1
|
Rovero A, Kebbi-Beghdadi C, Greub G. Spontaneous Aberrant Bodies Formation in Human Pneumocytes Infected with Estrella lausannensis. Microorganisms 2023; 11:2368. [PMID: 37894026 PMCID: PMC10609161 DOI: 10.3390/microorganisms11102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
Estrella lausannensis, a Chlamydia-related bacterium isolated from a Spanish river, is considered as a possible emerging human pathogen. Indeed, it was recently demonstrated to multiply in human macrophages, resisting oxidative burst and causing a strong cytopathic effect. In addition, a preliminary study highlighted a correlation between antibody response to E. lausannensis and pneumonia in children. To clarify the pathogenic potential of these bacteria, we infected a human pneumocyte cell line with E. lausannensis and assessed its replication and cytopathic effect using quantitative real-time PCR and immunofluorescence, as well as confocal and electron microscopy. Our results demonstrated that E. lausannensis enters and replicates rapidly in human pneumocytes, and that it causes a prompt lysis of the host cells. Furthermore, we reported the spontaneous formation of aberrant bodies, a form associated with persistence in Chlamydiae, suggesting that E. lausannensis infection could cause chronic disorders in humans.
Collapse
Affiliation(s)
- Aurelien Rovero
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (A.R.); (C.K.-B.)
| | - Carole Kebbi-Beghdadi
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (A.R.); (C.K.-B.)
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (A.R.); (C.K.-B.)
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
2
|
Riffaud CM, Rucks EA, Ouellette SP. Persistence of obligate intracellular pathogens: alternative strategies to overcome host-specific stresses. Front Cell Infect Microbiol 2023; 13:1185571. [PMID: 37284502 PMCID: PMC10239878 DOI: 10.3389/fcimb.2023.1185571] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
In adapting to the intracellular niche, obligate intracellular bacteria usually undergo a reduction of genome size by eliminating genes not needed for intracellular survival. These losses can include, for example, genes involved in nutrient anabolic pathways or in stress response. Living inside a host cell offers a stable environment where intracellular bacteria can limit their exposure to extracellular effectors of the immune system and modulate or outright inhibit intracellular defense mechanisms. However, highlighting an area of vulnerability, these pathogens are dependent on the host cell for nutrients and are very sensitive to conditions that limit nutrient availability. Persistence is a common response shared by evolutionarily divergent bacteria to survive adverse conditions like nutrient deprivation. Development of persistence usually compromises successful antibiotic therapy of bacterial infections and is associated with chronic infections and long-term sequelae for the patients. During persistence, obligate intracellular pathogens are viable but not growing inside their host cell. They can survive for a long period of time such that, when the inducing stress is removed, reactivation of their growth cycles resumes. Given their reduced coding capacity, intracellular bacteria have adapted different response mechanisms. This review gives an overview of the strategies used by the obligate intracellular bacteria, where known, which, unlike model organisms such as E. coli, often lack toxin-antitoxin systems and the stringent response that have been linked to a persister phenotype and amino acid starvation states, respectively.
Collapse
|
3
|
Caven LT, Carabeo RA. The role of infected epithelial cells in Chlamydia-associated fibrosis. Front Cell Infect Microbiol 2023; 13:1208302. [PMID: 37265500 PMCID: PMC10230099 DOI: 10.3389/fcimb.2023.1208302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 06/03/2023] Open
Abstract
Ocular, genital, and anogenital infection by the obligate intracellular pathogen Chlamydia trachomatis have been consistently associated with scar-forming sequelae. In cases of chronic or repeated infection of the female genital tract, infection-associated fibrosis of the fallopian tubes can result in ectopic pregnancy or infertility. In light of this urgent concern to public health, the underlying mechanism of C. trachomatis-associated scarring is a topic of ongoing study. Fibrosis is understood to be an outcome of persistent injury and/or dysregulated wound healing, in which an aberrantly activated myofibroblast population mediates hypertrophic remodeling of the basement membrane via deposition of collagens and other components of the extracellular matrix, as well as induction of epithelial cell proliferation via growth factor signaling. Initial study of infection-associated immune cell recruitment and pro-inflammatory signaling have suggested the cellular paradigm of chlamydial pathogenesis, wherein inflammation-associated tissue damage and fibrosis are the indirect result of an immune response to the pathogen initiated by host epithelial cells. However, recent work has revealed more direct routes by which C. trachomatis may induce scarring, such as infection-associated induction of growth factor signaling and pro-fibrotic remodeling of the extracellular matrix. Additionally, C. trachomatis infection has been shown to induce an epithelial-to-mesenchymal transition in host epithelial cells, prompting transdifferentiation into a myofibroblast-like phenotype. In this review, we summarize the field's current understanding of Chlamydia-associated fibrosis, reviewing key new findings and identifying opportunities for further research.
Collapse
Affiliation(s)
- Liam T. Caven
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Rey A. Carabeo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
4
|
Banerjee A, Sun Y, Muramatsu MK, Toh E, Nelson DE. A Member of an Ancient Family of Bacterial Amino Acids Transporters Contributes to Chlamydia Nutritional Virulence and Immune Evasion. Infect Immun 2023; 91:e0048322. [PMID: 36847502 PMCID: PMC10068747 DOI: 10.1128/iai.00483-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
Many obligate intracellular bacteria, including members of the genus Chlamydia, cannot synthesize a variety of amino acids de novo and acquire these from host cells via largely unknown mechanisms. Previously, we determined that a missense mutation in ctl0225, a conserved Chlamydia open reading frame of unknown function, mediated sensitivity to interferon gamma. Here, we show evidence that CTL0225 is a member of the SnatA family of neutral amino acid transporters that contributes to the import of several amino acids into Chlamydia cells. Further, we show that CTL0225 orthologs from two other distantly related obligate intracellular pathogens (Coxiella burnetii and Buchnera aphidicola) are sufficient to import valine into Escherichia coli. We also show that chlamydia infection and interferon exposure have opposing effects on amino acid metabolism, potentially explaining the relationship between CTL0225 and interferon sensitivity. Overall, we show that phylogenetically diverse intracellular pathogens use an ancient family of amino acid transporters to acquire host amino acids and provide another example of how nutritional virulence and immune evasion can be linked in obligate intracellular pathogens.
Collapse
Affiliation(s)
- Arkaprabha Banerjee
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yuan Sun
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matthew K. Muramatsu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Evelyn Toh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - David E. Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Intracellular lifestyle of Chlamydia trachomatis and host-pathogen interactions. Nat Rev Microbiol 2023:10.1038/s41579-023-00860-y. [PMID: 36788308 DOI: 10.1038/s41579-023-00860-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/16/2023]
Abstract
In recent years, substantial progress has been made in the understanding of the intracellular lifestyle of Chlamydia trachomatis and how the bacteria establish themselves in the human host. As an obligate intracellular pathogenic bacterium with a strongly reduced coding capacity, C. trachomatis depends on the provision of nutrients from the host cell. In this Review, we summarize the current understanding of how C. trachomatis establishes its intracellular replication niche, how its metabolism functions in the host cell, how it can defend itself against the cell autonomous and innate immune response and how it overcomes adverse situations through the transition to a persistent state. In particular, we focus on those processes for which a mechanistic understanding has been achieved.
Collapse
|
6
|
Jorgenson LM, Knight L, Widner RE, Rucks EA. Eukaryotic Clathrin Adapter Protein and Mediator of Cholesterol Homeostasis, PICALM, Affects Trafficking to the Chlamydial Inclusion. Mol Cell Biol 2023; 43:1-13. [PMID: 36779337 PMCID: PMC9980547 DOI: 10.1080/10985549.2023.2171695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/19/2022] [Accepted: 01/16/2023] [Indexed: 02/14/2023] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis has unique metabolic requirements as it proceeds through its biphasic developmental cycle from within the inclusion within the host cell. In our previous study, we identified a host protein, PICALM, which localizes to the chlamydial inclusion. PICALM functions in many host pathways including the recycling of receptors, specific SNARE proteins, and molecules like transferrin, and maintaining cholesterol homeostasis. Hence, we hypothesized that PICALM functions to maintain the cholesterol content and to moderate trafficking from the endosomal recycling pathway to the inclusion, which controls chlamydial access to this pathway. In uninfected cells, siRNA knockdown of PICALM resulted in increased cholesterol within the Golgi and transferrin receptor (TfR) positive vesicles (recycling endosomes). PICALM knockdown in cells infected with C. trachomatis resulted in increased levels of Golgi-derived lipid and protein, TfR, transferrin, and Rab11-FIP1 localized to inclusions and a decrease of Golgi fragmentation at and Rab11 trafficking to the inclusion. Interestingly, chlamydial infection alone also increases cholesterol in TfR and Rab11-associated vesicles, and PICALM knockdown reverses this effect. Our data suggest that PICALM functions to balance or limit chlamydial access to multiple subcellular trafficking pathways to maintain the health of the host cell during chlamydial infection.
Collapse
Affiliation(s)
- Lisa M. Jorgenson
- UNeMed Corporation, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Lindsey Knight
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ray E. Widner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Elizabeth A. Rucks
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
7
|
Scharbaai-Vázquez R, J. López Font F, A. Zayas Rodríguez F. Persistence in Chlamydia. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.109299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Chlamydia spp. are important causes of acute and persistent/chronic infections. All Chlamydia spp. display a unique biphasic developmental cycle alternating between an infectious elementary body (EB) and a replicative form, the reticulate body (RB), followed by the multiplication of RBs by binary fission and progressive differentiation back into EBs. During its intracellular life, Chlamydia employs multiple mechanisms to ensure its persistence inside the host. These include evasion of diverse innate immune responses, modulation of host cell structure and endocytosis, inhibition of apoptosis, activation of pro-signaling pathways, and conversion to enlarged, non-replicative but viable “aberrant bodies” (ABs). Early research described several systems for Chlamydial persistence with a significant number of variables that make a direct comparison of results difficult. Now, emerging tools for genetic manipulations in Chlamydia and advances in global microarray, transcriptomics, and proteomics have opened new and exciting opportunities to understand the persistent state of Chlamydia and link the immune and molecular events of persistence with the pathogenesis of recurrent and chronic Chlamydial infections. This chapter reviews our current understanding and advances in the molecular biology of Chlamydia persistence.
Collapse
|
8
|
Host Cell Amplification of Nutritional Stress Contributes To Persistence in Chlamydia trachomatis. mBio 2022; 13:e0271922. [PMID: 36377897 PMCID: PMC9765610 DOI: 10.1128/mbio.02719-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Persistence, a viable but non-replicating growth state, has been implicated in diseases caused by Chlamydia trachomatis. Starvation of distinct nutrients produces a superficially similar persistent state, implying convergence on a common intracellular environment. We employed host-pathogen dual RNA-sequencing under both iron- and tryptophan-starved conditions to systematically characterize the persistent chlamydial transcriptome and to define common contributions of the host cell transcriptional stress response in shaping the intracellular environment. The transcriptome of the infected host cells was highly specific to each nutritional stress, despite comparable effects on chlamydial growth and development in each condition. In contrast, the chlamydial transcriptomes between nutritional conditions were highly similar, suggesting some overlap in host cell responses to iron limitation and tryptophan starvation that contribute to a common persistent phenotype. We demonstrate that a commonality in the host cell responses is the suppression of GTP biosynthesis, a nucleotide for which Chlamydia are auxotrophic. Pharmacological inhibition of host IMP dehydrogenase (IMPDH1), which catalyzes the rate-limiting step in de novo guanine nucleotide synthesis, resulted in comparable GTP depletion to both iron and tryptophan starvation and induced chlamydial persistence. Moreover, IMPDH1 inhibition and iron starvation acted synergistically to control chlamydial growth. Thus, host cell reduction in GTP levels amplifies the nutritional stress to intracellular chlamydiae in infection-relevant models of persistence, illustrating the determinative role the infected host cell plays in bacterial stress responses. IMPORTANCE Bacteria respond to nutritional stress through universal and unique mechanisms. Genome reduction in the Chlamydiaceae, a consequence of coevolution with their obligate eukaryotic hosts, has reduced their repertoire of stress response mechanisms. Here, we demonstrate that the infected host cell may provide the context within which universal stress responses emerge for Chlamydia trachomatis. We report that during starvation of the essential nutrients iron or tryptophan, a common response of the infected epithelial cell is the suppression of GTP biosynthesis, which induces a persistent developmental state in the pathogen. Thus, chlamydial persistence results from the combined effects of primary stresses on the pathogen and the host, with the latter eliciting a secondary host cell response that intensifies the inhospitable intracellular environment.
Collapse
|
9
|
Zhong W, Kollipara A, Liu Y, Wang Y, O’Connell CM, Poston TB, Yount K, Wiesenfeld HC, Hillier SL, Li Y, Darville T, Zheng X. Genetic susceptibility loci for Chlamydia trachomatis endometrial infection influence expression of genes involved in T cell function, tryptophan metabolism and epithelial integrity. Front Immunol 2022; 13:1001255. [PMID: 36248887 PMCID: PMC9562917 DOI: 10.3389/fimmu.2022.1001255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Identify genetic loci of enhanced susceptibility to Chlamydial trachomatis (Ct) upper genital tract infection in women. Methods We performed an integrated analysis of DNA genotypes and blood-derived mRNA profiles from 200 Ct-exposed women to identify expression quantitative trait loci (eQTL) and determine their association with endometrial chlamydial infection using a mediation test. We further evaluated the effect of a lead eQTL on the expression of CD151 by immune cells from women with genotypes associated with low and high whole blood expression of CD151, respectively. Results We identified cis-eQTLs modulating mRNA expression of 81 genes (eGenes) associated with altered risk of ascending infection. In women with endometrial infection, eGenes involved in proinflammatory signaling were upregulated. Downregulated eGenes included genes involved in T cell functions pivotal for chlamydial control. eGenes encoding molecules linked to metabolism of tryptophan, an essential chlamydial nutrient, and formation of epithelial tight junctions were also downregulated in women with endometrial infection. A lead eSNP rs10902226 was identified regulating CD151, a tetrospanin molecule important for immune cell adhesion and migration and T cell proliferation. Further in vitro experiments showed that women with a CC genotype at rs10902226 had reduced rates of endometrial infection with increased CD151 expression in whole blood and T cells when compared to women with a GG genotype. Conclusions We discovered genetic variants associated with altered risk for Ct ascension. A lead eSNP for CD151 is a candidate genetic marker for enhanced CD4 T cell function and reduced susceptibility.
Collapse
Affiliation(s)
- Wujuan Zhong
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Avinash Kollipara
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yutong Liu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yuhan Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Catherine M. O’Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Taylor B. Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kacy Yount
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Harold C. Wiesenfeld
- The University of Pittsburgh School of Medicine and the Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Sharon L. Hillier
- The University of Pittsburgh School of Medicine and the Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xiaojing Zheng
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
10
|
Vollmuth N, Schlicker L, Guo Y, Hovhannisyan P, Janaki-Raman S, Kurmasheva N, Schmitz W, Schulze A, Stelzner K, Rajeeve K, Rudel T. c-Myc plays a key role in IFN-γ-induced persistence of Chlamydia trachomatis. eLife 2022; 11:76721. [PMID: 36155135 PMCID: PMC9512400 DOI: 10.7554/elife.76721] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis (Ctr) can persist over extended times within their host cell and thereby establish chronic infections. One of the major inducers of chlamydial persistence is interferon-gamma (IFN-γ) released by immune cells as a mechanism of immune defence. IFN-γ activates the catabolic depletion of L-tryptophan (Trp) via indoleamine-2,3-dioxygenase (IDO), resulting in persistent Ctr. Here, we show that IFN-γ induces the downregulation of c-Myc, the key regulator of host cell metabolism, in a STAT1-dependent manner. Expression of c-Myc rescued Ctr from IFN-γ-induced persistence in cell lines and human fallopian tube organoids. Trp concentrations control c-Myc levels most likely via the PI3K-GSK3β axis. Unbiased metabolic analysis revealed that Ctr infection reprograms the host cell tricarboxylic acid (TCA) cycle to support pyrimidine biosynthesis. Addition of TCA cycle intermediates or pyrimidine/purine nucleosides to infected cells rescued Ctr from IFN-γ-induced persistence. Thus, our results challenge the longstanding hypothesis of Trp depletion through IDO as the major mechanism of IFN-γ-induced metabolic immune defence and significantly extends the understanding of the role of IFN-γ as a broad modulator of host cell metabolism.
Collapse
Affiliation(s)
- Nadine Vollmuth
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Lisa Schlicker
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yongxia Guo
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Pargev Hovhannisyan
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | | | - Naziia Kurmasheva
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Werner Schmitz
- Department of Biochemistry and Molecular Biology, University of Wuerzburg, Würzburg, Germany
| | - Almut Schulze
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Biochemistry and Molecular Biology, University of Wuerzburg, Würzburg, Germany
| | - Kathrin Stelzner
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Karthika Rajeeve
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany.,Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
11
|
Onorini D, Borel N, Schoborg RV, Leonard CA. Neisseria gonorrhoeae Limits Chlamydia trachomatis Inclusion Development and Infectivity in a Novel In Vitro Co-Infection Model. Front Cell Infect Microbiol 2022; 12:911818. [PMID: 35873141 PMCID: PMC9300984 DOI: 10.3389/fcimb.2022.911818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis (Ct) and Neisseria gonorrhoeae (Ng) are the most common bacterial sexually transmitted infections (STIs) worldwide. The primary site of infection for both bacteria is the epithelium of the endocervix in women and the urethra in men; both can also infect the rectum, pharynx and conjunctiva. Ct/Ng co-infections are more common than expected by chance, suggesting Ct/Ng interactions increase susceptibility and/or transmissibility. To date, studies have largely focused on each pathogen individually and models exploring co-infection are limited. We aimed to determine if Ng co-infection influences chlamydial infection and development and we hypothesized that Ng-infected cells are more susceptible to chlamydial infection than uninfected cells. To address this hypothesis, we established an in vitro model of Ct/Ng co-infection in cultured human cervical epithelial cells. Our data show that Ng co-infection elicits an anti-chlamydial effect by reducing chlamydial infection, inclusion size, and subsequent infectivity. Notably, the anti-chlamydial effect is dependent on Ng viability but not extracellular nutrient depletion or pH modulation. Though this finding is not consistent with our hypothesis, it provides evidence that interaction of these bacteria in vitro influences chlamydial infection and development. This Ct/Ng co-infection model, established in an epithelial cell line, will facilitate further exploration into the pathogenic interplay between Ct and Ng.
Collapse
Affiliation(s)
- Delia Onorini
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Robert V. Schoborg
- Department of Medical Education, Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Cory Ann Leonard
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- *Correspondence: Cory Ann Leonard,
| |
Collapse
|
12
|
Modified Fluoroquinolones as Antimicrobial Compounds Targeting Chlamydia trachomatis. Int J Mol Sci 2022; 23:ijms23126741. [PMID: 35743189 PMCID: PMC9224431 DOI: 10.3390/ijms23126741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Chlamydia trachomatis causes the most common sexually transmitted bacterial infection and trachoma, an eye infection. Untreated infections can lead to sequelae, such as infertility and ectopic pregnancy in women and blindness. We previously enhanced the antichlamydial activity of the fluoroquinolone ciprofloxacin by grafting a metal chelating moiety onto it. In the present study, we pursued this pharmacomodulation and obtained nanomolar active molecules (EC50) against this pathogen. This gain in activity prompted us to evaluate the antibacterial activity of this family of molecules against other pathogenic bacteria, such as Neisseria gonorrhoeae and bacteria from the ESKAPE group. The results show that the novel molecules have selectively improved activity against C. trachomatis and demonstrate how the antichlamydial effect of fluoroquinolones can be enhanced.
Collapse
|
13
|
Persistence Alters the Interaction between Chlamydia trachomatis and Its Host Cell. Infect Immun 2021; 89:e0068520. [PMID: 34001559 DOI: 10.1128/iai.00685-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In response to stress, the obligate intracellular pathogen Chlamydia trachomatis stops dividing and halts its biphasic developmental cycle. The infectious, extracellular form of this bacterium is highly susceptible to killing by the host immune response, and by pausing development, Chlamydia can survive in an intracellular, "aberrant" state for extended periods of time. The relevance of these aberrant forms has long been debated, and many questions remain concerning how they contribute to the persistence and pathogenesis of the organism. Using reporter cell lines, fluorescence microscopy, and a dipeptide labeling strategy, we measured the ability of C. trachomatis to synthesize, assemble, and degrade peptidoglycan under various aberrance-inducing conditions. We found that all aberrance-inducing conditions affect chlamydial peptidoglycan and that some actually halt the biosynthesis pathway early enough to prevent the release of an immunostimulatory peptidoglycan component, muramyl tripeptide. In addition, utilizing immunofluorescence and electron microscopy, we determined that the induction of aberrance can detrimentally affect the development of the microbe's pathogenic vacuole (the inclusion). Taken together, our data indicate that aberrant forms of Chlamydia generated by different environmental stressors can be sorted into two broad categories based on their ability to continue releasing peptidoglycan-derived, immunostimulatory muropeptides and their ability to secrete effector proteins that are normally expressed at the mid- and late stages of the microbe's developmental cycle. Our findings reveal a novel, immunoevasive feature inherent to a subset of aberrant chlamydial forms and provide clarity and context to the numerous persistence mechanisms employed by these ancient, genetically reduced microbes.
Collapse
|
14
|
Thomas M, Lawrence A, Kroon S, Vodstrcil LA, Phillips S, Hocking JS, Timms P, Huston WM. Chlamydial clinical isolates show subtle differences in persistence phenotypes and growth in vitro. Access Microbiol 2021; 3:000204. [PMID: 34151159 PMCID: PMC8209716 DOI: 10.1099/acmi.0.000204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/24/2021] [Indexed: 11/24/2022] Open
Abstract
Urogenital Chlamydia trachomatis infection is the most common sexually transmitted bacterial infection throughout the world. While progress has been made to better understand how type strains develop and respond to environmental stress in vitro, very few studies have examined how clinical isolates behave under similar conditions. Here, we examined the development and persistence phenotypes of several clinical isolates, to determine how similar they are to each other, and the type strain C. trachomatis D/UW-3/Cx. The type strain was shown to produce infectious progeny at a higher magnitude than each of the clinical isolates, in each of the six tested cell lines. All chlamydial strains produced the highest number of infectious progeny at 44 h post-infection in the McCoy B murine fibroblast cell line, yet showed higher levels of infectivity in the MCF-7 human epithelial cell line. The clinical isolates were shown to be more susceptible than the type strain to the effects of penicillin and iron deprivation persistence models in the MCF-7 cell line. While subtle differences between clinical isolates were observed throughout the experiments conducted, no significant differences were identified. This study reinforces the importance of examining clinical isolates when trying to relate in vitro data to clinical outcomes, as well as the importance of considering the adaptations many type strains have to being cultured in vitro.
Collapse
Affiliation(s)
- Mark Thomas
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.,Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Amba Lawrence
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Samuel Kroon
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Lenka A Vodstrcil
- Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Melbourne Sexual Health Centre, Alfred Hospital, Carlton, Victoria, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Samuel Phillips
- Murdoch Childrens Research Institute, Parkville 3052, Victoria, Australia
| | - Jane S Hocking
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Peter Timms
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Wilhelmina M Huston
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.,Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| |
Collapse
|
15
|
Chlamydia Uses K + Electrical Signalling to Orchestrate Host Sensing, Inter-Bacterial Communication and Differentiation. Microorganisms 2021; 9:microorganisms9010173. [PMID: 33467438 PMCID: PMC7830353 DOI: 10.3390/microorganisms9010173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/30/2022] Open
Abstract
Prokaryotic communities coordinate quorum behaviour in response to external stimuli to control fundamental processes including inter-bacterial communication. The obligate intracellular bacterial pathogen Chlamydia adopts two developmental forms, invasive elementary bodies (EBs) and replicative reticulate bodies (RBs), which reside within a specialised membrane-bound compartment within the host cell termed an inclusion. The mechanisms by which this bacterial community orchestrates different stages of development from within the inclusion in coordination with the host remain elusive. Both prokaryotic and eukaryotic kingdoms exploit ion-based electrical signalling for fast intercellular communication. Here we demonstrate that RBs specifically accumulate potassium (K+) ions, generating a gradient. Disruption of this gradient using ionophores or an ion-channel inhibitor stalls the Chlamydia lifecycle, inducing persistence. Using photobleaching approaches, we establish that the RB is the master regulator of this [K+] differential and observe a fast K+ exchange between RBs revealing a role for this ion in inter-bacterial communication. Finally, we demonstrate spatio-temporal regulation of bacterial membrane potential during RB to EB differentiation within the inclusion. Together, our data reveal that Chlamydia harnesses K+ to orchestrate host sensing, inter-bacteria communication and pathogen differentiation.
Collapse
|
16
|
The iron-dependent repressor YtgR is a tryptophan-dependent attenuator of the trpRBA operon in Chlamydia trachomatis. Nat Commun 2020; 11:6430. [PMID: 33353937 PMCID: PMC7755916 DOI: 10.1038/s41467-020-20181-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/12/2020] [Indexed: 11/08/2022] Open
Abstract
The trp operon of Chlamydia trachomatis is organized differently from other model bacteria. It contains trpR, an intergenic region (IGR), and the biosynthetic trpB and trpA open-reading frames. TrpR is a tryptophan-dependent repressor that regulates the major promoter (PtrpR), while the IGR harbors an alternative promoter (PtrpBA) and an operator sequence for the iron-dependent repressor YtgR to regulate trpBA expression. Here, we report that YtgR repression at PtrpBA is also dependent on tryptophan by regulating YtgR levels through a rare triple-tryptophan motif (WWW) in the YtgCR precursor. Inhibiting translation during tryptophan limitation at the WWW motif subsequently promotes Rho-independent transcription termination of ytgR, thereby de-repressing PtrpBA. Thus, YtgR represents an alternative strategy to attenuate trpBA expression, expanding the repertoire for trp operon attenuation beyond TrpL- and TRAP-mediated mechanisms described in other bacteria. Furthermore, repurposing the iron-dependent repressor YtgR underscores the fundamental importance of maintaining tryptophan-dependent attenuation of the trpRBA operon.
Collapse
|
17
|
Transcriptional Landscape of Waddlia chondrophila Aberrant Bodies Induced by Iron Starvation. Microorganisms 2020; 8:microorganisms8121848. [PMID: 33255276 PMCID: PMC7760296 DOI: 10.3390/microorganisms8121848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
Chronic infections caused by obligate intracellular bacteria belonging to the Chlamydiales order are related to the formation of persistent developmental forms called aberrant bodies (ABs), which undergo DNA replication without cell division. These enlarged bacteria develop and persist upon exposure to different stressful conditions such as β-lactam antibiotics, iron deprivation and interferon-γ. However, the mechanisms behind ABs biogenesis remain uncharted. Using an RNA-sequencing approach, we compared the transcriptional profile of ABs induced by iron starvation to untreated bacteria in the Chlamydia-related species Waddliachondrophila, a potential agent of abortion in ruminants and miscarriage in humans. Consistent with the growth arrest observed following iron depletion, our results indicate a significant reduction in the expression of genes related to energy production, carbohydrate and amino acid metabolism and cell wall/envelope biogenesis, compared to untreated, actively replicating bacteria. Conversely, three putative toxin-antitoxin modules were among the most up-regulated genes upon iron starvation, suggesting that their activation might be involved in growth arrest in adverse conditions, an uncommon feature in obligate intracellular bacteria. Our work represents the first complete transcriptomic profile of a Chlamydia-related species in stressful conditions and sets the grounds for further investigations on the mechanisms underlying chlamydial persistence.
Collapse
|
18
|
Kuratli J, Leonard CA, Nufer L, Marti H, Schoborg R, Borel N. Maraviroc, celastrol and azelastine alter Chlamydia trachomatis development in HeLa cells. J Med Microbiol 2020; 69:1351-1366. [PMID: 33180014 DOI: 10.1099/jmm.0.001267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Introduction . Chlamydia trachomatis (Ct) is an obligate intracellular bacterium, causing a range of diseases in humans. Interactions between chlamydiae and antibiotics have been extensively studied in the past.Hypothesis/Gap statement: Chlamydial interactions with non-antibiotic drugs have received less attention and warrant further investigations. We hypothesized that selected cytokine inhibitors would alter Ct growth characteristics in HeLa cells.Aim. To investigate potential interactions between selected cytokine inhibitors and Ct development in vitro.Methodology. The CCR5 receptor antagonist maraviroc (Mara; clinically used as HIV treatment), the triterpenoid celastrol (Cel; used in traditional Chinese medicine) and the histamine H1 receptor antagonist azelastine (Az; clinically used to treat allergic rhinitis and conjunctivitis) were used in a genital in vitro model of Ct serovar E infecting human adenocarcinoma cells (HeLa).Results. Initial analyses revealed no cytotoxicity of Mara up to 20 µM, Cel up to 1 µM and Az up to 20 µM. Mara exposure (1, 5, 10 and 20 µM) elicited a reduction of chlamydial inclusion numbers, while 10 µM reduced chlamydial infectivity. Cel 1 µM, as well as 10 and 20 µM Az, reduced chlamydial inclusion size, number and infectivity. Morphological immunofluorescence and ultrastructural analysis indicated that exposure to 20 µM Az disrupted chlamydial inclusion structure. Immunofluorescence evaluation of Cel-incubated inclusions showed reduced inclusion sizes whilst Mara incubation had no effect on inclusion morphology. Recovery assays demonstrated incomplete recovery of chlamydial infectivity and formation of structures resembling typical chlamydial inclusions upon Az removal.Conclusion. These observations indicate that distinct mechanisms might be involved in potential interactions of the drugs evaluated herein and highlight the need for continued investigation of the interaction of commonly used drugs with Chlamydia and its host.
Collapse
Affiliation(s)
- Jasmin Kuratli
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Cory Ann Leonard
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Lisbeth Nufer
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Hanna Marti
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Robert Schoborg
- Departement of Biomedical Sciences, Center for Infectious Disease, Inflammation and Immunity, Quillen College in Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Nicole Borel
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
McQueen BE, Kiatthanapaiboon A, Fulcher ML, Lam M, Patton K, Powell E, Kollipara A, Madden V, Suchland RJ, Wyrick P, O'Connell CM, Reidel B, Kesimer M, Randell SH, Darville T, Nagarajan UM. Human Fallopian Tube Epithelial Cell Culture Model To Study Host Responses to Chlamydia trachomatis Infection. Infect Immun 2020; 88:e00105-20. [PMID: 32601108 PMCID: PMC7440757 DOI: 10.1128/iai.00105-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Chlamydia trachomatis infection of the human fallopian tubes can lead to damaging inflammation and scarring, ultimately resulting in infertility. To study the human cellular responses to chlamydial infection, researchers have frequently used transformed cell lines that can have limited translational relevance. We developed a primary human fallopian tube epithelial cell model based on a method previously established for culture of primary human bronchial epithelial cells. After protease digestion and physical dissociation of excised fallopian tubes, epithelial cell precursors were expanded in growth factor-containing medium. Expanded cells were cryopreserved to generate a biobank of cells from multiple donors and cultured at an air-liquid interface. Culture conditions stimulated cellular differentiation into polarized mucin-secreting and multiciliated cells, recapitulating the architecture of human fallopian tube epithelium. The polarized and differentiated cells were infected with a clinical isolate of C. trachomatis, and inclusions containing chlamydial developmental forms were visualized by fluorescence and electron microscopy. Apical secretions from infected cells contained increased amounts of proteins associated with chlamydial growth and replication, including transferrin receptor protein 1, the amino acid transporters SLC3A2 and SLC1A5, and the T-cell chemoattractants CXCL10, CXCL11, and RANTES. Flow cytometry revealed that chlamydial infection induced cell surface expression of T-cell homing and activation proteins, including ICAM-1, VCAM-1, HLA class I and II, and interferon gamma receptor. This human fallopian tube epithelial cell culture model is an important tool with translational potential for studying cellular responses to Chlamydia and other sexually transmitted pathogens.
Collapse
Affiliation(s)
- Bryan E McQueen
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Amy Kiatthanapaiboon
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - M Leslie Fulcher
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mariam Lam
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kate Patton
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Emily Powell
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Avinash Kollipara
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Victoria Madden
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robert J Suchland
- University of Washington, Division of Allergy and Infectious Diseases, Department of Medicine, Seattle, Washington, USA
| | - Priscilla Wyrick
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Catherine M O'Connell
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Boris Reidel
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mehmet Kesimer
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott H Randell
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Uma M Nagarajan
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
20
|
Scherler A, Jacquier N, Kebbi-Beghdadi C, Greub G. Diverse Stress-Inducing Treatments cause Distinct Aberrant Body Morphologies in the Chlamydia-Related Bacterium, Waddlia chondrophila. Microorganisms 2020; 8:E89. [PMID: 31936490 PMCID: PMC7022761 DOI: 10.3390/microorganisms8010089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/27/2019] [Accepted: 01/07/2020] [Indexed: 11/16/2022] Open
Abstract
Chlamydiae, such as Chlamydia trachomatis and Chlamydia pneumoniae, can cause chronic infections. It is believed that persistent forms called aberrant bodies (ABs) might be involved in this process. AB formation seems to be a common trait of all members of the Chlamydiales order and is caused by distinct stress stimuli, such as β-lactam antibiotics or nutrient starvation. While the diverse stimuli inducing ABs are well described, no comprehensive morphological characterization has been performed in Chlamydiales up to now. We thus infected mammalian cells with the Chlamydia-related bacterium Waddlia chondrophila and induced AB formation using different stimuli. Their morphology, differences in DNA content and in gene expression were assessed by immunofluorescence, quantitative PCR, and reverse transcription PCR, respectively. All stimuli induced AB formation. Interestingly, we show here for the first time that the DNA gyrase inhibitor novobiocin also caused appearance of ABs. Two distinct patterns of ABs could be defined, according to their morphology and number: (i) small and multiple ABs versus (ii) large and rare ABs. DNA replication of W. chondrophila was generally not affected by the different treatments. Finally, no correlation could be observed between specific types of ABs and expression patterns of mreB and rodZ genes.
Collapse
Affiliation(s)
| | | | | | - Gilbert Greub
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; (A.S.); (N.J.); (C.K.-B.)
| |
Collapse
|
21
|
Structure and Metal Binding Properties of Chlamydia trachomatis YtgA. J Bacteriol 2019; 202:JB.00580-19. [PMID: 31611288 DOI: 10.1128/jb.00580-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis is a globally significant cause of sexually transmitted bacterial infections and the leading etiological agent of preventable blindness. The first-row transition metal iron (Fe) plays critical roles in chlamydial cell biology, and acquisition of this nutrient is essential for the survival and virulence of the pathogen. Nevertheless, how C. trachomatis acquires Fe from host cells is not well understood, since it lacks genes encoding known siderophore biosynthetic pathways, receptors for host Fe storage proteins, and the Fe acquisition machinery common to many bacteria. Recent studies have suggested that C. trachomatis directly acquires host Fe via the ATP-binding cassette permease YtgABCD. Here, we characterized YtgA, the periplasmic solute binding protein component of the transport pathway, which has been implicated in scavenging Fe(III) ions. The structure of Fe(III)-bound YtgA was determined at 2.0-Å resolution with the bound ion coordinated via a novel geometry (3 Ns, 2 Os [3N2O]). This unusual coordination suggested a highly plastic metal binding site in YtgA capable of interacting with other cations. Biochemical analyses showed that the metal binding site of YtgA was not restricted to interaction with only Fe(III) ions but could bind all transition metal ions examined. However, only Mn(II), Fe(II), and Ni(II) ions bound reversibly to YtgA, with Fe being the most abundant cellular transition metal in C. trachomatis Collectively, these findings show that YtgA is the metal-recruiting component of the YtgABCD permease and is most likely involved in the acquisition of Fe(II) and Mn(II) from host cells.IMPORTANCE Chlamydia trachomatis is the most common bacterial sexually transmitted infection in developed countries, with an estimated global prevalence of 4.2% in the 15- to 49-year age group. Although infection is asymptomatic in more than 80% of infected women, about 10% of cases result in serious disease. Infection by C. trachomatis is dependent on the ability to acquire essential nutrients, such as the transition metal iron, from host cells. In this study, we show that iron is the most abundant transition metal in C. trachomatis and report the structural and biochemical properties of the iron-recruiting protein YtgA. Knowledge of the high-resolution structure of YtgA will provide a platform for future structure-based antimicrobial design approaches.
Collapse
|
22
|
Fosmidomycin, an inhibitor of isoprenoid synthesis, induces persistence in Chlamydia by inhibiting peptidoglycan assembly. PLoS Pathog 2019; 15:e1008078. [PMID: 31622442 PMCID: PMC6818789 DOI: 10.1371/journal.ppat.1008078] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/29/2019] [Accepted: 09/12/2019] [Indexed: 11/19/2022] Open
Abstract
The antibiotic, fosmidomycin (FSM) targets the methylerythritol phosphate (MEP) pathway of isoprenoid synthesis by inhibiting the essential enzyme, 1-deoxy-D-xylulose 5-phosphate reductoisomerase (Dxr) and is lethal to intracellular parasites and bacteria. The obligate intracellular bacterial pathogen, Chlamydia trachomatis, alternates between two developmental forms: the extracellular, infectious elementary body (EB), and the intracellular, replicative form called the reticulate body (RB). Several stressful growth conditions including iron deprivation halt chlamydial cell division and cause development of a morphologically enlarged, but viable form termed an aberrant body (AB). This phenotype constitutes the chlamydial developmental state known as persistence. This state is reversible as removal of the stressor allows the chlamydiae to re-enter and complete the normal developmental cycle. Bioinformatic analysis indicates that C. trachomatis encodes a homolog of Dxr, but its function and the requirement for isoprenoid synthesis in chlamydial development is not fully understood. We hypothesized that chlamydial Dxr (DxrCT) is functional and that the methylerythritol phosphate (MEP) pathway is required for normal chlamydial development. Thus, FSM exposure should be lethal to C. trachomatis. Overexpression of chlamydial Dxr (DxrCT) in Escherichia coli under FSM exposure and in a conditionally lethal dxr mutant demonstrated that DxrCT functions similarly to E. coli Dxr. When Chlamydia-infected cultures were exposed to FSM, EB production was significantly reduced. However, titer recovery assays, electron microscopy, and peptidoglycan labeling revealed that FSM inhibition of isoprenoid synthesis is not lethal to C. trachomatis, but instead induces persistence. Bactoprenol is a critical isoprenoid required for peptidoglycan precursor assembly. We therefore conclude that FSM induces persistence in Chlamydia by preventing bactoprenol production necessary for peptidoglycan precursor assembly and subsequent cell division.
Collapse
|
23
|
Effect of progesterone on the vaccination and immune response against Chlamydia abortus in sheep. Vet Immunol Immunopathol 2019; 213:109887. [PMID: 31307668 DOI: 10.1016/j.vetimm.2019.109887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/24/2018] [Accepted: 06/26/2019] [Indexed: 11/23/2022]
Abstract
Chlamydia abortus produces ovine enzootic abortion (OEA). Symptoms are not observed until the organism colonises the placenta, eventually causing abortion. Infected animals become carriers and will shed the organism in the following oestruses. This process suggests that sex hormones might play an important role in the physiopathology of OEA, affecting the success of chlamydial clearance and also jeopardising the effectiveness of vaccination. However, the mechanisms through which sex hormones are involved in chlamydial pathogenicity remain unclear. The aim of this study, therefore, was to determine the effect of progesterone on the immune response against C. abortus and on the protection conferred by an experimental inactivated vaccine in sheep. Eighteen sheep were ovariectomised and divided into four groups: vaccinated and progesterone-treated (V-PG), vaccinated and non-treated (V-NT), non-vaccinated and non-treated (NV-NT) and non-vaccinated and progesterone-treated sheep (NV-PG). Animals from both PG groups were treated with commercial medroxyprogesterone acetate impregnated intravaginal sponges before and during the vaccination (V-PG) or just before challenge (NV-PG). The animals from both V groups were subcutaneously immunised with an experimental inactivated vaccine, which was seen to confer high protection in previous studies. All sheep were challenged intratracheally with C. abortus strain AB7 and were sacrificed on day 8 post-infection. Morbidity was measured as the variation in rectal temperature and samples of sera were collected for antibody and cytokine (IFN-γ and IL-10) analysis by commercial ELISA. In addition, lung and lymph node samples were collected for chlamydial detection by qPCR and for histopathological and immunohistochemical analyses. Sheep from the V-PG group showed less severe or no lesions and lower morbidity than the other groups. They also had the highest abundance of regulatory T-cells. The sheep from V-NT also manifested high antibody levels against C. abortus and less severe lesions than those observed in non-vaccinated sheep, which showed high morbidity, low antibody levels and severe lesions, especially in NV-NT. These results confirm the effectiveness of the experimental vaccine employed and suggest that progesterone could enhance the effect.
Collapse
|
24
|
Berry A, Hall JV. The complexity of interactions between female sex hormones and Chlamydia trachomatis infections. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 6:67-75. [PMID: 31890462 PMCID: PMC6936955 DOI: 10.1007/s40588-019-00116-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW This review focuses specifically on the mechanisms by which female sex hormones, estrogen and progesterone, affect Chlamydia trachomatis infections in vivo and in vitro. RECENT FINDINGS Recent data support previous work indicating that estrogen enhances chlamydial development via multiple mechanisms. Progesterone negatively impacts Chlamydia infections also through multiple mechanisms, particularly by altering the immune response. Conflicting data exist regarding the effect of synthetic hormones, such as those found in hormonal contraceptives, on chlamydial infections. SUMMARY Numerous studies over the years have indicated that female sex hormones affect C. trachomatis infection. However, we still do not have a clear understanding of how these hormones alter Chlamydia disease transmission and progression. The studies reviewed here indicate that there are many variables that determine the outcome of Chlamydia/hormone interactions, including: 1) the specific hormone, 2) hormone concentration, 3) cell type or area of the genital tract, 4) hormone responsiveness of cell lines, and 5) animal models.
Collapse
Affiliation(s)
- Amy Berry
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN
- Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN
| | - Jennifer V. Hall
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN
- Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN
| |
Collapse
|
25
|
Di Pietro M, Filardo S, Romano S, Sessa R. Chlamydia trachomatis and Chlamydia pneumoniae Interaction with the Host: Latest Advances and Future Prospective. Microorganisms 2019; 7:microorganisms7050140. [PMID: 31100923 PMCID: PMC6560445 DOI: 10.3390/microorganisms7050140] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 12/27/2022] Open
Abstract
Research in Chlamydia trachomatis and Chlamydia pneumoniae has gained new traction due to recent advances in molecular biology, namely the widespread use of the metagenomic analysis and the development of a stable genomic transformation system, resulting in a better understanding of Chlamydia pathogenesis. C. trachomatis, the leading cause of bacterial sexually transmitted diseases, is responsible of cervicitis and urethritis, and C. pneumoniae, a widespread respiratory pathogen, has long been associated with several chronic inflammatory diseases with great impact on public health. The present review summarizes the current evidence regarding the complex interplay between C. trachomatis and host defense factors in the genital micro-environment as well as the key findings in chronic inflammatory diseases associated to C. pneumoniae.
Collapse
Affiliation(s)
- Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome "Sapienza", 00185 Rome, Italy.
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome "Sapienza", 00185 Rome, Italy.
| | - Silvio Romano
- Cardiology, Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome "Sapienza", 00185 Rome, Italy.
| |
Collapse
|
26
|
Lepanto MS, Rosa L, Paesano R, Valenti P, Cutone A. Lactoferrin in Aseptic and Septic Inflammation. Molecules 2019; 24:molecules24071323. [PMID: 30987256 PMCID: PMC6480387 DOI: 10.3390/molecules24071323] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
Lactoferrin (Lf), a cationic glycoprotein able to chelate two ferric irons per molecule, is synthesized by exocrine glands and neutrophils. Since the first anti-microbial function attributed to Lf, several activities have been discovered, including the relevant anti-inflammatory one, especially associated to the down-regulation of pro-inflammatory cytokines, as IL-6. As high levels of IL-6 are involved in iron homeostasis disorders, Lf is emerging as a potent regulator of iron and inflammatory homeostasis. Here, the role of Lf against aseptic and septic inflammation has been reviewed. In particular, in the context of aseptic inflammation, as anemia of inflammation, preterm delivery, Alzheimer’s disease and type 2 diabetes, Lf administration reduces local and/or systemic inflammation. Moreover, Lf oral administration, by decreasing serum IL-6, reverts iron homeostasis disorders. Regarding septic inflammation occurring in Chlamydia trachomatis infection, cystic fibrosis and inflammatory bowel disease, Lf, besides the anti-inflammatory activity, exerts a significant activity against bacterial adhesion, invasion and colonization. Lastly, a critical analysis of literature in vitro data reporting contradictory results on the Lf role in inflammatory processes, ranging from pro- to anti-inflammatory activity, highlighted that they depend on cell models, cell metabolic status, stimulatory or infecting agents as well as on Lf iron saturation degree, integrity and purity.
Collapse
Affiliation(s)
- Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | | | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Antimo Cutone
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy.
| |
Collapse
|
27
|
Capmany A, Gambarte Tudela J, Alonso Bivou M, Damiani MT. Akt/AS160 Signaling Pathway Inhibition Impairs Infection by Decreasing Rab14-Controlled Sphingolipids Delivery to Chlamydial Inclusions. Front Microbiol 2019; 10:666. [PMID: 31001235 PMCID: PMC6456686 DOI: 10.3389/fmicb.2019.00666] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/18/2019] [Indexed: 12/26/2022] Open
Abstract
Chlamydia trachomatis, an obligate intracellular bacterium, intercepts different trafficking pathways of the host cell to acquire essential lipids for its survival and replication, particularly from the Golgi apparatus via a Rab14-mediated transport. Molecular mechanisms underlying how these bacteria manipulate intracellular transport are a matter of intense study. Here, we show that C. trachomatis utilizes Akt/AS160 signaling pathway to promote sphingolipids delivery to the chlamydial inclusion through Rab14-controlled vesicular transport. C. trachomatis provokes Akt phosphorylation along its entire developmental life cycle and recruits phosphorylated Akt (pAkt) to the inclusion membrane. As a consequence, Akt Substrate of 160 kDa (AS160), also known as TBC1D4, a GTPase Activating Protein (GAP) for Rab14, is phosphorylated and therefore inactivated. Phosphorylated AS160 (pAS160) loses its ability to promote GTP hydrolysis, favoring Rab14 binding to GTP. Akt inhibition by an allosteric isoform-specific Akt inhibitor (iAkt) prevents AS160 phosphorylation and reduces Rab14 recruitment to chlamydial inclusions. iAkt further impairs sphingolipids acquisition by C. trachomatis-inclusion and provokes lipid retention at the Golgi apparatus. Consequently, treatment with iAkt decreases chlamydial inclusion size, bacterial multiplication, and infectivity in a dose-dependent manner. Similar results were found in AS160-depleted cells. By electron microscopy, we observed that iAkt generates abnormal bacterial forms as those reported after sphingolipids deprivation or Rab14 silencing. Taken together, our findings indicate that targeting the Akt/AS160/Rab14 axis could constitute a novel strategy to limit chlamydial infections, mainly for those caused by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Anahí Capmany
- Laboratorio de Bioquímica e Inmunidad, Área de Química Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
| | - Julián Gambarte Tudela
- Laboratorio de Bioquímica e Inmunidad, Área de Química Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
| | - Mariano Alonso Bivou
- Laboratorio de Bioquímica e Inmunidad, Área de Química Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
| | - María T Damiani
- Laboratorio de Bioquímica e Inmunidad, Área de Química Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
| |
Collapse
|
28
|
Pokorzynski ND, Brinkworth AJ, Carabeo R. A bipartite iron-dependent transcriptional regulation of the tryptophan salvage pathway in Chlamydia trachomatis. eLife 2019; 8:e42295. [PMID: 30938288 PMCID: PMC6504234 DOI: 10.7554/elife.42295] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/30/2019] [Indexed: 12/13/2022] Open
Abstract
During infection, pathogens are starved of essential nutrients such as iron and tryptophan by host immune effectors. Without conserved global stress response regulators, how the obligate intracellular bacterium Chlamydia trachomatis arrives at a physiologically similar 'persistent' state in response to starvation of either nutrient remains unclear. Here, we report on the iron-dependent regulation of the trpRBA tryptophan salvage pathway in C. trachomatis. Iron starvation specifically induces trpBA expression from a novel promoter element within an intergenic region flanked by trpR and trpB. YtgR, the only known iron-dependent regulator in Chlamydia, can bind to the trpRBA intergenic region upstream of the alternative trpBA promoter to repress transcription. Simultaneously, YtgR binding promotes the termination of transcripts from the primary promoter upstream of trpR. This is the first description of an iron-dependent mechanism regulating prokaryotic tryptophan biosynthesis that may indicate the existence of novel approaches to gene regulation and stress response in Chlamydia.
Collapse
Affiliation(s)
- Nick D Pokorzynski
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary MedicineWashington State UniversityPullmanUnited States
| | - Amanda J Brinkworth
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary MedicineWashington State UniversityPullmanUnited States
| | - Rey Carabeo
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary MedicineWashington State UniversityPullmanUnited States
| |
Collapse
|
29
|
Initial Characterization of the Two ClpP Paralogs of Chlamydia trachomatis Suggests Unique Functionality for Each. J Bacteriol 2018; 201:JB.00635-18. [PMID: 30396899 DOI: 10.1128/jb.00635-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 12/28/2022] Open
Abstract
Members of Chlamydia are obligate intracellular bacteria that differentiate between two distinct functional and morphological forms during their developmental cycle, elementary bodies (EBs) and reticulate bodies (RBs). EBs are nondividing small electron-dense forms that infect host cells. RBs are larger noninfectious replicative forms that develop within a membrane-bound vesicle, termed an inclusion. Given the unique properties of each developmental form of this bacterium, we hypothesized that the Clp protease system plays an integral role in proteomic turnover by degrading specific proteins from one developmental form or the other. Chlamydia spp. have five uncharacterized clp genes, clpX, clpC, two clpP paralogs, and clpB In other bacteria, ClpC and ClpX are ATPases that unfold and feed proteins into the ClpP protease to be degraded, and ClpB is a deaggregase. Here, we focused on characterizing the ClpP paralogs. Transcriptional analyses and immunoblotting determined that these genes are expressed midcycle. Bioinformatic analyses of these proteins identified key residues important for activity. Overexpression of inactive clpP mutants in Chlamydia spp. suggested independent function of each ClpP paralog. To further probe these differences, we determined interactions between the ClpP proteins using bacterial two-hybrid assays and native gel analysis of recombinant proteins. Homotypic interactions of the ClpP proteins, but not heterotypic interactions between the ClpP paralogs, were detected. Interestingly, protease activity of ClpP2, but not ClpP1, was detected in vitro This activity was stimulated by antibiotics known to activate ClpP, which also blocked chlamydial growth. Our data suggest the chlamydial ClpP paralogs likely serve distinct and critical roles in this important pathogen.IMPORTANCE Chlamydia trachomatis is the leading cause of preventable infectious blindness and of bacterial sexually transmitted infections worldwide. Chlamydiae are developmentally regulated obligate intracellular pathogens that alternate between two functional and morphologic forms, with distinct repertoires of proteins. We hypothesize that protein degradation is a critical aspect to the developmental cycle. A key system involved in protein turnover in bacteria is the Clp protease system. Here, we characterized the two chlamydial ClpP paralogs by examining their expression in Chlamydia spp., their ability to oligomerize, and their proteolytic activity. This work will help understand the evolutionarily diverse Clp proteases in the context of intracellular organisms, which may aid in the study of other clinically relevant intracellular bacteria.
Collapse
|
30
|
Lausen M, Christiansen G, Bouet Guldbæk Poulsen T, Birkelund S. Immunobiology of monocytes and macrophages during Chlamydia trachomatis infection. Microbes Infect 2018; 21:73-84. [PMID: 30528899 DOI: 10.1016/j.micinf.2018.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 02/03/2023]
Abstract
Infections caused by the intracellular bacterium Chlamydia trachomatis are a global health burden affecting more than 100 million people annually causing damaging long-lasting infections. In this review, we will present and discuss important aspects of the interaction between C. trachomatis and monocytes/macrophages.
Collapse
Affiliation(s)
- Mads Lausen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220 Aalborg Ø, Denmark.
| | - Gunna Christiansen
- Department of Biomedicine, Aarhus University, Wilhelms Meyers Allé 4, 8000 Aarhus, Denmark
| | | | - Svend Birkelund
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220 Aalborg Ø, Denmark
| |
Collapse
|
31
|
Characterization of Chlamydial Rho and the Role of Rho-Mediated Transcriptional Polarity during Interferon Gamma-Mediated Tryptophan Limitation. Infect Immun 2018; 86:IAI.00240-18. [PMID: 29712731 DOI: 10.1128/iai.00240-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/27/2018] [Indexed: 01/15/2023] Open
Abstract
As an obligate intracellular, developmentally regulated bacterium, Chlamydia is sensitive to amino acid fluctuations within its host cell. When human epithelial cells are treated with the cytokine interferon gamma (IFN-γ), the tryptophan (Trp)-degrading enzyme, indoleamine-2,3-dioxygenase, is induced. Chlamydiae within such cells are starved for Trp and enter a state of so-called persistence. Chlamydia lacks the stringent response used by many eubacteria to respond to this stress. Unusually, chlamydial transcription is globally elevated during Trp starvation with transcripts for Trp codon-containing genes disproportionately increased. Yet, the presence of Trp codons destabilized 3' ends of transcripts in operons or large genes. We initially hypothesized that ribosome stalling on Trp codons rendered the 3' ends sensitive to RNase activity. The half-life of chlamydial transcripts containing different numbers of Trp codons was thus measured in untreated and IFN-γ-treated infected cells to determine whether Trp codons influenced the stability of transcripts. However, no effect of Trp codon content was detected. Therefore, we investigated whether Rho-dependent transcription termination could play a role in mediating transcript instability. Rho is expressed as a midcycle gene product, interacts with itself as predicted, and is present in all chlamydial species. Inhibition of Rho via the Rho-specific antibiotic, bicyclomycin, and overexpression of Rho are detrimental to chlamydiae. Finally, when we measured transcript abundance 3' to Trp codons in the presence of bicyclomycin, we observed that transcript abundance increased. These data are the first to demonstrate the importance of Rho in Chlamydia and the role of Rho-dependent transcription polarity during persistence.
Collapse
|
32
|
Gupta VK, Waugh CA, Ziklo N, Huston WM, Hocking JS, Timms P. Systemic antibody response to Chlamydia Trachomatis infection in patients either infected or reinfected with different Chlamydia serovars. Indian J Med Microbiol 2018; 35:394-401. [PMID: 29063885 DOI: 10.4103/ijmm.ijmm_17_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Chlamydia trachomatis is the etiological agent for the most prevalent bacterial sexually transmitted infection in both developed and developing countries. The aim of present study was to characterize the antibody response between two groups of individuals, having either a single C. trachomatis infection and or repeated infections. MATERIAL AND METHODS Current study consisted of two groups, one with an initial Chlamydia infection and a second with repeated infections. A titre based estimation of specific serum (IgG and IgA) levels using ELISA were performed, which further validated by western blot. In vitro neutralizing ability of each patient's serum against both homologous and heterologous strains was also determined. RESULTS Individuals infected with one of the C. trachomatis serovars D, E or K exhibited a strong systemic antibody response as characterized by ELISA and western blot. These individuals may have developed at least some level of protection as they only represented single infection. By comparison, individuals infected with serovar D, E or F that exhibited low systemic antibody response often presented repeated C. trachomatis infections, suggesting an association with poor immune response. An in vitro neutralizing level of 60-90% was observed in the human sera against homologous serovar D and two heterologous C. trachomatis serovars E and K, compared to <40% against heterologous serovars F. CONCLUSION Individuals infected with serovars D and K showed a potential association between circulating antibody response and re-infection risk. While the patients infected with serovars E showed a disconnection between systemic antibody response and re-infection risk.
Collapse
Affiliation(s)
- Vivek Kumar Gupta
- Department of Microbiology, Faculty of Science, Education, Health and Engineering, University of Sunshine Coast, Brisbane, Australia; Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Courtney Alice Waugh
- Department of Microbiology, Faculty of Science, Education, Health and Engineering, University of Sunshine Coast, Brisbane, Australia
| | - Noa Ziklo
- Department of Microbiology, Faculty of Science, Education, Health and Engineering, University of Sunshine Coast, Brisbane, Australia
| | - Wilhelmina M Huston
- Department of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, QLD, Australia
| | - Jane S Hocking
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Carlton, Victoria, Australia
| | - Peter Timms
- Department of Microbiology, Faculty of Science, Education, Health and Engineering, University of Sunshine Coast, Brisbane, ; Department of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, QLD, Australia
| |
Collapse
|
33
|
Valenti P, Rosa L, Capobianco D, Lepanto MS, Schiavi E, Cutone A, Paesano R, Mastromarino P. Role of Lactobacilli and Lactoferrin in the Mucosal Cervicovaginal Defense. Front Immunol 2018; 9:376. [PMID: 29545798 PMCID: PMC5837981 DOI: 10.3389/fimmu.2018.00376] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/09/2018] [Indexed: 01/26/2023] Open
Abstract
The innate defense system of the female mucosal genital tract involves a close and complex interaction among the healthy vaginal microbiota, different cells, and various proteins that protect the host from pathogens. Vaginal lactobacilli and lactoferrin represent two essential actors in the vaginal environment. Lactobacilli represent the dominant bacterial species able to prevent facultative and obligate anaerobes outnumber in vaginal microbiota maintaining healthy microbial homeostasis. Several mechanisms underlie the protection exerted by lactobacilli: competition for nutrients and tissue adherence, reduction of the vaginal pH, modulation of immunity, and production of bioactive compounds. Among bioactive factors of cervicovaginal mucosa, lactoferrin, an iron-binding cationic glycoprotein, is a multifunctional glycoprotein with antibacterial, antifungal, antiviral, and antiparasitic activities, recently emerging as an important modulator of inflammation. Lactobacilli and lactoferrin are largely under the influence of female hormones and of paracrine production of various cytokines. Lactoferrin is strongly increased in lower genital tract mucosal fluid of women affected by Neisseria gonorrheae, Chlamydia trachomatis, and Trichomonas vaginalis infections promoting both innate and adaptive immune responses. In vaginal dysbiosis characterized by low amounts of vaginal lactobacilli and increased levels of endogenous anaerobic bacteria, the increase in lactoferrin could act as an immune modulator assuming the role normally played by the healthy microbiota in vaginal mucosa. Then lactoferrin and lactobacilli may be considered as biomarkers of altered microbial homeostasis at vaginal level. Considering the shortage of effective treatments to counteract recurrent and/or antibiotic-resistant bacterial infections, the intravaginal administration of lactobacilli and lactoferrin could be a novel efficient therapeutic strategy and a valuable tool to restore mucosal immune homeostasis.
Collapse
Affiliation(s)
- Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Daniela Capobianco
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Elisa Schiavi
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Antimo Cutone
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Rosalba Paesano
- Department of Gynecological-Obstetric and Urological Sciences, University of Rome La Sapienza, Rome, Italy
| | - Paola Mastromarino
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
34
|
Sessa R, Di Pietro M, Filardo S, Bressan A, Mastromarino P, Biasucci AV, Rosa L, Cutone A, Berlutti F, Paesano R, Valenti P. Lactobacilli-lactoferrin interplay in Chlamydia trachomatis infection. Pathog Dis 2018; 75:3828106. [PMID: 28505248 DOI: 10.1093/femspd/ftx054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/12/2017] [Indexed: 11/14/2022] Open
Abstract
In the cervicovaginal microenvironment, lactobacilli are known to protect against genital infections and, amongst the host defence compounds, lactoferrin has recently acquired importance for its anti-microbial and anti-inflammatory properties. An abnormal genital microenvironment facilitates the acquisition of pathogens like Chlamydia trachomatis, the leading cause of bacterial sexually transmitted infections worldwide. The aim of our study is to investigate the effects of Lactobacillus crispatus, Lactobacillus brevis and bovine lactoferrin on chlamydial infection, in order to shed light on the complex interplay between host defence mechanisms and C. trachomatis. We have also evaluated the effect of these defence factors to modulate the chlamydia-mediated inflammatory state. To this purpose, we have determined the infectivity and progeny production of C. trachomatis as well as interleukin-8 and interleukin-6 synthesis. The main result of our study is that the combination of L. brevis and bovine lactoferrin is the most effective in inhibiting the early phases (adhesion and invasion) of C. trachomatis infection of cervical epithelial cells and in decreasing the levels of both cytokines. In conclusion, the interaction between L. brevis and lactoferrin seems to play a role in the protection against C. trachomatis, reducing the infection and regulating the immunomodulatory activity, thus decreasing the risk of severe complications.
Collapse
Affiliation(s)
- Rosa Sessa
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | - Alessia Bressan
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | - Paola Mastromarino
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | | | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | - Antimo Cutone
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | - Francesca Berlutti
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| | - Rosalba Paesano
- Department of Gynecological-Obstetric and Urological Sciences, University of Rome 'Sapienza', 00185 Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome 'Sapienza'
| |
Collapse
|
35
|
Genomewide Transcriptional Responses of Iron-Starved Chlamydia trachomatis Reveal Prioritization of Metabolic Precursor Synthesis over Protein Translation. mSystems 2018; 3:mSystems00184-17. [PMID: 29468197 PMCID: PMC5811630 DOI: 10.1128/msystems.00184-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022] Open
Abstract
By utilizing an experimental approach that monitors the immediate global response of Chlamydia trachomatis to iron starvation, clues to long-standing issues in Chlamydia biology are revealed, including how Chlamydia adapts to this stress. We determined that this pathogen initiates a transcriptional program that prioritizes replenishment of nutrient stores over replication, possibly in preparation for rapid growth once optimal iron levels are restored. Transcription of genes for biosynthesis of metabolic precursors was generally upregulated, while those involved in multiple steps of translation were downregulated. We also observed an increase in transcription of genes involved in DNA repair and neutralizing oxidative stress, indicating that Chlamydia employs an “all-or-nothing” strategy. Its small genome limits its ability to tailor a specific response to a particular stress. Therefore, the “all-or-nothing” strategy may be the most efficient way of surviving within the host, where the pathogen likely encounters multiple simultaneous immunological and nutritional insults. Iron is essential for growth and development of Chlamydia. Its long-term starvation in cultured mammalian cells leads to production of aberrant noninfectious chlamydial forms, also known as persistence. Immediate transcriptional responses to iron limitation have not been characterized, leaving a knowledge gap of how Chlamydia regulates its response to changes in iron availability. We used the fast-chelating agent 2,2′-bipyridyl (BPDL) to homogeneously starve Chlamydia trachomatis serovar L2 of iron, starting at 6 or 12 h postinfection. Immediate transcriptional responses were monitored after only 3 or 6 h of BPDL treatment, well before formation of aberrant Chlamydia. The first genomewide transcriptional response of C. trachomatis to iron starvation was subsequently determined utilizing RNA sequencing. Only 7% and 8% of the genome were differentially expressed in response to iron starvation at the early and middle stages of development, respectively. Biological pathway analysis revealed an overarching theme. Synthesis of macromolecular precursors (deoxynucleotides, amino acids, charged tRNAs, and acetyl coenzyme A [acetyl-CoA]) was upregulated, while energy-expensive processes (ABC transport and translation) were downregulated. A large fraction of differentially downregulated genes are involved in translation, including those encoding ribosome assembly and initiation and termination factors, which could be analogous to the translation downregulation triggered by stress in other prokaryotes during stringent responses. Additionally, transcriptional upregulation of DNA repair, oxidative stress, and tryptophan salvage genes reveals a possible coordination of responses to multiple antimicrobial and immunological insults. These responses of replicative-phase Chlamydia to iron starvation indicate a prioritization of survival over replication, enabling the pathogen to “stock the pantry” with ingredients needed for rapid growth once optimal iron levels are restored. IMPORTANCE By utilizing an experimental approach that monitors the immediate global response of Chlamydia trachomatis to iron starvation, clues to long-standing issues in Chlamydia biology are revealed, including how Chlamydia adapts to this stress. We determined that this pathogen initiates a transcriptional program that prioritizes replenishment of nutrient stores over replication, possibly in preparation for rapid growth once optimal iron levels are restored. Transcription of genes for biosynthesis of metabolic precursors was generally upregulated, while those involved in multiple steps of translation were downregulated. We also observed an increase in transcription of genes involved in DNA repair and neutralizing oxidative stress, indicating that Chlamydia employs an “all-or-nothing” strategy. Its small genome limits its ability to tailor a specific response to a particular stress. Therefore, the “all-or-nothing” strategy may be the most efficient way of surviving within the host, where the pathogen likely encounters multiple simultaneous immunological and nutritional insults.
Collapse
|
36
|
Kintner J, Moore CG, Whittimore JD, Butler M, Hall JV. Inhibition of Wnt Signaling Pathways Impairs Chlamydia trachomatis Infection in Endometrial Epithelial Cells. Front Cell Infect Microbiol 2017; 7:501. [PMID: 29322031 PMCID: PMC5732136 DOI: 10.3389/fcimb.2017.00501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022] Open
Abstract
Chlamydia trachomatis infections represent the predominant cause of bacterial sexually transmitted infections. As an obligate intracellular bacterium, C. trachomatis is dependent on the host cell for survival, propagation, and transmission. Thus, factors that affect the host cell, including nutrition, cell cycle, and environmental signals, have the potential to impact chlamydial development. Previous studies have demonstrated that activation of Wnt/β-catenin signaling benefits C. trachomatis infections in fallopian tube epithelia. In cervical epithelial cells chlamydiae sequester β-catenin within the inclusion. These data indicate that chlamydiae interact with the Wnt signaling pathway in both the upper and lower female genital tract (FGT). However, hormonal activation of canonical and non-canonical Wnt signaling pathways is an essential component of cyclic remodeling in another prominent area of the FGT, the endometrium. Given this information, we hypothesized that Wnt signaling would impact chlamydial infection in endometrial epithelial cells. To investigate this hypothesis, we analyzed the effect of Wnt inhibition on chlamydial inclusion development and elementary body (EB) production in two endometrial cell lines, Ishikawa (IK) and Hec-1B, in nonpolarized cell culture and in a polarized endometrial epithelial (IK)/stromal (SHT-290) cell co-culture model. Inhibition of Wnt by the small molecule inhibitor (IWP2) significantly decreased inclusion size in IK and IK/SHT-290 cultures (p < 0.005) and chlamydial infectivity (p ≤ 0.01) in both IK and Hec-1B cells. Confocal and electron microscopy analysis of chlamydial inclusions revealed that Wnt inhibition caused chlamydiae to become aberrant in morphology. EB formation was also impaired in IK, Hec-1B and IK/SHT-290 cultures regardless of whether Wnt inhibition occurred throughout, in the middle (24 hpi) or late (36 hpi) during the development cycle. Overall, these data lead us to conclude that Wnt signaling in the endometrium is a key host pathway for the proper development of C. trachomatis.
Collapse
Affiliation(s)
- Jennifer Kintner
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Cheryl G Moore
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Judy D Whittimore
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Megan Butler
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jennifer V Hall
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
37
|
Scherler A, Jacquier N, Greub G. Chlamydiales, Anaplasma and Bartonella: persistence and immune escape of intracellular bacteria. Microbes Infect 2017; 20:416-423. [PMID: 29162422 DOI: 10.1016/j.micinf.2017.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/25/2022]
Abstract
Intracellular bacteria, such as Chlamydiales, Anaplasma or Bartonella, need to persist inside their host in order to complete their developmental cycle and to infect new hosts. In order to escape from the host immune system, intracellular bacteria have developed diverse mechanisms of persistence, which can directly impact the health of their host.
Collapse
Affiliation(s)
- Aurélie Scherler
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Jacquier
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
38
|
Chlamydia trachomatis: the Persistent Pathogen. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00203-17. [PMID: 28835360 DOI: 10.1128/cvi.00203-17] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium whose only natural host is humans. Although presenting as asymptomatic in most women, genital tract chlamydial infections are a leading cause of pelvic inflammatory disease, tubal factor infertility, and ectopic pregnancy. C. trachomatis has evolved successful mechanisms to avoid destruction by autophagy and the host immune system and persist within host epithelial cells. The intracellular form of this organism, the reticulate body, can enter into a persistent nonreplicative but viable state under unfavorable conditions. The infectious form of the organism, the elementary body, is again generated when the immune attack subsides. In its persistent form, C. trachomatis ceases to produce its major structural and membrane components, but synthesis of its 60-kDa heat shock protein (hsp60) is greatly upregulated and released from the cell. The immune response to hsp60, perhaps exacerbated by repeated cycles of productive infection and persistence, may promote damage to fallopian tube epithelial cells, scar formation, and tubal occlusion. The chlamydial and human hsp60 proteins are very similar, and hsp60 is one of the first proteins produced by newly formed embryos. Thus, the development of immunity to epitopes in the chlamydial hsp60 that are also present in the corresponding human hsp60 may increase susceptibility to pregnancy failure in infected women. Delineation of host factors that increase the likelihood that C. trachomatis will avoid immune destruction and survive within host epithelial cells and utilization of this knowledge to design individualized preventative and treatment protocols are needed to more effectively combat infections by this persistent pathogen.
Collapse
|
39
|
Pokorzynski ND, Thompson CC, Carabeo RA. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in Chlamydia. Front Cell Infect Microbiol 2017; 7:394. [PMID: 28951853 PMCID: PMC5599777 DOI: 10.3389/fcimb.2017.00394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/23/2017] [Indexed: 01/19/2023] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis, along with its close species relatives, is known to be strictly dependent upon the availability of iron. Deprivation of iron in vitro induces an aberrant morphological phenotype termed "persistence." This persistent phenotype develops in response to various immunological and nutritional insults and may contribute to the development of sub-acute Chlamydia-associated chronic diseases in susceptible populations. Given the importance of iron to Chlamydia, relatively little is understood about its acquisition and its role in gene regulation in comparison to other iron-dependent bacteria. Analysis of the genome sequences of a variety of chlamydial species hinted at the involvement of unconventional mechanisms, being that Chlamydia lack many conventional systems of iron homeostasis that are highly conserved in other bacteria. Herein we detail past and current research regarding chlamydial iron biology in an attempt to provide context to the rapid progress of the field in recent years. We aim to highlight recent discoveries and innovations that illuminate the strategies involved in chlamydial iron homeostasis, including the vesicular mode of acquiring iron from the intracellular environment, and the identification of a putative iron-dependent transcriptional regulator that is synthesized as a fusion with a ABC-type transporter subunit. These recent findings, along with the noted absence of iron-related homologs, indicate that Chlamydia have evolved atypical approaches to the problem of iron homeostasis, reinvigorating research into the iron biology of this pathogen.
Collapse
Affiliation(s)
- Nick D Pokorzynski
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| | - Christopher C Thompson
- Jefferiss Trust Laboratories, Faculty of Medicine, Imperial College London, St. Mary's HospitalLondon, United Kingdom
| | - Rey A Carabeo
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| |
Collapse
|
40
|
Chen Z, Chen L, Wang C, Yu J, Bai Q, Yu M, Song Y, Hu Y, Wu Y. Transcription of seven genes in a model of interferon-γ-induced persistent Chlamydia psittaci infection. Mol Med Rep 2017; 16:4835-4842. [DOI: 10.3892/mmr.2017.7133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 05/09/2017] [Indexed: 11/05/2022] Open
|
41
|
Cram ED, Rockey DD, Dolan BP. Chlamydia spp. development is differentially altered by treatment with the LpxC inhibitor LPC-011. BMC Microbiol 2017; 17:98. [PMID: 28438125 PMCID: PMC5402638 DOI: 10.1186/s12866-017-0992-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chlamydia species are obligate intracellular bacteria that infect a broad range of mammalian hosts. Members of related genera are pathogens of a variety of vertebrate and invertebrate species. Despite the diversity of Chlamydia, all species contain an outer membrane lipooligosaccharide (LOS) that is comprised of a genus-conserved, and genus-defining, trisaccharide 3-deoxy-D-manno-oct-2-ulosonic acid Kdo region. Recent studies with lipopolysaccharide inhibitors demonstrate that LOS is important for the C. trachomatis developmental cycle during RB- > EB differentiation. Here, we explore the effects of one of these inhibitors, LPC-011, on the developmental cycle of five chlamydial species. RESULTS Sensitivity to the drug varied in some of the species and was conserved between others. We observed that inhibition of LOS biosynthesis in some chlamydial species induced formation of aberrant reticulate bodies, while in other species, no change was observed to the reticulate body. However, loss of LOS production prevented completion of the chlamydial reproductive cycle in all species tested. In previous studies we found that C. trachomatis and C. caviae infection enhances MHC class I antigen presentation of a model self-peptide. We find that treatment with LPC-011 prevents enhanced host-peptide presentation induced by infection with all chlamydial-species tested. CONCLUSIONS The data demonstrate that LOS synthesis is necessary for production of infectious progeny and inhibition of LOS synthesis induces aberrancy in certain chlamydial species, which has important implications for the use of LOS synthesis inhibitors as potential antibiotics.
Collapse
Affiliation(s)
- Erik D Cram
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, 105 Magruder Hall, Corvallis, OR, 97331, USA.
| | - Daniel D Rockey
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, 105 Magruder Hall, Corvallis, OR, 97331, USA
| | - Brian P Dolan
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, 105 Magruder Hall, Corvallis, OR, 97331, USA
| |
Collapse
|
42
|
Vouga M, Baud D, Greub G. Simkania negevensis, an insight into the biology and clinical importance of a novel member of the Chlamydiales order. Crit Rev Microbiol 2016; 43:62-80. [PMID: 27786615 DOI: 10.3109/1040841x.2016.1165650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Simkania negevensis is a Chlamydia-related bacterium discovered in 1993 and represents the founding member of the Simkaniaceae family within the Chlamydiales order. As other Chlamydiales, it is an obligate intracellular bacterium characterized by a biphasic developmental cycle. Its similarities with the pathogenic Chlamydia trachomatis and Chlamydia pneumoniae make it an interesting bacterium. So far, little is known about its biology, but S. negevensis harbors various microbiological characteristics of interest, including a strong association of the Simkania-containing vacuole with the ER and the presence of an intron in the 23S rRNA encoding gene. Evidence of human exposition has been reported worldwide. However, there is a lack of robust clinical studies evaluating its implication in human diseases; current data suggest an association with pneumonia and bronchiolitis making S. negevensis a potential emerging pathogen. Owing to its fastidious growth requirements, the clinical relevance of S. negevensis is probably underestimated. In this review, we summarize the current knowledge on S. negevensis and explore future research challenges.
Collapse
Affiliation(s)
- Manon Vouga
- a Institute of Microbiology , Center for Research on Intracellular Bacteria, Faculty of Biology and Medicine, University and University Hospital of Lausanne , Lausanne , Switzerland.,b Department "Femme-Mère-Enfant" , Materno-Fetal and Obstetrics Research Unit, University Hospital , Lausanne , Switzerland
| | - David Baud
- a Institute of Microbiology , Center for Research on Intracellular Bacteria, Faculty of Biology and Medicine, University and University Hospital of Lausanne , Lausanne , Switzerland.,b Department "Femme-Mère-Enfant" , Materno-Fetal and Obstetrics Research Unit, University Hospital , Lausanne , Switzerland
| | - Gilbert Greub
- a Institute of Microbiology , Center for Research on Intracellular Bacteria, Faculty of Biology and Medicine, University and University Hospital of Lausanne , Lausanne , Switzerland.,c Infectious Diseases Unit , University hospital , Lausanne , Switzerland
| |
Collapse
|
43
|
Sessa R, Di Pietro M, Filardo S, Bressan A, Rosa L, Cutone A, Frioni A, Berlutti F, Paesano R, Valenti P. Effect of bovine lactoferrin on Chlamydia trachomatis infection and inflammation. Biochem Cell Biol 2016; 95:34-40. [PMID: 28094551 DOI: 10.1139/bcb-2016-0049] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chlamydia trachomatis is an obligate, intracellular pathogen responsible for the most common sexually transmitted bacterial disease worldwide, causing acute and chronic infections. The acute infection is susceptible to antibiotics, whereas the chronic one needs prolonged therapies, thus increasing the risk of developing antibiotic resistance. Novel alternative therapies are needed. The intracellular development of C. trachomatis requires essential nutrients, including iron. Iron-chelating drugs inhibit C. trachomatis developmental cycle. Lactoferrin (Lf), a pleiotropic iron binding glycoprotein, could be a promising candidate against C. trachomatis infection. Similarly to the efficacy against other intracellular pathogens, bovine Lf (bLf) could both interfere with C. trachomatis entry into epithelial cells and exert an anti-inflammatory activity. In vitro and in vivo effects of bLf against C. trachomatis infectious and inflammatory process has been investigated. BLf inhibits C. trachomatis entry into host cells when incubated with cell monolayers before or at the moment of the infection and down-regulates IL-6/IL-8 synthesized by infected cells. Six out of 7 pregnant women asymptomatically infected by C. trachomatis, after 30 days of bLf intravaginal administration, were negative for C. trachomatis and showed a decrease of cervical IL-6 levels. This is the first time that the bLf protective effect against C. trachomatis infection has been demonstrated.
Collapse
Affiliation(s)
- Rosa Sessa
- a Department of Public Health and Infectious Diseases, University of Rome, La Sapienza, Rome, Italy
| | - Marisa Di Pietro
- a Department of Public Health and Infectious Diseases, University of Rome, La Sapienza, Rome, Italy
| | - Simone Filardo
- a Department of Public Health and Infectious Diseases, University of Rome, La Sapienza, Rome, Italy
| | - Alessia Bressan
- a Department of Public Health and Infectious Diseases, University of Rome, La Sapienza, Rome, Italy
| | - Luigi Rosa
- a Department of Public Health and Infectious Diseases, University of Rome, La Sapienza, Rome, Italy
| | - Antimo Cutone
- a Department of Public Health and Infectious Diseases, University of Rome, La Sapienza, Rome, Italy
| | - Alessandra Frioni
- a Department of Public Health and Infectious Diseases, University of Rome, La Sapienza, Rome, Italy
| | - Francesca Berlutti
- a Department of Public Health and Infectious Diseases, University of Rome, La Sapienza, Rome, Italy
| | - Rosalba Paesano
- b Department of Gynecological-Obstetric and Urological Sciences, University of Rome, La Sapienza, Rome, Italy
| | - Piera Valenti
- a Department of Public Health and Infectious Diseases, University of Rome, La Sapienza, Rome, Italy
| |
Collapse
|
44
|
Beyond Tryptophan Synthase: Identification of Genes That Contribute to Chlamydia trachomatis Survival during Gamma Interferon-Induced Persistence and Reactivation. Infect Immun 2016; 84:2791-801. [PMID: 27430273 DOI: 10.1128/iai.00356-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/15/2016] [Indexed: 12/31/2022] Open
Abstract
Chlamydia trachomatis can enter a viable but nonculturable state in vitro termed persistence. A common feature of C. trachomatis persistence models is that reticulate bodies fail to divide and make few infectious progeny until the persistence-inducing stressor is removed. One model of persistence that has relevance to human disease involves tryptophan limitation mediated by the host enzyme indoleamine 2,3-dioxygenase, which converts l-tryptophan to N-formylkynurenine. Genital C. trachomatis strains can counter tryptophan limitation because they encode a tryptophan-synthesizing enzyme. Tryptophan synthase is the only enzyme that has been confirmed to play a role in interferon gamma (IFN-γ)-induced persistence, although profound changes in chlamydial physiology and gene expression occur in the presence of persistence-inducing stressors. Thus, we screened a population of mutagenized C. trachomatis strains for mutants that failed to reactivate from IFN-γ-induced persistence. Six mutants were identified, and the mutations linked to the persistence phenotype in three of these were successfully mapped. One mutant had a missense mutation in tryptophan synthase; however, this mutant behaved differently from previously described synthase null mutants. Two hypothetical genes of unknown function, ctl0225 and ctl0694, were also identified and may be involved in amino acid transport and DNA damage repair, respectively. Our results indicate that C. trachomatis utilizes functionally diverse genes to mediate survival during and reactivation from persistence in HeLa cells.
Collapse
|
45
|
Antibody to Chlamydia trachomatis proteins, TroA and HtrA, as a biomarker for Chlamydia trachomatis infection. Eur J Clin Microbiol Infect Dis 2016; 36:49-56. [PMID: 27638011 DOI: 10.1007/s10096-016-2769-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
Abstract
We studied whether antibody to two chlamydial proteins (TroA and HtrA) could be used as biomarkers of Chlamydia trachomatis infection. METHODS Recombinant proteins C. trachomatis TroA and HtrA were used as antigens in enzyme immunoassay (EIA). Both IgG and IgA antibody responses were studied. RESULTS IgG or IgA antibody to either protein was infrequently detected in sera from healthy blood donors or virgin girls. Patients attending the STI Clinic and patients with perihepatitis had often IgG antibody against TroA (25 and 50 % respectively) and HtrA (21 and 38 % respectively). Especially in sera from patients with chlamydial perihepatitis, the A450nm values with TroA were high (mean 1.591). A positive correlation between C. trachomatis MIF antibody and TroA (r = 0.7) as well as HtrA (r = 0.5) antibody was observed in sera from STI clinic patients and perihepatitis patients. Individuals with C. trachomatis infection and positive serology already when seeking medical attention had higher A450nm values for TroA (0.638) and HtrA (0.836) than patients with no marker of previous exposure or with no infection (0.208 and 0.234 respectively). Diagnosis of genital C. trachomatis infection is often NAAT-based, whereas serology has little value in testing for uncomplicated genital C. trachomatis infection. TroA and HtrA antibodies are potential biomarkers for evaluation of ascending and repeated C. trachomatis infection.
Collapse
|
46
|
Shima K, Coopmeiners J, Graspeuntner S, Dalhoff K, Rupp J. Impact of micro-environmental changes on respiratory tract infections with intracellular bacteria. FEBS Lett 2016; 590:3887-3904. [PMID: 27509029 DOI: 10.1002/1873-3468.12353] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 12/26/2022]
Abstract
Community-acquired pneumonia is caused by intra- and extracellular bacteria, with some of these bacteria also being linked to the pathogenesis of chronic lung diseases, including asthma and chronic obstructive pulmonary disease. Chlamydia pneumoniae is an obligate intracellular pathogen that is highly sensitive to micro-environmental conditions controlling both pathogen growth and host immune responses. The availability of nutrients, as well as changes in oxygen, pH and interferon-γ levels, have been shown to directly influence the chlamydial life cycle and clearance. Although the lung has been traditionally regarded as a sterile environment, sequencing approaches have enabled the identification of a large number of bacteria in healthy and diseased lungs. The influence of the lung microbiota on respiratory infections has not been extensively studied so far and data on chlamydial infections are currently unavailable. In the present study, we speculate on how lung microbiota might interfere with acute and chronic infections by focusing exemplarily on the obligate intracellular C. pneumoniae. Furthermore, we consider changes in the gut microbiota as an additional player in the control of lung infections, especially in view the increasing evidence suggesting the involvement of the gut microbiota in various immunological processes throughout the human body.
Collapse
Affiliation(s)
- Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| | - Jonas Coopmeiners
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| | - Klaus Dalhoff
- Medical Clinic III, University-Hospital Schleswig-Holstein/Campus Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| |
Collapse
|
47
|
Tryptophan Codon-Dependent Transcription in Chlamydia pneumoniae during Gamma Interferon-Mediated Tryptophan Limitation. Infect Immun 2016; 84:2703-13. [PMID: 27400720 DOI: 10.1128/iai.00377-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/05/2016] [Indexed: 12/16/2022] Open
Abstract
In evolving to an obligate intracellular niche, Chlamydia has streamlined its genome by eliminating superfluous genes as it relies on the host cell for a variety of nutritional needs like amino acids. However, Chlamydia can experience amino acid starvation when the human host cell in which the bacteria reside is exposed to interferon gamma (IFN-γ), which leads to a tryptophan (Trp)-limiting environment via induction of the enzyme indoleamine-2,3-dioxygenase (IDO). The stringent response is used to respond to amino acid starvation in most bacteria but is missing from Chlamydia Thus, how Chlamydia, a Trp auxotroph, responds to Trp starvation in the absence of a stringent response is an intriguing question. We previously observed that C. pneumoniae responds to this stress by globally increasing transcription while globally decreasing translation, an unusual response. Here, we sought to understand this and hypothesized that the Trp codon content of a given gene would determine its transcription level. We quantified transcripts from C. pneumoniae genes that were either rich or poor in Trp codons and found that Trp codon-rich transcripts were increased, whereas those that lacked Trp codons were unchanged or even decreased. There were exceptions, and these involved operons or large genes with multiple Trp codons: downstream transcripts were less abundant after Trp codon-rich sequences. These data suggest that ribosome stalling on Trp codons causes a negative polar effect on downstream sequences. Finally, reassessing previous C. pneumoniae microarray data based on codon content, we found that upregulated transcripts were enriched in Trp codons, thus supporting our hypothesis.
Collapse
|
48
|
Lowden NM, Yeruva L, Johnson CM, Bowlin AK, Fisher DJ. Use of aminoglycoside 3' adenyltransferase as a selection marker for Chlamydia trachomatis intron-mutagenesis and in vivo intron stability. BMC Res Notes 2015; 8:570. [PMID: 26471806 PMCID: PMC4606545 DOI: 10.1186/s13104-015-1542-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/05/2015] [Indexed: 12/14/2022] Open
Abstract
Background Chlamydia spp. are obligate, intracellular bacteria that infect humans and animals. Research on these important pathogens has been hindered due to a paucity of genetic tools. We recently adapted a group II intron (GII) mutagenesis platform for creation of ampicillin-selectable gene insertions in C. trachomatis L2. The aims of this study were: (1) to assess the stability of the intron-insertion in an in vivo infection model to gauge the efficacy of this genetic tool for long term animal studies and (2) to expand upon the utility of the method by validating a second selection marker (aadA, conferring spectinomycin resistance) for mutant construction. Results Intron stability was assessed using a mouse vaginal tract infection model with a C. trachomatis L2 434/Bu incA::GII(bla) mutant. Infections were performed in the absence of selection and isolates shed into the vaginal tract were isolated and expanded in cell culture (also without selection). PCR and inclusion phenotype analysis indicated that the intron was stable for at least 27 days post-infection (at which point bacteria were no longer recovered from the mouse). The aminoglycoside 3′ adenyltransferase (aadA) gene was used to create a spectinomycin-selectable GII intron, facilitating the construction of an incA::GII[aadA] C. trachomatis L2 insertion mutant. Both the GII(aadA) intron and our previously reported GII(bla) intron were then used to create an incA::GII(aadA), rsbV1::GII(bla) double mutant. Mutants were confirmed via PCR, sequencing, inclusion morphology (incA only), and western blot. Conclusions The stability of the intron-insertion during in vivo growth indicates that the GII-insertion mutants can be used to study pathogenesis using the well-established mouse infection model. In addition, the validation of an additional marker for mutagenesis in Chlamydia allows for gene complementation approaches and construction of targeted, double mutants in Chlamydia. The aadA marker also could be useful for other genetic methods. Collectively, our results expand upon the rapidly growing chlamydial genetic toolkit and will aid in the implementation of studies dissecting the contribution of individual genes to infection. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1542-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole M Lowden
- Department of Microbiology, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL, 62901, USA.
| | - Laxmi Yeruva
- Departments of Pediatrics, Arkansas Children's Hospital Research Institute, Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA.
| | - Cayla M Johnson
- Department of Microbiology, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL, 62901, USA.
| | - Anne K Bowlin
- Departments of Pediatrics, Arkansas Children's Hospital Research Institute, Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA.
| | - Derek J Fisher
- Department of Microbiology, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL, 62901, USA.
| |
Collapse
|
49
|
Leonard CA, Schoborg RV, Borel N. Damage/Danger Associated Molecular Patterns (DAMPs) Modulate Chlamydia pecorum and C. trachomatis Serovar E Inclusion Development In Vitro. PLoS One 2015; 10:e0134943. [PMID: 26248286 PMCID: PMC4527707 DOI: 10.1371/journal.pone.0134943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 07/16/2015] [Indexed: 11/18/2022] Open
Abstract
Persistence, more recently termed the chlamydial stress response, is a viable but non-infectious state constituting a divergence from the characteristic chlamydial biphasic developmental cycle. Damage/danger associated molecular patterns (DAMPs) are normal intracellular components or metabolites that, when released from cells, signal cellular damage/lysis. Purine metabolite DAMPs, including extracellular ATP and adenosine, inhibit chlamydial development in a species-specific manner. Viral co-infection has been shown to reversibly abrogate Chlamydia inclusion development, suggesting persistence/chlamydial stress. Because viral infection can cause host cell DAMP release, we hypothesized DAMPs may influence chlamydial development. Therefore, we examined the effect of extracellular ATP, adenosine, and cyclic AMP exposure, at 0 and 14 hours post infection, on C. pecorum and C. trachomatis serovar E development. In the absence of de novo host protein synthesis, exposure to DAMPs immediately post or at 14 hours post infection reduced inclusion size; however, the effect was less robust upon 14 hours post infection exposure. Additionally, upon exposure to DAMPs immediately post infection, bacteria per inclusion and subsequent infectivity were reduced in both Chlamydia species. These effects were reversible, and C. pecorum exhibited more pronounced recovery from DAMP exposure. Aberrant bodies, typical in virus-induced chlamydial persistence, were absent upon DAMP exposure. In the presence of de novo host protein synthesis, exposure to DAMPs immediately post infection reduced inclusion size, but only variably modulated chlamydial infectivity. Because chlamydial infection and other infections may increase local DAMP concentrations, DAMPs may influence Chlamydia infection in vivo, particularly in the context of poly-microbial infections.
Collapse
Affiliation(s)
- Cory Ann Leonard
- Department of Pathobiology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Robert V. Schoborg
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Nicole Borel
- Department of Pathobiology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
50
|
Strategies of Intracellular Pathogens for Obtaining Iron from the Environment. BIOMED RESEARCH INTERNATIONAL 2015; 2015:476534. [PMID: 26120582 PMCID: PMC4450229 DOI: 10.1155/2015/476534] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/09/2015] [Indexed: 12/22/2022]
Abstract
Most microorganisms are destroyed by the host tissues through processes that usually involve phagocytosis and lysosomal disruption. However, some organisms, called intracellular pathogens, are capable of avoiding destruction by growing inside macrophages or other cells. During infection with intracellular pathogenic microorganisms, the element iron is required by both the host cell and the pathogen that inhabits the host cell. This minireview focuses on how intracellular pathogens use multiple strategies to obtain nutritional iron from the intracellular environment in order to use this element for replication. Additionally, the implications of these mechanisms for iron acquisition in the pathogen-host relationship are discussed.
Collapse
|