1
|
Muriuki R, Ndichu M, Githigia S, Svitek N. Novel CRISPR-Cas-powered pen-side test for East Coast fever. Int J Parasitol 2024; 54:507-521. [PMID: 38677399 DOI: 10.1016/j.ijpara.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/04/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Theileria parvacauses East Coast fever (ECF), one of the most important and lethal tick-borne diseases of cattle in sub-Saharan Africa. ECF is a considerable burden to the livestock industry, causing annual losses exceeding US $300 million. Currently, diagnosis of T. parva infections relies mainly on clinical signs, serology, and microscopic identification of parasites in either blood or lymph fluid samples. However, some of these tests might not indicate ongoing infection and they all lack the sensitivity to detect low-level infections. Molecular tests such as nested and quantitative PCR assays offer high sensitivity for detection of T. parva. However, these tests remain highly complex technologies that are impractical to use in resource-limited settings where economic losses due to the disease have the most significant impact. A field-deployable, point-of-care test will be of significant value in the treatment and control of ECF in endemic areas. For this purpose, we have developed a CRISPR-Cas12a-based pen-side tool that can sensitively and specifically detect T. parva based on the p104 gene. We describe a streamlined, field-applicable diagnostic tool comprising a 20 min recombinase polymerase amplification (RPA) reaction followed by a 60 min CRISPR-Cas12a reaction using a FAM/Biotin lateral flow strip readout. We tested two different RPA primer pairs and four different CRISPR-RNAs (crRNAs). The p104-based assay displayed high sensitivity, detecting as low as one infected lymphocyte per three microliters of blood and universally detecting eight different T. parva strains without detecting DNA from other Theileria spp. such as Theileria mutans and Theileria lestoquardi. This work opens the way for a field-applicable diagnostic tool for the sensitive point-of-care early diagnosis of T. parva infections in cattle.
Collapse
Affiliation(s)
- Robert Muriuki
- University of Nairobi, Faculty of Veterinary Medicine, Department of Veterinary Pathology and Parasitology P.O. Box 30197, Nairobi, Kenya; International Livestock Research Institute (ILRI), Animal and Human Health Program, P.O. Box 30709, Nairobi, Kenya
| | - Maingi Ndichu
- University of Nairobi, Faculty of Veterinary Medicine, Department of Veterinary Pathology and Parasitology P.O. Box 30197, Nairobi, Kenya
| | - Samuel Githigia
- University of Nairobi, Faculty of Veterinary Medicine, Department of Veterinary Pathology and Parasitology P.O. Box 30197, Nairobi, Kenya
| | - Nicholas Svitek
- International Livestock Research Institute (ILRI), Animal and Human Health Program, P.O. Box 30709, Nairobi, Kenya.
| |
Collapse
|
2
|
Choopa CN, Muleya W, Fandamu P, Mukolwe LD, Sibeko-Matjila KP. p67 gene alleles sequence analysis reveals Theileria parva parasites associated with East Coast fever and Corridor disease in buffalo from Zambia. Vet Parasitol 2024; 330:110240. [PMID: 38959671 DOI: 10.1016/j.vetpar.2024.110240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Theileriosis caused by Theileria parva infections is responsible for high cattle mortalities in Zambia. Although infected buffalo are a risk to cattle, the characterization of T. parva parasites occurring in this host in Zambia has not been reported. Furthermore, considering the advances in the development of a p67 subunit vaccine, the knowledge of p67 genetic and antigenic diversity in both cattle and buffalo associated T. parva is crucial. Therefore, blood samples from buffalo (n=43) from Central, Eastern and Southern provinces, and cattle (n=834) from Central, Copperbelt, Eastern, Lusaka, and Southern provinces, were tested for T. parva infection and the parasites characterized by sequencing the gene encoding the p67 antigen. About 76.7 % of buffalo and 19.3 % of cattle samples were PCR positive for T. parva. Three of the four known p67 allele types (1, 2 and 3) were identified in parasites from buffalo, of which two (allele types 2 and 3) are associated with T. parva parasites responsible for Corridor disease. Only allele type 1, associated with East Coast fever, was identified from cattle samples, consistent with previous reports from Zambia. Phylogenetic analysis revealed segregation between allele type 1 sequences from cattle and buffalo samples as they grouped separately within the same sub-clade. The high occurrence of T. parva infection in buffalo samples investigated demonstrates the risk of Corridor disease infection, or even outbreaks, should naïve cattle co-graze with infected buffalo in the presence of the tick vector. In view of a subunit vaccine, the antigenic diversity in buffalo associated T. parva should be considered to ensure broad protection. The current disease control measures in Zambia may require re-evaluation to ensure that cattle are protected against buffalo-derived T. parva infections. Parasite stocks used in 'infection and treatment' immunization in Zambia, have not been evaluated for protection against buffalo-derived T. parva parasites currently circulating in the buffalo population.
Collapse
Affiliation(s)
- Chimvwele N Choopa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa; Central Veterinary Research Institute, Department of Veterinary Services, Ministry of Fisheries and Livestock, Lusaka 10101, Zambia
| | - Walter Muleya
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Paul Fandamu
- Department of Veterinary Services, Ministry of Fisheries and Livestock, Lusaka 50060, Zambia
| | - Lubembe D Mukolwe
- Department of Veterinary Pathology, Microbiology & Parasitology, Faculty of Veterinary Medicine and Surgery, Egerton University, Egerton, Kenya
| | - Kgomotso P Sibeko-Matjila
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa.
| |
Collapse
|
3
|
Muleya W, Atuhaire DK, Mupila Z, Mbao V, Mayembe P, Kalenga S, Fandamu P, Namangala B, Salt J, Musoke AJ. Sequence Diversity of Tp1 and Tp2 Antigens and Population Genetic Analysis of Theileria parva in Unvaccinated Cattle in Zambia's Chongwe and Chisamba Districts. Pathogens 2022; 11:114. [PMID: 35215058 PMCID: PMC8879479 DOI: 10.3390/pathogens11020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 12/10/2022] Open
Abstract
East Coast Fever (ECF), caused by Theileria parva, is a major constraint to improved livestock keeping in east and central Africa, including Zambia. To understand the dynamics and determine the candidates for immunization in Zambia's Chongwe and Chisamba districts, a combination of Tp1 and Tp2 gene sequencing and microsatellite analysis using nine markers was conducted from which an abundance of Muguga, Kiambu, Serengeti and Katete epitopes in the field samples was obtained. Phylogenetic analysis showed six (Tp1) and three (Tp2) clusters with an absence of geographical origin clustering. The majority of haplotypes were related to Muguga, Kiambu, Serengeti and Katete, and only a few were related to Chitongo. Both antigens showed purifying selection with an absence of positive selection sites. Furthermore, low to moderate genetic differentiation was observed among and within the populations, and when vaccine stocks were compared with field samples, Chongwe samples showed more similarity to Katete and less to Chitongo, while Chisamba samples showed similarity to both Katete and Chitongo and not to Muguga, Kiambu or Serengeti. We conclude that the use of Katete stock for immunization trials in both Chongwe and Chisamba districts might produce desirable protection against ECF.
Collapse
Affiliation(s)
- Walter Muleya
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (W.M.); (Z.M.)
| | | | - Zachariah Mupila
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (W.M.); (Z.M.)
| | - Victor Mbao
- Eastern and Southern Africa Regional Office, International Development Research Centre, Nairobi 00200, Kenya;
| | - Purity Mayembe
- Department of Veterinary Services, Ministry of Fisheries and Livestock, Lusaka 50060, Zambia; (P.M.); (S.K.); (P.F.)
| | - Sydney Kalenga
- Department of Veterinary Services, Ministry of Fisheries and Livestock, Lusaka 50060, Zambia; (P.M.); (S.K.); (P.F.)
| | - Paul Fandamu
- Department of Veterinary Services, Ministry of Fisheries and Livestock, Lusaka 50060, Zambia; (P.M.); (S.K.); (P.F.)
| | - Boniface Namangala
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia;
| | - Jeremy Salt
- Global Alliance for Livestock Veterinary Medicines, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK;
| | - Antony Jim Musoke
- LMK Medical Laboratories and Consultancies, Kampala P.O. Box 33686, Uganda;
| |
Collapse
|
4
|
Cook EAJ, Sitt T, Poole EJ, Ndambuki G, Mwaura S, Chepkwony MC, Latre de Late P, Miyunga AA, van Aardt R, Prettejohn G, Wragg D, Prendergast JGD, Morrison WI, Toye P. Clinical Evaluation of Corridor Disease in Bos indicus (Boran) Cattle Naturally Infected With Buffalo-Derived Theileria parva. Front Vet Sci 2021; 8:731238. [PMID: 34660767 PMCID: PMC8511504 DOI: 10.3389/fvets.2021.731238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Corridor disease (CD) is a fatal condition of cattle caused by buffalo-derived Theileria parva. Unlike the related condition, East Coast fever, which results from infection with cattle-derived T. parva, CD has not been extensively studied. We describe in detail the clinical and laboratory findings in cattle naturally infected with buffalo-derived T. parva. Forty-six cattle were exposed to buffalo-derived T. parva under field conditions at the Ol Pejeta Conservancy, Kenya, between 2013 and 2018. The first signs of disease observed in all animals were nasal discharge (mean day of onset was 9 days post-exposure), enlarged lymph nodes (10 days post-exposure), and pyrexia (13.7 days post-exposure). Coughing and labored breathing were observed in more than 50% of animals (14 days post-exposure). Less commonly observed signs, corneal edema (22%) and diarrhea (11%), were observed later in the disease progression (19 days post-exposure). All infections were considered clinically severe, and 42 animals succumbed to infection. The mean time to death across all studies was 18.4 days. The mean time from onset of clinical signs to death was 9 days and from pyrexia to death was 4.8 days, indicating a relatively short duration of clinical illness. There were significant relationships between days to death and the days to first temperature (chi2 = 4.00, p = 0.046), and days to peak temperature (chi2 = 25.81, p = 0.001), animals with earlier onset pyrexia died sooner. These clinical indicators may be useful for assessing the severity of disease in the future. All infections were confirmed by the presence of macroschizonts in lymph node biopsies (mean time to parasitosis was 11 days). Piroplasms were detected in the blood of two animals (4%) and 20 (43%) animals seroconverted. In this study, we demonstrate the successful approach to an experimental field study for CD in cattle. We also describe the clinical progression of CD in naturally infected cattle, including the onset and severity of clinical signs and pathology. Laboratory diagnoses based on examination of blood samples are unreliable, and alternatives may not be available to cattle keepers. The rapid development of CD requires recognition of the clinical signs, which may be useful for early diagnosis of the disease and effective intervention for affected animals.
Collapse
Affiliation(s)
- Elizabeth A. J. Cook
- Livestock Genetics, International Livestock Research Institute (ILRI), Nairobi, Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Insitute (ILRI) Kenya, Nairobi, Kenya
| | - Tatjana Sitt
- Livestock Genetics, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - E. Jane Poole
- Livestock Genetics, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Gideon Ndambuki
- Livestock Genetics, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Stephen Mwaura
- Livestock Genetics, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Maurine C. Chepkwony
- Livestock Genetics, International Livestock Research Institute (ILRI), Nairobi, Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Insitute (ILRI) Kenya, Nairobi, Kenya
| | - Perle Latre de Late
- Livestock Genetics, International Livestock Research Institute (ILRI), Nairobi, Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Insitute (ILRI) Kenya, Nairobi, Kenya
| | - Antoinette A. Miyunga
- Livestock Genetics, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | | | | | - David Wragg
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Easter Bush Campus, Roslin, United Kingdom
| | - James G. D. Prendergast
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Easter Bush Campus, Roslin, United Kingdom
| | - W. Ivan Morrison
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, United Kingdom
| | - Philip Toye
- Livestock Genetics, International Livestock Research Institute (ILRI), Nairobi, Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Insitute (ILRI) Kenya, Nairobi, Kenya
| |
Collapse
|
5
|
Maboko BB, Sibeko-Matjila KP, Pierneef R, Chan WY, Josemans A, Marumo RD, Mbizeni S, Latif AA, Mans BJ. South African Buffalo-Derived Theileria parva Is Distinct From Other Buffalo and Cattle-Derived T. parva. Front Genet 2021; 12:666096. [PMID: 34249088 PMCID: PMC8269612 DOI: 10.3389/fgene.2021.666096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Theileria parva is a protozoan parasite transmitted by the brown-eared ticks, Rhipicephalus appendiculatus and Rhipicephalus zambeziensis. Buffaloes are the parasite's ancestral host, with cattle being the most recent host. The parasite has two transmission modes namely, cattle-cattle and buffalo-cattle transmission. Cattle-cattle T. parva transmission causes East Coast fever (ECF) and January disease syndromes. Buffalo to cattle transmission causes Corridor disease. Knowledge on the genetic diversity of South African T. parva populations will assist in determining its origin, evolution and identify any cattle-cattle transmitted strains. To achieve this, genomic DNA of blood and in vitro culture material infected with South African isolates (8160, 8301, 8200, 9620, 9656, 9679, Johnston, KNP2, HL3, KNP102, 9574, and 9581) were extracted and paired-end whole genome sequencing using Illumina HiSeq 2500 was performed. East and southern African sample data (Chitongo Z2, Katete B2, Kiambu Z464/C12, Mandali Z22H10, Entebbe, Nyakizu, Katumba, Buffalo LAWR, and Buffalo Z5E5) was also added for comparative purposes. Data was analyzed using BWA and SAMtools variant calling with the T. parva Muguga genome sequence used as a reference. Buffalo-derived strains had higher genetic diversity, with twice the number of variants compared to cattle-derived strains, confirming that buffaloes are ancestral reservoir hosts of T. parva. Host specific SNPs, however, could not be identified among the selected 74 gene sequences. Phylogenetically, strains tended to cluster by host with South African buffalo-derived strains clustering with buffalo-derived strains. Among the buffalo-derived strains, South African strains were genetically divergent from other buffalo-derived strains indicating possible geographic sub-structuring. Geographic sub- structuring was also observed within South Africa strains. The knowledge generated from this study indicates that to date, ECF is not circulating in buffalo from South Africa. It also shows that T. parva has historically been present in buffalo from South Africa before the introduction of ECF and was not introduced into buffalo during the ECF epidemic.
Collapse
Affiliation(s)
- Boitumelo B Maboko
- Agricultural Research Council, Onderstepoort Veterinary Research, Pretoria, South Africa.,Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | | | - Rian Pierneef
- Agricultural Research Council, Biotechnology Platform, Pretoria, South Africa
| | - Wai Y Chan
- Agricultural Research Council, Biotechnology Platform, Pretoria, South Africa
| | - Antoinette Josemans
- Agricultural Research Council, Onderstepoort Veterinary Research, Pretoria, South Africa
| | - Ratselane D Marumo
- Agricultural Research Council, Onderstepoort Veterinary Research, Pretoria, South Africa
| | - Sikhumbuzo Mbizeni
- Agricultural Research Council, Onderstepoort Veterinary Research, Pretoria, South Africa.,Department of Agriculture and Animal Health, University of South Africa, Pretoria, South Africa
| | - Abdalla A Latif
- School of Life Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Ben J Mans
- Agricultural Research Council, Onderstepoort Veterinary Research, Pretoria, South Africa.,Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa.,Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| |
Collapse
|
6
|
Atuhaire DK, Muleya W, Mbao V, Niyongabo J, Nyabongo L, Nsanganiyumwami D, Salt J, Namangala B, Musoke AJ. Molecular characterization and population genetics of Theileria parva in Burundi's unvaccinated cattle: Towards the introduction of East Coast fever vaccine. PLoS One 2021; 16:e0251500. [PMID: 33999934 PMCID: PMC8128232 DOI: 10.1371/journal.pone.0251500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/27/2021] [Indexed: 11/18/2022] Open
Abstract
Theileria parva (T. parva) is a protozoan parasite that causes East Coast fever (ECF). The disease is endemic in Burundi and is a major constraint to livestock development. In this study, the parasite prevalence in cattle in six regions namely; Northern, Southern, Eastern, Western, Central and North Eastern was estimated. Furthermore, the sequence diversity of p67, Tp1 and Tp2 genes was assessed coupled with the population genetic structure of T. parva using five satellite markers. The prevalence of ECF was 30% (332/1109) on microscopy, 60% (860/1431) on ELISA and 79% (158/200) on p104 gene PCR. Phylogenetic analysis of p67 gene revealed that only allele 1 was present in the field samples. Furthermore, phylogenetic analysis of Tp1 and Tp2 showed that the majority of samples clustered with Muguga, Kiambu and Serengeti and shared similar epitopes. On the other hand, genetic analysis revealed that field samples shared only two alleles with Muguga Cocktail. The populations from the different regions indicated low genetic differentiation (FST = 0.047) coupled with linkage disequilibrium and non-panmixia. A low to moderate genetic differentiation (FST = 0.065) was also observed between samples and Muguga cocktail. In conclusion, the data presented revealed the presence of a parasite population that shared similar epitopes with Muguga Cocktail and was moderately genetically differentiated from it. Thus, use of Muguga Cocktail vaccine in Burundi is likely to confer protection against T. parva in field challenge trials.
Collapse
Affiliation(s)
| | - Walter Muleya
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
- * E-mail:
| | - Victor Mbao
- International Development Research Centre, Eastern and Southern Africa Regional Office, Nairobi, Kenya
| | - Joseph Niyongabo
- National Veterinary Research Laboratory, Directorate of Animal Health, Bujumbura, Burundi
| | - Lionel Nyabongo
- National Veterinary Research Laboratory, Directorate of Animal Health, Bujumbura, Burundi
| | | | - Jeremy Salt
- Global Alliance for Livestock Veterinary Medicines, Pentlands Science Park, Bush Loan, Penicuik Edinburgh, Scotland
| | - Boniface Namangala
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | | |
Collapse
|
7
|
Byaruhanga C, Akure PC, Lubembe DM, Sibeko-Matjila K, Troskie M, Oosthuizen MC, Stoltsz H. Molecular detection and characterisation of protozoan and rickettsial pathogens in ticks from cattle in the pastoral area of Karamoja, Uganda. Ticks Tick Borne Dis 2021; 12:101709. [PMID: 33743472 DOI: 10.1016/j.ttbdis.2021.101709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/13/2021] [Accepted: 03/09/2021] [Indexed: 11/26/2022]
Abstract
Ticks and tick-borne diseases (TBDs) significantly affect cattle production and the livelihoods of communities in pastoralist areas. Data on protozoan and rickettsial pathogens in ticks infesting cattle in Uganda is scanty; while it is an indicator of the likelihood of disease transmission and occurrence. A cross-sectional study was conducted amongst cattle in the Karamoja Region, northeastern Uganda, from July through September 2017, to determine the tick species diversity, identify protozoan and rickettsial pathogens in the ticks, and characterise pathogenic species by sequence and phylogenetic analyses. About 50 % of the ticks detected from each predilection site on each animal were collected from 100 purposively-selected cattle from 20 randomly-selected herds. Twelve tick species belonging to the genera Amblyomma, Rhipicephalus and Hyalomma were identified, the most abundant being Amblyomma lepidum (93.9 %), followed by Amblyomma variegatum (2.0 %) and Rhipicephalus evertsi evertsi (1.0 %). Tick species that have not been reported in recent studies amongst cattle in Uganda were found, namely Rhipicephalus pravus, Rhipicephalus praetextatus and Rhipicephalus turanicus. The ticks were grouped into 40 pools, by species and location, and the reverse line blot (RLB) hybridisation assay was used to detect pathogens from the ticks. The most frequently detected tick-borne parasites were Theileria mutans, Theileria velifera and Theileria parva, each observed in 25 % (10/40) of the tick pools. Tick-borne pathogens, namely Babesia rossi, Babesia microti and Theileria sp. (sable) that are not common to, or not known to infect, cattle were identified from ticks. The gene encoding Ehrlichia ruminantium pCS20 region, the Ehrlichia and Anaplasma 16S rRNA gene, and T. parva p67 sporozoite antigen gene were amplified, cloned and sequenced. Seven novel E. ruminantium pCS20 variants were identified, and these grouped into two separate clusters with sequences from other parts of Africa and Asia. The T. parva p67 sequences were of the allele type 1, and parasites possessing this allele type are commonly associated with East Coast fever in eastern Africa. Analysis of the Ehrlichia and Anaplasma 16S rRNA gene sequences showed that they were closely related to Rickettsia africae and to a new Ehrlichia species variant recently found in China. Our R. africae 16S rRNA sequences grouped with R. africae isolates from Nigeria, Egypt and Benin. The information on tick species diversity and pathogens in the various tick species provides an indicator of potential transmission amongst cattle populations, and to humans, and can be useful to estimate disease risk and in control strategies.
Collapse
Affiliation(s)
- Charles Byaruhanga
- Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa; National Agricultural Research Organisation, P.O. Box 259, Entebbe, Uganda.
| | - Patience C Akure
- Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Donald M Lubembe
- Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa; Department of Veterinary Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine and Surgery, Egerton University, P.O. Box 536, Egerton, 20115, Kenya
| | - Kgomotso Sibeko-Matjila
- Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Milana Troskie
- Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Marinda C Oosthuizen
- Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Hein Stoltsz
- Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| |
Collapse
|
8
|
Mwamuye MM, Obara I, Elati K, Odongo D, Bakheit MA, Jongejan F, Nijhof AM. Unique Mitochondrial Single Nucleotide Polymorphisms Demonstrate Resolution Potential to Discriminate Theileria parva Vaccine and Buffalo-Derived Strains. Life (Basel) 2020; 10:life10120334. [PMID: 33302571 PMCID: PMC7764068 DOI: 10.3390/life10120334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
Distinct pathogenic and epidemiological features underlie different Theileria parva strains resulting in different clinical manifestations of East Coast Fever and Corridor Disease in susceptible cattle. Unclear delineation of these strains limits the control of these diseases in endemic areas. Hence, an accurate characterization of strains can improve the treatment and prevention approaches as well as investigate their origin. Here, we describe a set of single nucleotide polymorphisms (SNPs) based on 13 near-complete mitogenomes of T. parva strains originating from East and Southern Africa, including the live vaccine stock strains. We identified 11 SNPs that are non-preferentially distributed within the coding and non-coding regions, all of which are synonymous except for two within the cytochrome b gene of buffalo-derived strains. Our analysis ascertains haplotype-specific mutations that segregate the different vaccine and the buffalo-derived strains except T. parva-Muguga and Serengeti-transformed strains suggesting a shared lineage between the latter two vaccine strains. Phylogenetic analyses including the mitogenomes of other Theileria species: T. annulata, T. taurotragi, and T. lestoquardi, with the latter two sequenced in this study for the first time, were congruent with nuclear-encoded genes. Importantly, we describe seven T. parva haplotypes characterized by synonymous SNPs and parsimony-informative characters with the other three transforming species mitogenomes. We anticipate that tracking T. parva mitochondrial haplotypes from this study will provide insight into the parasite’s epidemiological dynamics and underpin current control efforts.
Collapse
Affiliation(s)
- Micky M. Mwamuye
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (I.O.); (K.E.)
- Correspondence: (M.M.M.); (A.M.N.); Tel.: +49-30-838-62326 (A.M.N.)
| | - Isaiah Obara
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (I.O.); (K.E.)
| | - Khawla Elati
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (I.O.); (K.E.)
| | - David Odongo
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100 Nairobi, Kenya;
| | - Mohammed A. Bakheit
- Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, P.O. Box 321-11115 Khartoum, Sudan;
| | - Frans Jongejan
- Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, 0110 Onderstepoort, South Africa;
| | - Ard M. Nijhof
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (I.O.); (K.E.)
- Correspondence: (M.M.M.); (A.M.N.); Tel.: +49-30-838-62326 (A.M.N.)
| |
Collapse
|
9
|
Squarre D, Nakamura Y, Hayashida K, Kawai N, Chambaro H, Namangala B, Sugimoto C, Yamagishi J. Investigation of the piroplasm diversity circulating in wildlife and cattle of the greater Kafue ecosystem, Zambia. Parasit Vectors 2020; 13:599. [PMID: 33256809 PMCID: PMC7708252 DOI: 10.1186/s13071-020-04475-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/05/2020] [Indexed: 11/17/2022] Open
Abstract
Background Piroplasms are vector-borne intracellular hemoprotozoan parasites that infect wildlife and livestock. Wildlife species are reservoir hosts to a diversity of piroplasms and play an important role in the circulation, maintenance and evolution of these parasites. The potential for likely spillover of both pathogenic and non-pathogenic piroplasm parasites from wildlife to livestock is underlined when a common ecological niche is shared in the presence of a competent vector. Method To investigate piroplasm diversity in wildlife and the cattle population of the greater Kafue ecosystem, we utilized PCR to amplify the 18S rRNA V4 hyper-variable region and meta-barcoding strategy using the Illumina MiSeq sequencing platform and amplicon sequence variant (ASV)-based bioinformatics pipeline to generate high-resolution data that discriminate sequences down to a single nucleotide difference. Results A parasite community of 45 ASVs corresponding to 23 species consisting of 4 genera of Babesia, Theileria, Hepatozoon and Colpodella, were identified in wildlife and the cattle population from the study area. Theileria species were detected in buffalo, impala, hartebeest, sable antelope, sitatunga, wild dog and cattle. In contrast, Babesia species were only observed in cattle and wild dog. Our results demonstrate possible spillover of these hemoprotozoan parasites from wildlife, especially buffalo, to the cattle population in the wildlife-livestock interface. Conclusion We demonstrated that the deep amplicon sequencing of the 18S rRNA V4 hyper-variable region for wildlife was informative. Our results illustrated the diversity of piroplasma and the specificity of their hosts. They led us to speculate a possible ecological cycle including transmission from wildlife to domestic animals in the greater Kafue ecosystem. Thus, this approach may contribute to the establishment of appropriate disease control strategies in wildlife-livestock interface areas.![]()
Collapse
Affiliation(s)
- David Squarre
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Wildlife Veterinary Unit, Department of National Parks and Wildlife, Chilanga, Zambia.,The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Yukiko Nakamura
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kyoko Hayashida
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Naoko Kawai
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Herman Chambaro
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Chilanga, Zambia
| | - Boniface Namangala
- Department of Paraclinical Studies, University of Zambia, Lusaka, Zambia
| | - Chihiro Sugimoto
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan. .,International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
10
|
Capture-based enrichment of Theileria parva DNA enables full genome assembly of first buffalo-derived strain and reveals exceptional intra-specific genetic diversity. PLoS Negl Trop Dis 2020; 14:e0008781. [PMID: 33119590 PMCID: PMC7654785 DOI: 10.1371/journal.pntd.0008781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/10/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Theileria parva is an economically important, intracellular, tick-transmitted parasite of cattle. A live vaccine against the parasite is effective against challenge from cattle-transmissible T. parva but not against genotypes originating from the African Cape buffalo, a major wildlife reservoir, prompting the need to characterize genome-wide variation within and between cattle- and buffalo-associated T. parva populations. Here, we describe a capture-based target enrichment approach that enables, for the first time, de novo assembly of nearly complete T. parva genomes derived from infected host cell lines. This approach has exceptionally high specificity and sensitivity and is successful for both cattle- and buffalo-derived T. parva parasites. De novo genome assemblies generated for cattle genotypes differ from the reference by ~54K single nucleotide polymorphisms (SNPs) throughout the 8.31 Mb genome, an average of 6.5 SNPs/kb. We report the first buffalo-derived T. parva genome, which is ~20 kb larger than the genome from the reference, cattle-derived, Muguga strain, and contains 25 new potential genes. The average non-synonymous nucleotide diversity (πN) per gene, between buffalo-derived T. parva and the Muguga strain, was 1.3%. This remarkably high level of genetic divergence is supported by an average Wright’s fixation index (FST), genome-wide, of 0.44, reflecting a degree of genetic differentiation between cattle- and buffalo-derived T. parva parasites more commonly seen between, rather than within, species. These findings present clear implications for vaccine development, further demonstrated by the ability to assemble nearly all known antigens in the buffalo-derived strain, which will be critical in design of next generation vaccines. The DNA capture approach used provides a clear advantage in specificity over alternative T. parva DNA enrichment methods used previously, such as those that utilize schizont purification, is less labor intensive, and enables in-depth comparative genomics in this apicomplexan parasite. An estimated 50 million cattle in sub-Saharan Africa are at risk of the deadly livestock disease East coast fever (ECF), caused by the parasite Theileria parva, which imposes tremendous economic hardship on smallholder farmers. An existing ECF vaccine protects against strains circulating among cattle, but not against T. parva derived from African Cape buffalo, its main wildlife carrier. Understanding this difference in protective efficacy requires characterization of the genetic diversity in T. parva strains associated with each mammalian host, a goal that has been hindered by the proliferation of T. parva in nucleated host cells, with much larger genomes. Here we adapted a sequence capture approach to target the whole parasite genome, enabling enrichment of parasite DNA over that of the host. Choices in protocol development resulted in nearly 100% parasite genome specificity and sensitivity, making this approach the most successful yet to generate T. parva genome sequence data in a high-throughput manner. The analyses uncovered a degree of genetic differentiation between cattle- and buffalo-derived genotypes that is akin to levels more commonly seen between species. This approach, which will enable an in-depth T. parva population genomics study from cattle and buffalo in the endemic regions, can easily be adapted to other intracellular pathogens.
Collapse
|
11
|
Variant analysis of the sporozoite surface antigen gene reveals that asymptomatic cattle from wildlife-livestock interface areas in northern Tanzania harbour buffalo-derived T. parva. Parasitol Res 2020; 119:3817-3828. [PMID: 33009946 PMCID: PMC7578158 DOI: 10.1007/s00436-020-06902-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/23/2020] [Indexed: 12/26/2022]
Abstract
Buffalo-derived Theileria parva can 'break through' the immunity induced by the infection and treatment vaccination method (ITM) in cattle. However, no such 'breakthroughs' have been reported in northern Tanzania where there has been long and widespread ITM use in pastoralist cattle, and the Cape buffalo (Syncerus caffer) is also present. We studied the exposure of vaccinated and unvaccinated cattle in northern Tanzania to buffalo-derived T. parva using p67 gene polymorphisms and compared this to its distribution in vaccinated cattle exposed to buffalo-derived T. parva in central Kenya, where vaccine 'breakthroughs' have been reported. Additionally, we analysed the CD8+ T cell target antigen Tp2 for positive selection. Our results showed that 10% of the p67 sequences from Tanzanian cattle (n = 39) had a buffalo type p67 (allele 4), an allele that is rare among East African isolates studied so far. The percentage of buffalo-derived p67 alleles observed in Kenyan cattle comprised 19% of the parasites (n = 36), with two different p67 alleles (2 and 3) of presumptive buffalo origin. The Tp2 protein was generally conserved with only three Tp2 variants from Tanzania (n = 33) and five from Kenya (n = 40). Two Tanzanian Tp2 variants and two Kenyan Tp2 variants were identical to variants present in the trivalent Muguga vaccine. Tp2 evolutionary analysis did not show evidence for positive selection within previously mapped epitope coding sites. The p67 data indicates that some ITM-vaccinated cattle are protected against disease induced by a buffalo-derived T. parva challenge in northern Tanzania and suggests that the parasite genotype may represent one factor explaining this.
Collapse
|
12
|
Mukolwe LD, Odongo DO, Byaruhanga C, Snyman LP, Sibeko-Matjila KP. Analysis of p67 allelic sequences reveals a subtype of allele type 1 unique to buffalo-derived Theileria parva parasites from southern Africa. PLoS One 2020; 15:e0231434. [PMID: 32598384 PMCID: PMC7323972 DOI: 10.1371/journal.pone.0231434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/13/2020] [Indexed: 11/18/2022] Open
Abstract
East Coast fever (ECF) and Corridor disease (CD) caused by cattle- and buffalo-derived T. parva respectively are the most economically important tick-borne diseases of cattle in the affected African countries. The p67 gene has been evaluated as a recombinant subunit vaccine against ECF, and for discrimination of T. parva parasites causing ECF and Corridor disease. The p67 allele type 1 was first identified in cattle-derived T. parva parasites from East Africa, where parasites possessing this allele type have been associated with ECF. Subsequent characterization of buffalo-derived T. parva parasites from South Africa where ECF was eradicated, revealed the presence of a similar allele type, raising concerns as to whether or not allele type 1 from parasites from the two regions is identical. A 900 bp central fragment of the gene encoding p67 was PCR amplified from T. parva DNA extracted from blood collected from cattle and buffalo in South Africa, Mozambique, Kenya, Tanzania and Uganda, followed by DNA sequence analysis. Four p67 allele types previously described were identified. A subtype of p67 allele type 1 was identified in parasites from clinical cases of CD and buffalo from southern Africa. Notably, p67 allele type 1 sequences from parasites associated with ECF in East Africa and CD in Kenya were identical. Analysis of two p67 B-cell epitopes (TpM12 and AR22.7) revealed amino acid substitutions in allele type 1 from buffalo-derived T. parva parasites from southern Africa. However, both epitopes were conserved in allele type 1 from cattle- and buffalo-derived T. parva parasites from East Africa. These findings reveal detection of a subtype of p67 allele type 1 associated with T. parva parasites transmissible from buffalo to cattle in southern Africa.
Collapse
Affiliation(s)
- Lubembe D. Mukolwe
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
- Department of Veterinary Pathology, Microbiology & Parasitology, Faculty of Veterinary Medicine and Surgery, Egerton University, Egerton, Kenya
- * E-mail:
| | - David O. Odongo
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Charles Byaruhanga
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
- National Agricultural Research Organization, Entebbe, Uganda
| | - Louwtjie P. Snyman
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
- Durban Natural Science Museum, Durban, South Africa
| | - Kgomotso P. Sibeko-Matjila
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
13
|
Atchou K, Ongus J, Machuka E, Juma J, Tiambo C, Djikeng A, Silva JC, Pelle R. Comparative Transcriptomics of the Bovine Apicomplexan Parasite Theileria parva Developmental Stages Reveals Massive Gene Expression Variation and Potential Vaccine Antigens. Front Vet Sci 2020; 7:287. [PMID: 32582776 PMCID: PMC7296165 DOI: 10.3389/fvets.2020.00287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/28/2020] [Indexed: 01/10/2023] Open
Abstract
Theileria parva is a protozoan parasite that causes East Coast fever (ECF), an economically important disease of cattle in Africa. It is transmitted mainly by the tick Rhipicephalus appendiculatus. Research efforts to develop a subunit vaccine based on parasite neutralizing antibodies and cytotoxic T-lymphocytes have met with limited success. The molecular mechanisms underlying T. parva life cycle stages in the tick vector and bovine host are poorly understood, thus limiting progress toward an effective and efficient control of ECF. Transcriptomics has been used to identify candidate vaccine antigens or markers associated with virulence and disease pathology. Therefore, characterization of gene expression throughout the parasite's life cycle should shed light on host-pathogen interactions in ECF and identify genes underlying differences in parasite stages as well as potential, novel therapeutic targets. Recently, the first gene expression profiling of T. parva was conducted for the sporoblast, sporozoite, and schizont stages. The sporozoite is infective to cattle, whereas the schizont is the major pathogenic form of the parasite. The schizont can differentiate into piroplasm, which is infective to the tick vector. The present study was designed to extend the T. parva gene expression profiling to the piroplasm stage with reference to the schizont. Pairwise comparison revealed that 3,279 of a possible 4,084 protein coding genes were differentially expressed, with 1,623 (49%) genes upregulated and 1,656 (51%) downregulated in the piroplasm relative to the schizont. In addition, over 200 genes were stage-specific. In general, there were more molecular functions, biological processes, subcellular localizations, and pathways significantly enriched in the piroplasm than in the schizont. Using known antigens as benchmarks, we identified several new potential vaccine antigens, including TP04_0076 and TP04_0640, which were highly immunogenic in naturally T. parva-infected cattle. All the candidate vaccine antigens identified have yet to be investigated for their capacity to induce protective immune response against ECF.
Collapse
Affiliation(s)
- Kodzo Atchou
- Institute for Basic Sciences, Technology and Innovation, Pan African University, Nairobi, Kenya.,Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI), Nairobi, Kenya
| | - Juliette Ongus
- Institute for Basic Sciences, Technology and Innovation, Pan African University, Nairobi, Kenya
| | - Eunice Machuka
- Institute for Basic Sciences, Technology and Innovation, Pan African University, Nairobi, Kenya.,Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI), Nairobi, Kenya
| | - John Juma
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI), Nairobi, Kenya
| | - Christian Tiambo
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI), Nairobi, Kenya
| | - Appolinaire Djikeng
- Centre for Tropical Livestock Genetics and Health, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Scotland, United Kingdom
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Roger Pelle
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI), Nairobi, Kenya
| |
Collapse
|
14
|
Theileria parva: a parasite of African buffalo, which has adapted to infect and undergo transmission in cattle. Int J Parasitol 2020; 50:403-412. [PMID: 32032592 PMCID: PMC7294229 DOI: 10.1016/j.ijpara.2019.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 01/03/2023]
Abstract
Theileria parva parasites show extensive genotypic diversity and undergo frequent genetic recombination during tick transmission. Theileria parva maintained in cattle is much less genotypically diverse than the buffalo-maintained population. Theileria parva transmitted from buffalo to cattle usually fails to differentiate to the tick-transmissible stages in cattle. These differences have resulted in the parasites in the two hosts being maintained largely as separate populations.
The tick-borne protozoan parasite Theileria parva causes an acute, often fatal disease in cattle throughout a large part of eastern and southern Africa. Infection of African buffalo (Syncerus caffer) is also widespread in this region but does not cause clinical disease in this species. This difference most likely reflects the evolutionary history of the parasites in these species, in that cattle were only introduced into Africa within the last 8000 years. In both hosts, T. parva establishes a carrier state, involving persistence of small numbers of parasites for many months following the acute phase of infection. This persistence is considered important for maintaining the parasite populations. Although cattle and buffalo parasites both produce severe disease when transmitted to cattle, the buffalo-derived parasites are usually not transmissible from infected cattle. Recent studies of the molecular and antigenic composition of T. parva, in addition to demonstrating heterogeneity in the populations in both host species, have revealed that infections in individual animals are genotypically mixed. The results of these studies have also shown that buffalo T. parva exhibit much greater genotypic diversity than the cattle population and indicate that cattle parasites represent a subpopulation of T. parva that has adapted to maintenance in cattle. The parasites in cattle and buffalo appear to be maintained largely as separate populations. This insight into the genotypic composition of T. parva populations has raised important questions on how host adaptation of the parasite has evolved and whether there is scope for further adaptation of buffalo-maintained populations to cattle.
Collapse
|
15
|
Sitt T, Henson S, Morrison WI, Toye P. Similar levels of diversity in the gene encoding the p67 sporozoite surface protein of Theileria parva are observed in blood samples from buffalo and cattle naturally infected from buffalo. Vet Parasitol 2019; 269:21-27. [PMID: 31079824 DOI: 10.1016/j.vetpar.2019.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 10/27/2022]
Abstract
Theileria parva is a tick-transmitted, apicomplexan protozoan found in buffalo (Syncerus caffer) and cattle in eastern, central and southern Africa. The parasite causes a fatal, lymphoproliferative disease in susceptible cattle. Previous studies have shown that the parasites in buffalo comprise a more heterogeneous population than those in cattle, which has led to the concept that the population of parasites circulating in cattle represents a restricted subpopulation of those in buffalo. The present study was undertaken to identify if and where this restriction may occur in cattle naturally infected with parasites from buffalo, by sequencing the T. parva p67 antigen gene from eight buffalo and 12 acutely infected cattle from the same endemic site in Kenya. From 103 sequences, we detected 44 different alleles. Nine alleles were found in both cattle and buffalo, and 17 and 18 found only in the cattle and buffalo populations respectively. Nucleotide and amino acid sequence analyses revealed a similar level of diversity of parasites in both hosts. Principal coordinates and phylogenetic tree analyses did not reveal any clustering associated with the host animals, and the number and degree of mixed T. parva infections was similar in the respective populations. The results suggest that any restriction in the ability of T. parva from buffalo to survive and be transmitted from cattle occurs after entry into and initial transformation of bovine lymphocytes.
Collapse
Affiliation(s)
- Tatjana Sitt
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, 00100, Kenya
| | - Sonal Henson
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, 00100, Kenya
| | - W Ivan Morrison
- The Roslin Institute, The University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| | - Philip Toye
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, 00100, Kenya.
| |
Collapse
|
16
|
Transcriptomics reveal potential vaccine antigens and a drastic increase of upregulated genes during Theileria parva development from arthropod to bovine infective stages. PLoS One 2018; 13:e0204047. [PMID: 30303978 PMCID: PMC6179218 DOI: 10.1371/journal.pone.0204047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/31/2018] [Indexed: 01/31/2023] Open
Abstract
Theileria parva is a protozoan parasite transmitted by the brown ear tick Rhipicephalus appendiculatus that causes East Coast fever (ECF) in cattle, resulting in substantial economic losses in the regions of southern, eastern and central Africa. The schizont form of the parasite transforms the bovine host lymphocytes into actively proliferating cancer-like cells. However, how T. parva causes bovine host cells to proliferate and maintain a cancerous phenotype following infection is still poorly understood. On the other hand, current efforts to develop improved vaccines have identified only a few candidate antigens. In the present paper, we report the first comparative transcriptomic analysis throughout the course of T. parva infection. We observed that the development of sporoblast into sporozoite and then the establishment in the host cells as schizont is accompanied by a drastic increase of upregulated genes in the schizont stage of the parasite. In contrast, the ten highest gene expression values occurred in the arthropod vector stages. A comparative analysis showed that 2845 genes were upregulated in both sporozoite and schizont stages compared to the sporoblast. In addition, 647 were upregulated only in the sporozoite whereas 310 were only upregulated in the schizont. We detected low p67 expression in the schizont stage, an unexpected finding considering that p67 has been reported as a sporozoite stage-specific gene. In contrast, we found that transcription of p67 was 20 times higher in the sporoblast than in the sporozoite. Using the expression profiles of recently identified candidate vaccine antigens as a benchmark for selection for novel potential vaccine candidates, we identified three genes with expression similar to p67 and several other genes similar to Tp1-Tp10 schizont vaccine antigens. We propose that the antigenicity or chemotherapeutic potential of this panel of new candidate antigens be further investigated. Structural comparisons of the transcripts generated here with the existing gene models for the respective loci revealed indels. Our findings can be used to improve the structural annotation of the T. parva genome, and the identification of alternatively spliced transcripts.
Collapse
|
17
|
Lacasta A, Mwalimu S, Kibwana E, Saya R, Awino E, Njoroge T, Poole J, Ndiwa N, Pelle R, Nene V, Steinaa L. Immune parameters to p67C antigen adjuvanted with ISA206VG correlate with protection against East Coast fever. Vaccine 2018; 36:1389-1397. [PMID: 29429808 PMCID: PMC5835154 DOI: 10.1016/j.vaccine.2018.01.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/18/2018] [Accepted: 01/28/2018] [Indexed: 11/25/2022]
Abstract
Three doses of p67C antigen generated stronger immune responses than two doses. Antibody titers and CD4+ T-cell proliferation correlated with protection against ECF. The number of doses could not be reduced from three to two without compromising the protection.
East Coast fever (ECF) is a lymphoproliferative disease caused by the tick-transmitted protozoan parasite Theileria parva. ECF is one of the most serious cattle tick-borne diseases in Sub-Saharan Africa. We have previously demonstrated that three doses of the C-terminal part of the sporozoite protein p67 (p67C) adjuvanted with ISA206VG confers partial protection against ECF at a herd level. We have tested the efficacy of two doses of this experimental vaccine, as reducing the vaccination regimen would facilitate its deployment in the field. We reconfirm that three antigen doses gave a significant level of protection to severe disease (46%, ECF score < 6) when compared with the control group, while two doses did not (23%). Animals receiving three doses of p67C developed higher antibody titers and CD4+ T-cell proliferation indices, than those which received two doses. A new panel of immune parameters were tested in order to identify factors correlating with protection: CD4+ proliferation index, total IgG, IgG1, IgG2 and IgM half maximal titers and neutralization capacity of the sera with and without complement. We show that some of the cellular and humoral immune responses provide preliminary correlates of protection.
Collapse
Affiliation(s)
- Anna Lacasta
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| | - Stephen Mwalimu
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| | - Elisabeth Kibwana
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| | - Rosemary Saya
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| | - Elias Awino
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| | - Thomas Njoroge
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| | - Jane Poole
- Research Methods Group, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, Kenya.
| | - Nicholas Ndiwa
- Research Methods Group, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, Kenya.
| | - Roger Pelle
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi, Kenya.
| | - Vishvanath Nene
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| | - Lucilla Steinaa
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| |
Collapse
|
18
|
Hayashida K, Umemiya-Shirafuji R, Sivakumar T, Yamagishi J, Suzuki Y, Sugimoto C, Yokoyama N. Establishment of a mouse-tick infection model for Theileria orientalis and analysis of its transcriptome. Int J Parasitol 2018; 48:915-924. [PMID: 30176237 DOI: 10.1016/j.ijpara.2018.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
Oriental theileriosis caused by Theileria orientalis is an economically significant disease in cattle farming. The lack of laboratory animal models and in vitro culture systems is a major obstacle in the drive to better understand the biology of this parasite. Notably, research on the sporozoite stage of T. orientalis has rarely been undertaken, although such investigations are of paramount importance for vaccine development based on blocking sporozoite invasion of its host animals. In the present study, we established a mouse-tick infection model for propagating T. orientalis in mice and for producing the sporozoite stage in tick salivary glands. Splenectomized severe combined immunodeficient mice transfused with bovine erythrocytes were infected with T. orientalis. The larval ticks of Haemaphysalis longicornis were then fed on the T. orientalis-infected mice. The piroplasm and sporozoite stages were microscopically observed in the mouse blood and nymphal salivary glands, respectively. The transcriptomics data generated from the piroplasm and sporozoite stages revealed a stage-specific expression pattern for the parasite genes. The mouse-tick infection model and the transcriptomics data it has provided will contribute to a better understanding of T. orientalis biology and will also provide much needed information for the design of effective control measures targeting oriental theileriosis.
Collapse
Affiliation(s)
- Kyoko Hayashida
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Division of Collaboration and Education, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido 001-0020, Japan
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Junya Yamagishi
- Division of Collaboration and Education, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido 001-0020, Japan; Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Chihiro Sugimoto
- Division of Collaboration and Education, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido 001-0020, Japan; Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
19
|
Ishizaki T, Sivakumar T, Hayashida K, Takemae H, Tuvshintulga B, Munkhjargal T, Guswanto A, Igarashi I, Yokoyama N. Babesia bovis BOV57, a Theileria parva P67 homolog, is an invasion-related, neutralization-sensitive antigen. INFECTION GENETICS AND EVOLUTION 2017; 54:138-145. [DOI: 10.1016/j.meegid.2017.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/19/2017] [Accepted: 06/25/2017] [Indexed: 11/27/2022]
|
20
|
Tebaldi G, Williams LB, Verna AE, Macchi F, Franceschi V, Fry LM, Knowles DP, Donofrio G. Assessment and optimization of Theileria parva sporozoite full-length p67 antigen expression in mammalian cells. PLoS Negl Trop Dis 2017; 11:e0005803. [PMID: 28800590 PMCID: PMC5568440 DOI: 10.1371/journal.pntd.0005803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/23/2017] [Accepted: 07/12/2017] [Indexed: 11/18/2022] Open
Abstract
Delivery of various forms of recombinant Theileria parva sporozoite antigen (p67) has been shown to elicit antibody responses in cattle capable of providing protection against East Coast fever, the clinical disease caused by T. parva. Previous formulations of full-length and shorter recombinant versions of p67 derived from bacteria, insect, and mammalian cell systems are expressed in non-native and highly unstable forms. The stable expression of full-length recombinant p67 in mammalian cells has never been described and has remained especially elusive. In this study, p67 was expressed in human-derived cells as a full-length, membrane-linked protein and as a secreted form by omission of the putative transmembrane domain. The recombinant protein expressed in this system yielded primarily two products based on Western immunoblot analysis, including one at the expected size of 67 kDa, and one with a higher than expected molecular weight. Through treatment with PNGase F, our data indicate that the larger product of this mammalian cell-expressed recombinant p67 cannot be attributed to glycosylation. By increasing the denaturing conditions, we determined that the larger sized mammalian cell-expressed recombinant p67 product is likely a dimeric aggregate of the protein. Both forms of this recombinant p67 reacted with a monoclonal antibody to the p67 molecule, which reacts with the native sporozoite. Additionally, through this work we developed multiple mammalian cell lines, including both human and bovine-derived cell lines, transduced by a lentiviral vector, that are constitutively able to express a stable, secreted form of p67 for use in immunization, diagnostics, or in vitro assays. The recombinant p67 developed in this system is immunogenic in goats and cattle based on ELISA and flow cytometric analysis. The development of a mammalian cell system that expresses full-length p67 in a stable form as described here is expected to optimize p67-based immunization. East Coast fever, caused by the tick-borne protozoan parasite Theileria parva, is a disease that results in significant bovine morbidity, mortality, and production losses in regions of sub-Saharan Africa. Susceptible cattle develop clinical signs within a 7–14 days of exposure, which often progress to severe pulmonary edema and death. Control of East Coast fever in affected regions of Africa is largely prohibited by the lack of an affordable and efficacious vaccine. Furthermore, pastoralist farmers in affected regions of Africa often lack resources to prevent losses due to East Coast fever, so these production losses play a significant role in food security and protein availability. Experimental immunization of cattle with a recombinant T. parva-derived antigen, p67, has shown promise in preventing East Coast fever, but this antigen is extremely difficult to produce in full-length in sufficient quantities, and results of immunization studies using truncated recombinant p67 products are highly inconsistent. In this study, p67 antigen production was optimized and produced for use in future immunization studies. Optimization of p67-based immunization strategies is an important step forward in the development of a sustainable, next-generation vaccine against T. parva, which is urgently needed to minimize losses associated with East Coast fever.
Collapse
Affiliation(s)
- Giulia Tebaldi
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Laura B. Williams
- United States Department of Agriculture and Department of Veterinary Microbiology & Pathology, Animal Disease Research Unit, Agricultural Research Service, Washington State University, Pullman, WA, United States of America
| | - Andrea E. Verna
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Francesca Macchi
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | | | - Lindsay M. Fry
- United States Department of Agriculture and Department of Veterinary Microbiology & Pathology, Animal Disease Research Unit, Agricultural Research Service, Washington State University, Pullman, WA, United States of America
| | - Donald P. Knowles
- United States Department of Agriculture and Department of Veterinary Microbiology & Pathology, Animal Disease Research Unit, Agricultural Research Service, Washington State University, Pullman, WA, United States of America
- * E-mail: (GD); (DPK)
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
- Paul G. Allen School for Global Animal Health, Washington State University College of Veterinary Medicine, Pullman, WA, United States of America
- * E-mail: (GD); (DPK)
| |
Collapse
|
21
|
Nene V, Morrison WI. Approaches to vaccination against Theileria parva and Theileria annulata. Parasite Immunol 2016; 38:724-734. [PMID: 27647496 PMCID: PMC5299472 DOI: 10.1111/pim.12388] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/15/2016] [Indexed: 12/04/2022]
Abstract
Despite having different cell tropism, the pathogenesis and immunobiology of the diseases caused by Theileria parva and Theileria annulata are remarkably similar. Live vaccines have been available for both parasites for over 40 years, but although they provide strong protection, practical disadvantages have limited their widespread application. Efforts to develop alternative vaccines using defined parasite antigens have focused on the sporozoite and intracellular schizont stages of the parasites. Experimental vaccination studies using viral vectors expressing T. parva schizont antigens and T. parva and T. annulata sporozoite antigens incorporated in adjuvant have, in each case, demonstrated protection against parasite challenge in a proportion of vaccinated animals. Current work is investigating alternative antigen delivery systems in an attempt to improve the levels of protection. The genome architecture and protein-coding capacity of T. parva and T. annulata are remarkably similar. The major sporozoite surface antigen in both species and most of the schizont antigens are encoded by orthologous genes. The former have been shown to induce species cross-reactive neutralizing antibodies, and comparison of the schizont antigen orthologues has demonstrated that some of them display high levels of sequence conservation. Hence, advances in development of subunit vaccines against one parasite species are likely to be readily applicable to the other.
Collapse
Affiliation(s)
- V Nene
- The International Livestock Research Institute, Nairobi, Kenya
| | - W I Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
22
|
Olds CL, Mwaura S, Odongo DO, Scoles GA, Bishop R, Daubenberger C. Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission. Parasit Vectors 2016; 9:484. [PMID: 27589998 PMCID: PMC5010713 DOI: 10.1186/s13071-016-1774-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/25/2016] [Indexed: 11/22/2022] Open
Abstract
Background Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model. Methods Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model. Results To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva. Conclusion The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1774-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cassandra L Olds
- International Livestock Research Institute, Box 30709, Nairobi, 00100, Kenya. .,Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland. .,University of Basel, Petersplatz 1, CH-4003, Basel, Switzerland.
| | - Stephen Mwaura
- International Livestock Research Institute, Box 30709, Nairobi, 00100, Kenya
| | - David O Odongo
- International Livestock Research Institute, Box 30709, Nairobi, 00100, Kenya.,School of Biological Sciences, University of Nairobi, P.O Box 30197, G.P.O, Nairobi, Kenya
| | - Glen A Scoles
- USDA Agricultural Research Service, Animal Disease Research Unit, Pullman, WA, 99164-6630, USA
| | - Richard Bishop
- International Livestock Research Institute, Box 30709, Nairobi, 00100, Kenya
| | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, CH-4003, Basel, Switzerland
| |
Collapse
|
23
|
The biology of Theileria parva and control of East Coast fever – Current status and future trends. Ticks Tick Borne Dis 2016; 7:549-64. [DOI: 10.1016/j.ttbdis.2016.02.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 01/02/2023]
|
24
|
Norling M, Bishop RP, Pelle R, Qi W, Henson S, Drábek EF, Tretina K, Odongo D, Mwaura S, Njoroge T, Bongcam-Rudloff E, Daubenberger CA, Silva JC. The genomes of three stocks comprising the most widely utilized live sporozoite Theileria parva vaccine exhibit very different degrees and patterns of sequence divergence. BMC Genomics 2015; 16:729. [PMID: 26403690 PMCID: PMC4583173 DOI: 10.1186/s12864-015-1910-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are no commercially available vaccines against human protozoan parasitic diseases, despite the success of vaccination-induced long-term protection against infectious diseases. East Coast fever, caused by the protist Theileria parva, kills one million cattle each year in sub-Saharan Africa, and contributes significantly to hunger and poverty in the region. A highly effective, live, multi-isolate vaccine against T. parva exists, but its component isolates have not been characterized. Here we sequence and compare the three component T. parva stocks within this vaccine, the Muguga Cocktail, namely Muguga, Kiambu5 and Serengeti-transformed, aiming to identify genomic features that contribute to vaccine efficacy. RESULTS We find that Serengeti-transformed, originally isolated from the wildlife carrier, the African Cape buffalo, is remarkably and unexpectedly similar to the Muguga isolate. The 420 detectable non-synonymous SNPs were distributed among only 53 genes, primarily subtelomeric antigens and antigenic families. The Kiambu5 isolate is considerably more divergent, with close to 40,000 SNPs relative to Muguga, including >8,500 non-synonymous mutations distributed among >1,700 (42.5 %) of the predicted genes. These genetic markers of the component stocks can be used to characterize the composition of new batches of the Muguga Cocktail. CONCLUSIONS Differences among these three isolates, while extensive, represent only a small proportion of the genetic variation in the entire species. Given the efficacy of the Muguga Cocktail in inducing long-lasting protection against infections in the field, our results suggest that whole-organism vaccines against parasitic diseases can be highly efficacious despite considerable genome-wide differences relative to the isolates against which they protect.
Collapse
Affiliation(s)
- Martin Norling
- SLU Global Bioinformatics Centre, Department of Animal Breeding and Genetics (HGEN), Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
| | | | - Roger Pelle
- International Livestock Research Institute, Nairobi, Kenya.
| | - Weihong Qi
- Functional Genomics Centre, ETH/UZH, Zürich, Switzerland.
| | - Sonal Henson
- International Livestock Research Institute, Nairobi, Kenya.
| | - Elliott F Drábek
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA.
| | - Kyle Tretina
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA.
| | - David Odongo
- International Livestock Research Institute, Nairobi, Kenya. .,School of Biological Sciences, The University of Nairobi, Nairobi, Kenya.
| | - Stephen Mwaura
- International Livestock Research Institute, Nairobi, Kenya.
| | - Thomas Njoroge
- International Livestock Research Institute, Nairobi, Kenya.
| | - Erik Bongcam-Rudloff
- SLU Global Bioinformatics Centre, Department of Animal Breeding and Genetics (HGEN), Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
| | - Claudia A Daubenberger
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA. .,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA.
| |
Collapse
|
25
|
Bishop RP, Hemmink JD, Morrison WI, Weir W, Toye PG, Sitt T, Spooner PR, Musoke AJ, Skilton RA, Odongo DO. The African buffalo parasite Theileria. sp. (buffalo) can infect and immortalize cattle leukocytes and encodes divergent orthologues of Theileria parva antigen genes. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 4:333-42. [PMID: 26543804 PMCID: PMC4589832 DOI: 10.1016/j.ijppaw.2015.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 11/17/2022]
Abstract
African Cape buffalo (Syncerus caffer) is the wildlife reservoir of multiple species within the apicomplexan protozoan genus Theileria, including Theileria parva which causes East coast fever in cattle. A parasite, which has not yet been formally named, known as Theileria sp. (buffalo) has been recognized as a potentially distinct species based on rDNA sequence, since 1993. We demonstrate using reverse line blot (RLB) and sequencing of 18S rDNA genes, that in an area where buffalo and cattle co-graze and there is a heavy tick challenge, T. sp. (buffalo) can frequently be isolated in culture from cattle leukocytes. We also show that T. sp. (buffalo), which is genetically very closely related to T. parva, according to 18s rDNA sequence, has a conserved orthologue of the polymorphic immunodominant molecule (PIM) that forms the basis of the diagnostic ELISA used for T. parva serological detection. Closely related orthologues of several CD8 T cell target antigen genes are also shared with T. parva. By contrast, orthologues of the T. parva p104 and the p67 sporozoite surface antigens could not be amplified by PCR from T. sp. (buffalo), using conserved primers designed from the corresponding T. parva sequences. Collectively the data re-emphasise doubts regarding the value of rDNA sequence data alone for defining apicomplexan species in the absence of additional data. ‘Deep 454 pyrosequencing’ of DNA from two Theileria sporozoite stabilates prepared from Rhipicephalus appendiculatus ticks fed on buffalo failed to detect T. sp. (buffalo). This strongly suggests that R. appendiculatus may not be a vector for T. sp. (buffalo). Collectively, the data provides further evidence that T. sp. (buffalo). is a distinct species from T. parva. Theileria sp. (buffalo) can infect and immortalize cattle leukocytes. Antigen genes of T. sp. (buffalo) vary in level of identity to those of T. parva The tick that transmits T. sp. (buffalo) to cattle is not Rhipicephalus appendiculatus 18s rDNA sequence information alone is insufficient to define species of Theileria
Collapse
Affiliation(s)
- R P Bishop
- International Livestock Research Institute (ILRI), PO Box 30709, Nairobi, 00100, Kenya
| | - J D Hemmink
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG Scotland, UK
| | - W I Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG Scotland, UK
| | - W Weir
- College of Medical Veterinary and Life Sciences, University of Glasgow Glasgow, G61 1QH, UK
| | - P G Toye
- International Livestock Research Institute (ILRI), PO Box 30709, Nairobi, 00100, Kenya
| | - T Sitt
- International Livestock Research Institute (ILRI), PO Box 30709, Nairobi, 00100, Kenya
| | - P R Spooner
- International Livestock Research Institute (ILRI), PO Box 30709, Nairobi, 00100, Kenya
| | - A J Musoke
- International Livestock Research Institute (ILRI), PO Box 30709, Nairobi, 00100, Kenya
| | - R A Skilton
- International Livestock Research Institute (ILRI), PO Box 30709, Nairobi, 00100, Kenya
| | - D O Odongo
- International Livestock Research Institute (ILRI), PO Box 30709, Nairobi, 00100, Kenya ; School of Biological Sciences, The University of Nairobi, PO Box 30197, Nairobi, 00100, Kenya
| |
Collapse
|
26
|
Dinga JN, Wamalwa M, Njimoh DL, Njahira MN, Djikeng A, Skilton R, Titanji VPK, Pellé R. TpUB05, a Homologue of the Immunodominant Plasmodium falciparum Protein UB05, Is a Marker of Protective Immune Responses in Cattle Experimentally Vaccinated against East Coast Fever. PLoS One 2015; 10:e0128040. [PMID: 26053064 PMCID: PMC4459990 DOI: 10.1371/journal.pone.0128040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 04/21/2015] [Indexed: 01/26/2023] Open
Abstract
Introduction East Coast fever, a devastating disease of cattle, can be controlled partially by vaccination with live T. parva sporozoites. The antigens responsible for conferring immunity are not fully characterized. Recently it was shown that the P. falciparum immunodominant protein UB05 is highly conserved in T. parva, the causative agent of East Coast fever. The aim of the present investigation was to determine the role of the homologue TpUB05 in protective immunity to East Coast fever. Methods The cloning, sequencing and expression of TpUB05 were done according to standard protocols. Bioinformatics analysis of TpUB05 gene was carried out using algorithms found in the public domain. Polyclonal antiserum against recombinant TpUB05 were raised in rabbits and used for further analysis by Western blotting, ELISA, immunolocalization and in vitro infection neutralization assay. The ability of recombinant TpUB05 (r-TpUB05) to stimulate bovine PBMCs ex-vivo to produce IFN-γ or to proliferate was tested using ELISpot and [3H]-thymidine incorporation assays, respectively. Results All the 20 cattle immunised by the infection and treatment method (ITM) developed significantly higher levels of TpUB05 specific antibodies (p<0.0001) compared to the non-vaccinated ones. Similarly, r-TpUB05 highly stimulated bovine PMBCs from 8/12 (67%) of ITM-immunized cattle tested to produce IFN-γ and proliferate (p< 0.029) as compared to the 04 naїve cattle included as controls. Polyclonal TpUB05 antiserum raised against r-TpUB05 also marginally inhibited infection (p < 0.046) of bovine PBMCs by T. parva sporozoites. In further experiments RT-PCR showed that the TpUB05 gene is expressed by the parasite. This was confirmed by immunolocalization studies which revealed TpUB05 expression by schizonts and piroplasms. Bioinformatics analysis also revealed that this antigen possesses two transmembrane domains, a N-glycosylation site and several O-glycosylation sites. Conclusion It was concluded that TpUB05 is a potential marker of protective immunity in ECF worth investigating further.
Collapse
Affiliation(s)
- Jerome Nyhalah Dinga
- Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
- International Livestock Research Institute, Nairobi, Kenya
| | - Mark Wamalwa
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| | | | - Moses N. Njahira
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| | - Appolinaire Djikeng
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| | - Rob Skilton
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| | | | - Roger Pellé
- International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
27
|
Sitt T, Poole EJ, Ndambuki G, Mwaura S, Njoroge T, Omondi GP, Mutinda M, Mathenge J, Prettejohn G, Morrison WI, Toye P. Exposure of vaccinated and naive cattle to natural challenge from buffalo-derived Theileria parva. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 4:244-51. [PMID: 26005635 PMCID: PMC4437466 DOI: 10.1016/j.ijppaw.2015.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/02/2022]
Abstract
The Muguga cocktail was tested in cattle in a buffalo-only location. Infection with buffalo-derived T. parva caused Corridor disease in cattle. At the conservancy, the cocktail did not protect cattle against Corridor disease. Efficacious vaccines can support integrative livestock/wildlife management.
Integrative management of wildlife and livestock requires a clear understanding of the diseases transmitted between the two populations. The tick-borne protozoan parasite Theileria parva causes two distinct diseases in cattle, East Coast fever and Corridor disease, following infection with parasites derived from cattle or buffalo, respectively. In this study, cattle were immunized with a live sporozoite vaccine containing three T. parva isolates (the Muguga cocktail), which has been used extensively and successfully in the field to protect against cattle-derived T. parva infection. The cattle were exposed in a natural field challenge site containing buffalo but no other cattle. The vaccine had no effect on the survival outcome in vaccinated animals compared to unvaccinated controls: nine out of the 12 cattle in each group succumbed to T. parva infection. The vaccine also had no effect on the clinical course of the disease. A combination of clinical and post mortem observations and laboratory analyses confirmed that the animals died of Corridor disease. The results clearly indicate that the Muguga cocktail vaccine does not provide protection against buffalo-derived T. parva at this site and highlight the need to evaluate the impact of the composition of challenge T. parva populations on vaccine success in areas where buffalo and cattle are present.
Collapse
Affiliation(s)
- Tatjana Sitt
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - E Jane Poole
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Gideon Ndambuki
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Stephen Mwaura
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Thomas Njoroge
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | | | - Matthew Mutinda
- Veterinary Services Department, Kenya Wildlife Service, P.O. Box 40241-00100, Nairobi, Kenya
| | - Joseph Mathenge
- Veterinary Services Department, Kenya Wildlife Service, P.O. Box 40241-00100, Nairobi, Kenya
| | - Giles Prettejohn
- Veterinary Services Department, Kenya Wildlife Service, P.O. Box 40241-00100, Nairobi, Kenya
| | - W Ivan Morrison
- The Roslin Institute, The University of Edinburgh, Midlothian EH25 9RG, UK
| | - Philip Toye
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| |
Collapse
|
28
|
Morrison WI, Connelley T, Hemmink JD, MacHugh ND. Understanding the Basis of Parasite Strain-Restricted Immunity toTheileria parva. Annu Rev Anim Biosci 2015; 3:397-418. [DOI: 10.1146/annurev-animal-022513-114152] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- W. Ivan Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, United Kingdom;
| | - Timothy Connelley
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, United Kingdom;
| | | | - Niall D. MacHugh
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, United Kingdom;
| |
Collapse
|
29
|
Molecular evolution of a central region containing B cell epitopes in the gene encoding the p67 sporozoite antigen within a field population of Theileria parva. Parasitol Res 2015; 114:1729-37. [PMID: 25673078 PMCID: PMC4412645 DOI: 10.1007/s00436-015-4358-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 01/30/2015] [Indexed: 11/06/2022]
Abstract
Protective immunity induced by the infective sporozoite stage of Theileria parva indicates a potential role for antibodies directed against conserved serologically reactive regions of the major sporozoite surface antigen p67 in vaccination to control the parasite. We have examined the allelic variation and determined the extent of B cell epitope polymorphism of the gene encoding p67 among field isolates originating from cattle exposed to infected ticks in the Marula area of the rift valley in central Kenya where the African cape buffalo (Syncerus caffer) and cattle co-graze. In the first of two closely juxtaposed epitope sequences in the central region of the p67 protein, an in-frame deletion of a seven-amino acid segment results in a truncation that was observed in parasites derived from cattle that co-grazed with buffalo. In contrast, the variation in the second epitope was primarily due to nonsynonymous substitutions, resulting in relatively low overall amino acid conservation in this segment of the protein. We also observed polymorphism in the region of the protein adjacent to the two defined epitopes, but this was not sufficient to provide statistically significant evidence for positive selection. The data indicates that B cell epitopes previously identified within the p67 gene are polymorphic within the Marula field isolates. Given the complete sequence identity of the p67 gene in all previously characterized T. parva isolates that are transmissible between cattle by ticks, the diversity observed in p67 from the Marula isolates in combination with the clinical reaction of the infected cattle is consistent with them originating from ticks that had acquired T. parva from buffalo.
Collapse
|
30
|
Sivakumar T, Hayashida K, Sugimoto C, Yokoyama N. Evolution and genetic diversity of Theileria. INFECTION GENETICS AND EVOLUTION 2014; 27:250-63. [PMID: 25102031 DOI: 10.1016/j.meegid.2014.07.013] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 11/16/2022]
Abstract
Theileria parasites infect a wide range of domestic and wild ruminants worldwide, causing diseases with varying degrees of severity. A broad classification, based on the parasite's ability to transform the leukocytes of host animals, divides Theileria into two groups, consisting of transforming and non-transforming species. The evolution of transforming Theileria has been accompanied by drastic changes in its genetic makeup, such as acquisition or expansion of gene families, which are thought to play critical roles in the transformation of host cells. Genetic variation among Theileria parasites is sometimes linked with host specificity and virulence in the parasites. Immunity against Theileria parasites primarily involves cell-mediated immune responses in the host. Immunodominance and major histocompatibility complex class I phenotype-specificity result in a host immunity that is tightly focused and strain-specific. Immune escape in Theileria is facilitated by genetic diversity in its antigenic determinants, which potentially results in a loss of T cell receptor recognition in its host. In the recent past, several reviews have focused on genetic diversity in the transforming species, Theileriaparva and Theileriaannulata. In contrast, genetic diversity in Theileriaorientalis, a benign non-transforming parasite, which occasionally causes disease outbreaks in cattle, has not been extensively examined. In this review, therefore, we provide an outline of the evolution of Theileria, which includes T. orientalis, and discuss the possible mechanisms generating genetic diversity among parasite populations. Additionally, we discuss the potential implications of a genetically diverse parasite population in the context of Theileria vaccine development.
Collapse
Affiliation(s)
- Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan; Veterinary Research Institute, Peradeniya, Sri Lanka
| | - Kyoko Hayashida
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Chihiro Sugimoto
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.
| |
Collapse
|
31
|
A Theileria parva isolate of low virulence infects a subpopulation of lymphocytes. Infect Immun 2011; 80:1267-73. [PMID: 22202119 DOI: 10.1128/iai.05085-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Theileria parva is a tick-transmitted protozoan parasite that infects and transforms bovine lymphocytes. We have previously shown that Theileria parva Chitongo is an isolate with a lower virulence than that of T. parva Muguga. Lower virulence appeared to be correlated with a delayed onset of the logarithmic growth phase of T. parva Chitongo-transformed peripheral blood mononuclear cells after in vitro infection. In the current study, infection experiments with WC1(+) γδ T cells revealed that only T. parva Muguga could infect these cells and that no transformed cells could be obtained with T. parva Chitongo sporozoites. Subsequent analysis of the susceptibility of different cell lines and purified populations of lymphocytes to infection and transformation by both isolates showed that T. parva Muguga sporozoites could attach to and infect CD4(+), CD8(+), and WC1(+) T lymphocytes, but T. parva Chitongo sporozoites were observed to bind only to the CD8(+) T cell population. Flow cytometry analysis of established, transformed clones confirmed this bias in target cells. T. parva Muguga-transformed clones consisted of different cell surface phenotypes, suggesting that they were derived from either host CD4(+), CD8(+), or WC1(+) T cells. In contrast, all in vitro and in vivo T. parva Chitongo-transformed clones expressed CD8 but not CD4 or WC1, suggesting that the T. parva Chitongo-transformed target cells were exclusively infected CD8(+) lymphocytes. Thus, a role of cell tropism in virulence is likely. Since the adhesion molecule p67 is 100% identical between the two strains, a second, high-affinity adhesin that determines target cell specificity appears to exist.
Collapse
|
32
|
Innes EA, Bartley PM, Rocchi M, Benavidas-Silvan J, Burrells A, Hotchkiss E, Chianini F, Canton G, Katzer F. Developing vaccines to control protozoan parasites in ruminants: Dead or alive? Vet Parasitol 2011; 180:155-63. [DOI: 10.1016/j.vetpar.2011.05.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Katzer F, Lizundia R, Ngugi D, Blake D, McKeever D. Construction of a genetic map for Theileria parva: identification of hotspots of recombination. Int J Parasitol 2011; 41:669-75. [PMID: 21310160 PMCID: PMC3084458 DOI: 10.1016/j.ijpara.2011.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 11/29/2022]
Abstract
The tick-borne protozoan parasite Theileria parva is the causal agent of East Coast Fever (ECF), a severe lymphoproliferative disease of cattle in eastern, central and southern Africa. The life cycle of T. parva is predominantly haploid, with a brief diploid stage occurring in the tick vector that involves meiotic recombination. Resolved genetic studies of T. parva are currently constrained by the lack of a genome-wide high-definition genetic map of the parasite. We undertook a genetic cross of two cloned isolates of T. parva to construct such a map from 35 recombinant progeny, using a genome-wide panel of 79 variable number of tandem repeat markers. Progeny were established by in vitro cloning of cattle lymphocytes after infection with sporozoites prepared from Rhipicephalus appendiculatus ticks fed on a calf undergoing a dual infection with the two clonal parental stocks. The genetic map was determined by assigning individual markers to the four chromosome genome, whose physical length is approximately 8309 kilobasepairs (Kb). Segregation analysis of the markers among the progeny revealed a total genetic size of 1683.8 centiMorgans (cM), covering a physical distance of 7737.62 Kb (∼93% of the genome). The average genome-wide recombination rate observed for T. parva was relatively high, at 0.22 cM Kb(-1) per meiotic generation. Recombination hot-spots and cold-spots were identified for each of the chromosomes. A panel of 27 loci encoding determinants previously identified as immunorelevant or likely to be under selection were positioned on the linkage map. We believe this to be the first genetic linkage map for T. parva. This resource, with the availability of the genome sequence of T. parva, will promote improved understanding of the pathogen by facilitating the use of genetic analysis for identification of loci responsible for variable phenotypic traits exhibited by individual parasite stocks.
Collapse
Affiliation(s)
- Frank Katzer
- Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian EH26 0PZ, UK
| | - Regina Lizundia
- Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Daniel Ngugi
- Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Damer Blake
- Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Declan McKeever
- Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| |
Collapse
|
34
|
Pelle R, Graham SP, Njahira MN, Osaso J, Saya RM, Odongo DO, Toye PG, Spooner PR, Musoke AJ, Mwangi DM, Taracha ELN, Morrison WI, Weir W, Silva JC, Bishop RP. Two Theileria parva CD8 T cell antigen genes are more variable in buffalo than cattle parasites, but differ in pattern of sequence diversity. PLoS One 2011; 6:e19015. [PMID: 21559495 PMCID: PMC3084734 DOI: 10.1371/journal.pone.0019015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/25/2011] [Indexed: 11/18/2022] Open
Abstract
Background Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8+ T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8+ T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8+ T-cell epitopes, and to analyse the sequences for evidence of selection. Methodology/Principal Findings Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (∼12%) in Tp1 and in 320 positions (∼61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle. Conclusions/Significance The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point.
Collapse
Affiliation(s)
- Roger Pelle
- International Livestock Research Institute, Nairobi, Kenya.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mixed Theileria infections in free-ranging buffalo herds: implications for diagnosing Theileria parva infections in Cape buffalo (Syncerus caffer). Parasitology 2011; 138:884-95. [PMID: 21524322 DOI: 10.1017/s0031182011000503] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Buffalo-adapted Theileria parva causes Corridor disease in cattle. Strict control measures therefore apply to the movement of buffalo in South Africa and include mandatory testing of buffalo for the presence of T. parva. The official test is a real-time hybridization PCR assay that amplifies the V4 hypervariable region of the 18S rRNA gene of T. parva, T. sp. (buffalo) and T. sp. (bougasvlei). The effect that mixed T. parva and T. sp. (buffalo)-like infections have on accurate T. parva diagnosis was investigated in this study. In vitro mixed infection simulations indicated PCR signal suppression at 100 to 1000-fold T. sp. (buffalo) excess at low T. parva parasitaemia. Suppression of PCR signal was found in field buffalo with mixed infections. The T. parva-positive status of these cases was confirmed by selective suppression of T. sp. (buffalo) amplification using a locked nucleic acid clamp and independent assays based on the p67, p104 and Tpr genes. The incidence of mixed infections in the Corridor disease endemic region of South Africa is significant, while the prevalence in buffalo outside the endemic area is currently low. A predicted increase of T. sp. (buffalo)-like infections can affect future diagnoses where mixed infections occur, prompting the need for improvements in current diagnostics.
Collapse
|
36
|
Mwangi DM, Honda Y, Graham SP, Pelle R, Taracha ELN, Gachanja J, Nyanjui JK, Bray J, Palmer GH, Brown WC, Mwangi W. Treatment of cattle with DNA-encoded Flt3L and GM-CSF prior to immunization with Theileria parva candidate vaccine antigens induces CD4 and CD8 T cell IFN-γ responses but not CTL responses. Vet Immunol Immunopathol 2011; 140:244-51. [PMID: 21288576 DOI: 10.1016/j.vetimm.2010.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 12/23/2010] [Accepted: 12/29/2010] [Indexed: 01/17/2023]
Abstract
Theileria parva antigens recognized by cytotoxic T lymphocytes (CTLs) are prime vaccine candidates against East Coast fever in cattle. A strategy for enhancing induction of parasite-specific T cell responses by increasing recruitment and activation of dendritic cells (DCs) at the immunization site by administration of bovine Flt3L and GM-CSF prior to inoculation with DNA vaccine constructs and MVA boost was evaluated. Analysis of immune responses showed induction of significant T. parva-specific proliferation, and IFN-γ-secreting CD4(+) and CD8(+) T cell responses in immunized cattle. However, antigen-specific CTLs were not detected. Following lethal challenge, 5/12 immunized cattle survived by day 21, whereas all the negative controls had to be euthanized due to severe disease, indicating a protective effect of the vaccine (p<0.05). The study demonstrated the potential of this technology to elicit significant MHC class II and class I restricted IFN-γ-secreting CD4(+) and CD8(+) T cells to defined vaccine candidate antigens in a natural host, but also underscores the need to improve strategies for eliciting protective CTL responses.
Collapse
Affiliation(s)
- Duncan M Mwangi
- International Livestock Research Institute, P. O. Box 30709, Nairobi 00100, Kenya
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Freeman JM, Kappmeyer LS, Ueti MW, McElwain TF, Baszler TV, Echaide I, Nene VM, Knowles DP. A Babesia bovis gene syntenic to Theileria parva p67 is expressed in blood and tick stage parasites. Vet Parasitol 2010; 173:211-8. [DOI: 10.1016/j.vetpar.2010.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 06/17/2010] [Accepted: 06/17/2010] [Indexed: 11/29/2022]
|
38
|
Sibeko KP, Geysen D, Oosthuizen MC, Matthee CA, Troskie M, Potgieter FT, Coetzer JAW, Collins NE. Four p67 alleles identified in South African Theileria parva field samples. Vet Parasitol 2009; 167:244-54. [PMID: 19836893 DOI: 10.1016/j.vetpar.2009.09.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies characterizing the Theileria parva p67 gene in East Africa revealed two alleles. Cattle-derived isolates associated with East Coast fever (ECF) have a 129bp deletion in the central region of the p67 gene (allele 1), compared to buffalo-derived isolates with no deletion (allele 2). In South Africa, Corridor disease outbreaks occur if there is contact between infected buffalo and susceptible cattle in the presence of vector ticks. Although ECF was introduced into South Africa in the early 20th century, it has been eradicated and it is thought that there has been no cattle to cattle transmission of T. parva since. The variable region of the p67 gene was amplified and the gene sequences analyzed to characterize South African T. parva parasites that occur in buffalo, in cattle from farms where Corridor disease outbreaks were diagnosed and in experimentally infected cattle. Four p67 alleles were identified, including alleles 1 and 2 previously detected in East African cattle and buffalo, respectively, as well as two novel alleles, one with a different 174bp deletion (allele 3), the other with a similar sequence to allele 3 but with no deletion (allele 4). Sequence variants of allele 1 were obtained from field samples originating from both cattle and buffalo. Allele 1 was also obtained from a bovine that tested T. parva positive from a farm near Ladysmith in the KwaZulu-Natal Province. East Coast fever was not diagnosed on this farm, but the p67 sequence was identical to that of T. parva Muguga, an isolate that causes ECF in Kenya. Variants of allele 2 were obtained from all T. parva samples from both buffalo and cattle, except Lad 10 and Zam 5. Phylogenetic analysis revealed that alleles 3 and 4 are monophyletic and diverged early from the other alleles. These novel alleles were not identified from South African field samples collected from cattle; however allele 3, with a p67 sequence identical to those obtained in South African field samples from buffalo, was obtained from a Zambian field isolate of a naturally infected bovine diagnosed with ECF. The p67 genetic profiles appear to be more complex than previously thought and cannot be used to distinguish between cattle- and buffalo-derived T. parva isolates in South Africa. The significance of the different p67 alleles, particularly the novel variants, in the epidemiology of theileriosis in South Africa still needs to be determined.
Collapse
Affiliation(s)
- Kgomotso P Sibeko
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort 0110, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The pathogenic Theileria species Theileria parva and T. annulata infect bovine leukocytes and erythrocytes causing acute, often fatal lymphoproliferative diseases in cattle. The parasites are of interest not only because of their economic importance as pathogens, but also because of their unique ability to transform the leukocytes they infect. The latter property allows parasitized leukocytes to be cultured as continuously growing cell lines in vitro, thus providing an amenable in vitro system to study the parasite/host cell relationship and parasite-specific cellular immune responses. This paper summarizes important advances in knowledge of the immunobiology of these parasites over the last 40 years, focusing particularly on areas of relevance to vaccination.
Collapse
|
40
|
McKeever DJ. Bovine immunity - a driver for diversity in Theileria parasites? Trends Parasitol 2009; 25:269-76. [PMID: 19423397 DOI: 10.1016/j.pt.2009.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 03/10/2009] [Accepted: 03/16/2009] [Indexed: 10/20/2022]
Abstract
Theileria parva and Theileria annulata are tick-borne parasites of cattle that infect and transform leukocytes, causing severe and often fatal parasitic leukoses. Both species provoke strong immunity against subsequent infection. However, considerable diversity is observed in field populations of each parasite and protection is only assured against homologous challenge. The life cycles of these parasites are complex and involve prolonged exposure to host and vector defence mechanisms. Although the relevant vector mechanisms are poorly defined, protective responses of cattle seem to be tightly focused and variable in their specificity between individuals. This review considers whether bovine immunity acts as a driver for diversity in T. parva and T. annulata and explores other factors that might underlie genetic variation in these parasites.
Collapse
Affiliation(s)
- Declan J McKeever
- Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK.
| |
Collapse
|
41
|
Morrison WI, McKeever DJ. Current status of vaccine development against Theileria parasites. Parasitology 2007; 133 Suppl:S169-87. [PMID: 17274845 DOI: 10.1017/s0031182006001867] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The tick-borne protozoan parasites Theileria parva and Theileria annulata cause economically important diseases of cattle in tropical and sub-tropical regions. Because of shortcomings in disease control measures based on therapy and tick control, there is a demand for effective vaccines against these diseases. Vaccines using live parasites have been available for over two decades, but despite their undoubted efficacy they have not been used on a large scale. Lack of infrastructure for vaccine production and distribution, as well as concerns about the introduction of vaccine parasite strains into local tick populations have curtailed the use of these vaccines. More recently, research has focused on the development of subunit vaccines. Studies of immune responses to different stages of the parasites have yielded immunological probes that have been used to identify candidate vaccine antigens. Immunisation of cattle with antigens expressed in the sporozoite, schizont or merozoite stages has resulted in varying degrees of protection against challenge. Although the levels of protection achieved have not been sufficient to allow exploitation for vaccination, there are clearly further lines of investigation, relating to both the choice of antigens and the antigen delivery systems employed, that need to be pursued to fully explore the potential of the candidate vaccines. Improved knowledge of the molecular biology and immunology of the parasites gained during the course of these studies has also opened up opportunities to refine and improve the quality of live vaccines.
Collapse
Affiliation(s)
- W I Morrison
- Division of Veterinary Clinical Sciences, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|
42
|
Bishop R, Musoke A, Morzaria S, Gardner M, Nene V. Theileria: intracellular protozoan parasites of wild and domestic ruminants transmitted by ixodid ticks. Parasitology 2006; 129 Suppl:S271-83. [PMID: 15938515 DOI: 10.1017/s0031182003004748] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Theileria are economically important, intra-cellular protozoa, transmitted by ixodid ticks, which infect wild and domestic ruminants. In the mammalian host, parasites infect leukocytes and erythrocytes. In the arthropod vector they develop in gut epithelial cells and salivary glands. All four intra-cellular stages of Theileria survive free in the cytoplasm. The schizont stages of certain Theileria species induce a unique, cancer-like, phenotype in infected host leukocytes. Theileria undergoes an obligate sexual cycle, involving fusion of gametes in the tick gut, to produce a transiently diploid zygote. The existence of sexual recombination in T. parva has been confirmed in the laboratory, and is presumed to contribute to the extensive polymorphism observed in field isolates. Key parameters in T. parva population dynamics are the relative importance of asymptomatic carrier cattle and animals undergoing severe disease, in transmission of the parasite to ticks, and the extent of transmission by nymphs as compared to adult ticks. Tick populations differ in vector competence for specific T. parva stocks. Recombinant forms of T. parva and T. annulata sporozoite surface antigens induce protection against parasite challenge in cattle. In future, vaccines might be improved by inclusion of tick peptides in multivalent vaccines.
Collapse
Affiliation(s)
- R Bishop
- The International Livestock Research Institute, P.O. Box 30709, Nairobi, Kenya.
| | | | | | | | | |
Collapse
|
43
|
Musoke A, Rowlands J, Nene V, Nyanjui J, Katende J, Spooner P, Mwaura S, Odongo D, Nkonge C, Mbogo S, Bishop R, Morzaria S. Subunit vaccine based on the p67 major surface protein of Theileria parva sporozoites reduces severity of infection derived from field tick challenge. Vaccine 2005; 23:3084-95. [PMID: 15811656 DOI: 10.1016/j.vaccine.2004.09.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 08/30/2004] [Accepted: 09/08/2004] [Indexed: 11/15/2022]
Abstract
Two recombinant vaccines against Theileriaparva, based on a near full-length version of the sporozoite surface antigen p67 (p67(635)), or an 80 amino acid C-terminal section (p67C), were evaluated by exposure of immunized cattle to natural tick challenge in two sites at the Kenya Coast and one in Central Kenya. Vaccination reduced severe ECF by 47% at the coast and by 52% in central Kenya from an average incidence of 0.53+/-0.07 (S.E.) in 50 non-immunised controls to an average of 0.27+/-0.05 in 83 immunised animals. The reduction in severe East Coast fever was similar to that observed in laboratory experiments with p67(635) and p67C. The p67 coding sequence from thirteen T. parva field isolates including seven from vaccinated cattle that were not protected, was 100% identical to the gene on which the recombinant vaccine is based, suggesting a predominantly homologous p67 antigenic challenge. The same parasite isolates were however genetically heterogeneous at several loci other than p67.
Collapse
Affiliation(s)
- Antony Musoke
- International Livestock Research Institute, P.O. Box 30709 Nairobi. Kenya
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kaba SA, Musoke AJ, Schaap D, Schetters T, Rowlands J, Vermeulen AN, Nene V, Vlak JM, van Oers MM. Novel baculovirus-derived p67 subunit vaccines efficacious against East Coast fever in cattle. Vaccine 2005; 23:2791-800. [PMID: 15780727 DOI: 10.1016/j.vaccine.2004.10.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 09/08/2004] [Accepted: 10/26/2004] [Indexed: 11/29/2022]
Abstract
Two novel baculovirus-derived recombinant Theileria parva p67 constructs were tested for their vaccine potential against East Coast fever. Boran calves were immunized with a his-GFP-p67 fusion protein (GFP:p67deltaSS) or with GP64:p67C, a protein fusion between a C-terminal domain of p67 and the baculovirus envelope protein GP64. Both GFP:p67deltaSS and GP64:p67C induced antibodies with high ELISA titers that neutralized T. parva sporozoites with high efficiency. Upon challenge, a correlation was observed between the in vitro neutralizing capacity and the reduction in severe ECF for individual animals. A protection level upto 85% was obtained. This level of protection was achieved with only two inoculations of 100 microg per dose, which is a major improvement over previous recombinant p67 products.
Collapse
Affiliation(s)
- Stephen A Kaba
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kaba SA, Salcedo AM, Wafula PO, Vlak JM, van Oers MM. Development of a chitinase and v-cathepsin negative bacmid for improved integrity of secreted recombinant proteins. J Virol Methods 2005; 122:113-8. [PMID: 15488628 DOI: 10.1016/j.jviromet.2004.07.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 07/07/2004] [Accepted: 07/19/2004] [Indexed: 11/28/2022]
Abstract
The application of the baculovirus-insect cell expression system for the production of integral membrane and secreted proteins is often more troublesome than for cytoplasmic proteins. One protein expressed at low levels in insect cells is the Theileria parva sporozoite surface protein p67. Theileria parva is a protozoan parasite, which causes the tick-transmitted disease East Coast fever in cattle. Baculovirus vectors were engineered to produce a secreted form of p67 by replacing the signal peptide of p67 with the honeybee mellitin signal sequence and deleting a putative membrane anchor from the C-terminus. Furthermore, the chitinase and v-cathepsin genes were deleted from the baculovirus expression vector in a bacmid setup, allowing broad scale application of this novel vector. Deletion of the chitinase and v-cathepsin gene had a positive effect on the integrity of both the intracellular and secreted recombinant protein.
Collapse
Affiliation(s)
- Stephen A Kaba
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Schneider I, Haller D, Seitzer U, Beyer D, Ahmed JS. Molecular genetic characterization and subcellular localization of a putative Theileria annulata membrane protein. Parasitol Res 2004; 94:405-15. [PMID: 15490238 DOI: 10.1007/s00436-004-1226-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 09/03/2004] [Indexed: 11/29/2022]
Abstract
A Theileria annulata protein (TaD) exhibiting an N-terminal signal sequence for endoplasmic reticulum membrane translocation and a conserved cysteine-rich region was isolated by screening the mRNA of a T. annulata-infected bovine lymphoblastoid cell line with degenerated primers directed against T. annulata-targeting sequences. The TaD-coding sequence was found to be most closely related to the genomic DNA sequence of T. parva (TIGR database, 72%) and the amino acid sequence of Plasmodium falciparum (41%), P. yoelii yoelii (38%) and Cryptosporidium parvum (36%). The TaD mRNA is expressed within the sporozoite, schizont and merozoite stages of the parasite, implying that it is constitutively transcribed throughout the parasite's life cycle. Allelic variants were found between isolates originating from different geographical regions, however not affecting conserved cysteines. The open reading frame encoded a protein of 19.5 kDa and non-reducing SDS-PAGE analysis demonstrated a homodimeric protein. Using confocal microscopy, the protein was found to be both located in the parasite cytoplasm and to colocalize with a transmembrane protein of the schizonts within infected cells.
Collapse
Affiliation(s)
- Ilka Schneider
- Division of Veterinary Infectiology and Immunology, Research Center Borstel, Parkallee 22, 23845 Borstel, Germany
| | | | | | | | | |
Collapse
|
47
|
Kaba SA, Schaap D, Roode EC, Nene V, Musoke AJ, Vlak JM, van Oers MM. Improved immunogenicity of novel baculovirus-derived Theileria parva p67 subunit antigens. Vet Parasitol 2004; 121:53-64. [PMID: 15110403 DOI: 10.1016/j.vetpar.2004.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Revised: 01/29/2004] [Accepted: 02/04/2004] [Indexed: 11/21/2022]
Abstract
East Coast fever (ECF) in cattle is caused by the tick-borne protozoan parasite Theileria parva. The major sporozoite surface antigen of T. parva (p67) is an important candidate for inclusion in a subunit vaccine. Recently, we reported the expression and production of different parts of p67 as fusions to either GFP or to the baculovirus GP64 envelope glycoprotein in insect cells, which resulted in stable proteins recognized by a monoclonal specific for native p67. The immunogenicity of these fusion proteins was examined in out-bred mice and cattle. In mice, the full length p67 molecule without its signal peptide and transmembrane region, but fused to GFP (GFP:p67deltaSS) was the best immunogen followed by the C-terminus of p67 fused to GP64 (GP64:p67C). These two immunogens also provoked a high level of sero-conversion in cattle when formulated in a water-in-oil or saponin-derived adjuvant with only 100 microg of protein and a single booster. The vaccine-elicited antibodies efficiently inhibited the infectivity of T. parva sporozoites in in vitro neutralization assays. This study demonstrated that these new baculovirus-derived p67 vaccines were highly immunogenic, and that in combination with a suitable adjuvant, they have a clear potential to induce protective immunity in cattle.
Collapse
Affiliation(s)
- Stephen A Kaba
- Laboratory of Virology, Wageningen University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
48
|
Bishop R, Nene V, Staeyert J, Rowlands J, Nyanjui J, Osaso J, Morzaria S, Musoke A. Immunity to East Coast fever in cattle induced by a polypeptide fragment of the major surface coat protein of Theileria parva sporozoites. Vaccine 2003; 21:1205-12. [PMID: 12559799 DOI: 10.1016/s0264-410x(02)00621-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Full-length recombinant versions of p67, the 709 amino acid major surface protein of Theileria parva sporozoites, induce immunity to East Coast fever (ECF) in cattle. We show that a soluble Escherichia coli recombinant version of p67 (p67(635)), in which a prokaryotic signal peptide replaces the eukaryotic one, confers protection comparable to that induced by the full-length molecule, but is unstable. Peptides encoding 80 (p67C) and 205 (p67N) amino acid fragments of p67, containing epitopes recognised by sporozoite neutralising monoclonal antibodies, exhibit improved stability in E. coli. Antibodies raised against the central region of p67 (p67M) neutralise sporozoite infectivity in vitro. The p67C peptide induced immunity against ECF in cattle, at a level equivalent to p67(635), suggesting that a synthetic peptide vaccine might be achievable.
Collapse
Affiliation(s)
- Richard Bishop
- International Livestock Research Institute, PO Box 30709, Nairobi, Kenya
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Schnittger L, Katzer F, Biermann R, Shayan P, Boguslawski K, McKellar S, Beyer D, Shiels BR, Ahmed JS. Characterization of a polymorphic Theileria annulata surface protein (TaSP) closely related to PIM of Theileria parva: implications for use in diagnostic tests and subunit vaccines. Mol Biochem Parasitol 2002; 120:247-56. [PMID: 11897130 DOI: 10.1016/s0166-6851(02)00013-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Theileria annulata is a tick-transmitted protozoan that causes tropical theileriosis, an often fatal leukoproliferative disorder of cattle. To characterize and identify parasite proteins suitable as diagnostic antigens and/or vaccine candidates, a cDNA clone encoding a macroschizont stage protein was isolated and characterized (here designated TaSP). The gene, present as a single copy within the parasite genome, is transcribed in the sporozoite and schizont stage and codes for a protein of about 315 amino acids, having a predicted molecular weight of 36 kDa. Allelic variants were found within single parasite isolates and between isolates originating from different geographical regions. The N-terminal part contains a predicted signal peptide and the C-terminal section encodes membrane-spanning regions. Comparison of a number of cDNA clones showed that both these sequence regions are conserved while the central region shows both size and amino acid sequence polymorphism. High identity of the N- and C-terminal regions with the polymorphic immunodominant molecule (PIM) of Theileria parva (identity of 93%), the existence of a central polymorphic region and two short introns within genomic clones suggest that the presented gene/protein may be the T. annulata homologue of PIM. However, the central region of TaSP has no significant identity with PIM, contains no repetitive peptide motifs and is shorter, resulting in a lower molecular weight. The existence of the predicted secretion signal peptide and membrane spanning regions suggest that TaSP is located at the parasite membrane.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antigens, Surface/chemistry
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Blotting, Western
- Genes, Protozoan/genetics
- Molecular Sequence Data
- Polymorphism, Genetic/genetics
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Vaccines/chemistry
- Protozoan Vaccines/immunology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Theileria annulata/genetics
- Theileria annulata/growth & development
- Theileria annulata/immunology
- Theileria parva/genetics
- Theileria parva/growth & development
- Theileria parva/immunology
- Theileriasis/diagnosis
- Theileriasis/immunology
- Theileriasis/parasitology
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/immunology
Collapse
|
50
|
Bishop R, Geysen D, Skilton R, Odongo D, Nene V, Allsopp B, Mbogo S, Spooner P, Morzaria S. Genomic Polymorphism, Sexual Recombination and Molecular Epidemiology of Theileria Parva. ACTA ACUST UNITED AC 2002. [DOI: 10.1007/978-1-4615-0903-5_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|