiated upon the inhalation of the ubiquitous airborne conidia—the initial inoculum produced by A. fumigatus—which are complete developmental units with an ability to exploit diverse environments, ranging from agricultural composts to animal lungs. Upon infection, conidia initially rely on their own metabolic processes for survival in the host’s lungs, a nutritionally limiting environment. One such nutritional limitation is the availability of aromatic amino acids (AAAs) as animals lack the enzymes to synthesize tryptophan (Trp) and phenylalanine and only produce tyrosine from dietary phenylalanine. However, A. fumigatus produces all three AAAs through the shikimate–chorismate pathway, where they play a critical role in fungal growth and development and in yielding many downstream metabolites. The downstream metabolites of Trp in A. fumigatus include the immunomodulatory kynurenine derived from indoleamine 2,3-dioxygenase (IDO) and toxins such as fumiquinazolines, gliotoxin, and fumitremorgins. Host IDO activity and/or host/microbe-derived kynurenines are increasingly correlated with many Aspergillus diseases including IPA and infections of chronic granulomatous disease patients. In this review, we will describe the potential metabolic cross talk between the host and the pathogen, specifically focusing on Trp metabolism, the implications for therapeutics, and the recent studies on the coevolution of host and microbe IDO activation in regulating inflammation, while controlling infection.
Collapse
Affiliation(s)
- Tsokyi Choera
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
31
|
Krappmann S. How to invade a susceptible host: cellular aspects of aspergillosis. Curr Opin Microbiol 2016; 34:136-146. [PMID: 27816786 DOI: 10.1016/j.mib.2016.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023]
Abstract
Diseases caused by Aspergillus spp. and in particular A. fumigatus are manifold and affect individuals suffering from immune dysfunctions, among them immunocompromised ones. The determinants of whether the encounter of a susceptible host with infectious propagules of this filamentous saprobe results in infection have been characterized to a limited extent. Several cellular characteristics of A. fumigatus that have evolved in its natural environment contribute to its virulence, among them general traits as well as particular ones that affect interaction with the mammalian host. Among the latter, conidial constituents, cell wall components, secreted proteins as well as extrolites shape the tight interaction of A. fumigatus with the host milieu and also contribute to evasion from immune surveillance.
Collapse
Affiliation(s)
- Sven Krappmann
- Institute of Microbiology - Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Wasserturmstr. 3/5, D-91054 Erlangen, Germany.
| |
Collapse
|
32
|
Pereira Silva L, Alves de Castro P, Dos Reis TF, Paziani MH, Von Zeska Kress MR, Riaño-Pachón DM, Hagiwara D, Ries LNA, Brown NA, Goldman GH. Genome-wide transcriptome analysis of Aspergillus fumigatus exposed to osmotic stress reveals regulators of osmotic and cell wall stresses that are SakA HOG1 and MpkC dependent. Cell Microbiol 2016; 19. [PMID: 27706915 DOI: 10.1111/cmi.12681] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/19/2016] [Accepted: 10/04/2016] [Indexed: 12/24/2022]
Abstract
Invasive aspergillosis is predominantly caused by Aspergillus fumigatus, and adaptations to stresses experienced within the human host are a prerequisite for the survival and virulence strategies of the pathogen. The central signal transduction pathway operating during hyperosmotic stress is the high osmolarity glycerol mitogen-activated protein kinase cascade. A. fumigatus MpkC and SakA, orthologues of the Saccharomyces cerevisiae Hog1p, constitute the primary regulator of the hyperosmotic stress response. We compared A. fumigatus wild-type transcriptional response to osmotic stress with the ΔmpkC, ΔsakA, and ΔmpkC ΔsakA strains. Our results strongly indicate that MpkC and SakA have independent and collaborative functions during the transcriptional response to transient osmotic stress. We have identified and characterized null mutants for four A. fumigatus basic leucine zipper proteins transcription factors. The atfA and atfB have comparable expression levels with the wild-type in ΔmpkC but are repressed in ΔsakA and ΔmpkC ΔsakA post-osmotic stress. The atfC and atfD have reduced expression levels in all mutants post-osmotic stress. The atfA-D null mutants displayed several phenotypes related to osmotic, oxidative, and cell wall stresses. The ΔatfA and ΔatfB were shown to be avirulent and to have attenuated virulence, respectively, in both Galleria mellonella and a neutropenic murine model of invasive pulmonary aspergillosis.
Collapse
Affiliation(s)
- Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Mario Henrique Paziani
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Diego M Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), São Paulo, Brazil
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Laure N A Ries
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Neil Andrew Brown
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
33
|
F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc Natl Acad Sci U S A 2016; 113:12809-12814. [PMID: 27791100 DOI: 10.1073/pnas.1608304113] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is an important medical need for new antifungal agents with novel mechanisms of action to treat the increasing number of patients with life-threatening systemic fungal disease and to overcome the growing problem of resistance to current therapies. F901318, the leading representative of a novel class of drug, the orotomides, is an antifungal drug in clinical development that demonstrates excellent potency against a broad range of dimorphic and filamentous fungi. In vitro susceptibility testing of F901318 against more than 100 strains from the four main pathogenic Aspergillus spp. revealed minimal inhibitory concentrations of ≤0.06 µg/mL-greater potency than the leading antifungal classes. An investigation into the mechanism of action of F901318 found that it acts via inhibition of the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) in a fungal-specific manner. Homology modeling of Aspergillus fumigatus DHODH has identified a predicted binding mode of the inhibitor and important interacting amino acid residues. In a murine pulmonary model of aspergillosis, F901318 displays in vivo efficacy against a strain of A. fumigatus sensitive to the azole class of antifungals and a strain displaying an azole-resistant phenotype. F901318 is currently in late Phase 1 clinical trials, offering hope that the antifungal armamentarium can be expanded to include a class of agent with a mechanism of action distinct from currently marketed antifungals.
Collapse
|
34
|
Yang Y, Chen M, Li Z, Al-Hatmi AMS, de Hoog S, Pan W, Ye Q, Bo X, Li Z, Wang S, Wang J, Chen H, Liao W. Genome Sequencing and Comparative Genomics Analysis Revealed Pathogenic Potential in Penicillium capsulatum as a Novel Fungal Pathogen Belonging to Eurotiales. Front Microbiol 2016; 7:1541. [PMID: 27761131 PMCID: PMC5051111 DOI: 10.3389/fmicb.2016.01541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/14/2016] [Indexed: 01/31/2023] Open
Abstract
Penicillium capsulatum is a rare Penicillium species used in paper manufacturing, but recently it has been reported to cause invasive infection. To research the pathogenicity of the clinical Penicillium strain, we sequenced the genomes and transcriptomes of the clinical and environmental strains of P. capsulatum. Comparative analyses of these two P. capsulatum strains and close related strains belonging to Eurotiales were performed. The assembled genome sizes of P. capsulatum are approximately 34.4 Mbp in length and encode 11,080 predicted genes. The different isolates of P. capsulatum are highly similar, with the exception of several unique genes, INDELs or SNPs in the genes coding for glycosyl hydrolases, amino acid transporters and circumsporozoite protein. A phylogenomic analysis was performed based on the whole genome data of 38 strains belonging to Eurotiales. By comparing the whole genome sequences and the virulence-related genes from 20 important related species, including fungal pathogens and non-human pathogens belonging to Eurotiales, we found meaningful pathogenicity characteristics between P. capsulatum and its closely related species. Our research indicated that P. capsulatum may be a neglected opportunistic pathogen. This study is beneficial for mycologists, geneticists and epidemiologists to achieve a deeper understanding of the genetic basis of the role of P. capsulatum as a newly reported fungal pathogen.
Collapse
Affiliation(s)
- Ying Yang
- Beijing Institute of BiotechnologyBeijing, China; Beijing Institute of Radiation MedicineBeijing, China; National Institutes for Food and Drug ControlBeijing, China
| | - Min Chen
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Shanghai Changzheng HospitalShanghai, China; CBS-KNAW Fungal Biodiversity CentreUtrecht, Netherlands; Institute of Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Zongwei Li
- Center for Hospital Infection Control, Chinese PLA Institute for Disease Control and Prevention Beijing, China
| | - Abdullah M S Al-Hatmi
- CBS-KNAW Fungal Biodiversity CentreUtrecht, Netherlands; Institute of Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands; Directorate General of Health Services, Ibri Hospital, Ministry of HealthIbri, Oman
| | - Sybren de Hoog
- CBS-KNAW Fungal Biodiversity CentreUtrecht, Netherlands; Institute of Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital Shanghai, China
| | - Qiang Ye
- National Institutes for Food and Drug ControlBeijing, China; Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech ProductsBeijing, China
| | - Xiaochen Bo
- Beijing Institute of Radiation Medicine Beijing, China
| | - Zhen Li
- Beijing Institute of Radiation Medicine Beijing, China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine Beijing, China
| | - Junzhi Wang
- National Institutes for Food and Drug Control Beijing, China
| | - Huipeng Chen
- Beijing Institute of Biotechnology Beijing, China
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital Shanghai, China
| |
Collapse
|
35
|
Sasse A, Hamer SN, Amich J, Binder J, Krappmann S. Mutant characterization and in vivo conditional repression identify aromatic amino acid biosynthesis to be essential for Aspergillus fumigatus virulence. Virulence 2015; 7:56-62. [PMID: 26605426 PMCID: PMC4871646 DOI: 10.1080/21505594.2015.1109766] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022] Open
Abstract
Pathogenicity of the saprobe Aspergillus fumigatus strictly depends on nutrient acquisition during infection, as fungal growth determines colonisation and invasion of a susceptible host. Primary metabolism has to be considered as a valid target for antimycotic therapy, based on the fact that several fungal anabolic pathways are not conserved in higher eukaryotes. To test whether fungal proliferation during invasive aspergillosis relies on endogenous biosynthesis of aromatic amino acids, defined auxotrophic mutants of A. fumigatus were generated and assessed for their infectious capacities in neutropenic mice and found to be strongly attenuated in virulence. Moreover, essentiality of the complete biosynthetic pathway could be demonstrated, corroborated by conditional gene expression in infected animals and inhibitor studies. This brief report not only validates the aromatic amino acid biosynthesis pathway of A. fumigatus to be a promising antifungal target but furthermore demonstrates feasibility of conditional gene expression in a murine infection model of aspergillosis.
Collapse
Affiliation(s)
- Anna Sasse
- Research Center for Infectious Diseases; Julius-Maximilians-Universität Würzburg; Würzburg, Germany
| | - Stefanie N Hamer
- Research Center for Infectious Diseases; Julius-Maximilians-Universität Würzburg; Würzburg, Germany
- Present address: Institute of Plant Biology and Biotechnology; University of Münster; Müunster, Germany
| | - Jorge Amich
- Department of Medicine II and Center for Interdisciplinary Clinical Research; University Hospital Würzburg; Würzburg, Germany
| | - Jasmin Binder
- Mikrobiologisches Institut - Klinische Mikrobiologie: Immunologie und Hygiene; Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen, Germany
| | - Sven Krappmann
- Research Center for Infectious Diseases; Julius-Maximilians-Universität Würzburg; Würzburg, Germany
- Mikrobiologisches Institut - Klinische Mikrobiologie: Immunologie und Hygiene; Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen, Germany
- Medical Immunology Campus Erlangen; Friedrich-Alexander University Erlangen-Nürnberg; Erlangen, Germany
| |
Collapse
|
36
|
Development of the CRISPR/Cas9 System for Targeted Gene Disruption in Aspergillus fumigatus. EUKARYOTIC CELL 2015; 14:1073-80. [PMID: 26318395 DOI: 10.1128/ec.00107-15] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/20/2015] [Indexed: 12/26/2022]
Abstract
Low rates of homologous recombination have broadly encumbered genetic studies in the fungal pathogen Aspergillus fumigatus. The CRISPR/Cas9 system of bacteria has recently been developed for targeted mutagenesis of eukaryotic genomes with high efficiency and, importantly, through a mechanism independent of homologous repair machinery. As this new technology has not been developed for use in A. fumigatus, we sought to test its feasibility for targeted gene disruption in this organism. As a proof of principle, we first demonstrated that CRISPR/Cas9 can indeed be used for high-efficiency (25 to 53%) targeting of the A. fumigatus polyketide synthase gene (pksP), as evidenced by the generation of colorless (albino) mutants harboring the expected genomic alteration. We further demonstrated that the constitutive expression of the Cas9 nuclease by itself is not deleterious to A. fumigatus growth or virulence, thus making the CRISPR system compatible with studies involved in pathogenesis. Taken together, these data demonstrate that CRISPR can be utilized for loss-of-function studies in A. fumigatus and has the potential to bolster the genetic toolbox for this important pathogen.
Collapse
|
37
|
Irmer H, Tarazona S, Sasse C, Olbermann P, Loeffler J, Krappmann S, Conesa A, Braus GH. RNAseq analysis of Aspergillus fumigatus in blood reveals a just wait and see resting stage behavior. BMC Genomics 2015; 16:640. [PMID: 26311470 PMCID: PMC4551469 DOI: 10.1186/s12864-015-1853-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/17/2015] [Indexed: 12/20/2022] Open
Abstract
Background Invasive aspergillosis is started after germination of Aspergillus fumigatus conidia that are inhaled by susceptible individuals. Fungal hyphae can grow in the lung through the epithelial tissue and disseminate hematogenously to invade into other organs. Low fungaemia indicates that fungal elements do not reside in the bloodstream for long. Results We analyzed whether blood represents a hostile environment to which the physiology of A. fumigatus has to adapt. An in vitro model of A. fumigatus infection was established by incubating mycelium in blood. Our model allowed to discern the changes of the gene expression profile of A. fumigatus at various stages of the infection. The majority of described virulence factors that are connected to pulmonary infections appeared not to be activated during the blood phase. Three active processes were identified that presumably help the fungus to survive the blood environment in an advanced phase of the infection: iron homeostasis, secondary metabolism, and the formation of detoxifying enzymes. Conclusions We propose that A. fumigatus is hardly able to propagate in blood. After an early stage of sensing the environment, virtually all uptake mechanisms and energy-consuming metabolic pathways are shut-down. The fungus appears to adapt by trans-differentiation into a resting mycelial stage. This might reflect the harsh conditions in blood where A. fumigatus cannot take up sufficient nutrients to establish self-defense mechanisms combined with significant growth. Electronic supplementary material The online version of this article (doi10.1186/s12864-015-1853-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Henriette Irmer
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstraße 8, D-37077, Göttingen, Germany.
| | - Sonia Tarazona
- Genomics of Gene Expression Lab, Prince Felipe Research Center, Av. Eduardo Primo Yufera 3, 46012, Valencia, Spain.
| | - Christoph Sasse
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstraße 8, D-37077, Göttingen, Germany.
| | - Patrick Olbermann
- Research Center for Infectious Diseases, Julius-Maximilians University Würzburg, Würzburg, Germany.
| | - Jürgen Loeffler
- Laboratory WÜ4i, Medical Clinic and Policlinic II, University Clinic Würzburg, Würzburg, Germany.
| | - Sven Krappmann
- Research Center for Infectious Diseases, Julius-Maximilians University Würzburg, Würzburg, Germany. .,Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinik Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Ana Conesa
- Genomics of Gene Expression Lab, Prince Felipe Research Center, Av. Eduardo Primo Yufera 3, 46012, Valencia, Spain. .,Department of Microbiology and Cell Science, Institute for Food and Agricultura Sciences, University of Florida at Gainesville, Gainesville, FL, USA.
| | - Gerhard H Braus
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstraße 8, D-37077, Göttingen, Germany.
| |
Collapse
|
38
|
The Gβ-like protein CpcB is required for hyphal growth, conidiophore morphology and pathogenicity in Aspergillus fumigatus. Fungal Genet Biol 2015; 81:120-31. [DOI: 10.1016/j.fgb.2015.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 01/01/2023]
|
39
|
Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells. Int J Med Microbiol 2014; 304:626-36. [DOI: 10.1016/j.ijmm.2014.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/31/2014] [Accepted: 04/21/2014] [Indexed: 12/18/2022] Open
|
40
|
Jiang H, Shen Y, Liu W, Lu L. Deletion of the putative stretch-activated ion channel Mid1 is hypervirulent in Aspergillus fumigatus. Fungal Genet Biol 2014; 62:62-70. [DOI: 10.1016/j.fgb.2013.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/04/2013] [Accepted: 11/07/2013] [Indexed: 12/22/2022]
|
41
|
Chi MH, Craven KD. Oxygen and an extracellular phase transition independently control central regulatory genes and conidiogenesis in Aspergillus fumigatus. PLoS One 2013; 8:e74805. [PMID: 24040343 PMCID: PMC3764054 DOI: 10.1371/journal.pone.0074805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/06/2013] [Indexed: 11/18/2022] Open
Abstract
Conidiogenesis is the primary process for asexual reproduction in filamentous fungi. As the conidia resulting from the conidiogenesis process are primarily disseminated via air currents and/or water, an outstanding question has been how fungi recognize aerial environments suitable for conidial development. In this study, we documented the somewhat complex development of the conidia-bearing structures, termed conidiophores, from several Aspergillus species in a subsurface (gel-phase) layer of solid media. A subset of the isolates studied was able to develop conidiophores in a gel-phase environment, but exposure to the aeriform environment was required for the terminal developmental transition from phialide cells to conidia. The remaining Aspergilli could not initiate the conidiogenesis process until they were exposed to the aeriform environment. Our observations of conidiophore development in high or low oxygen conditions in both aeriform and gel-phase environments revealed that oxygen and the aeriform state are positive environmental factors for inducing conidiogenesis in most of the aspergilli tested in this study. Transcriptional analysis using A. fumigatus strain AF293 confined to either the aeriform or gel-phase environments revealed that expression of a key regulatory gene for conidiophore development (AfubrlA) is facilitated by oxygen while expression of another regulatory gene controlling conidia formation from phialides (AfuabaA) was repressed regardless of oxygen levels in the gel-embedded environment. Furthermore, by comparing the developmental behavior of conidiation-defective mutants lacking genes controlling various regulatory checkpoints throughout the conidiogenesis pathway, we propose that this aerial response by the fungus requires both oxygen and the phase transition (solid to aeriform), with these environmental signals integrating into the upstream regulatory pathway and central regulatory pathway of conidiogenesis, respectively. Our findings provide not only novel insight into how fungi respond to an aerial environment to trigger development for airborne conidia production but also the relationship between environmental factors and conidiogenesis regulation in aspergilli.
Collapse
Affiliation(s)
- Myoung-Hwan Chi
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma, United States of America
| | - Kelly D. Craven
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
42
|
Regulation of sulphur assimilation is essential for virulence and affects iron homeostasis of the human-pathogenic mould Aspergillus fumigatus. PLoS Pathog 2013; 9:e1003573. [PMID: 24009505 PMCID: PMC3757043 DOI: 10.1371/journal.ppat.1003573] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 07/08/2013] [Indexed: 11/19/2022] Open
Abstract
Sulphur is an essential element that all pathogens have to absorb from their surroundings in order to grow inside their infected host. Despite its importance, the relevance of sulphur assimilation in fungal virulence is largely unexplored. Here we report a role of the bZIP transcription factor MetR in sulphur assimilation and virulence of the human pathogen Aspergillus fumigatus. The MetR regulator is essential for growth on a variety of sulphur sources; remarkably, it is fundamental for assimilation of inorganic S-sources but dispensable for utilization of methionine. Accordingly, it strongly supports expression of genes directly related to inorganic sulphur assimilation but not of genes connected to methionine metabolism. On a broader scale, MetR orchestrates the comprehensive transcriptional adaptation to sulphur-starving conditions as demonstrated by digital gene expression analysis. Surprisingly, A. fumigatus is able to utilize volatile sulphur compounds produced by its methionine catabolism, a process that has not been described before and that is MetR-dependent. The A. fumigatus MetR transcriptional activator is important for virulence in both leukopenic mice and an alternative mini-host model of aspergillosis, as it was essential for the development of pulmonary aspergillosis and supported the systemic dissemination of the fungus. MetR action under sulphur-starving conditions is further required for proper iron regulation, which links regulation of sulphur metabolism to iron homeostasis and demonstrates an unprecedented regulatory crosstalk. Taken together, this study provides evidence that regulation of sulphur assimilation is not only crucial for A. fumigatus virulence but also affects the balance of iron in this prime opportunistic pathogen.
Collapse
|
43
|
Wiedner SD, Ansong C, Webb-Robertson BJ, Pederson LM, Fortuin S, Hofstad BA, Shukla AK, Panisko EA, Smith RD, Wright AT. Disparate proteome responses of pathogenic and nonpathogenic aspergilli to human serum measured by activity-based protein profiling (ABPP). Mol Cell Proteomics 2013; 12:1791-805. [PMID: 23599423 DOI: 10.1074/mcp.m112.026534] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aspergillus fumigatus is the primary pathogen causing the devastating pulmonary disease Invasive Aspergillosis in immunocompromised individuals. There is high genomic synteny between A. fumigatus and closely related rarely pathogenic Neosartorya fischeri and Aspergillus clavatus genomes. We applied activity-based protein profiling to compare unique or overexpressed activity-based probe-reactive proteins of all three fungi over time in minimal media growth and in response to human serum. We found 360 probe-reactive proteins exclusive to A. fumigatus, including known virulence associated proteins, and 13 proteins associated with stress response exclusive to A. fumigatus culture in serum. Though the fungi are highly orthologous, A. fumigatus has a significantly greater number of ABP-reactive proteins across varied biological process. Only 50% of expected orthologs of measured A. fumigatus reactive proteins were observed in N. fischeri and A. clavatus. Activity-based protein profiling identified a number of processes that were induced by human serum in A. fumigatus relative to N. fischeri and A. clavatus. These included actin organization and assembly, transport, and fatty acid, cell membrane, and cell wall synthesis. Additionally, signaling proteins regulating vegetative growth, conidiation, and cell wall integrity, required for appropriate cellular response to external stimuli, had higher activity-based probe-protein reaction over time in A. fumigatus and N. fisheri, but not in A. clavatus. Together, we show that measured proteins and physiological processes identified solely or significantly over-represented in A. fumigatus reveal a unique adaptive response to human protein not found in closely related, but rarely pathogenic aspergilli. These unique activity-based probe-protein responses to culture condition may reveal how A. fumigatus initiates pulmonary invasion leading to Invasive Aspergillosis.
Collapse
Affiliation(s)
- Susan D Wiedner
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Proteome Analysis of the Two-Component SalK/SalR System in Epidemic Streptococcus suis Serotype 2. Curr Microbiol 2013; 67:118-22. [DOI: 10.1007/s00284-013-0343-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 02/12/2013] [Indexed: 11/26/2022]
|
45
|
Palmer JM, Bok JW, Lee S, Dagenais TRT, Andes DR, Kontoyiannis DP, Keller NP. Loss of CclA, required for histone 3 lysine 4 methylation, decreases growth but increases secondary metabolite production in Aspergillus fumigatus. PeerJ 2013; 1:e4. [PMID: 23638376 PMCID: PMC3629006 DOI: 10.7717/peerj.4] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/04/2012] [Indexed: 12/13/2022] Open
Abstract
Secondary metabolite (SM) production in filamentous fungi is mechanistically associated with chromatin remodeling of specific SM clusters. One locus recently shown to be involved in SM suppression in Aspergillus nidulans was CclA, a member of the histone 3 lysine 4 methylating COMPASS complex. Here we examine loss of CclA and a putative H3K4 demethylase, HdmA, in the human pathogen Aspergillus fumigatus. Although deletion of hdmA showed no phenotype under the conditions tested, the cclA deletant was deficient in tri- and di-methylation of H3K4 and yielded a slowly growing strain that was rich in the production of several SMs, including gliotoxin. Similar to deletion of other chromatin modifying enzymes, ΔcclA was sensitive to 6-azauracil indicating a defect in transcriptional elongation. Despite the poor growth, the ΔcclA mutant had wild-type pathogenicity in a murine model and the Toll-deficient Drosophila model of invasive aspergillosis. These data indicate that tri- and di-methylation of H3K4 is involved in the regulation of several secondary metabolites in A. fumigatus, however does not contribute to pathogenicity under the conditions tested.
Collapse
Affiliation(s)
- Jonathan M Palmer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Seul Lee
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Taylor R T Dagenais
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - David R Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Dimitrios P Kontoyiannis
- Department of Infectious Disease, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
46
|
Rizzetto L, Giovannini G, Bromley M, Bowyer P, Romani L, Cavalieri D. Strain dependent variation of immune responses to A. fumigatus: definition of pathogenic species. PLoS One 2013; 8:e56651. [PMID: 23441211 PMCID: PMC3575482 DOI: 10.1371/journal.pone.0056651] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/11/2013] [Indexed: 11/19/2022] Open
Abstract
For over a century microbiologists and immunologist have categorized microorganisms as pathogenic or non-pathogenic species or genera. This definition, clearly relevant at the strain and species level for most bacteria, where differences in virulence between strains of a particular species are well known, has never been probed at the strain level in fungal species. Here, we tested the immune reactivity and the pathogenic potential of a collection of strains from Aspergillus spp, a fungus that is generally considered pathogenic in immuno-compromised hosts. Our results show a wide strain-dependent variation of the immune response elicited indicating that different isolates possess diverse virulence and infectivity. Thus, the definition of markers of inflammation or pathogenicity cannot be generalized. The profound understanding of the molecular mechanisms subtending the different immune responses will result solely from the comparative study of strains with extremely diverse properties.
Collapse
Affiliation(s)
- Lisa Rizzetto
- Department of Neuroscience, Pharmacology and Child’s Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Gloria Giovannini
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Michael Bromley
- National Aspergillosis Centre and Mycology Reference Centre, University Hospital of South Manchester, University of Manchester, Manchester, United Kingdom
- School of Translational Medicine, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Paul Bowyer
- National Aspergillosis Centre and Mycology Reference Centre, University Hospital of South Manchester, University of Manchester, Manchester, United Kingdom
- School of Translational Medicine, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Luigina Romani
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Duccio Cavalieri
- Department of Neuroscience, Pharmacology and Child’s Health (NEUROFARBA), University of Florence, Florence, Italy
- Innovation and Research Center, Edmund Mach Fondation, San Michele all’Adige (TN), Italy
- * E-mail:
| |
Collapse
|
47
|
Amich J, Krappmann S. Deciphering metabolic traits of the fungal pathogen Aspergillus fumigatus: redundancy vs. essentiality. Front Microbiol 2012; 3:414. [PMID: 23264772 PMCID: PMC3525513 DOI: 10.3389/fmicb.2012.00414] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/15/2012] [Indexed: 11/13/2022] Open
Abstract
Incidence rates of infections caused by environmental opportunistic fungi have risen over recent decades. Aspergillus species have emerged as serious threat for the immunecompromised, and detailed knowledge about virulence-determining traits is crucial for drug target identification. As a prime saprobe, A. fumigatus has evolved to efficiently adapt to various stresses and to sustain nutritional supply by osmotrophy, which is characterized by extracellular substrate digestion followed by efficient uptake of breakdown products that are then fed into the fungal primary metabolism. These intrinsic metabolic features are believed to be related with its virulence ability. The plethora of genes that encode underlying effectors has hampered their in-depth analysis with respect to pathogenesis. Recent developments in Aspergillus molecular biology allow conditional gene expression or comprehensive targeting of gene families to cope with redundancy. Furthermore, identification of essential genes that are intrinsically connected to virulence opens accurate perspectives for novel targets in antifungal therapy.
Collapse
Affiliation(s)
- Jorge Amich
- Research Center for Infectious Diseases, Julius-Maximilians-Universität Würzburg Würzburg, Germany
| | | |
Collapse
|
48
|
Dsc orthologs are required for hypoxia adaptation, triazole drug responses, and fungal virulence in Aspergillus fumigatus. EUKARYOTIC CELL 2012; 11:1557-67. [PMID: 23104569 DOI: 10.1128/ec.00252-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hypoxia is an environmental stress encountered by Aspergillus fumigatus during invasive pulmonary aspergillosis (IPA). The ability of this mold to adapt to hypoxia is important for fungal virulence and genetically regulated in part by the sterol regulatory element binding protein (SREBP) SrbA. SrbA is required for fungal growth in the murine lung and to ultimately cause lethal disease in murine models of IPA. Here we identified and partially characterized four genes (dscA, dscB, dscC, and dscD, here referred to as dscA-D) with previously unknown functions in A. fumigatus that are orthologs of the Schizosaccharomyces pombe genes dsc1, dsc2, dsc3, and dsc4 (dsc1-4), which encode a Golgi E3 ligase complex critical for SREBP activation by proteolytic cleavage. A. fumigatus null dscA-D mutants displayed remarkable defects in hypoxic growth and increased susceptibility to triazole antifungal drugs. Consistent with the confirmed role of these genes in S. pombe, both ΔdscA and ΔdscC resulted in reduced cleavage of the SrbA precursor protein in A. fumigatus. Inoculation of corticosteroid immunosuppressed mice with ΔdscA and ΔdscC strains revealed that these genes are critical for A. fumigatus virulence. Reintroduction of SrbA amino acids 1 to 425, encompassing the N terminus DNA binding domain, into the ΔdscA strain was able to partially restore virulence, further supporting a mechanistic link between DscA and SrbA function. Thus, we have shown for the first time the importance of a previously uncharacterized group of genes in A. fumigatus that mediate hypoxia adaptation, fungal virulence, and triazole drug susceptibility and that are likely linked to regulation of SrbA function.
Collapse
|
49
|
Use of uridine auxotrophy (ura3) for markerless transformation of the mycoinsecticide Beauveria bassiana. Appl Microbiol Biotechnol 2012; 97:3017-25. [DOI: 10.1007/s00253-012-4426-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 08/31/2012] [Accepted: 09/05/2012] [Indexed: 12/21/2022]
|
50
|
Gene disruption in Aspergillus fumigatus using a PCR-based strategy and in vivo recombination in yeast. Methods Mol Biol 2012; 845:99-118. [PMID: 22328370 DOI: 10.1007/978-1-61779-539-8_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Aspergillus fumigatus is a ubiquitous, filamentous fungal saprophyte and is the causative agent of the vast majority of aspergillosis in that invasive aspergillosis is the life-threatening form of infection by this fungus. The study of gene function using null mutants in this organism can be achieved through DNA-mediated transformation with an engineered deletion cassette containing about 2 kb of the 5'- and 3'-flanking region of the target gene and a selectable marker. Here, we describe the use of a PCR-based strategy and "in vivo" recombination in Saccharomyces cerevisiae to produce gene deletion cassettes for A. fumigatus, using an auxotrophic marker for gene replacement. This protocol produces highly effective deletion cassettes and permits the rapid disruption of genes identified in the recently available A. fumigatus genome.
Collapse
|