1
|
Zhao H, Dong H, Zhao Q, Zhu S, Jia L, Zhang S, Feng Q, Yu Y, Wang J, Huang B, Han H. Integrated application of transcriptomics and metabolomics provides insight into the mechanism of Eimeria tenella resistance to maduramycin. Int J Parasitol Drugs Drug Resist 2024; 24:100526. [PMID: 38382267 PMCID: PMC10885789 DOI: 10.1016/j.ijpddr.2024.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/11/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Avian coccidiosis, caused by Eimeria parasites, continues to devastate the poultry industry and results in significant economic losses. Ionophore coccidiostats, such as maduramycin and monensin, are widely used for prophylaxis of coccidiosis in poultry. Nevertheless, their efficacy has been challenged by widespread drug resistance. However, the underlying mechanisms have not been revealed. Understanding the targets and resistance mechanisms to anticoccidials is critical to combat this major parasitic disease. In the present study, maduramycin-resistant (MRR) and drug-sensitive (DS) sporozoites of Eimeria tenella were purified for transcriptomic and metabolomic analysis. The transcriptome analysis revealed 5016 differentially expressed genes (DEGs) in MRR compared to DS, and KEGG pathway enrichment analysis indicated that DEGs were involved in spliceosome, carbon metabolism, glycolysis, and biosynthesis of amino acids. In the untargeted metabolomics assay, 297 differentially expressed metabolites (DEMs) were identified in MRR compared to DS, and KEGG pathway enrichment analysis indicated that these DEMs were involved in 10 pathways, including fructose and mannose metabolism, cysteine and methionine metabolism, arginine and proline metabolism, and glutathione metabolism. Targeted metabolomic analysis revealed 14 DEMs in MRR compared to DS, and KEGG pathway analysis indicated that these DEMs were involved in 20 pathways, including fructose and mannose metabolism, glycolysis/gluconeogenesis, and carbon metabolism. Compared to DS, energy homeostasis and amino acid metabolism were differentially regulated in MRR. Our results provide gene and metabolite expression landscapes of E. tenella following maduramycin induction. This study is the first work involving integrated transcriptomic and metabolomic analyses to identify the key pathways to understand the molecular and metabolic mechanisms underlying drug resistance to polyether ionophores in coccidia.
Collapse
Affiliation(s)
- Huanzhi Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Liushu Jia
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Sishi Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Qian Feng
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Yu Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Jinwen Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| |
Collapse
|
2
|
Lozano JM, Rodríguez Parra Z, Hernández-Martínez S, Yasnot-Acosta MF, Rojas AP, Marín-Waldo LS, Rincón JE. The Search of a Malaria Vaccine: The Time for Modified Immuno-Potentiating Probes. Vaccines (Basel) 2021; 9:vaccines9020115. [PMID: 33540947 PMCID: PMC7913233 DOI: 10.3390/vaccines9020115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Malaria is a deadly disease that takes the lives of more than 420,000 people a year and is responsible for more than 229 million clinical cases globally. In 2019, 95% of malaria morbidity occurred in African countries. The development of a highly protective vaccine is an urgent task that remains to be solved. Many vaccine candidates have been developed, from the use of the entire attenuated and irradiated pre-erythrocytic parasite forms (or recombinantly expressed antigens thereof) to synthetic candidates formulated in a variety of adjuvants and delivery systems, however these have unfortunately proven a limited efficacy. At present, some vaccine candidates are finishing safety and protective efficacy trials, such as the PfSPZ and the RTS,S/AS01 which are being introduced in Africa. We propose a strategy for introducing non-natural elements into target antigens representing key epitopes of Plasmodium spp. Accordingly, chemical strategies and knowledge of host immunity to Plasmodium spp. have served as the basis. Evidence is obtained after being tested in experimental rodent models for malaria infection and recognized for human sera from malaria-endemic regions. This encourages us to propose such an immune-potentiating strategy to be further considered in the search for new vaccine candidates.
Collapse
Affiliation(s)
- José Manuel Lozano
- Grupo de Investigación Mimetismo Molecular de los Agentes Infecciosos, Departamento de Farmacia, Universidad Nacional de Colombia—Sede Bogotá, 111321 Bogota, Colombia;
- Correspondence: ; Tel.: +57-3102-504-657
| | - Zully Rodríguez Parra
- Grupo de Investigación Mimetismo Molecular de los Agentes Infecciosos, Departamento de Farmacia, Universidad Nacional de Colombia—Sede Bogotá, 111321 Bogota, Colombia;
| | - Salvador Hernández-Martínez
- Dirección de Infección e Inmunidad, Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62508 Cuernavaca, Morelos, Mexico;
| | - Maria Fernanda Yasnot-Acosta
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba, Universidad de Córdoba, 230002 Monteria, Colombia;
| | - Angela Patricia Rojas
- Grupo de Investigación Biología Celular y Autoinmuniad, Departamento de Farmacia, Universidad Nacional de Colombia-Sede Bogotá, 111321 Bogota, Colombia;
| | | | - Juan Edilberto Rincón
- Departamento de Ingeniería y Mecatrónica, Universidad Nacional de Colombia-Sede Bogotá, 111321 Bogota, Colombia;
| |
Collapse
|
3
|
A Chimeric Plasmodium vivax Merozoite Surface Protein Antibody Recognizes and Blocks Erythrocytic P. cynomolgi Berok Merozoites In Vitro. Infect Immun 2021; 89:IAI.00645-20. [PMID: 33199351 DOI: 10.1128/iai.00645-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/22/2023] Open
Abstract
Research on erythrocytic Plasmodium vivax merozoite antigens is critical for identifying potential vaccine candidates in reducing P. vivax disease. However, many P. vivax studies are constrained by its inability to undergo long-term culture in vitro Conserved across all Plasmodium spp., merozoite surface proteins are essential for invasion into erythrocytes and highly expressed on erythrocytic merozoites, thus making it an ideal vaccine candidate. In clinical trials, the P. vivax merozoite surface protein 1 (PvMSP1-19) vaccine candidate alone has shown to have limited immunogenicity in patients; hence, we incorporate the highly conserved and immunogenic C terminus of both P. vivax merozoite surface protein 8 (PvMSP8) and PvMSP1-19 to develop a multicomponent chimeric protein rPvMSP8+1 for immunization of mice. The resulted chimeric rPvMSP8+1 antibody was shown to recognize native protein MSP8 and MSP1-19 of mature P. vivax schizonts. In the immunized mice, an elevated antibody response was observed in the rPvMSP8+1-immunized group compared to that immunized with single-antigen components. In addition, we examined the growth inhibition of these antibodies against Plasmodium cynomolgi (Berok strain) parasites, which is phylogenetically close to P. vivax and sustains long-term culture in vitro Similarly, the chimeric anti-rPvMSP8+1 antibodies recognize P. cynomolgi MSP8 and MSP1-19 on mature schizonts and showed strong inhibition in vitro via growth inhibition assay. This study provides support for a new multiantigen-based paradigm rPvMSP8+1 to explore potential chimeric vaccine candidates against P. vivax malaria using sister species P. cynomolgi.
Collapse
|
4
|
Collins CR, Hackett F, Howell SA, Snijders AP, Russell MRG, Collinson LM, Blackman MJ. The malaria parasite sheddase SUB2 governs host red blood cell membrane sealing at invasion. eLife 2020; 9:e61121. [PMID: 33287958 PMCID: PMC7723409 DOI: 10.7554/elife.61121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 12/26/2022] Open
Abstract
Red blood cell (RBC) invasion by malaria merozoites involves formation of a parasitophorous vacuole into which the parasite moves. The vacuole membrane seals and pinches off behind the parasite through an unknown mechanism, enclosing the parasite within the RBC. During invasion, several parasite surface proteins are shed by a membrane-bound protease called SUB2. Here we show that genetic depletion of SUB2 abolishes shedding of a range of parasite proteins, identifying previously unrecognized SUB2 substrates. Interaction of SUB2-null merozoites with RBCs leads to either abortive invasion with rapid RBC lysis, or successful entry but developmental arrest. Selective failure to shed the most abundant SUB2 substrate, MSP1, reduces intracellular replication, whilst conditional ablation of the substrate AMA1 produces host RBC lysis. We conclude that SUB2 activity is critical for host RBC membrane sealing following parasite internalisation and for correct functioning of merozoite surface proteins.
Collapse
Affiliation(s)
- Christine R Collins
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Steven A Howell
- Protein Analysis and Proteomics Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Matthew RG Russell
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Faculty of Infectious Diseases, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| |
Collapse
|
5
|
Uwase J, Chu R, Kassegne K, Lei Y, Shen F, Fu H, Sun Y, Xuan Y, Cao J, Cheng Y. Immunogenicity analysis of conserved fragments in Plasmodium ovale species merozoite surface protein 4. Malar J 2020; 19:126. [PMID: 32228600 PMCID: PMC7106901 DOI: 10.1186/s12936-020-03207-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/23/2020] [Indexed: 12/28/2022] Open
Abstract
Background There is an urgent need for an effective vaccine to control and eradicate malaria, one of the most serious global infectious diseases. Plasmodium merozoite surface protein 4 (MSP4) has been listed as a blood-stage subunit vaccine candidate for malaria. Infection with Plasmodium ovale species including P. ovale wallikeri and P. ovale curtisi, is also a source of malaria burden in tropical regions where it is sometimes mixed with other Plasmodium species. However, little is known about P. ovale MSP4. Methods The msp4 gene was amplified through polymerase chain reaction using genomic DNA extracted from blood samples of 46 patients infected with P. ovale spp. and amplified products were sequenced. Open reading frames predicted as immunogenic peptides consisting of 119 and 97 amino acids of P. ovale curtisi MSP4 (PocMSP4) and P. ovale wallikeri MSP4 (PowMSP4), respectively, were selected for protein expression. Recombinant proteins (rPoMSP4) were expressed in Escherichia coli, purified, analysed, and immunized in BALB/c mice. The specificity of anti-MSP4-immunoglobulin (Ig) G antibodies was evaluated by Western blot and enzyme-linked immunosorbent assays, and cellular immune responses were analysed via lymphocyte proliferation assays. Results Full peptide sequences of PocMSP4 and PowMSP4 were completely conserved in all clinical isolates, except in the epidermal growth factor-like domain at the carboxyl terminus where only one mutation was observed in one P. o. wallikeri isolate. Further, truncated PoMSP4 segments were successfully expressed and purified as ~ 32 kDa proteins. Importantly, high antibody responses with end-point titres ranging from 1:10,000 to 1:2,560,000 in all immunized mouse groups were observed, with high IgG avidity to PocMSP4 (80.5%) and PowMSP4 (92.3%). Furthermore, rPocMSP4 and rPowMSP4 cross-reacted with anti-PowMSP4-specific or anti-PocMSP4-specific antibodies. Additionally, anti-PoMSP4 IgG antibodies showed broad immuno-specificity in reacting against rPoMSP1 and rPoAMA1. Lastly, PocMSP4- and PowMSP4-immunized mice induced cellular immune responses with PocMSP4 (36%) and PowMSP4 cells (15.8%) during splenocyte proliferation assays. Conclusion Findings from this study suggest conservation in PoMSP4 protein sequences and high immunogenicity was observed in rPoMSP4. Furthermore, induction of immune responses in PocMSP4- and PowMSP4-immunized mice informed that both humoral and cellular immune responses play crucial roles for PoMSP4 in protection.
Collapse
Affiliation(s)
- Juliette Uwase
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Ruilin Chu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Kokouvi Kassegne
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yao Lei
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Feihu Shen
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Haitian Fu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yifan Sun
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yinghua Xuan
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Jun Cao
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China. .,Key Laboratory of National Health and Family Planning Commision on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasite Diseases, Wuxi, 214064, Jiangsu, People's Republic of China.
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Ahmed MA, Saif A, Quan FS. Diversity pattern of Plasmodium knowlesi merozoite surface protein 4 (MSP4) in natural population of Malaysia. PLoS One 2019; 14:e0224743. [PMID: 31751362 PMCID: PMC6872184 DOI: 10.1371/journal.pone.0224743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/21/2019] [Indexed: 01/20/2023] Open
Abstract
Human infections due to the monkey malaria parasite Plasmodium knowlesi are increasingly being reported from Malaysia. The parasite causes high parasitaemia, severe and fatal malaria in humans thus there is a need for urgent measures for its control. The MSP4 is a potential vaccine candidate, which is well studied in Plasmodium falciparum and Plasmodium vivax; however, no study has been conducted in the orthologous gene of P. knowlesi. In this study, we investigated the level of polymorphisms, haplotypes, natural selection and population structure of full-length pkmsp4 in 32 clinical samples from Malaysian Borneo along with 4 lab-adapted strains. We found low levels of polymorphism across the gene with exon I showing higher diversity than the exon II. The C- terminal epidermal growth factor (EGF) domains and GPI-anchored region within exon II were mostly conserved with only 2 non-synonymous substitutions. Although 21 amino acid haplotypes were found, the frequency of mutation at the majority of the polymorphic positions was low. We found evidence of negative selection at the exon II of the gene indicating existence of functional constraints. Phylogenetic haplotype network analysis identified shared haplotypes and indicated geographical clustering of samples originating from Peninsular Malaysia and Malaysian Borneo. High population differentiation values were observed within parasite populations originating from Malaysian Borneo (Kapit, Sarikei and Betong) and laboratory-adapted strains obtained from Peninsular Malaysia and Philippines indicating distinct population structure. This is the first study to genetically characterize the full-length msp4 gene from clinical isolates of P. knowlesi from Malaysia and thus would be very useful for future rational vaccine studies. Further studies with higher number of samples and functional characterization of the protein will be necessary.
Collapse
Affiliation(s)
- Md Atique Ahmed
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ahmed Saif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Boyle MJ, Chan JA, Handayuni I, Reiling L, Feng G, Hilton A, Kurtovic L, Oyong D, Piera KA, Barber BE, William T, Eisen DP, Minigo G, Langer C, Drew DR, de Labastida Rivera F, Amante FH, Williams TN, Kinyanjui S, Marsh K, Doolan DL, Engwerda C, Fowkes FJI, Grigg MJ, Mueller I, McCarthy JS, Anstey NM, Beeson JG. IgM in human immunity to Plasmodium falciparum malaria. SCIENCE ADVANCES 2019; 5:eaax4489. [PMID: 31579826 PMCID: PMC6760923 DOI: 10.1126/sciadv.aax4489] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/03/2019] [Indexed: 05/15/2023]
Abstract
Most studies on human immunity to malaria have focused on the roles of immunoglobulin G (IgG), whereas the roles of IgM remain undefined. Analyzing multiple human cohorts to assess the dynamics of malaria-specific IgM during experimentally induced and naturally acquired malaria, we identified IgM activity against blood-stage parasites. We found that merozoite-specific IgM appears rapidly in Plasmodium falciparum infection and is prominent during malaria in children and adults with lifetime exposure, together with IgG. Unexpectedly, IgM persisted for extended periods of time; we found no difference in decay of merozoite-specific IgM over time compared to that of IgG. IgM blocked merozoite invasion of red blood cells in a complement-dependent manner. IgM was also associated with significantly reduced risk of clinical malaria in a longitudinal cohort of children. These findings suggest that merozoite-specific IgM is an important functional and long-lived antibody response targeting blood-stage malaria parasites that contributes to malaria immunity.
Collapse
Affiliation(s)
- M. J. Boyle
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Corresponding author. (M.J.B.); (J.G.B.)
| | - J. A. Chan
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - I. Handayuni
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - L. Reiling
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - G. Feng
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - A. Hilton
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - L. Kurtovic
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - D. Oyong
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Charles Darwin University, Darwin, Northern Territory, Australia
| | - K. A. Piera
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - B. E. Barber
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - T. William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
- Gleneagles Hospital Kota Kinabalu Sabah, Malaysia
| | - D. P. Eisen
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - G. Minigo
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Charles Darwin University, Darwin, Northern Territory, Australia
| | - C. Langer
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - D. R. Drew
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | | | - F. H. Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - T. N. Williams
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Imperial College, London, UK
| | - S. Kinyanjui
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - K. Marsh
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - D. L. Doolan
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - C. Engwerda
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - F. J. I. Fowkes
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Epidemiology and Preventive Medicine, Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - M. J. Grigg
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - I. Mueller
- Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Parasites and Insect Vectors, Institute Pasteur, Paris, France
| | - J. S. McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
| | - N. M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Charles Darwin University, Darwin, Northern Territory, Australia
| | - J. G. Beeson
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Corresponding author. (M.J.B.); (J.G.B.)
| |
Collapse
|
8
|
Izak D, Klim J, Kaczanowski S. Host-parasite interactions and ecology of the malaria parasite-a bioinformatics approach. Brief Funct Genomics 2019; 17:451-457. [PMID: 29697785 DOI: 10.1093/bfgp/ely013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Malaria remains one of the highest mortality infectious diseases. Malaria is caused by parasites from the genus Plasmodium. Most deaths are caused by infections involving Plasmodium falciparum, which has a complex life cycle. Malaria parasites are extremely well adapted for interactions with their host and their host's immune system and are able to suppress the human immune system, erase immunological memory and rapidly alter exposed antigens. Owing to this rapid evolution, parasites develop drug resistance and express novel forms of antigenic proteins that are not recognized by the host immune system. There is an emerging need for novel interventions, including novel drugs and vaccines. Designing novel therapies requires knowledge about host-parasite interactions, which is still limited. However, significant progress has recently been achieved in this field through the application of bioinformatics analysis of parasite genome sequences. In this review, we describe the main achievements in 'malarial' bioinformatics and provide examples of successful applications of protein sequence analysis. These examples include the prediction of protein functions based on homology and the prediction of protein surface localization via domain and motif analysis. Additionally, we describe PlasmoDB, a database that stores accumulated experimental data. This tool allows data mining of the stored information and will play an important role in the development of malaria science. Finally, we illustrate the application of bioinformatics in the development of population genetics research on malaria parasites, an approach referred to as reverse ecology.
Collapse
Affiliation(s)
- Dariusz Izak
- Department of Bioinformatics at the Institute of Biochemistry and Biophysics of the Polish Academy of Sciences
| | - Joanna Klim
- Department of Microbial Chemistry at the Institute of Biochemistry and Biophysics of the Polish Academy of Sciences
| | - Szymon Kaczanowski
- Department of Bioinformatics at the Institute of Biochemistry and Biophysics of the Polish Academy of Sciences
| |
Collapse
|
9
|
van den Hoogen LL, Walk J, Oulton T, Reuling IJ, Reiling L, Beeson JG, Coppel RL, Singh SK, Draper SJ, Bousema T, Drakeley C, Sauerwein R, Tetteh KKA. Antibody Responses to Antigenic Targets of Recent Exposure Are Associated With Low-Density Parasitemia in Controlled Human Plasmodium falciparum Infections. Front Microbiol 2019; 9:3300. [PMID: 30700984 PMCID: PMC6343524 DOI: 10.3389/fmicb.2018.03300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/18/2018] [Indexed: 12/05/2022] Open
Abstract
The majority of malaria infections in low transmission settings remain undetectable by conventional diagnostics. A powerful model to identify antibody responses that allow accurate detection of recent exposure to low-density infections is controlled human malaria infection (CHMI) studies in which healthy volunteers are infected with the Plasmodium parasite. We aimed to evaluate antibody responses in malaria-naïve volunteers exposed to a single CHMI using a custom-made protein microarray. All participants developed a blood-stage infection with peak parasite densities up to 100 parasites/μl in the majority of participants (50/54), while the remaining four participants had peak densities between 100 and 200 parasites/μl. There was a strong correlation between parasite density and antibody responses associated with the most reactive blood-stage targets 1 month after CHMI (Etramp 5, GLURP-R2, MSP4 and MSP1-19; Spearman’s ρ = 0.82, p < 0.001). Most volunteers developed antibodies against a potential marker of recent exposure: Etramp 5 (37/45, 82%). Our findings justify validation in endemic populations to define a minimum set of antigens needed to detect exposure to natural low-density infections.
Collapse
Affiliation(s)
- Lotus L van den Hoogen
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jona Walk
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tate Oulton
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Isaie J Reuling
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Ross L Coppel
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Susheel K Singh
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kevin K A Tetteh
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
10
|
Kapelski S, Boes A, Spiegel H, de Almeida M, Klockenbring T, Reimann A, Fischer R, Barth S, Fendel R. Fast track antibody V-gene rescue, recombinant expression in plants and characterization of a PfMSP4-specific antibody. Malar J 2015; 14:50. [PMID: 25651860 PMCID: PMC4323031 DOI: 10.1186/s12936-015-0577-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/25/2015] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Monoclonal antibodies (mAbs) are essential tools in biological research, diagnosis and therapy, and are conventionally produced in murine hybridoma cell lines. Professional applications of mAbs depend on the steady supply of material. Because hybridoma cultures can stop producing the antibody or even die, preservation of the unique epitope specificity of mAbs by rescue of the sequences encoding the antibody variable domains (V regions) is important. The availability of these sequences enables not only the recombinant expression of the original antibody for further applications, but opens the road for antibody engineering towards innovative diagnostic or therapeutic applications. A time- and cost-efficient production system enabling the detailed analysis of the antibodies is an essential requirement in this context. METHODS Sequences were rescued from three hybridoma cell lines, subjected to sequence analysis, subcloned into binary expression vectors and recombinantly expressed as chimeric mAb (constant regions of human IgG1:k1) in Nicotiana benthamiana plants. The properties of the recombinant and the murine mAbs were compared using competition enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) spectroscopy. The recognition of native PfMSP4 by the recombinant mAb was analysed by immunofluorescence staining of Pf 3D7A schizonts and by western blot analysis of merozoite extract. RESULTS The rescued sequences of all three hybridoma cell lines were identical. The recombinant mAb was successfully expressed as IgG in plants at moderate levels (45 mg/kg fresh leaf weight). Preservation of the original epitope was demonstrated in a competition ELISA, using recombinant mAb and the three murine mAbs. EGF_PfMSP4-specific affinities were determined by SPR spectroscopy to 8 nM and 10 nM for the murine or recombinant mAb, respectively. Binding to parasite PfMSP4 was confirmed in an immunofluorescence assay showing a characteristic staining pattern and by western blot analysis using merozoite extract. CONCLUSIONS As demonstrated by the example of an EGF_PfMSP4-specific antibody, the described combination of a simple and efficient hybridoma antibody cloning approach with the flexible, robust and cost-efficient transient expression system suitable to rapidly produce mg-amounts of functional recombinant antibodies provides an attractive method for the generation of mAbs and their derivatives as research tool, novel therapeutics or diagnostics.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Protozoan/genetics
- Antibodies, Protozoan/immunology
- Antibodies, Protozoan/isolation & purification
- Antigens, Protozoan/immunology
- Blotting, Western
- Enzyme-Linked Immunosorbent Assay
- Gene Expression
- Humans
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/immunology
- Immunoglobulin Variable Region/isolation & purification
- Mice, Inbred BALB C
- Microscopy, Fluorescence
- Organisms, Genetically Modified/genetics
- Organisms, Genetically Modified/metabolism
- Protozoan Proteins/immunology
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- Surface Plasmon Resonance
- Nicotiana/genetics
- Nicotiana/metabolism
Collapse
Affiliation(s)
- Stephanie Kapelski
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
- RWTH Aachen University, Institute for Molecular Biotechnology, Worringer Weg 1, 52074, Aachen, Germany.
- Institute for Applied Medical Engineering at RWTH Aachen University and Hospital, Department of Experimental Medicine and Immunotherapy, Pauwelsstraße 20, 52074, Aachen, Germany.
| | - Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - Melanie de Almeida
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
- RWTH Aachen University, Institute for Molecular Biotechnology, Worringer Weg 1, 52074, Aachen, Germany.
| | - Torsten Klockenbring
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
- RWTH Aachen University, Institute for Molecular Biotechnology, Worringer Weg 1, 52074, Aachen, Germany.
| | - Stefan Barth
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
- Institute for Applied Medical Engineering at RWTH Aachen University and Hospital, Department of Experimental Medicine and Immunotherapy, Pauwelsstraße 20, 52074, Aachen, Germany.
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
- RWTH Aachen University, Institute for Molecular Biotechnology, Worringer Weg 1, 52074, Aachen, Germany.
- Institute for Applied Medical Engineering at RWTH Aachen University and Hospital, Department of Experimental Medicine and Immunotherapy, Pauwelsstraße 20, 52074, Aachen, Germany.
| |
Collapse
|
11
|
Multiprotein complex between the GPI-anchored CyRPA with PfRH5 and PfRipr is crucial for Plasmodium falciparum erythrocyte invasion. Proc Natl Acad Sci U S A 2015; 112:1179-84. [PMID: 25583518 DOI: 10.1073/pnas.1415466112] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Erythrocyte invasion by Plasmodium falciparum merozoites is a highly intricate process in which Plasmodium falciparum reticulocyte binding-like homologous protein 5 (PfRH5) is an indispensable parasite ligand that binds with its erythrocyte receptor, Basigin. PfRH5 is a leading blood-stage vaccine candidate because it exhibits limited polymorphisms and elicits potent strain-transcending parasite neutralizing antibodies. However, the mechanism by which it is anchored to the merozoite surface remains unknown because both PfRH5 and the PfRH5-interacting protein (PfRipr) lack transmembrane domains and GPI anchors. Here we have identified a conserved GPI-linked parasite protein, Cysteine-rich protective antigen (CyRPA) as an interacting partner of PfRH5-PfRipr that tethers the PfRH5/PfRipr/CyRPA multiprotein complex on the merozoite surface. CyRPA was demonstrated to be GPI-linked, localized in the micronemes, and essential for erythrocyte invasion. Specific antibodies against the three proteins successfully detected the intact complex in the parasite and coimmunoprecipitated the three interacting partners. Importantly, full-length CyRPA antibodies displayed potent strain-transcending invasion inhibition, as observed for PfRH5. CyRPA does not bind with erythrocytes, suggesting that its parasite neutralizing antibodies likely block its critical interaction with PfRH5-PfRipr, leading to a blockade of erythrocyte invasion. Further, CyRPA and PfRH5 antibody combinations produced synergistic invasion inhibition, suggesting that simultaneous blockade of the PfRH5-Basigin and PfRH5/PfRipr/CyRPA interactions produced an enhanced inhibitory effect. Our discovery of the critical interactions between PfRH5, PfRipr, and the GPI-anchored CyRPA clearly defines the components of the essential PfRH5 adhesion complex for P. falciparum erythrocyte invasion and offers it as a previously unidentified potent target for antimalarial strategies that could abrogate formation of the crucial multiprotein complex.
Collapse
|
12
|
Antimalarial activity of granzyme B and its targeted delivery by a granzyme B-single-chain Fv fusion protein. Antimicrob Agents Chemother 2014; 59:669-72. [PMID: 25313223 DOI: 10.1128/aac.04190-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We present here the first evidence that granzyme B acts against Plasmodium falciparum (50% inhibitory concentration [IC50], 1,590 nM; 95% confidence interval [95% CI], 1,197 to 2,112 nM). We created a novel antimalarial fusion protein consisting of granzyme B fused to a merozoite surface protein 4 (MSP4)-specific single-chain Fv protein (scFv), which targets the enzyme to infected erythrocytes, with up to an 8-fold reduction in the IC50 (176 nM; 95% CI, 154 to 202 nM). This study confirms the therapeutic efficacies of recombinant antibody-mediated antimalarial immunotherapeutics based on granzyme B.
Collapse
|
13
|
Finney OC, Danziger SA, Molina DM, Vignali M, Takagi A, Ji M, Stanisic DI, Siba PM, Liang X, Aitchison JD, Mueller I, Gardner MJ, Wang R. Predicting antidisease immunity using proteome arrays and sera from children naturally exposed to malaria. Mol Cell Proteomics 2014; 13:2646-60. [PMID: 25023128 DOI: 10.1074/mcp.m113.036632] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Malaria remains one of the most prevalent and lethal human infectious diseases worldwide. A comprehensive characterization of antibody responses to blood stage malaria is essential to support the development of future vaccines, sero-diagnostic tests, and sero-surveillance methods. We constructed a proteome array containing 4441 recombinant proteins expressed by the blood stages of the two most common human malaria parasites, P. falciparum (Pf) and P. vivax (Pv), and used this array to screen sera of Papua New Guinea children infected with Pf, Pv, or both (Pf/Pv) that were either symptomatic (febrile), or asymptomatic but had parasitemia detectable via microscopy or PCR. We hypothesized that asymptomatic children would develop antigen-specific antibody profiles associated with antidisease immunity, as compared with symptomatic children. The sera from these children recognized hundreds of the arrayed recombinant Pf and Pv proteins. In general, responses in asymptomatic children were highest in those with high parasitemia, suggesting that antibody levels are associated with parasite burden. In contrast, symptomatic children carried fewer antibodies than asymptomatic children with infections detectable by microscopy, particularly in Pv and Pf/Pv groups, suggesting that antibody production may be impaired during symptomatic infections. We used machine-learning algorithms to investigate the relationship between antibody responses and symptoms, and we identified antibody responses to sets of Plasmodium proteins that could predict clinical status of the donors. Several of these antibody responses were identified by multiple comparisons, including those against members of the serine enriched repeat antigen family and merozoite protein 4. Interestingly, both P. falciparum serine enriched repeat antigen-5 and merozoite protein 4 have been previously investigated for use in vaccines. This machine learning approach, never previously applied to proteome arrays, can be used to generate a list of potential seroprotective and/or diagnostic antigens candidates that can be further evaluated in longitudinal studies.
Collapse
Affiliation(s)
- Olivia C Finney
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA 98109 USA
| | - Samuel A Danziger
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA 98109 USA; §Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109 USA
| | - Douglas M Molina
- ¶Antigen Discovery Inc. (ADi), 1 Technology Dr E, Irvine, CA 92618 USA
| | - Marissa Vignali
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA 98109 USA
| | - Aki Takagi
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA 98109 USA
| | - Ming Ji
- ‖Division of Epidemiology/Biostatistics, Graduate School of Public Health, San Diego State University, Hardy Tower 119, 5500 Campanile Drive, San Diego, CA 92182
| | - Danielle I Stanisic
- **Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea; ‡‡Walter & Eliza Hall Institute, 1G Royal Parade, Parkville Victoria 3052, Australia
| | - Peter M Siba
- **Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Xiawu Liang
- ¶Antigen Discovery Inc. (ADi), 1 Technology Dr E, Irvine, CA 92618 USA
| | - John D Aitchison
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA 98109 USA; §Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109 USA
| | - Ivo Mueller
- **Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea; ‡‡Walter & Eliza Hall Institute, 1G Royal Parade, Parkville Victoria 3052, Australia; §§Barcelona Centre for International Health Research, Carrer Roselló 132, 08036 Barcelona, Spain
| | - Malcolm J Gardner
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA 98109 USA
| | - Ruobing Wang
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA 98109 USA;
| |
Collapse
|
14
|
Sequential processing of merozoite surface proteins during and after erythrocyte invasion by Plasmodium falciparum. Infect Immun 2013; 82:924-36. [PMID: 24218484 DOI: 10.1128/iai.00866-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Plasmodium falciparum causes malaria disease during the asexual blood stages of infection when merozoites invade erythrocytes and replicate. Merozoite surface proteins (MSPs) are proposed to play a role in the initial binding of merozoites to erythrocytes, but precise roles remain undefined. Based on electron microscopy studies of invading Plasmodium merozoites, it is proposed that the majority of MSPs are cleaved and shed from the surface during invasion, perhaps to release receptor-ligand interactions. In this study, we demonstrate that there is not universal cleavage of MSPs during invasion. Instead, there is sequential and coordinated cleavage and shedding of proteins, indicating a diversity of roles for surface proteins during and after invasion. While MSP1 and peripheral surface proteins such as MSP3, MSP7, serine repeat antigen 4 (SERA4), and SERA5 are cleaved and shed at the tight junction between the invading merozoite and erythrocyte, the glycosylphosphatidylinositol (GPI)-anchored proteins MSP2 and MSP4 are carried into the erythrocyte without detectable processing. Following invasion, MSP2 rapidly degrades within 10 min, whereas MSP4 is maintained for hours. This suggests that while some proteins that are shed upon invasion may have roles in initial contact steps, others function during invasion and are then rapidly degraded, whereas others are internalized for roles during intraerythrocytic development. Interestingly, anti-MSP2 antibodies did not inhibit invasion and instead were carried into erythrocytes and maintained for approximately 20 h without inhibiting parasite development. These findings provide new insights into the mechanisms of invasion and knowledge to advance the development of new drugs and vaccines against malaria.
Collapse
|
15
|
Chittibabu G, Ma C, Netter HJ, Noronha SB, Coppel RL. Production, characterization, and immunogenicity of a secreted form of Plasmodium falciparum merozoite surface protein 4 produced in Bacillus subtilis. Appl Microbiol Biotechnol 2013; 98:3669-78. [PMID: 24146077 DOI: 10.1007/s00253-013-5275-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/04/2013] [Accepted: 09/07/2013] [Indexed: 01/08/2023]
Abstract
Plasmodium falciparum is the causative agent of the most serious form of malaria. Although a combination of control measures has significantly limited malaria morbidity and mortality in the last few years, it is generally agreed that sustained control or even eradication will require additional tools including an effective malaria vaccine. Merozoite surface protein 4, MSP4, which is present during the asexual stage of P. falciparum, is a recognized target that would be useful in a subunit vaccine against blood stages of malaria. Falciparum malaria is most prevalent in developing countries, and this in turn leads to a requirement for safe, low-cost vaccines. We have attempted to utilize the nonpathogenic, gram-positive organism Bacillus subtilis to produce PfMSP4. PfMSP4 was secreted into the culture medium at a yield of 4.5 mg/L. Characterization studies including SDS-PAGE, mass spectrometry, and N-terminal sequencing indicated that the B. subtilis expression system secreted a full length PfMSP4 protein compared to a truncated version in Escherichia coli. Equivalent amounts of purified B. subtilis and E. coli-derived PfMSP4 were used for immunization studies, resulting in statistically significant higher mean titer values for the B. subtilis-derived immunogen. The mouse antibodies raised against B. subtilis produced PfMSP4 that were reactive to parasite proteins as evidenced by immunoblotting on parasite lysate and indirect immunofluorescence assays of fixed parasites. The B. subtilis expression system, in contrast to E. coli, expresses higher amounts of full length PfMSP4 products, decreased levels of aggregates, and allows the development of simplified downstream processing procedures.
Collapse
Affiliation(s)
- G Chittibabu
- Department of Chemical engineering, IIT Bombay, Mumbai, 400076, India
| | | | | | | | | |
Collapse
|
16
|
Pacheco MA, Elango AP, Rahman AA, Fisher D, Collins WE, Barnwell JW, Escalante AA. Evidence of purifying selection on merozoite surface protein 8 (MSP8) and 10 (MSP10) in Plasmodium spp. INFECTION GENETICS AND EVOLUTION 2012; 12:978-86. [PMID: 22414917 DOI: 10.1016/j.meegid.2012.02.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/16/2012] [Accepted: 02/18/2012] [Indexed: 01/08/2023]
Abstract
Evidence for natural selection, positive or negative, on gene encoding antigens may indicate variation or functional constraints that are immunologically relevant. Most malaria surface antigens with high genetic diversity have been reported to be under positive-diversifying selection. However, antigens with limited genetic variation are usually ignored in terms of the role that natural selection may have in generating such patterns. We investigated orthologous genes encoding two merozoite proteins, MSP8 and MSP10, among several mammalian Plasmodium spp. These antigens, together with MSP1, are among the few MSPs that have two epidermal growth factor-like domains (EGF) at the C-terminal. Those EGF are relatively conserved (low levels of genetic polymorphism) and have been proposed to act as ligands during the invasion of RBCs. We use several evolutionary genetic methods to detect patterns consistent with natural selection acting on MSP8 and MSP10 orthologs in the human parasites Plasmodium falciparum and P. vivax, as well as closely related malarial species found in non-human primates (NHPs). Overall, these antigens have low polymorphism in the human parasites in comparison with the orthologs from other Plasmodium spp. We found that the MSP10 gene polymorphism in P. falciparum only harbor non-synonymous substitutions, a pattern consistent with a gene under positive selection. Evidence of purifying selection was found on the polymorphism observed in both orthologs from P. cynomolgi, a non-human primate parasite closely related to P. vivax, but it was not conclusive in the human parasite. Yet, using phylogenetic base approaches, we found evidence for purifying selection on both MSP8 and MSP10 in the lineage leading to P. vivax. Such antigens evolving under strong functional constraints could become valuable vaccine candidates. We discuss how comparative approaches could allow detecting patterns consistent with negative selection even when there is low polymorphism in the extant populations.
Collapse
Affiliation(s)
- M Andreína Pacheco
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | | | | | | | | | | | | |
Collapse
|
17
|
de Silva HD, Saleh S, Kovacevic S, Wang L, Black CG, Plebanski M, Coppel RL. The antibody response to Plasmodium falciparum Merozoite Surface Protein 4: comparative assessment of specificity and growth inhibitory antibody activity to infection-acquired and immunization-induced epitopes. Malar J 2011; 10:266. [PMID: 21920045 PMCID: PMC3182980 DOI: 10.1186/1475-2875-10-266] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 09/16/2011] [Indexed: 11/16/2022] Open
Abstract
Background Malaria remains a global public health challenge. It is widely believed that an effective vaccine against malaria will need to incorporate multiple antigens from the various stages of the parasite's complex life cycle. Plasmodium falciparum Merozoite Surface Protein 4 (MSP4) is a vaccine candidate that has been selected for development for inclusion in an asexual stage subunit vaccine against malaria. Methods Nine monoclonal antibodies (Mabs) were produced against Escherichia coli-expressed recombinant MSP4 protein and characterized. These Mabs were used to develop an MSP4-specific competition ELISA to test the binding specificity of antibodies present in sera from naturally P. falciparum-infected individuals from a malaria endemic region of Vietnam. The Mabs were also tested for their capacity to induce P. falciparum growth inhibition in vitro and compared against polyclonal rabbit serum raised against recombinant MSP4 Results All Mabs reacted with native parasite protein and collectively recognized at least six epitopes. Four of these Mabs recognize reduction-sensitive epitopes within the epidermal growth factor-like domain found near the C-terminus of MSP4. These sera were shown to contain antibodies capable of inhibiting the binding of the six Mabs indicating infection-acquired responses to the six different epitopes of MSP4. All of the six epitopes were readily recognized by human immune sera. Competition ELISA titres varied from 20 to 640, reflecting heterogeneity in the intensity of the humoral response against the protein among different individuals. The IgG responses during acute and convalescent phases of infection were higher to epitopes in the central region than to other parts of MSP4. Immunization with full length MSP4 in Freund's adjuvant induced rabbit polyclonal antisera able to inhibit parasite growth in vitro in a manner proportionate to the antibody titre. By contrast, polyclonal antisera raised to individual recombinant fragments rMSP4A, rMSP4B, rMSP4C and rMSP4D gave negligible inhibition. Similarly, murine Mabs alone or in combination did not inhibit parasite growth. Conclusions The panel of MSP4-specific Mabs produced were found to recognize six distinct epitopes that are also targeted by human antibodies during natural malaria infection. Antibodies directed to more than three epitope regions spread across MSP4 are likely to be required for P. falciparum growth inhibition in vitro.
Collapse
Affiliation(s)
- Harini D de Silva
- Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
18
|
Murine immune responses to a Plasmodium vivax-derived chimeric recombinant protein expressed in Brassica napus. Malar J 2011; 10:106. [PMID: 21529346 PMCID: PMC3098821 DOI: 10.1186/1475-2875-10-106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 04/29/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To develop a plant-based vaccine against Plasmodium vivax, two P. vivax candidate proteins were chosen. First, the merozoite surface protein-1 (MSP-1), a major asexual blood stage antigen that is currently considered a strong vaccine candidate. Second, the circumsporozoite protein (CSP), a component of sporozoites that contains a B-cell epitope. METHODS A synthetic chimeric recombinant 516 bp gene encoding containing PvMSP-1, a Pro-Gly linker motif, and PvCSP was synthesized; the gene, named MLC, encoded a total of 172 amino acids. The recombinant gene was modified with regard to codon usage to optimize gene expression in Brassica napus. The Ti plasmid inducible gene transfer system was used for MLC chimeric recombinant gene expression in B. napus. Gene expression was confirmed by polymerase chain reaction (PCR), beta-glucuronidase reporter gene (GUS) assay, and Western blot. RESULTS The MLC chimeric recombinant protein expressed in B. napus had a molecular weight of approximately 25 kDa. It exhibited a clinical sensitivity of 84.21% (n=38) and a clinical specificity of 100% (n=24) as assessed by enzyme-linked immunosorbent assay (ELISA). Oral immunization of BALB/c mice with MLC chimeric recombinant protein successfully induced antigen-specific IgG1 production. Additionally, the Th1-related cytokines IL-12 (p40), TNF, and IFN-γ were significantly increased in the spleens of the BALB/c mice. CONCLUSIONS The chimeric MLC recombinant protein produced in B. napus has potential as both as an antigen for diagnosis and as a valuable vaccine candidate for oral immunization against vivax malaria.
Collapse
|
19
|
Distinct external signals trigger sequential release of apical organelles during erythrocyte invasion by malaria parasites. PLoS Pathog 2010; 6:e1000746. [PMID: 20140184 PMCID: PMC2816683 DOI: 10.1371/journal.ppat.1000746] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 12/31/2009] [Indexed: 11/24/2022] Open
Abstract
The invasion of erythrocytes by Plasmodium merozoites requires specific interactions between host receptors and parasite ligands. Parasite proteins that bind erythrocyte receptors during invasion are localized in apical organelles called micronemes and rhoptries. The regulated secretion of microneme and rhoptry proteins to the merozoite surface to enable receptor binding is a critical step in the invasion process. The sequence of these secretion events and the external signals that trigger release are not known. We have used time-lapse video microscopy to study changes in intracellular calcium levels in Plasmodium falciparum merozoites during erythrocyte invasion. In addition, we have developed flow cytometry based methods to measure relative levels of cytosolic calcium and study surface expression of apical organelle proteins in P. falciparum merozoites in response to different external signals. We demonstrate that exposure of P. falciparum merozoites to low potassium ion concentrations as found in blood plasma leads to a rise in cytosolic calcium levels through a phospholipase C mediated pathway. Rise in cytosolic calcium triggers secretion of microneme proteins such as the 175 kD erythrocyte binding antigen (EBA175) and apical membrane antigen-1 (AMA-1) to the merozoite surface. Subsequently, interaction of EBA175 with glycophorin A (glyA), its receptor on erythrocytes, restores basal cytosolic calcium levels and triggers release of rhoptry proteins. Our results identify for the first time the external signals responsible for the sequential release of microneme and rhoptry proteins during erythrocyte invasion and provide a starting point for the dissection of signal transduction pathways involved in regulated exocytosis of these key apical organelles. Signaling pathway components involved in apical organelle discharge may serve as novel targets for drug development since inhibition of microneme and rhoptry secretion can block invasion and limit blood-stage parasite growth. Malaria remains a major public health problem in many parts of the tropical world. All the clinical symptoms of malaria are attributed to the blood stage of the parasite life cycle during which Plasmodium merozoites invade and multiply within host erythrocytes. Invasion by Plasmodium merozoites is a complex process that requires multiple molecular interactions between the invading parasite and target erythrocyte. Parasite proteins that mediate such interactions are localized in membrane bound internal organelles at the apical end of merozoites called micronemes and rhoptries. The timely secretion of microneme and rhoptry proteins to the merozoite surface to allow receptor binding is a crucial step in the invasion process. In this study, we demonstrate that exposure of Plasmodium falciparum merozoites to low potassium ion concentrations as found in blood plasma provides the natural signal that triggers a rise in intracellular calcium, which in turn triggers secretion of microneme proteins to the merozoite surface. Subsequently, binding of released microneme proteins with erythrocyte receptors provides the signal for release of rhoptry proteins. These studies open the path for analysis of signal transduction pathways involved in apical organelle secretion. A clear understanding of these pathways will enable development of inhibitors that block secretion of key parasite proteins required for receptor-binding. Such inhibitors will block erythrocyte invasion and inhibit parasite growth, providing promising leads for development of novel drugs against malaria.
Collapse
|
20
|
Identification of a vaccine candidate antigen, PfMAg-1, from Plasmodium falciparum with monoclonal antibody M26-32. Parasitol Res 2009; 105:1723-32. [PMID: 19777263 DOI: 10.1007/s00436-009-1617-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
Abstract
Monoclonal antibody M26-32 has been shown to strongly inhibit the growth of Plasmodium falciparum in vitro. To identify the target antigen of M26-32, a P. falciparum Dd2 asexual stage cDNA expression library was screened with this antibody, and a full open reading frame cDNA was obtained. This gene, named pfmag-1, encodes a polypeptide of 589 amino acids. The protein PfMAg-1 was characterized as a membrane-associated protein that expressed on the surface of merozoite during erythrocytic stage. Remarkably, at the C terminus of PfMAg-1, there are 14 copies of a deca-peptide sequence of QTDEIKND (H/N) I. This tandem repeat domain was identified to harbor the epitope of the protective M26-32 monoclonal antibody, and was also recognized by sera of patients infected with P. falciparum. Rabbit antibody elicited against this deca-peptide repeat domain effectively inhibited P. falciparum invasion in vitro. Our work suggests that PfMAg-1 is a promising malaria vaccine candidate.
Collapse
|
21
|
Morahan BJ, Sallmann GB, Huestis R, Dubljevic V, Waller KL. Plasmodium falciparum: genetic and immunogenic characterisation of the rhoptry neck protein PfRON4. Exp Parasitol 2009; 122:280-8. [PMID: 19442663 DOI: 10.1016/j.exppara.2009.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/07/2009] [Accepted: 04/29/2009] [Indexed: 11/16/2022]
Abstract
The Apicomplexan parasites Toxoplasma and Plasmodium, respectively, cause toxoplasmosis and malaria in humans and although they invade different host cells they share largely conserved invasion mechanisms. Plasmodium falciparum merozoite invasion of red blood cells results from a series of co-ordinated events that comprise attachment of the merozoite, its re-orientation, release of the contents of the invasion-related apical organelles (the rhoptries and micronemes) followed by active propulsion of the merozoite into the cell via an actin-myosin motor. During this process, a tight junction between the parasite and red blood cell plasma membranes is formed and recent studies have identified rhoptry neck proteins, including PfRON4, that are specifically associated with the tight junction during invasion. Here, we report the structure of the gene that encodes PfRON4 and its apparent limited diversity amongst geographically diverse P. falciparum isolates. We also report that PfRON4 protein sequences elicit immunogenic responses in natural human malaria infections.
Collapse
Affiliation(s)
- Belinda J Morahan
- Department of Microbiology, Monash University, Clayton, Vic. 3800, Australia
| | | | | | | | | |
Collapse
|
22
|
Patarroyo ME, Cifuentes G, Bermúdez A, Patarroyo MA. Strategies for developing multi-epitope, subunit-based, chemically synthesized anti-malarial vaccines. J Cell Mol Med 2009; 12:1915-35. [PMID: 19012725 PMCID: PMC4506160 DOI: 10.1111/j.1582-4934.2008.00174.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
An anti-malarial vaccine against the extremely lethal Plasmodium falciparum is desperately needed. Peptides from this parasite's proteins involved in invasion and having high red blood cell-binding ability were identified; these conserved peptides were not immun genic or protection-inducing when used for immunizing Aotus monkeys. Modifying some critical binding residues in these high-activi binding peptides' (HABPs') attachment to red blood cells (RBC) allowed them to induce immunogenicity and protection against expermental challenge and acquire the ability to bind to specific HLA-DRp1* alleles. These modified HABPs adopted certain characterist structural configurations as determined by circular dichroism (CD) and 1H nuclear magnetic resonance (NMR) associated with certain HLA-DRβ1* haplotype binding activities and characteristics, such as a 2-Å-distance difference between amino acids fitting into HLA-DRp1 Pockets 1 to 9, residues participating in binding to HLA-DR pockets and residues making contact with the TCR, suggesting haplotyp and allele-conscious TCR. This has been demonstrated in HLA-DR-like genotyped monkeys and provides the basis for designing high effective, subunit-based, multi-antigen, multi-stage, synthetic vaccines, for immediate human use, malaria being one of them.
Collapse
Affiliation(s)
- M E Patarroyo
- Fundación Instituto de Inmunólogia de Colombia (FIDIC), Bogotá, Colombia.
| | | | | | | |
Collapse
|
23
|
Bracho G, Zayas C, Wang L, Coppel R, Pérez O, Petrovsky N. AFCo1, a meningococcal B-derived cochleate adjuvant, strongly enhances antibody and T-cell immunity against Plasmodium falciparum merozoite surface protein 4 and 5. Malar J 2009; 8:35. [PMID: 19250541 PMCID: PMC2662867 DOI: 10.1186/1475-2875-8-35] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 02/27/2009] [Indexed: 11/28/2022] Open
Abstract
Background Whilst a large number of malaria antigens are being tested as candidate malaria vaccines, a major barrier to the development of an effective vaccine is the lack of a suitable human adjuvant capable of inducing a strong and long lasting immune response. In this study, the ability of AFCo1, a potent T and B cell adjuvant based on cochleate structures derived from meningococcal B outer membrane proteoliposomes (MBOMP), to boost the immune response against two Plasmodium falciparum antigens, merozoite surface protein 4 (MSP4) and 5 (MSP5), was evaluated. Methods Complete Freund's adjuvant (CFA), which is able to confer protection against malaria in animal MSP4/5 vaccine challenge models, was used as positive control adjuvant. MSP4 and 5-specific IgG, delayed-type hypersensitivity (DTH), T-cell proliferation, and cytokine production were evaluated in parallel in mice immunized three times intramuscularly with MSP4 or MSP5 incorporated into AFCo1, synthetic cochleate structures, CFA or phosphate buffered saline. Results AFCo1 significantly enhanced the IgG and T-cell response against MSP4 and MSP5, with a potency equivalent to CFA, with the response being characterized by both IgG1 and IgG2a isotypes, increased interferon gamma production and a strong DTH response, consistent with the ability of AFCo1 to induce Th1-like immune responses. Conclusion Given the proven safety of MBOMP, which is already in use in a licensed human vaccine, AFCo1 could assist the development of human malaria vaccines that require a potent and safe adjuvant.
Collapse
Affiliation(s)
- Gustavo Bracho
- Department of Immunology, Finlay Institute, Havana City, Cuba.
| | | | | | | | | | | |
Collapse
|
24
|
Gondeau C, Corradin G, Heitz F, Le Peuch C, Balbo A, Schuck P, Kajava AV. The C-terminal domain of Plasmodium falciparum merozoite surface protein 3 self-assembles into alpha-helical coiled coil tetramer. Mol Biochem Parasitol 2009; 165:153-61. [PMID: 19428662 DOI: 10.1016/j.molbiopara.2009.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 01/28/2009] [Accepted: 01/29/2009] [Indexed: 11/19/2022]
Abstract
Proteins located on the surface of the pathogenic malaria parasite Plasmodium falciparum are objects of intensive studies due to their important role in the invasion of human cells and the accessibility to host antibodies thus making these proteins attractive vaccine candidates. One of these proteins, merozoite surface protein 3 (MSP3) represents a leading component among vaccine candidates; however, little is known about its structure and function. Our biophysical studies suggest that the 40 residue C-terminal domain of MSP3 protein self-assembles into a four-stranded alpha-helical coiled coil structure where alpha-helices are packed "side-by-side". A bioinformatics analysis provides an extended list of known and putative proteins from different species of Plasmodium which have such MSP3-like C-terminal domains. This finding allowed us to extend some conclusions of our studies to a larger group of the malaria surface proteins. Possible structural and functional roles of these highly conserved oligomerization domains in the intact merozoite surface proteins are discussed.
Collapse
Affiliation(s)
- Claire Gondeau
- Centre de Recherches de Biochimie Macromoléculaire, CNRS UMR-5237, University of Montpellier 1 and 2, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Danquah MK, Liu S, Ho J, Forde GM, Wang L, Coppel RL. Rapid production of a plasmid DNA encoding a malaria vaccine candidate via amino-functionalized poly(GMA-co-EDMA) monolith. AIChE J 2008. [DOI: 10.1002/aic.11595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Chen Z, Harb OS, Roos DS. In silico identification of specialized secretory-organelle proteins in apicomplexan parasites and in vivo validation in Toxoplasma gondii. PLoS One 2008; 3:e3611. [PMID: 18974850 PMCID: PMC2575384 DOI: 10.1371/journal.pone.0003611] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 10/06/2008] [Indexed: 12/04/2022] Open
Abstract
Apicomplexan parasites, including the human pathogens Toxoplasma gondii and Plasmodium falciparum, employ specialized secretory organelles (micronemes, rhoptries, dense granules) to invade and survive within host cells. Because molecules secreted from these organelles function at the host/parasite interface, their identification is important for understanding invasion mechanisms, and central to the development of therapeutic strategies. Using a computational approach based on predicted functional domains, we have identified more than 600 candidate secretory organelle proteins in twelve apicomplexan parasites. Expression in transgenic T. gondii of eight proteins identified in silico confirms that all enter into the secretory pathway, and seven target to apical organelles associated with invasion. An in silico approach intended to identify possible host interacting proteins yields a dataset enriched in secretory/transmembrane proteins, including most of the antigens known to be engaged by apicomplexan parasites during infection. These domain pattern and projected interactome approaches significantly expand the repertoire of proteins that may be involved in host parasite interactions.
Collapse
Affiliation(s)
- ZhongQiang Chen
- Department of Biology, Penn Genomic Frontiers Institute, and the Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Omar S. Harb
- Department of Biology, Penn Genomic Frontiers Institute, and the Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (DSR); (OSH)
| | - David S. Roos
- Department of Biology, Penn Genomic Frontiers Institute, and the Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (DSR); (OSH)
| |
Collapse
|
27
|
Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate Molecular Interactions of P. falciparum Merozoite Proteins Involved in Invasion of Red Blood Cells and Their Implications for Vaccine Design. Chem Rev 2008; 108:3656-705. [DOI: 10.1021/cr068407v] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Mauricio Urquiza
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Gladys Cifuentes
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Claudia Reyes
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | | |
Collapse
|
28
|
Weedall GD, Polley SD, Conway DJ. Gene-specific signatures of elevated non-synonymous substitution rates correlate poorly across the Plasmodium genus. PLoS One 2008; 3:e2281. [PMID: 18509456 PMCID: PMC2384006 DOI: 10.1371/journal.pone.0002281] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 04/13/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Comparative genome analyses of parasites allow large scale investigation of selective pressures shaping their evolution. An acute limitation to such analysis of Plasmodium falciparum is that there is only very partial low-coverage genome sequence of the most closely related species, the chimpanzee parasite P. reichenowi. However, if orthologous genes have been under similar selective pressures throughout the Plasmodium genus then positive selection on the P. falciparum lineage might be predicted to some extent by analysis of other lineages. PRINCIPAL FINDINGS Here, three independent pairs of closely related species in different sub-generic clades (P. falciparum and P. reichenowi; P. vivax and P. knowlesi; P. yoelii and P. berghei) were compared for a set of 43 candidate ligand genes considered likely to be under positive directional selection and a set of 102 control genes for which there was no selective hypothesis. The ratios of non-synonymous to synonymous substitutions (dN/dS) were significantly elevated in the candidate ligand genes compared to control genes in each of the three clades. However, the rank order correlation of dN/dS ratios for individual candidate genes was very low, less than the correlation for the control genes. SIGNIFICANCE The inability to predict positive selection on a gene in one lineage by identifying elevated dN/dS ratios in the orthologue within another lineage needs to be noted, as it reflects that adaptive mutations are generally rare events that lead to fixation in individual lineages. Thus it is essential to complete the genome sequences of particular species of phylogenetic importance, such as P. reichenowi.
Collapse
Affiliation(s)
- Gareth D Weedall
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | | |
Collapse
|
29
|
Characterization of a conserved rhoptry-associated leucine zipper-like protein in the malaria parasite Plasmodium falciparum. Infect Immun 2008; 76:879-87. [PMID: 18174339 DOI: 10.1128/iai.00144-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the key processes in the pathobiology of the malaria parasite is the invasion and subsequent modification of the human erythrocyte. In this complex process, an unknown number of parasite proteins are involved, some of which are leading vaccine candidates. The majority of the proteins that play pivotal roles in invasion are either stored in the apical secretory organelles or located on the surface of the merozoite, the invasive stage of the parasite. Using transcriptional and structural features of these known proteins, we performed a genomewide search that identified 49 hypothetical proteins with a high probability of being located on the surface of the merozoite or in the secretory organelles. Of these candidates, we characterized a novel leucine zipper-like protein in Plasmodium falciparum that is conserved in Plasmodium spp. This protein is expressed in late blood stages and localizes to the rhoptries of the parasite. We demonstrate that this Plasmodium sp.-specific protein has a high degree of conservation within field isolates and that it is refractory to gene knockout attempts and thus might play an important role in invasion.
Collapse
|
30
|
Proellocks NI, Kovacevic S, Ferguson DJ, Kats LM, Morahan BJ, Black CG, Waller KL, Coppel RL. Plasmodium falciparum Pf34, a novel GPI-anchored rhoptry protein found in detergent-resistant microdomains. Int J Parasitol 2007; 37:1233-41. [PMID: 17521656 PMCID: PMC2712672 DOI: 10.1016/j.ijpara.2007.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/28/2007] [Accepted: 03/22/2007] [Indexed: 10/23/2022]
Abstract
Apicomplexan parasites are characterised by the presence of specialised organelles, such as rhoptries, located at the apical end of invasive forms that play an important role in invasion of the host cell and formation of the parasitophorous vacuole. In this study, we have characterised a novel Plasmodium falciparum rhoptry protein, Pf34, encoded by a single exon gene located on chromosome 4 and expressed as a 34kDa protein in mature asexual stage parasites. Pf34 is expressed later in the life cycle than the previously described rhoptry protein, Rhoptry Associated Membrane Antigen (RAMA). Orthologues of Pf34 are present in other Plasmodium species and a potential orthologue has also been identified in Toxoplasma gondii. Indirect immunofluorescence assays show that Pf34 is located at the merozoite apex and localises to the rhoptry neck. Pf34, previously demonstrated to be glycosyl-phosphatidyl-inositol (GPI)-anchored [Gilson, P.R., Nebl, T., Vukcevic, D., Moritz, R.L., Sargeant, T., Speed, T.P., Schofield, L., Crabb, B.S. (2006) Identification and stoichiometry of GPI-anchored membrane proteins of the human malaria parasite Plasmodium falciparum. Mol. Cell. Proteomics 5, 1286-1299.], is associated with parasite-derived detergent-resistant microdomains (DRMs). Pf34 is carried into the newly invaded ring, consistent with a role for Pf34 in the formation of the parasitophorous vacuole. Pf34 is exposed to the human immune system during infection and is recognised by human immune sera collected from residents of malaria endemic areas of Vietnam and Papua New Guinea.
Collapse
Affiliation(s)
- Nicholas I. Proellocks
- NHMRC Program in Malaria, Department of Microbiology, Monash University, VIC 3800, Australia
| | - Svetozar Kovacevic
- NHMRC Program in Malaria, Department of Microbiology, Monash University, VIC 3800, Australia
| | - David J.P. Ferguson
- Nuffield Department of Pathology, Oxford University, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Lev M. Kats
- NHMRC Program in Malaria, Department of Microbiology, Monash University, VIC 3800, Australia
| | - Belinda J. Morahan
- NHMRC Program in Malaria, Department of Microbiology, Monash University, VIC 3800, Australia
| | - Casilda G. Black
- NHMRC Program in Malaria, Department of Microbiology, Monash University, VIC 3800, Australia
| | - Karena L. Waller
- NHMRC Program in Malaria, Department of Microbiology, Monash University, VIC 3800, Australia
| | - Ross L. Coppel
- NHMRC Program in Malaria, Department of Microbiology, Monash University, VIC 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, VIC 3800, Australia
- Corresponding Author. Ross L. Coppel, Department of Microbiology, Monash University, VIC 3800, Australia., Tel.: +61 3 9905 4822; fax: +61 3 9905 4811., E-mail address:
| |
Collapse
|
31
|
Logan GJ, Wang L, Zheng M, Cunningham SC, Coppel RL, Alexander IE. AAV vectors encoding malarial antigens stimulate antigen-specific immunity but do not protect from parasite infection. Vaccine 2007; 25:1014-22. [PMID: 17081661 DOI: 10.1016/j.vaccine.2006.09.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 09/04/2006] [Accepted: 09/24/2006] [Indexed: 11/28/2022]
Abstract
This study explores the utility of recombinant adeno-associated virus (rAAV) as a genetic vaccine delivery system using muscle as a target tissue. A single injection of rAAV encoding the malarial antigens MSP4 (Plasmodium falciparum) or MSP4/5 (Plasmodium yoelii) stimulated long-term antigen-specific antibody responses. Anti-MSP4/5 immunity stimulated by AAV was not protective against P. yoelii infection and efforts taken to augment antibody responses against MSP4/5, either by priming with plasmid DNA or AAV and boosting with rAAV were unsuccessful. Alternative strategies such as inclusion of genetic adjuvants into the AAV vector will be necessary to stimulate an adequate level of anti-malarial protective immunity in this model.
Collapse
Affiliation(s)
- Grant J Logan
- Gene Therapy Research Unit, Children's Medical Research Institute and The Children's Hospital at Westmead, Westmead, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Serrano ML, Pérez HA, Medina JD. Structure of C-terminal fragment of merozoite surface protein-1 from Plasmodium vivax determined by homology modeling and molecular dynamics refinement. Bioorg Med Chem 2006; 14:8359-65. [PMID: 17035028 DOI: 10.1016/j.bmc.2006.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 09/07/2006] [Accepted: 09/07/2006] [Indexed: 10/24/2022]
Abstract
One current vaccine candidate against Plasmodium vivax targeting asexual blood stage is the major merozoite surface protein-1 of P. vivax (PvMSP-1). Vaccine trials with PvMSP-1(19) and PvMSP-1(33) have succeeded in protecting monkeys and a large proportion of individuals, naturally exposed to P. vivax transmission, develop specific antibodies to PvMSP-1(19). This study presents a model for the three-dimensional structure of the C-terminal 19kDa fragment of P. vivax MSP-1 determined by means of homology modeling and molecular dynamics refinement. The structure proved to be consistent with MSP-1(19) of known crystal or solution structures. The presence of a main binding pocket, well suited for protein-protein interactions, was determined by CASTp. Corrections reported to the sequence of PvMSP-1(19) Belem strain were also inspected. Our model is currently used as a basis to understand antibody interactions with PvMSP-1(19).
Collapse
Affiliation(s)
- María Luisa Serrano
- Laboratorio de Modelado Molecular, Unidad de Química Medicinal, Facultad de Farmacia, Universidad Central de Venezuela, Caracas 1041-A, Venezuela.
| | | | | |
Collapse
|
33
|
Pachebat JA, Kadekoppala M, Grainger M, Dluzewski AR, Gunaratne RS, Scott-Finnigan TJ, Ogun SA, Ling IT, Bannister LH, Taylor HM, Mitchell GH, Holder AA. Extensive proteolytic processing of the malaria parasite merozoite surface protein 7 during biosynthesis and parasite release from erythrocytes. Mol Biochem Parasitol 2006; 151:59-69. [PMID: 17097159 DOI: 10.1016/j.molbiopara.2006.10.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 09/15/2006] [Accepted: 10/11/2006] [Indexed: 11/21/2022]
Abstract
In Plasmodium falciparum, merozoite surface protein 7 (MSP7) was originally identified as a 22kDa protein on the merozoite surface and associated with the MSP1 complex shed during erythrocyte invasion. MSP7 is synthesised in schizonts as a 351-amino acid precursor that undergoes proteolytic processing. During biosynthesis the MSP1 and MSP7 precursors form a complex that is targeted to the surface of developing merozoites. In the sequential proteolytic processing of MSP7, N- and C-terminal 20 and 33kDa products of primary processing, MSP7(20) and MSP7(33) are formed and MSP7(33) remains bound to full length MSP1. Later in the mature schizont, MSP7(20) disappears from the merozoite surface and on merozoite release MSP7(33) undergoes a secondary cleavage yielding the 22kDa MSP7(22) associated with MSP1. In free merozoites, both MSP7(22) and a further cleaved product, MSP7(19) present only in some parasite lines, were detected; these two derivatives are shed as part of the protein complex with MSP1 fragments during erythrocyte invasion. Primary processing of MSP7 is brefeldin A-sensitive while secondary processing is resistant to both calcium chelators and serine protease inhibitors. Primary processing of MSP7 occurs prior to that of MSP1 in a post-Golgi compartment, whereas the secondary cleavage occurs on the surface of the developing merozoite, possibly at the time of MSP1 primary processing and well before the secondary processing of MSP1.
Collapse
Affiliation(s)
- Justin A Pachebat
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW1 1AA, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Girard MP, Reed ZH, Friede M, Kieny MP. A review of human vaccine research and development: malaria. Vaccine 2006; 25:1567-80. [PMID: 17045367 DOI: 10.1016/j.vaccine.2006.09.074] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Accepted: 09/25/2006] [Indexed: 11/18/2022]
Abstract
The last several years have seen significant progress in the development of vaccines against malaria. Most recently, proof-of-concept of vaccine-induced protection from malaria infection and disease was demonstrated in African children. Pursued by various groups and on many fronts, several other candidate vaccines are in early clinical trials. Yet, despite the optimism and promise, an effective malaria vaccine is not yet available, in part because of the lack of understanding of the types of immune responses needed for protection, added to the difficulty of identifying, selecting and producing the appropriate protective antigens from a parasite with a genome of well over five thousand genes and to the frequent need to enhance the immunogenicity of purified antigens through the use of novel adjuvants or delivery systems. Insufficient clinical trial capacity and normative research functions such as local ethical committee reviews also contribute to slow down the development process. This article attempts to summarize the state of the art of malaria vaccine development.
Collapse
Affiliation(s)
- Marc P Girard
- University Paris 7, 39 rue Seignemartin, FR-69008 Lyon, France.
| | | | | | | |
Collapse
|
35
|
Gomez A, Suarez CF, Martinez P, Saravia C, Patarroyo MA. High polymorphism in Plasmodium vivax merozoite surface protein-5 (MSP5). Parasitology 2006; 133:661-72. [PMID: 16978450 DOI: 10.1017/s0031182006001168] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 06/16/2006] [Accepted: 06/21/2006] [Indexed: 11/07/2022]
Abstract
A key issue relating to developing multi-component anti-malarial vaccines, lies in studying Plasmodium vivax surface proteins' genetic variation. The present work was aimed at amplifying, cloning and sequencing the gene encoding P. vivax merozoite surface protein 5 (PvMSP5) in samples obtained from infected patients from Colombian areas having varying malaria transmission rates. Nucleotide sequence data reported in this paper are available in the GenBank, EMBL and DDBJ databases under Accessions numbers DQ341586 to DQ341601. Our results have revealed that PvMSP5 is one of the P. vivax surface proteins having greater polymorphism, this being restricted to specific protein regions. The intron and exon II (which includes the GPI anchor and EGF-like domain) were both highly conserved when compared to exon I; exon I displayed the greatest variation and most of the recombination events occurred within it. No geographical grouping was observed. The Nei-Gojobori test revealed significant positive selection in the samples analysed here, whereas Tajima and Fu and Li tests presented a neutral selection pattern. The results reflected a localized variation pattern, recombination between PvMSP5 alleles and also functional and immune pressures, where stronger selective forces might be acting on exon I than on exon II, suggesting that the latter could be an important region to be included in an anti-malarial vaccine.
Collapse
Affiliation(s)
- A Gomez
- Molecular Biology Department, Fundacion Instituto de Inmunologia de Colombia, Carrera 50#26-00, Bogota, Colombia
| | | | | | | | | |
Collapse
|
36
|
Sanders PR, Kats LM, Drew DR, O'Donnell RA, O'Neill M, Maier AG, Coppel RL, Crabb BS. A set of glycosylphosphatidyl inositol-anchored membrane proteins of Plasmodium falciparum is refractory to genetic deletion. Infect Immun 2006; 74:4330-8. [PMID: 16790807 PMCID: PMC1489731 DOI: 10.1128/iai.00054-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Targeted gene disruption has proved to be a powerful approach for studying the function of important ligands involved in erythrocyte invasion by the extracellular merozoite form of the human malaria parasite, Plasmodium falciparum. Merozoite invasion proceeds via a number of seemingly independent alternate pathways, such that entry can proceed with parasites lacking particular ligand-receptor interactions. To date, most focus in this regard has been on single-pass (type 1) membrane proteins that reside in the secretory organelles. Another class of merozoite proteins likely to include ligands for erythrocyte receptors are the glycosylphosphatidyl inositol (GPI)-anchored membrane proteins that coat the parasite surface and/or reside in the apical organelles. Several of these are prominent vaccine candidates, although their functions remain unknown. Here, we systematically attempted to disrupt the genes encoding seven of the known GPI-anchored merozoite proteins of P. falciparum by using a double-crossover gene-targeting approach. Surprisingly, and in apparent contrast to other merozoite antigen classes, most of the genes (six of seven) encoding GPI-anchored merozoite proteins are refractory to genetic deletion, with the exception being the gene encoding merozoite surface protein 5 (MSP-5). No distinguishable growth rate or invasion pathway phenotype was detected for the msp-5 knockout line, although its presence as a surface-localized protein was confirmed.
Collapse
Affiliation(s)
- Paul R Sanders
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3050, Australia
| | | | | | | | | | | | | | | |
Collapse
|
37
|
López R, Valbuena J, Rodríguez LE, Ocampo M, Vera R, Curtidor H, Puentes A, García J, Ramirez LE, Patarroyo ME. Plasmodium falciparum merozoite surface protein 6 (MSP-6) derived peptides bind erythrocytes and partially inhibit parasite invasion. Peptides 2006; 27:1685-92. [PMID: 16713025 DOI: 10.1016/j.peptides.2006.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 02/02/2006] [Accepted: 02/03/2006] [Indexed: 11/19/2022]
Abstract
This work shows that Plasmodium falciparum merozoite surface protein-6 (MSP-6) peptides specifically bind to membrane surface receptor on human erythrocytes. Three high activity binding peptides (HABPs) were found: peptides 31175 (41MYNNDKILSKNEVDTNIESN60) and 31178 (101YDIQATYQFPSTSGGNNVIP120) in the amino terminal region and 31191 (361EIDSTINNLVQEMIHLFSNNY380) at the carboxy terminal. Their binding to erythrocytes was saturable. HABPs 31191 and 31178 recognized 56 and 26 kDa receptors on erythrocyte membrane and inhibited in vitro Plasmodium falciparum merozoite invasion of erythrocytes by between 27% and 46% at 200 microg ml(-1) concentration, suggesting that these MSP-6 protein peptides play a possible role in the invasion process.
Collapse
Affiliation(s)
- Ramsés López
- Fundación Instituto de Inmunología de Colombia (FIDIC) and Universidad Nacional de Colombia, Colombia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gilson PR, Nebl T, Vukcevic D, Moritz RL, Sargeant T, Speed TP, Schofield L, Crabb BS. Identification and stoichiometry of glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics 2006; 5:1286-99. [PMID: 16603573 DOI: 10.1074/mcp.m600035-mcp200] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most proteins that coat the surface of the extracellular forms of the human malaria parasite Plasmodium falciparum are attached to the plasma membrane via glycosylphosphatidylinositol (GPI) anchors. These proteins are exposed to neutralizing antibodies, and several are advanced vaccine candidates. To identify the GPI-anchored proteome of P. falciparum we used a combination of proteomic and computational approaches. Focusing on the clinically relevant blood stage of the life cycle, proteomic analysis of proteins labeled with radioactive glucosamine identified GPI anchoring on 11 proteins (merozoite surface protein (MSP)-1, -2, -4, -5, -10, rhoptry-associated membrane antigen, apical sushi protein, Pf92, Pf38, Pf12, and Pf34). These proteins represent approximately 94% of the GPI-anchored schizont/merozoite proteome and constitute by far the largest validated set of GPI-anchored proteins in this organism. Moreover MSP-1 and MSP-2 were present in similar copy number, and we estimated that together these proteins comprise approximately two-thirds of the total membrane-associated surface coat. This is the first time the stoichiometry of MSPs has been examined. We observed that available software performed poorly in predicting GPI anchoring on P. falciparum proteins where such modification had been validated by proteomics. Therefore, we developed a hidden Markov model (GPI-HMM) trained on P. falciparum sequences and used this to rank all proteins encoded in the completed P. falciparum genome according to their likelihood of being GPI-anchored. GPI-HMM predicted GPI modification on all validated proteins, on several known membrane proteins, and on a number of novel, presumably surface, proteins expressed in the blood, insect, and/or pre-erythrocytic stages of the life cycle. Together this work identified 11 and predicted a further 19 GPI-anchored proteins in P. falciparum.
Collapse
Affiliation(s)
- Paul R Gilson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Black CG, Wu T, Wang L, Topolska AE, Coppel RL. MSP8 is a non-essential merozoite surface protein in Plasmodium falciparum. Mol Biochem Parasitol 2005; 144:27-35. [PMID: 16125802 DOI: 10.1016/j.molbiopara.2005.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Revised: 05/29/2005] [Accepted: 06/05/2005] [Indexed: 10/25/2022]
Abstract
MSP8 is a recently identified merozoite surface protein that shares similar structural features with the leading vaccine candidate MSP1. Both proteins contain two C-terminal epidermal growth factor (EGF)-like domains, a glycosylphosphatidylinositol (GPI) anchor attachment sequence and undergo proteolytic processing. By double recombination, we have disrupted the MSP8 gene in P. falciparum 3D7 parasites, and confirmed integration by southern hybridisation and PCR. Western blot analysis of lysates from asynchronous cultures and isolated merozoites demonstrated the absence of MSP8 in two cloned knockout lines. There was no significant difference in growth rate observed between 3D7 and the cloned DeltaMSP8 lines. Thus, unlike MSP1, MSP8 is not required for asexual stage parasite growth and replication in vitro. Further analysis of the cloned lines showed that loss of MSP8 had no effect on the levels of expression of other merozoite surface proteins including MSP1-5, 7 and 10. Stage-specific immunoblots showed that MSP8 expression commences in late rings and extends throughout the rest of the erythrocytic life cycle in the 3D7 parent line, but is absent from all stages in the DeltaMSP8 transfectants.
Collapse
Affiliation(s)
- Casilda G Black
- Department of Microbiology and the Victorian Bioinformatics Consortium, Monash University, Clayton, Vic. 3800, Australia.
| | | | | | | | | |
Collapse
|
40
|
Shi Q, Cernetich A, Daly TM, Galvan G, Vaidya AB, Bergman LW, Burns JM. Alteration in host cell tropism limits the efficacy of immunization with a surface protein of malaria merozoites. Infect Immun 2005; 73:6363-71. [PMID: 16177307 PMCID: PMC1230925 DOI: 10.1128/iai.73.10.6363-6371.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunization with Plasmodium yoelii merozoite surface protein-8 (PyMSP-8) has been shown to protect mice against lethal P. yoelii 17XL malaria. Here we demonstrate that PyMSP-8-specific antibodies preferentially suppress P. yoelii 17XL growth in mature erythrocytes compared to growth in reticulocytes and do not suppress the growth of nonlethal P. yoelii 17X, a parasite that primarily replicates in reticulocytes. The protection against normocyte-associated P. yoelii malaria parasites is mediated by antibodies that recognize conformational epitopes of PyMSP-8 that are nonpolymorphic. We examined changes in gene expression in reticulocyte-restricted P. yoelii 17XL parasites that escaped neutralization by PyMSP-8-specific antibodies using P. yoelii DNA microarrays. Of interest, Pymsp-8 gene expression decreased, while the expression of msp-1, msp-7, and several rhoptry protein genes increased. Breakthrough parasites also exhibited increases in the expression of a subset of yir and Pyst-a genes that are predicted to encode polymorphic antigens expressed on the surface of infected erythrocytes. These data suggest that changes in the expression of parasite proteins expressed on the merozoite surface, as well as the surface of infected erythrocytes, may alter host cell tropism and contribute to the ability of malaria parasites to evade merozoite-specific, neutralizing antibodies.
Collapse
Affiliation(s)
- Qifang Shi
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Sanders PR, Gilson PR, Cantin GT, Greenbaum DC, Nebl T, Carucci DJ, McConville MJ, Schofield L, Hodder AN, Yates JR, Crabb BS. Distinct protein classes including novel merozoite surface antigens in Raft-like membranes of Plasmodium falciparum. J Biol Chem 2005; 280:40169-76. [PMID: 16203726 DOI: 10.1074/jbc.m509631200] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins coat the surface of extracellular Plasmodium falciparum merozoites, of which several are highly validated candidates for inclusion in a blood-stage malaria vaccine. Here we determined the proteome of gradient-purified detergent-resistant membranes of mature blood-stage parasites and found that these membranes are greatly enriched in GPI-anchored proteins and their putative interacting partners. Also prominent in detergent-resistant membranes are apical organelle (rhoptry), multimembrane-spanning, and proteins destined for export into the host erythrocyte cytosol. Four new GPI-anchored proteins were identified, and a number of other novel proteins that are predicted to localize to the merozoite surface and/or apical organelles were detected. Three of the putative surface proteins possessed six-cysteine (Cys6) motifs, a distinct fold found in adhesive surface proteins expressed in other life stages. All three Cys6 proteins, termed Pf12, Pf38, and Pf41, were validated as merozoite surface antigens recognized strongly by antibodies present in naturally infected individuals. In addition to the merozoite surface, Pf38 was particularly prominent in the secretory apical organelles. A different cysteine-rich putative GPI-anchored protein, Pf92, was also localized to the merozoite surface. This insight into merozoite surfaces provides new opportunities for understanding both erythrocyte invasion and anti-parasite immunity.
Collapse
Affiliation(s)
- Paul R Sanders
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3050 Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rodríguez LE, Curtidor H, Ocampo M, Garcia J, Puentes A, Valbuena J, Vera R, López R, Patarroyo ME. Identifying Plasmodium falciparum merozoite surface antigen 3 (MSP3) protein peptides that bind specifically to erythrocytes and inhibit merozoite invasion. Protein Sci 2005; 14:1778-86. [PMID: 15987906 PMCID: PMC2253348 DOI: 10.1110/ps.041304505] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Receptor-ligand interactions between synthetic peptides and normal human erythrocytes were studied to determine Plasmodium falciparum merozoite surface protein-3 (MSP-3) FC27 strain regions that specifically bind to membrane surface receptors on human erythrocytes. Three MSP-3 protein high activity binding peptides (HABPs) were identified; their binding to erythrocytes became saturable, had nanomolar affinity constants, and became sensitive on being treated with neuraminidase and trypsin but were resistant to chymotrypsin treatment. All of them specifically recognized 45-, 55-, and 72-kDa erythrocyte membrane proteins. They all presented alpha-helix structural elements. All HABPs inhibited in vitro P. falciparum merozoite invasion of erythrocytes by ~55%-85%, suggesting that MSP-3 protein's role in the invasion process probably functions by using mechanisms similar to those described for other MSP family antigens.
Collapse
Affiliation(s)
- Luis E Rodríguez
- Fundación Instituto de Immunologia de Colombia, and Universidad Nacional de Columbia.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Puentes A, Ocampo M, Rodríguez LE, Vera R, Valbuena J, Curtidor H, García J, López R, Tovar D, Cortes J, Rivera Z, Patarroyo ME. Identifying Plasmodium falciparum merozoite surface protein-10 human erythrocyte specific binding regions. Biochimie 2005; 87:461-72. [PMID: 15820753 DOI: 10.1016/j.biochi.2005.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 01/07/2005] [Indexed: 11/24/2022]
Abstract
Receptor-ligand interactions between synthetic peptides and normal human erythrocytes were studied to determine P. falciparum merozoite surface protein-10 (MSP-10) regions specifically binding to membrane surface receptors on human erythrocytes. Three MSP-10 protein High Activity Binding Peptides (HABPs) were identified, whose binding to erythrocytes became saturable and sensitive on being treated with neuraminidase, trypsin and chymotrypsin. Some of them specifically recognised a 50 kDa erythrocyte membrane protein. Some HABPs inhibited in vitro P. falciparum merozoite invasion of erythrocytes by 70%, suggesting that MSP-10 protein's possible role in the invasion process probably functions by using similar mechanisms to those described for other MSP family antigens. In addition to above results, the high homology in amino-acid sequence and superimposition of both MSP-10, MSP-8 and MSP-1 EGF-like domains and HABPs 31132, 26373 and 5501 suggest that tridimensional structure could be playing an important role in the invasion process and in designing synthetic multi-stage anti-malarial vaccines.
Collapse
Affiliation(s)
- Alvaro Puentes
- Fundación Instituto de Inmunología de Colombia and Universidad Nacional de Colombia, Bogotá, Colombia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Polson HEJ, Conway DJ, Fandeur T, Mercereau-Puijalon O, Longacre S. Gene polymorphism of Plasmodium falciparum merozoite surface proteins 4 and 5. Mol Biochem Parasitol 2005; 142:110-5. [PMID: 15878789 DOI: 10.1016/j.molbiopara.2005.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 02/13/2005] [Indexed: 10/25/2022]
Affiliation(s)
- Hannah E J Polson
- Laboratoire de Vaccinologie Parasitaire, CNRS URA 2581, Institut Pasteur, Paris, France.
| | | | | | | | | |
Collapse
|
45
|
Wang L, Kedzierski L, Schofield L, Coppel RL. Influence of glycosylphosphatidylinositol anchorage on the efficacy of DNA vaccines encoding Plasmodium yoelii merozoite surface protein 4/5. Vaccine 2005; 23:4120-7. [PMID: 15964480 DOI: 10.1016/j.vaccine.2005.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 02/14/2005] [Accepted: 03/18/2005] [Indexed: 11/27/2022]
Abstract
Immune responses induced to DNA vaccination vary considerably and depend on a variety of factors, including the physical form in which the antigen is expressed by target cells and presented to the immune system. Data on the effect of these factors will aid improved design of DNA vaccines and facilitate their further development. We examined the effect of different forms of surface anchoring on the immunogenicity of a DNA vaccine. A number of constructs were generated encoding Plasmodium yoelii merozoite surface protein 4/5 (PyMSP4/5) with or without its C-terminal glycosylphosphatidylinositol (GPI) attachment signal, replacing the endogenous GPI signal of PyMSP4/5 with that of mouse decay-accelerating factor (DAF), a well-established model for GPI-anchoring in mammalian cells, or the transmembrane anchor and cytoplasmic tail of mouse tissue factor (TF). All constructs were demonstrated to express the full-length PyMSP4/5 in transfected COS cells and induce PyMSP4/5-specific antibodies in mice. The GPI attachment signal of PyMSP4/5 was found to function poorly in mammalian cells and result in a much lower level of PyMSP4/5 expression in vitro than its mammalian counterpart. The DNA vaccine containing the mammalian GPI attachment signal induced the highest levels of antibodies and impacted Ig isotype distribution, consistent with the presence of a CD1-restricted pathway of Ig formation to GPI-anchored membrane proteins. Despite the induction of specific antibodies, none of these DNA vaccines induced sufficient levels of antibodies to protect mice against a lethal challenge with P. yoelii.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/biosynthesis
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/biosynthesis
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antigens, Protozoan/isolation & purification
- COS Cells
- Glycosylphosphatidylinositols/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Plasmodium yoelii/genetics
- Plasmodium yoelii/immunology
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Lina Wang
- Department of Microbiology and The Victoria Bioinformatics Consortium, Monash University, Clayton, Vic. 3800, Australia.
| | | | | | | |
Collapse
|
46
|
Wang L, Webster DE, Wesselingh SL, Coppel RL. Orally delivered malaria vaccines: not too hard to swallow. Expert Opin Biol Ther 2005; 4:1585-94. [PMID: 15461570 DOI: 10.1517/14712598.4.10.1585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vaccines offer efficient and cost-effective protection against a wide range of infectious diseases. Unfortunately, no effective vaccine is yet available against malaria, and this infection remains one of the most important causes of human morbidity and mortality in the developing world. Over the past two decades a number of candidate proteins for inclusion in a subunit vaccine have been identified. Malariologists believe that an effective malaria vaccine will need to include multiple proteins that induce protective immune responses against different stages of the Plasmodium life cycle. The construction of such multivalent vaccines is beset by considerable logistical difficulties, not least of which is how to deliver them to a population living in endemic areas. Compared with other routes of vaccine administration, oral delivery has several advantages that make it an attractive strategy for vaccine development. This review summarises the progress towards an oral vaccine delivery system for malaria and discusses the feasibility of this approach.
Collapse
Affiliation(s)
- Lina Wang
- Monash University, Department of Microbiology, Clayton, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
47
|
Gaur D, Mayer DCG, Miller LH. Parasite ligand–host receptor interactions during invasion of erythrocytes by Plasmodium merozoites. Int J Parasitol 2004; 34:1413-29. [PMID: 15582519 DOI: 10.1016/j.ijpara.2004.10.010] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 10/11/2004] [Accepted: 10/11/2004] [Indexed: 11/19/2022]
Abstract
Malaria parasites must recognise and invade different cells during their life cycle. The efficiency with which Plasmodium falciparum invades erythrocytes of all ages is an important virulence factor, since the ability of the parasite to reach high levels of parasitemia is often associated with severe pathology and morbidity. The merozoite invasion of erythrocytes is a highly complex, multi-step process that is dependent on a cascade of specific molecular interactions. Although many proteins are known to play an important role in invasion, their functional characteristics remain unclear. Therefore, a complete understanding of the molecular interactions that are the basis of the invasion process is absolutely crucial, not only in improving our knowledge about the basic biology of the malarial parasite, but also for the development of intervention strategies to counter the disease. Here we review the current state of knowledge about the receptor-ligand interactions that mediate merozoite invasion of erythrocytes.
Collapse
Affiliation(s)
- Deepak Gaur
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Building Twinbrook III/Room 3E-32D, Bethesda, MD 20892-8132, USA
| | | | | |
Collapse
|
48
|
Black CG, Wang L, Topolska AE, Finkelstein DI, Horne MK, Thomas AW, Mohandas N, Coppel RL. Merozoite surface proteins 4 and 5 of Plasmodium knowlesi have differing cellular localisation and association with lipid rafts. Mol Biochem Parasitol 2004; 138:153-8. [PMID: 15500926 DOI: 10.1016/j.molbiopara.2004.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 07/01/2004] [Accepted: 07/02/2004] [Indexed: 11/19/2022]
Affiliation(s)
- Casilda G Black
- Department of Microbiology and the Victorian Bioinformatics Consortium, Monash University, Clayton, Vic. 3800, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Goschnick MW, Black CG, Kedzierski L, Holder AA, Coppel RL. Merozoite surface protein 4/5 provides protection against lethal challenge with a heterologous malaria parasite strain. Infect Immun 2004; 72:5840-9. [PMID: 15385485 PMCID: PMC517552 DOI: 10.1128/iai.72.10.5840-5849.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunization with merozoite surface protein 4/5 (MSP4/5), the murine malaria homologue of Plasmodium falciparum MSP4 and MSP5, has been shown to protect mice against challenge by parasites expressing the homologous form of the protein. The gene encoding MSP4/5 was sequenced from a number of Plasmodium yoelii isolates in order to assess the level of polymorphism in the protein. The gene was found to be highly conserved among the 13 P. yoelii isolates sequenced, even though many of the same isolates showed pronounced variability in their MSP1(19) sequences. Nonsynonymous mutations were detected only for the isolates Plasmodium yoelii nigeriensis N67 and Plasmodium yoelii killicki 193L and 194ZZ. Immunization and challenge of BALB/c mice showed that the heterologous MSP4/5 proteins were able to confer a level of protection against lethal Plasmodium yoelii yoelii YM challenge infection similar to that induced by immunization with the homologous MSP4/5 protein. To explore the limits of heterologous protection, mice were immunized with recombinant MSP4/5 protein from Plasmodium berghei ANKA and Plasmodium chabaudi adami DS and challenged with P. y. yoelii YM. Interestingly, significant protection was afforded by P. berghei ANKA MSP4/5, which shows 81% sequence identity with P. y. yoelii YM MSP4/5, but it was abolished upon reduction and alkylation. Significant protection was not observed for mice immunized with recombinant P. c. adami DS MSP4/5, which shows 55.7% sequence identity with P. y. yoelii YM MSP4/5. This study demonstrates the robustness of MSP4/5 in conferring protection against variant forms of the protein in a murine challenge system, in contrast to the situation found for other asexual-stage proteins, such as MSP1(19) and AMA1.
Collapse
Affiliation(s)
- M W Goschnick
- Department of Microbiology, Monash University, Victoria, Australia
| | | | | | | | | |
Collapse
|
50
|
Benet A, Tavul L, Reeder JC, Cortés A. Diversity of Plasmodium falciparum vaccine candidate merozoite surface protein 4 (MSP4) in a natural population. Mol Biochem Parasitol 2004; 134:275-80. [PMID: 15003847 DOI: 10.1016/j.molbiopara.2003.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Accepted: 12/02/2003] [Indexed: 11/16/2022]
MESH Headings
- Amino Acid Sequence
- Animals
- Antigenic Variation
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Base Sequence
- DNA, Protozoan/chemistry
- DNA, Protozoan/isolation & purification
- Genes, Protozoan
- Genetic Variation
- Genetics, Population
- Molecular Sequence Data
- Plasmodium falciparum/genetics
- Plasmodium falciparum/immunology
- Plasmodium falciparum/isolation & purification
- Polymorphism, Genetic
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Selection, Genetic
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Ariadna Benet
- PNG Institute of Medical Research, P.O. Box 378, Madang MP 511, Papua New Guinea
| | | | | | | |
Collapse
|