1
|
Scott O, Saran E, Freeman SA. The spectrum of lysosomal stress and damage responses: from mechanosensing to inflammation. EMBO Rep 2025; 26:1425-1439. [PMID: 40016424 PMCID: PMC11933331 DOI: 10.1038/s44319-025-00405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
Cells and tissues turn over their aged and damaged components in order to adapt to a changing environment and maintain homeostasis. These functions rely on lysosomes, dynamic and heterogeneous organelles that play essential roles in nutrient redistribution, metabolism, signaling, gene regulation, plasma membrane repair, and immunity. Because of metabolic fluctuations and pathogenic threats, lysosomes must adapt in the short and long term to maintain functionality. In response to such challenges, lysosomes deploy a variety of mechanisms that prevent the breaching of their membrane and escape of their contents, including pathogen-associated molecules and hydrolases. While transient permeabilization of the lysosomal membrane can have acute beneficial effects, supporting inflammation and antigen cross-presentation, sustained or repeated lysosomal perforations have adverse metabolic and transcriptional consequences and can lead to cell death. This review outlines factors contributing to lysosomal stress and damage perception, as well as remedial processes aimed at addressing lysosomal disruptions. We conclude that lysosomal stress plays widespread roles in human physiology and pathology, the understanding and manipulation of which can open the door to novel therapeutic strategies.
Collapse
Affiliation(s)
- Ori Scott
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical Immunology and Allergy, Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Ekambir Saran
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Martínez-Sotelo JA, Vallecillo AJ, Parada C, Segura E, Campuzano J, Silva-Miranda M, Servín-González L, Espitia C. Immune Response to the Recombinant Apa Protein from Mycobacterium tuberculosis Expressed in Streptomyces lividans After Intranasal Administration in Mice. Induction of Protective Response to Tubercle Bacillus Aerosols Exposure. Curr Microbiol 2024; 81:197. [PMID: 38816607 PMCID: PMC11139747 DOI: 10.1007/s00284-024-03697-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/08/2024] [Indexed: 06/01/2024]
Abstract
Identifying and evaluating potential vaccine candidates has become one of the main objectives to combat tuberculosis. Among them, mannosylated Apa antigen from Mycobacterium tuberculosis and the non-mannosylated protein expressed in Escherichia coli, have been studied. Although both proteins can induce a protective response in mice, it has been considered that native protein can be dispensed. In this work, we study the protective response induced by Apa expressed in E. coli and in Streptomyces lividans. The latter, like native is secreted as a double band of 45/47 kDa, however, only its 47 kDa band is mannosylated. Both antigens and BCG were intranasal administrated in mice, and animals were then challenged by aerosol with M. tuberculosis H37Rv. The results showed that both, Apa from S. lividans and E. coli conferred statistically significantly protection to animals compared to controls. The cytokine immune response was studied by an immunoassay after animals' immunization, revealing that Apa from S. lividans induced a statistically significant proliferation of T cell, as well as the expression of IFN-γ, IL-1β, IL-17 and IL-10. In contrast, non-proliferation was obtained with non-mannosylated protein, but induction of IL-12 and IL-17 was observed. Together, these results demonstrate that both proteins were able to modulate a specific immune response against M. tuberculosis, that could be driven by different mechanisms possibly associated with the presence or not of mannosylation. Furthermore, stimulation of cells from BCG-vaccinated animals with the proteins could be an important tool, to help define the use of a given subunit-vaccine after BCG vaccination.
Collapse
Affiliation(s)
- José Alberto Martínez-Sotelo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, Mexico
- Catedrática CONAHCYT, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, Mexico
| | - Antonio J Vallecillo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, Mexico
- Escuela de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, C.P. 010205, Cuenca, Azu, Ecuador
- Catedrática CONAHCYT, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, Mexico
| | - Cristina Parada
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, Mexico
- Catedrática CONAHCYT, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, Mexico
| | - Erika Segura
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, Mexico
- Catedrática CONAHCYT, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, Mexico
| | - Jaime Campuzano
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, Mexico
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, Mexico
| | - Mayra Silva-Miranda
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, Mexico
- Catedrática CONAHCYT, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, Mexico
| | - Luis Servín-González
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, Mexico
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, Mexico
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, Mexico.
- Catedrática CONAHCYT, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, Mexico.
| |
Collapse
|
3
|
Okoth WA, Ho MF, Zaman M, Cooper E, Som P, Burgess M, Walton M, Nevagi RJ, Beattie L, Murphy D, Stanisic DI, Good MF. A CAF01-adjuvanted whole asexual blood-stage liposomal malaria vaccine induces a CD4 + T-cell-dependent strain-transcending protective immunity in rodent models. mBio 2023; 14:e0254723. [PMID: 37962347 PMCID: PMC10746282 DOI: 10.1128/mbio.02547-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE Malaria is a devastating disease that has claimed many lives, especially children <5 years of age in Sub-Saharan Africa, as documented in World Malaria Reports by WHO. Even though vector control and chemoprevention tools have helped with elimination efforts in some, if not all, endemic areas, these efforts have been hampered by serious issues (including drug and insecticide resistance and disruption to social cohesion caused by the COVID-19 pandemic). Development of an effective malaria vaccine is the alternative preventative tool in the fight against malaria. Vaccines save millions of lives each year and have helped in elimination and/or eradication of global diseases. Development of a highly efficacious malaria vaccine that will ensure long-lasting protective immunity will be a "game-changing" prevention strategy to finally eradicate the disease. Such a vaccine will need to counteract the significant obstacles that have been hampering subunit vaccine development to date, including antigenic polymorphism, sub-optimal immunogenicity, and waning vaccine efficacy.
Collapse
Affiliation(s)
- Winter A. Okoth
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Mei-Fong Ho
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Mehfuz Zaman
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Emily Cooper
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Priyanka Som
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Mark Burgess
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Maddison Walton
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Reshma J. Nevagi
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Lynette Beattie
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Declan Murphy
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Michael F. Good
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
4
|
Bellini C, Vergara E, Bencs F, Fodor K, Bősze S, Krivić D, Bacsa B, Surguta SE, Tóvári J, Reljic R, Horváti K. Design and Characterization of a Multistage Peptide-Based Vaccine Platform to Target Mycobacterium tuberculosis Infection. Bioconjug Chem 2023; 34:1738-1753. [PMID: 37606258 PMCID: PMC10587871 DOI: 10.1021/acs.bioconjchem.3c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Indexed: 08/23/2023]
Abstract
The complex immunopathology ofMycobacterium tuberculosis(Mtb) is one of the main challenges in developing a novel vaccine against this pathogen, particularly regarding eliciting protection against both active and latent stages. Multistage vaccines, which contain antigens expressed in both phases, represent a promising strategy for addressing this issue, as testified by the tuberculosis vaccine clinical pipeline. Given this approach, we designed and characterized a multistage peptide-based vaccine platform containing CD4+ and CD8+ T cell epitopes previously validated for inducing a relevant T cell response against Mtb. After preliminary screening, CFP10 (32-39), GlfT2 (4-12), HBHA (185-194), and PPE15 (1-15) were selected as promising candidates, and we proved that the PM1 pool of these peptides triggered a T cell response in Mtb-sensitized human peripheral blood mononuclear cells (PBMCs). Taking advantage of the use of thiol-maleimide chemoselective ligation, we synthesized a multiepitope conjugate (Ac-CGHP). Our results showed a structure-activity relationship between the conjugation and a higher tendency to fold and assume an ordered secondary structure. Moreover, the palmitoylated conjugate (Pal-CGHP) comprising the same peptide antigens was associated with an enhanced cellular uptake in human and murine antigen-presenting cells and a better immunogenicity profile. Immunization study, conducted in BALB/c mice, showed that Pal-CGHP induced a significantly higher T cell proliferation and production of IFNγ and TNFα over PM1 formulated in the Sigma Adjuvant System.
Collapse
Affiliation(s)
- Chiara Bellini
- MTA-TTK
Lendület “Momentum” Peptide-Based Vaccines Research
Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest 1117, Hungary
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Budapest 1117, Hungary
| | - Emil Vergara
- Institute
for Infection and Immunity, St. George’s,
University of London, London SW17 0RE, U.K.
| | - Fruzsina Bencs
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Budapest 1117, Hungary
- Laboratory
of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest 1117, Hungary
| | - Kinga Fodor
- Department
of Laboratory Animal Science and Animal Protection, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Szilvia Bősze
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network (ELKH), Eötvös
Loránd University, Budapest 1117, Hungary
| | - Denis Krivić
- Division
of Medical Physics and Biophysics, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Bernadett Bacsa
- Division
of Medical Physics and Biophysics, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Sára Eszter Surguta
- Department
of Experimental Pharmacology and National Tumor Biology Laboratory, National Institute of Oncology, Budapest 1122, Hungary
| | - József Tóvári
- Department
of Experimental Pharmacology and National Tumor Biology Laboratory, National Institute of Oncology, Budapest 1122, Hungary
| | - Rajko Reljic
- Institute
for Infection and Immunity, St. George’s,
University of London, London SW17 0RE, U.K.
| | - Kata Horváti
- MTA-TTK
Lendület “Momentum” Peptide-Based Vaccines Research
Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest 1117, Hungary
| |
Collapse
|
5
|
Agallou M, Margaroni M, Tsanaktsidou E, Badounas F, Kammona O, Kiparissides C, Karagouni E. A liposomal vaccine promotes strong adaptive immune responses via dendritic cell activation in draining lymph nodes. J Control Release 2023; 356:386-401. [PMID: 36893900 DOI: 10.1016/j.jconrel.2023.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
Subunit proteins provide a safe source of antigens for vaccine development especially for intracellular infections which require the induction of strong cellular immune responses. However, those antigens are often limited by their low immunogenicity. In order to achieve effective immune responses, they should be encapsulated into a stable antigen delivery system combined with an appropriate adjuvant. As such cationic liposomes provide an efficient platform for antigen delivery. In the present study, we describe a liposomal vaccine platform for co-delivery of antigens and adjuvants able to elicit strong antigen-specific adaptive immune responses. Liposomes are composed of the cationic lipid dimethyl dioctadecylammonium bromide (DDAB), cholesterol (CHOL) and oleic acid (OA). Physicochemical characterization of the formulations showed that their size was in the range of ∼250 nm with a positive zeta potential which was affected in some cases by the enviromental pH facilitating endosomal escape of potential vaccine cargo. In vitro, liposomes were effectively taken up by bone marrow dendritic cells (BMDCs) and when encapsulated IMQ they promoted BMDCs maturation and activation. Upon in vivo intramuscular administration, liposomes' active drainage to lymph nodes was mediated by DCs, B cells and macrophages. Thus, mice immunization with liposomes having encapsulated LiChimera, a previously characterized anti-leishmanial antigen, and IMQ elicited infiltration of CD11blow DCs populations in draining LNs followed by increased antigen-specific IgG, IgG2a and IgG1 levels production as well as indcution of antigen-specific CD4+ and CD8+ T cells. Collectively, the present work provides a proof-of-concept that cationic liposomes composed of DDAB, CHOL and OA adjuvanted with IMQ provide an efficient delivery platform for protein antigens able to induce strong adaptive immune responses via DCs targeting and induction of maturation.
Collapse
Affiliation(s)
- Maria Agallou
- Immunology of Infection Laboratory, Hellenic Pasteur Institute, Athens 125 21, Greece
| | - Maritsa Margaroni
- Immunology of Infection Laboratory, Hellenic Pasteur Institute, Athens 125 21, Greece
| | - Evgenia Tsanaktsidou
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, Thessaloniki 57 001, Greece
| | - Fotis Badounas
- Molecular Genetics Laboratory, Department of Immunology, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens 125 21, Greece
| | - Olga Kammona
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, Thessaloniki 57 001, Greece
| | - Costas Kiparissides
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, Thessaloniki 57 001, Greece; Department of Chemical Engineering, Aristotle University of Thessaloniki, P.O. Box 472, Thessaloniki 54 124, Greece
| | - Evdokia Karagouni
- Immunology of Infection Laboratory, Hellenic Pasteur Institute, Athens 125 21, Greece.
| |
Collapse
|
6
|
DnaJ, a promising vaccine candidate against Ureaplasma urealyticum infection. Appl Microbiol Biotechnol 2022; 106:7643-7659. [PMID: 36269329 PMCID: PMC9589543 DOI: 10.1007/s00253-022-12230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 11/08/2022]
Abstract
Abstract
Ureaplasma urealyticum (U. urealyticum, Uu) is a common sexually transmitted pathogen that is responsible for diseases such as non-gonococcal urethritis, chorioamnionitis, and neonatal respiratory diseases. The rapid emergence of multidrug-resistant bacteria threatens the effective treatment of Uu infections. Considering this, vaccination could be an efficacious medical intervention to prevent Uu infection and disease. As a highly conserved molecular chaperone, DnaJ is expressed and upregulated by pathogens soon after infection. Here, we assessed the vaccine potential of recombinant Uu-DnaJ in a mouse model and dendritic cells. Results showed that intramuscular administration of DnaJ induced robust humoral- and T helper (Th) 1 cell-mediated immune responses and protected against genital tract infection, inflammation, and the pathologic sequelae after Uu infection. Importantly, the DnaJ protein also induced the maturation of mouse bone marrow–derived dendritic cells (BMDCs), ultimately promoting naïve T cell differentiation toward the Th1 phenotype. In addition, adoptive immunization of DnaJ-pulsed BMDCs elicited antigen-specific Immunoglobulin G2 (IgG2) antibodies as well as a Th1-biased cellular response in mice. These results support DnaJ as a promising vaccine candidate to control Uu infections. Key points • A novel recombinant vaccine was constructed against U. urealyticum infection. • Antigen-specific humoral and cellular immune responses after DnaJ vaccination. • Dendritic cells are activated by Uu-DnaJ, which results in a Th1-biased immune response. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12230-4.
Collapse
|
7
|
Ong GH, Lian BSX, Kawasaki T, Kawai T. Exploration of Pattern Recognition Receptor Agonists as Candidate Adjuvants. Front Cell Infect Microbiol 2021; 11:745016. [PMID: 34692565 PMCID: PMC8526852 DOI: 10.3389/fcimb.2021.745016] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Adjuvants are used to maximize the potency of vaccines by enhancing immune reactions. Components of adjuvants include pathogen-associated molecular patterns (PAMPs) and damage-associate molecular patterns (DAMPs) that are agonists for innate immune receptors. Innate immune responses are usually activated when pathogen recognition receptors (PRRs) recognize PAMPs derived from invading pathogens or DAMPs released by host cells upon tissue damage. Activation of innate immunity by PRR agonists in adjuvants activates acquired immune responses, which is crucial to enhance immune reactions against the targeted pathogen. For example, agonists for Toll-like receptors have yielded promising results as adjuvants, which target PRR as adjuvant candidates. However, a comprehensive understanding of the type of immunological reaction against agonists for PRRs is essential to ensure the safety and reliability of vaccine adjuvants. This review provides an overview of the current progress in development of PRR agonists as vaccine adjuvants, the molecular mechanisms that underlie activation of immune responses, and the enhancement of vaccine efficacy by these potential adjuvant candidates.
Collapse
Affiliation(s)
- Guang Han Ong
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Benedict Shi Xiang Lian
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Takumi Kawasaki
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
8
|
Arora SK, Alam A, Naqvi N, Ahmad J, Sheikh JA, Rahman SA, Hasnain SE, Ehtesham NZ. Immunodominant Mycobacterium tuberculosis Protein Rv1507A Elicits Th1 Response and Modulates Host Macrophage Effector Functions. Front Immunol 2020; 11:1199. [PMID: 32793184 PMCID: PMC7385400 DOI: 10.3389/fimmu.2020.01199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb) persists as latent infection in nearly a quarter of the global population and remains the leading cause of death among infectious diseases. While BCG is the only vaccine for TB, its inability to provide complete protection makes it imperative to engineer BCG such that it expresses immunodominant antigens that can enhance its protective potential. In-silico comparative genomic analysis of Mycobacterium species identified M. tb Rv1507A as a “signature protein” found exclusively in M. tb. In-vitro (cell lines) and in-vivo experiments carried out in mice, using purified recombinant Rv1507A revealed it to be a pro-inflammatory molecule, eliciting significantly high levels of IL-6, TNF-α, and IL-12. There was increased expression of activation markers CD69, CD80, CD86, antigen presentation molecules (MHC I/MHCII), and associated Th1 type of immune response. Rv1507A knocked-in M. smegmatis also induced significantly higher pro-inflammatory Th1 response and higher survivability under stress conditions, both in-vitro (macrophage RAW264.7 cells) and in-vivo (mice). Sera derived from human TB patients showed significantly enhanced B-cell response against M. tb Rv1507A. The ability of M. tb Rv1507A to induce immuno-modulatory effect, B cell response, and significant memory response, renders it a putative vaccine candidate that demands further exploration.
Collapse
Affiliation(s)
- Simran Kaur Arora
- Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,ICMR-National Institute of Pathology, New Delhi, India
| | - Anwar Alam
- ICMR-National Institute of Pathology, New Delhi, India
| | - Nilofer Naqvi
- ICMR-National Institute of Pathology, New Delhi, India
| | - Javeed Ahmad
- ICMR-National Institute of Pathology, New Delhi, India
| | | | | | - Seyed Ehtesham Hasnain
- Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,Dr. Reddy's Institute of Life Sciences, Hyderabad, India
| | | |
Collapse
|
9
|
Omanakuttan M, Konatham HR, Dirisala VR, Jeevan A, Mawatwal S, Dhiman R, Ly LH, McMurray D. Prokaryotic Expression, In Vitro Biological Analysis, and In Silico Structural Evaluation of Guinea Pig IL-4. Mol Biotechnol 2020; 62:104-110. [PMID: 31758487 DOI: 10.1007/s12033-019-00227-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Interleukin-4 is a signature cytokine of T-helper type 2 (Th2) cells that play a major role in shaping immune responses. Its role in highly relevant animal model of tuberculosis (TB) like guinea pig has not been studied till date. In the current study, the guinea pig IL-4 gene was cloned and expressed using a prokaryotic expression vector (pET30 a(+)). This approach yielded a recombinant protein of 19 kDa as confirmed by mass spectrometry analysis and named as recombinant guinea pig (rgp)IL-4 protein. The authenticity of the expression of rgpIL-4 protein was further verified through polyclonal anti-IL4 antiserum raised in rabbits that showed specific and strong binding with the recombinant protein. The biological activity of the rgpIL-4 was ascertained in RAW264.7 cells where LPS-treated nitric oxide (NO) production was found to be suppressed in the presence of this protein. The three-dimensional structure of guinea pig IL-4 was predicted by utilizing the template structure of human interleukin-4, which shared a sequence homology of 58%. The homology modeling result showed clear resemblance of guinea pig IL-4 structure with the human IL-4. Taken together, our study indicates that the newly expressed, biologically active rgpIL-4 protein could provide deeper understanding of the immune responses in guinea pig to different infectious diseases like TB and non-infectious ones.
Collapse
Affiliation(s)
- Madhavan Omanakuttan
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Guntur, Andhra Pradesh, 522213, India
| | - Hanumohan R Konatham
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Guntur, Andhra Pradesh, 522213, India
| | - Vijaya R Dirisala
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Guntur, Andhra Pradesh, 522213, India.
| | - Amminikutty Jeevan
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Shradha Mawatwal
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Lan H Ly
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - David McMurray
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| |
Collapse
|
10
|
AbdelAllah NH, Gaber Y, Rashed ME, Azmy AF, Abou-Taleb HA, AbdelGhani S. Alginate-coated chitosan nanoparticles act as effective adjuvant for hepatitis A vaccine in mice. Int J Biol Macromol 2020; 152:904-912. [PMID: 32114177 DOI: 10.1016/j.ijbiomac.2020.02.287] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/28/2023]
Abstract
The numerous recent hepatitis A outbreaks emphasize the need for vaccination; despite the effectiveness of the current ones, developments are needed to overcome its high cost plus some immune response limitations. Our study aims to evaluate the use of chitosan and alginate-coated chitosan nanoparticles as an adjuvant/carrier for the hepatitis A vaccine (HAV) against the traditional adjuvant alum. Immune responses towards (HAV-Al) with alum, (HAV-Ch) with chitosan, and (HAV-aCNP) with alginate-coated chitosan nanoparticles, were assessed in mice. HAV-aCNP significantly improved the immunogenicity by increasing the seroconversion rate (100%), the hepatitis A antibodies level, and the splenocytes proliferation. Thus, the HAV-aCNP adjuvant was superior to other classes in IFN-γ and IL-10 development. Meanwhile, the solution formula of HAV with chitosan showed comparable humoral and cellular immune responses to alum-adjuvanted suspension with a balanced Th1/Th2 immune pathway. The current study showed the potential of alginate-coated chitosan nanoparticles as an effective carrier for HAV. Consequently, this would impact the cost of HAV production positively.
Collapse
Affiliation(s)
- Nourhan H AbdelAllah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt; Viral Control Unit, National Organization for Research and Control of Biologicals (NORCB), Cairo 12654, Egypt
| | - Yasser Gaber
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-karak 61710, Jordan
| | - Mohamed E Rashed
- Microbiology Department, National Organization for Research and Control of Biologicals (NORCB), Cairo 12654, Egypt
| | - Ahmed F Azmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Heba A Abou-Taleb
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Sameh AbdelGhani
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt; Department of Pathology and Medical Laboratory, University of Louisville, KY 40202, USA.
| |
Collapse
|
11
|
|
12
|
Garcia-Vilanova A, Chan J, Torrelles JB. Underestimated Manipulative Roles of Mycobacterium tuberculosis Cell Envelope Glycolipids During Infection. Front Immunol 2019; 10:2909. [PMID: 31921168 PMCID: PMC6930167 DOI: 10.3389/fimmu.2019.02909] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
The Mycobacterium tuberculosis cell envelope has been evolving over time to make the bacterium transmissible and adaptable to the human host. In this context, the M. tuberculosis cell envelope contains a peripheral barrier full of lipids, some of them unique, which confer M. tuberculosis with a unique shield against the different host environments that the bacterium will encounter at the different stages of infection. This lipid barrier is mainly composed of glycolipids that can be characterized by three different subsets: trehalose-containing, mannose-containing, and 6-deoxy-pyranose-containing glycolipids. In this review, we explore the roles of these cell envelope glycolipids in M. tuberculosis virulence and pathogenesis, drug resistance, and further, how these glycolipids may dictate the M. tuberculosis cell envelope evolution from ancient to modern strains. Finally, we address how these M. tuberculosis cell envelope glycolipids are impacted by the host lung alveolar environment, their role in vaccination and masking host immunity, and subsequently the impact of these glycolipids in shaping how M. tuberculosis interacts with host cells, manipulating their immune response to favor the establishment of an infection.
Collapse
Affiliation(s)
- Andreu Garcia-Vilanova
- Population Health Program, TB Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - John Chan
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY, United States
| | - Jordi B. Torrelles
- Population Health Program, TB Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
13
|
Affinity Maturation Is Impaired by Natural Killer Cell Suppression of Germinal Centers. Cell Rep 2019; 24:3367-3373.e4. [PMID: 30257198 PMCID: PMC6192537 DOI: 10.1016/j.celrep.2018.08.075] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/07/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023] Open
Abstract
Somatic hypermutation of immunoglobulin sequences in germinal center (GC) reactions must be optimized to elicit high-affinity, protective antibodies after vaccination. We expose natural killer (NK) cells as robust negative regulators of somatic hypermutation in antigen-reactive B cells. NK cells restrict follicular helper T cell (TFH) and GC B cell frequencies and titers of antigen-specific immunoglobulin after administration of alum-adjuvanted hapten-protein conjugate vaccines. This inhibition is perforin dependent, suggesting that NK cells kill one or more cells critical for GC development. In the presence of perforin-competent NK cells, antigen-specific GC B cells acquire fewer mutations, including less frequent generation of non-synonymous substitutions and mutations associated with increased antibody affinity. Thus, NK cells limit the magnitude of GC reactions and thereby restrain vaccine elicitation of high-affinity antibodies. Circumventing this activity of NK cells during vaccination has strong potential to enhance humoral immunity and facilitate vaccine-elicited prevention of disease.
Collapse
|
14
|
The NDV-3A vaccine protects mice from multidrug resistant Candida auris infection. PLoS Pathog 2019; 15:e1007460. [PMID: 31381597 PMCID: PMC6695204 DOI: 10.1371/journal.ppat.1007460] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 08/15/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Candida auris is an emerging, multi-drug resistant, health care-associated fungal pathogen. Its predominant prevalence in hospitals and nursing homes indicates its ability to adhere to and colonize the skin, or persist in an environment outside the host—a trait unique from other Candida species. Besides being associated globally with life-threatening disseminated infections, C. auris also poses significant clinical challenges due to its ability to adhere to polymeric surfaces and form highly drug-resistant biofilms. Here, we performed bioinformatic studies to identify the presence of adhesin proteins in C. auris, with sequence as well as 3-D structural homologies to the major adhesin/invasin of C. albicans, Als3. Anti-Als3p antibodies generated by vaccinating mice with NDV-3A (a vaccine based on the N-terminus of Als3 protein formulated with alum) recognized C. auris in vitro, blocked its ability to form biofilms and enhanced macrophage-mediated killing of the fungus. Furthermore, NDV-3A vaccination induced significant levels of C. auris cross-reactive humoral and cellular immune responses, and protected immunosuppressed mice from lethal C. auris disseminated infection, compared to the control alum-vaccinated mice. The mechanism of protection is attributed to anti-Als3p antibodies and CD4+ T helper cells activating tissue macrophages. Finally, NDV-3A potentiated the protective efficacy of the antifungal drug micafungin, against C. auris candidemia. Identification of Als3-like adhesins in C. auris makes it a target for immunotherapeutic strategies using NDV-3A, a vaccine with known efficacy against other Candida species and safety as well as efficacy in clinical trials. Considering that C. auris can be resistant to almost all classes of antifungal drugs, such an approach has profound clinical relevance. Candida auris has emerged as a major health concern to hospitalized patients and nursing home subjects. C. auris strains display multidrug resistance to current antifungal therapy and cause lethal infections. We have determined that C. auris harbors homologs of C. albicans Als cell surface proteins. The C. albicans NDV-3A vaccine, harboring the N-terminus of Als3p formulated with alum, generates cross-reactive antibodies against C. auris clinical isolates and protects neutropenic mice from hematogenously disseminated C. auris infection. Importantly, the NDV-3A vaccine displays an additive protective effect in neutropenic mice when combined with micafungin. Due to its proven safety and efficacy in humans against C. albicans infection, our studies support the expedited testing of the NDV-3A vaccine against C. auris in future clinical trials.
Collapse
|
15
|
Liposomes with cyclic RGD peptide motif triggers acute immune response in mice. J Control Release 2019; 293:201-214. [DOI: 10.1016/j.jconrel.2018.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/18/2018] [Accepted: 12/03/2018] [Indexed: 12/25/2022]
|
16
|
|
17
|
DNA-loaded nano-adjuvant formed with a vitamin E-scaffold intracellular environmentally-responsive lipid-like material for cancer immunotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2587-2597. [PMID: 30170077 DOI: 10.1016/j.nano.2018.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/26/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022]
Abstract
Cytoplasmic DNA triggers cellular immunity via activating the stimulator of interferon genes pathway. Since DNA is degradable and membrane impermeable, delivery system would permit cytoplasmic delivery by destabilizing the endosomal membrane for the use as an adjuvant. Herein, we report on the development of a plasmid DNA (pDNA)-encapsulating lipid nanoparticle (LNP). The structural components include an SS-cleavable and pH-activated lipid-like material that mounts vitamin E as a hydrophobic scaffold, and dual sensing motifs that are responsive to the intracellular environment (ssPalmE). The pDNA-encapsulating LNP (ssPalmE-LNP) induced a high interferon-β production in Raw 264.7 cells. The subcutaneous injection of ssPalmE-LNP strongly enhanced antigen-specific cytotoxic T cell activity. The ssPalmE-LNP treatment efficiently induced antitumor effects against E.G7-OVA tumor and B16-F10 melanoma metastasis. Furthermore, when combined with an anti-programmed death 1 antibody, an extensive therapeutic antitumor effect was observed. Therefore, the ssPalmE-LNP is a promising carrier of adjuvants for cancer immunotherapy.
Collapse
|
18
|
Strong EJ, West NP. Use of Soluble Extracellular Regions of MmpL (SERoM) as Vaccines for Tuberculosis. Sci Rep 2018; 8:5604. [PMID: 29618733 PMCID: PMC5884834 DOI: 10.1038/s41598-018-23893-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/22/2018] [Indexed: 01/01/2023] Open
Abstract
The current vaccine for tuberculosis (TB) is a live attenuated strain of Mycobacterium bovis (BCG) and while effective at reducing the potential for disseminated TB in young children its disease protection rates in adults is highly variable while it confers little protection against latent TB. With these limitations a new vaccine is desperately needed. We investigated the efficacy of three members of the mycobacterial membrane protein Large (MmpL) family as potential subunit vaccines for TB. MmpLs are large, multifunctional integral membrane proteins, and as such are recalcitrant to purification. Here, we describe a strategy of producing synthetic antigens comprised of the soluble, extracellular regions of MmpL (SERoM)-1, MmpL8 and MmpL10 (SERoM-8 and 10 respectively) as potential vaccine candidates. SERoM-1 and SERoM-8 were determined to be highly immunogenic by IFN-γ ELISpot assays, with 0.1% of all splenocytes from SERoM-1 vaccinated mice producing IFN-γ when re-stimulated with MmpL1. A combined SERoM-1, −8 and −10 vaccine demonstrated significant protection against M. tuberculosis challenge in a murine model of TB, resulting in approximately 10-fold reduction in bacterial numbers following challenge in both the lungs and spleens compared to adjuvant only vaccinated mice. These protective effects were comparable to that achieved with BCG.
Collapse
Affiliation(s)
- Emily J Strong
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4067, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4067, Australia. .,Australian Infectious Disease Research Centre, University of Queensland, Brisbane, 4067, Australia.
| |
Collapse
|
19
|
Qu W, Li N, Yu R, Zuo W, Fu T, Fei W, Hou Y, Liu Y, Yang J. Cationic DDA/TDB liposome as a mucosal vaccine adjuvant for uptake by dendritic cells in vitro induces potent humoural immunity. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:852-860. [PMID: 29447484 DOI: 10.1080/21691401.2018.1438450] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cationic dimethyldioctadecylammonium/trehalose 6,6,9-dibehenate (DDA/TDB) liposome is as a strong adjuvant system for vaccines, with remarkable immunostimulatory activity. The mucosal administration of vaccines is a potential strategy for inducing earlier and stronger mucosal immune responses to infectious diseases. In this study, we assessed whether the intranasal administration of cationic DDA/TDB liposomes combined with influenza antigen A (H3N2) can be used as a highly efficacious vaccine to induce mucosal and systemic antibody responses. Confocal laser scanning microscopy and a flow-cytometric analysis showed that the uptake of the cationic DDA/TDB liposome carrier was significantly higher than that of neutral 1,2-distearoyl-sn-glycero-3-phosphocholine/cholesterol (DSPC/Chol) or cationic 1,2-dioleoyl-3-trimethylammonium-propane/3β-(N-[N',N'-dimethylaminoethane]-carbamoyl (DOTAP/DC-Chol) liposomes. Our results indicate that the cationic DDA/TDB liposome is more effective in facilitating its uptake by dendritic cells (DCs) in vitro than the DSPC/Chol or DOTAP/DC-Chol liposome. DCs treated with DDA/TDB liposomes strongly expressed CD80, CD86, and MHC II molecules, whereas those treated with DSPC/Chol or DOTAP/DC-Chol liposomes did not. C57BL/6 mice intranasally immunized with H3N2-encapsulating cationic DDA/TDB liposomes had significantly higher H3N2-specific s-IgA levels in their nasal wash fluid than those treated with other formulations. The DDA/TDB liposomes also simultaneously enhanced the serum IgG IgG2a, IgG1, and IgG2b antibody responses. In summary, DDA/TDB liposomes effectively facilitated their uptake by DCs and DCs maturation in vitro, and induced significantly higher mucosal IgA, systemic IgG, IgG1, and IgG2b antibody titres than other formulations after their intranasal administration in vivo. These results indicate that DDA/TDB liposomes are a promising antigen delivery carrier for clinical antiviral applications.
Collapse
Affiliation(s)
- Wenjing Qu
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , PR China
| | - Na Li
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , PR China
| | - Rui Yu
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , PR China
| | - Wenbao Zuo
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , PR China
| | - Tingting Fu
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , PR China
| | - Wenling Fei
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , PR China
| | - Yanhui Hou
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , PR China
| | - Yanhua Liu
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , PR China
| | - Jianhong Yang
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , PR China
| |
Collapse
|
20
|
Salehi M, Abdizadeh R, Pourgheysari B, Zamanzad B, Soltani A, Gholipour A, Heidari R. Evaluation of cellular immunogenicity of recombinant cytochrome p450 cyp141 protein of Mycobacterium tuberculosis in human and mouse model. Biologicals 2018; 52:25-29. [PMID: 29428196 DOI: 10.1016/j.biologicals.2018.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 09/11/2017] [Accepted: 01/29/2018] [Indexed: 11/28/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is still considered one of the unsolved problems for the World Health Organization Identifying and selecting an immunogenic antigen capable of generating specific immune responses is generally the goal of all studies being carried out in to designing new vaccines. Accordingly, the present study was conducted to evaluate the immunogenicity of a M. tuberculosis recombinant protein which exist in the regions of the bacterium genome and may be an immunogenic protein. Immunogenicity of purified proteins was measured by PBMC and mouse spleen lymphocytes culturing methods using ELISA after an appropriate amount of time of incubation with Recombinant cytochrome P450 CYP141 protein. Cellular immune responses were determined and compared by measuring IFN-γ and IL4 in human, and mouse groups. The results revealed a high level of IFN-γ in PPD + individuals and the mice immunized with protein and adjuvant. Recombinant cytochrome P450 CYP141 protein proved capable of generating an immune response in mice and people with a history of previous encounters with Mycobacterium tuberculosis bacteria. It, could be considered a tuberculosis vaccine candidate in order to induce a specific effective immune response in both mice and humans.
Collapse
Affiliation(s)
- Mahshid Salehi
- Department of Microbiology and Immunology, Cellular and Molecular Research Center, Sharekord University of Medical Sciences, Sharekord, IR, Iran; Department of Provincial Health Lab, Laboratory Regional Tuberculosis Reference, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rahman Abdizadeh
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Batoul Pourgheysari
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Behnam Zamanzad
- Department of Microbiology and Immunology, Cellular and Molecular Research Center, Sharekord University of Medical Sciences, Sharekord, IR, Iran.
| | - Amin Soltani
- Department of Microbiology and Immunology, Cellular and Molecular Research Center, Sharekord University of Medical Sciences, Sharekord, IR, Iran.
| | - Abolfazl Gholipour
- Department of Microbiology and Immunology, Cellular and Molecular Research Center, Sharekord University of Medical Sciences, Sharekord, IR, Iran.
| | - Reza Heidari
- Department of Microbiology and Immunology, Cellular and Molecular Research Center, Sharekord University of Medical Sciences, Sharekord, IR, Iran.
| |
Collapse
|
21
|
Moliva JI, Turner J, Torrelles JB. Immune Responses to Bacillus Calmette-Guérin Vaccination: Why Do They Fail to Protect against Mycobacterium tuberculosis? Front Immunol 2017; 8:407. [PMID: 28424703 PMCID: PMC5380737 DOI: 10.3389/fimmu.2017.00407] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), is the current leading cause of death due to a single infectious organism. Although curable, the broad emergence of multi-, extensive-, extreme-, and total-drug resistant strains of M.tb has hindered eradication efforts of this pathogen. Furthermore, computational models predict a quarter of the world’s population is infected with M.tb in a latent state, effectively serving as the largest reservoir for any human pathogen with the ability to cause significant morbidity and mortality. The World Health Organization has prioritized new strategies for improved vaccination programs; however, the lack of understanding of mycobacterial immunity has made it difficult to develop new successful vaccines. Currently, Mycobacterium bovis bacillus Calmette–Guérin (BCG) is the only vaccine approved for use to prevent TB. BCG is highly efficacious at preventing meningeal and miliary TB, but is at best 60% effective against the development of pulmonary TB in adults and wanes as we age. In this review, we provide a detailed summary on the innate immune response of macrophages, dendritic cells, and neutrophils in response to BCG vaccination. Additionally, we discuss adaptive immune responses generated by BCG vaccination, emphasizing their specific contributions to mycobacterial immunity. The success of future vaccines against TB will directly depend on our understanding of mycobacterial immunity.
Collapse
Affiliation(s)
- Juan I Moliva
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Joanne Turner
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.,Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.,Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
22
|
Mineral Adjuvants∗∗The present chapter is an updated version of the chapter “Mineral Adjuvants,” published in Immunopotentiators in Modern Vaccines, p. 217–233. Ed. Virgil Schijns & Derek O'Hagan, Elsevier Science Publishers (2005). IMMUNOPOTENTIATORS IN MODERN VACCINES 2017. [PMCID: PMC7149584 DOI: 10.1016/b978-0-12-804019-5.00018-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mineral adjuvants comprise aluminum hydroxide and phosphate adjuvants as well as calcium phosphate adjuvants. In particular, the aluminum salts have achieved an undisputed status as the most commonly used adjuvants in human and veterinary vaccines. Calcium phosphate adjuvant, later discovered by Edgar Relyveld, constitutes a very interesting alternative and has also been applied both in human and veterinary vaccines. New analytical tools applied in adjuvant research are about to take us to the next level of understanding mineral adjuvants. These tools have been used to characterize mineral adjuvants, but so far, in particular, aluminum-based adjuvants in terms of surface marker expression profiles, isotypic profiles, and cytokine profiles. In the past 10 years, the discovery of adjuvant-mediated induction of the NALP3 inflammasome and its impact on the secretion of interleukin (IL)-1β and IL-18 as proinflammatory mediators in the early phases of immune response has been described as an important mechanism for the function of these adjuvants.
Collapse
|
23
|
Khong H, Overwijk WW. Adjuvants for peptide-based cancer vaccines. J Immunother Cancer 2016; 4:56. [PMID: 27660710 PMCID: PMC5028954 DOI: 10.1186/s40425-016-0160-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer therapies based on T cells have shown impressive clinical benefit. In particular, immune checkpoint blockade therapies with anti-CTLA-4 and anti-PD-1/PD-L1 are causing dramatic tumor shrinkage and prolonged patient survival in a variety of cancers. However, many patients do not benefit, possibly due to insufficient spontaneous T cell reactivity against their tumors and/or lacking immune cell infiltration to tumor site. Such tumor-specific T cell responses could be induced through anti-cancer vaccination; but despite great success in animal models, only a few of many cancer vaccine trials have demonstrated robust clinical benefit. One reason for this difference may be the use of potent, effective vaccine adjuvants in animal models, vs. the use of safe, but very weak, vaccine adjuvants in clinical trials. As vaccine adjuvants dictate the type and magnitude of the T cell response after vaccination, it is critical to understand how they work to design safe, but also effective, cancer vaccines for clinical use. Here we discuss current insights into the mechanism of action and practical application of vaccine adjuvants, with a focus on peptide-based cancer vaccines.
Collapse
Affiliation(s)
- Hiep Khong
- Department of Melanoma Medical Oncology, University of Texas - MD Anderson Cancer Center, South Campus Research Building 1, 1515 Holcombe Blvd, Houston, TX 77030 USA ; Immunology program - University of Texas - Graduate School of Biomedical Sciences at Houston, 6767 Bertner Ave, Houston, TX 77030 USA
| | - Willem W Overwijk
- Department of Melanoma Medical Oncology, University of Texas - MD Anderson Cancer Center, South Campus Research Building 1, 1515 Holcombe Blvd, Houston, TX 77030 USA ; Immunology program - University of Texas - Graduate School of Biomedical Sciences at Houston, 6767 Bertner Ave, Houston, TX 77030 USA
| |
Collapse
|
24
|
Ag85A DNA Vaccine Delivery by Nanoparticles: Influence of the Formulation Characteristics on Immune Responses. Vaccines (Basel) 2016; 4:vaccines4030032. [PMID: 27626449 PMCID: PMC5041026 DOI: 10.3390/vaccines4030032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/16/2016] [Accepted: 09/05/2016] [Indexed: 11/16/2022] Open
Abstract
The influence of DNA vaccine formulations on immune responses in combination with adjuvants was investigated with the aim to increase cell-mediated immunity against plasmid DNA (pDNA) encoding Mycobacterium tuberculosis antigen 85A. Different ratios of pDNA with cationic trimethyl chitosan (TMC) nanoparticles were characterized for their morphology and physicochemical characteristics (size, zeta potential, loading efficiency and pDNA release profile) applied in vitro for cellular uptake studies and in vivo, to determine the dose-dependent effects of pDNA on immune responses. A selected pDNA/TMC nanoparticle formulation was optimized by the incorporation of muramyl dipeptide (MDP) as an immunostimulatory agent. Cellular uptake investigations in vitro showed saturation to a maximum level upon the increase in the pDNA/TMC nanoparticle ratio, correlating with increasing Th1-related antibody responses up to a definite pDNA dose applied. Moreover, TMC nanoparticles induced clear polarization towards a Th1 response, indicated by IgG2c/IgG1 ratios above unity and enhanced numbers of antigen-specific IFN-γ producing T-cells in the spleen. Remarkably, the incorporation of MDP in TMC nanoparticles provoked a significant additional increase in T-cell-mediated responses induced by pDNA. In conclusion, pDNA-loaded TMC nanoparticles are capable of provoking strong Th1-type cellular and humoral immune responses, with the potential to be further optimized by the incorporation of MDP.
Collapse
|
25
|
Bielinska AU, O'Konek JJ, Janczak KW, Baker JR. Immunomodulation of TH2 biased immunity with mucosal administration of nanoemulsion adjuvant. Vaccine 2016; 34:4017-24. [PMID: 27317451 PMCID: PMC4962973 DOI: 10.1016/j.vaccine.2016.06.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/31/2016] [Accepted: 06/07/2016] [Indexed: 11/18/2022]
Abstract
TH2-biased immune responses are associated with inadequate protection against some pathogens and with cancer, colitis, asthma and allergy. Since most currently used vaccine adjuvants induce a TH2-biased response, this has led to interest in developing adjuvants capable of activating TH1 immunity and modulating existing TH2 responses. Immunotherapies to shift immune responses from TH2 to TH1 have generally required prolonged immunization protocols and have not induced effective TH1 responses. We have demonstrated that nanoscale emulsions (NE), a novel mucosal adjuvant, induce robust IgA and IgG antibody responses and TH1/TH17 cellular immunity resulting in protection against a variety of respiratory and mucosal infections. Because intranasal (i.n.) delivery of NE adjuvant consistently induces TH1/TH17 biased responses, we hypothesized that NE could be used as a therapeutic vaccine to redirect existing TH2 polarized immunity towards a more balanced TH1/TH2 profile. To test this, a TH2 immune response was established by intramuscular immunization of mice with alum-adjuvanted hepatitis B surface antigen (HBs), followed by a single subsequent i.n. immunization with NE-HBs. These animals exhibited increased TH1 associated immune responses and IL-17, and decreased TH2 cytokines (IL-4 and IL-5) and IgG1. NE immunization induced regulatory T cells and IL-10, and IL-10 was required for the suppression of TH2 immunity. These data demonstrate that NE-based vaccines can modulate existing TH2 immune responses to promote TH1/TH17 immunity and suggest the potential therapeutic use of NE vaccines for diseases associated with TH2 immunity.
Collapse
Affiliation(s)
- Anna U Bielinska
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jessica J O'Konek
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Katarzyna W Janczak
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - James R Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
26
|
Designing liposomal adjuvants for the next generation of vaccines. Adv Drug Deliv Rev 2016; 99:85-96. [PMID: 26576719 DOI: 10.1016/j.addr.2015.11.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/09/2015] [Accepted: 11/05/2015] [Indexed: 12/12/2022]
Abstract
Liposomes not only offer the ability to enhance drug delivery, but can effectively act as vaccine delivery systems and adjuvants. Their flexibility in size, charge, bilayer rigidity and composition allow for targeted antigen delivery via a range of administration routes. In the development of liposomal adjuvants, the type of immune response promoted has been linked to their physico-chemical characteristics, with the size and charge of the liposomal particles impacting on liposome biodistribution, exposure in the lymph nodes and recruitment of the innate immune system. The addition of immunostimulatory agents can further potentiate their immunogenic properties. Here, we outline the attributes that should be considered in the design and manufacture of liposomal adjuvants for the delivery of sub-unit and nucleic acid based vaccines.
Collapse
|
27
|
Acharya AP, Carstens MR, Lewis JS, Dolgova N, Xia CQ, Clare-Salzler MJ, Keselowsky BG. A cell-based microarray to investigate combinatorial effects of microparticle-encapsulated adjuvants on dendritic cell activation. J Mater Chem B 2016; 4:1672-1685. [PMID: 26985393 PMCID: PMC4790840 DOI: 10.1039/c5tb01754h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Experimental vaccine adjuvants are being designed to target specific toll-like receptors (TLRs) alone or in combination, expressed by antigen presenting cells, notably dendritic cells (DCs). There is a need for high-content screening (HCS) platforms to explore how DC activation is affected by adjuvant combinations. Presented is a cell-based microarray approach, "immunoarray", exposing DCs to a large number of adjuvant combinations. Microparticles encapsulating TLR ligands are printed onto arrays in a range of doses for each ligand, in all possible dose combinations. Dendritic cells are then co-localized with physisorbed microparticles on the immunoarray, adherent to isolated islands surrounded by a non-fouling background, and DC activation is quantified. Delivery of individual TLR ligands was capable of eliciting high levels of specific DC activation markers. For example, either TLR9 ligand, CpG, or TLR3 ligand, poly I:C, was capable of inducing among the highest 10% expression levels of CD86. In contrast, MHC-II expression in response to TLR4 agonist MPLA was among the highest, whereas either MPLA or poly I:C, was capable of producing among the highest levels of CCR7 expression, as well as inflammatory cytokine IL-12. However, in order to produce robust responses across all activation markers, adjuvant combinations were required, and combinations were more represented among the high responders. The immunoarray also enables investigation of interactions between adjuvants, and each TLR ligand suggested antagonism to other ligands, for various markers. Altogether, this work demonstrates feasibility of the immunoarray platform to screen microparticle-encapsulated adjuvant combinations for the development of improved and personalized vaccines.
Collapse
Affiliation(s)
- Abhinav P. Acharya
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 130 BME/PO Box 116131, Gainesville, Florida, 32611-6131, USA
- Department of Materials Science and Engineering, University of Florida, USA
| | - Matthew R. Carstens
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 130 BME/PO Box 116131, Gainesville, Florida, 32611-6131, USA
| | - Jamal S. Lewis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 130 BME/PO Box 116131, Gainesville, Florida, 32611-6131, USA
- Department of Biomedical Engineering, University of California, Davis, US
| | - Natalia Dolgova
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 130 BME/PO Box 116131, Gainesville, Florida, 32611-6131, USA
| | - C. Q. Xia
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, USA
| | | | - Benjamin G. Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 130 BME/PO Box 116131, Gainesville, Florida, 32611-6131, USA
| |
Collapse
|
28
|
The mechanisms of action of vaccines containing aluminum adjuvants: an in vitro vs in vivo paradigm. SPRINGERPLUS 2015; 4:181. [PMID: 25932368 PMCID: PMC4406982 DOI: 10.1186/s40064-015-0972-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/08/2015] [Indexed: 12/23/2022]
Abstract
Adjuvants such as the aluminum compounds (alum) have been dominantly used in many vaccines due to their immunopotentiation and safety records since 1920s. However, how these mineral agents influence the immune response to vaccination remains elusive. Many hypotheses exist as to the mode of action of these adjuvants, such as depot formation, antigen (Ag) targeting, and the induction of inflammation. These hypotheses are based on many in vitro and few in vivo studies. Understanding how cells interact with adjuvants in vivo will be crucial to fully understanding the mechanisms of action of these adjuvants. Interestingly, how alum influences the target cell at both the cellular and molecular level, and the consequent innate and adaptive responses, will be critical in the rational design of effective vaccines against many diseases. Thus, in this review, mechanisms of action of alum have been discussed based on available in vitro vs in vivo evidences to date.
Collapse
|
29
|
Yuk JM, Jo EK. Host immune responses to mycobacterial antigens and their implications for the development of a vaccine to control tuberculosis. Clin Exp Vaccine Res 2014; 3:155-67. [PMID: 25003089 PMCID: PMC4083068 DOI: 10.7774/cevr.2014.3.2.155] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/01/2014] [Accepted: 04/07/2014] [Indexed: 01/17/2023] Open
Abstract
Tuberculosis (TB) remains a worldwide health problem, causing around 2 million deaths per year. Despite the bacillus Calmette Guérin vaccine being available for more than 80 years, it has limited effectiveness in preventing TB, with inconsistent results in trials. This highlights the urgent need to develop an improved TB vaccine, based on a better understanding of host-pathogen interactions and immune responses during mycobacterial infection. Recent studies have revealed a potential role for autophagy, an intracellular homeostatic process, in vaccine development against TB, through enhanced immune activation. This review attempts to understand the host innate immune responses induced by a variety of protein antigens from Mycobacterium tuberculosis, and to identify future vaccine candidates against TB. We focus on recent advances in vaccine development strategies, through identification of new TB antigens using a variety of innovative tools. A new understanding of the host-pathogen relationship, and the usefulness of mycobacterial antigens as novel vaccine candidates, will contribute to the design of the next generation of vaccines, and to improving the host protective immune responses while limiting immunopathology during M. tuberculosis infection.
Collapse
Affiliation(s)
- Jae-Min Yuk
- Department of Microbiology and Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology and Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
30
|
Martins CL, Benn CS, Andersen A, Balé C, Schaltz-Buchholzer F, Do VA, Rodrigues A, Aaby P, Ravn H, Whittle H, Garly ML. A randomized trial of a standard dose of Edmonston-Zagreb measles vaccine given at 4.5 months of age: effect on total hospital admissions. J Infect Dis 2014; 209:1731-8. [PMID: 24436454 PMCID: PMC4017359 DOI: 10.1093/infdis/jit804] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/22/2013] [Indexed: 11/14/2022] Open
Abstract
Observational studies and trials from low-income countries indicate that measles vaccine has beneficial nonspecific effects, protecting against non-measles-related mortality. It is not known whether measles vaccine protects against hospital admissions. Between 2003 and 2007, 6417 children who had received the third dose of diphtheria, tetanus, and pertussis vaccine were randomly assigned to receive measles vaccine at 4.5 months or no measles vaccine; all children were offered measles vaccine at 9 months of age. Using hospital admission data from the national pediatric ward in Bissau, Guinea-Bissau, we compared admission rates between enrollment and the 9-month vaccination in Cox models, providing admission hazard rate ratios (HRRs) for measles vaccine versus no measles vaccine. All analyses were conducted stratified by sex and reception of neonatal vitamin A supplementation (NVAS). Before enrollment the 2 groups had similar admission rates. Following enrollment, the measles vaccine group had an admission HRR of 0.70 (95% confidence interval [CI], .52-.95), with a ratio of 0.53 (95% CI, .32-.86) for girls and 0.86 (95% CI, .58-1.26) for boys. For children who had not received NVAS, the admission HRR was 0.53 (95% CI, .34-.84), with an effect of 0.30 (95% CI, .13-.70) for girls and 0.73 (95% CI, .42-1.28) for boys (P = .08, interaction test). The reduction in admissions was separately significant for measles infection (admission HRR, 0 [95% CI, 0-.24]) and respiratory infections (admission HRR, 0.37 [95% CI, .16-.89]). Early measles vaccine may have major benefits for infant morbidity patterns and healthcare costs. Clinical trials registration NCT00168558.
Collapse
Affiliation(s)
| | - Christine S. Benn
- Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
| | | | - Carlito Balé
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau
| | | | - Vu An Do
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau
| | | | - Peter Aaby
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau
| | - Henrik Ravn
- Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
| | - Hilton Whittle
- London School of Hygiene and Tropical Medicine, United Kingdom
| | - May-Lill Garly
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau
| |
Collapse
|
31
|
Ashenafi S, Aderaye G, Bekele A, Zewdie M, Aseffa G, Hoang ATN, Carow B, Habtamu M, Wijkander M, Rottenberg M, Aseffa A, Andersson J, Svensson M, Brighenti S. Progression of clinical tuberculosis is associated with a Th2 immune response signature in combination with elevated levels of SOCS3. Clin Immunol 2014; 151:84-99. [PMID: 24584041 DOI: 10.1016/j.clim.2014.01.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/08/2014] [Accepted: 01/30/2014] [Indexed: 02/06/2023]
Abstract
In this study, we explored the local cytokine/chemokine profiles in patients with active pulmonary or pleural tuberculosis (TB) using multiplex protein analysis of bronchoalveolar lavage and pleural fluid samples. Despite increased pro-inflammation compared to the uninfected controls; there was no up-regulation of IFN-γ or the T cell chemoattractant CCL5 in the lung of patients with pulmonary TB. Instead, elevated levels of IL-4 and CCL4 were associated with high mycobacteria-specific IgG titres as well as SOCS3 (suppressors of cytokine signaling) mRNA and progression of moderate-to-severe disease. Contrary, IL-4, CCL4 and SOCS3 remained low in patients with extrapulmonary pleural TB, while IFN-γ, CCL5 and SOCS1 were up-regulated. Both SOCS molecules were induced in human macrophages infected with Mycobacterium tuberculosis in vitro. The Th2 immune response signature found in patients with progressive pulmonary TB could result from inappropriate cytokine/chemokine responses and excessive SOCS3 expression that may represent potential targets for clinical TB management.
Collapse
Affiliation(s)
- Senait Ashenafi
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden; Black Lion University Hospital and Addis Ababa University, Department of Pathology, Faculty of Medicine, Addis Ababa, Ethiopia
| | - Getachew Aderaye
- Black Lion University Hospital and Addis Ababa University, Department of Internal Medicine, Faculty of Medicine, Addis Ababa, Ethiopia
| | - Amsalu Bekele
- Black Lion University Hospital and Addis Ababa University, Department of Internal Medicine, Faculty of Medicine, Addis Ababa, Ethiopia
| | - Martha Zewdie
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Getachew Aseffa
- Black Lion University Hospital and Addis Ababa University, Department of Radiology, Faculty of Medicine, Addis Ababa, Ethiopia
| | - Anh Thu Nguyen Hoang
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Berit Carow
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology (MTC), Stockholm, Sweden
| | - Meseret Habtamu
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Maria Wijkander
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Martin Rottenberg
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology (MTC), Stockholm, Sweden
| | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Jan Andersson
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden; Karolinska University Hospital Huddinge, Department of Medicine, Division of Infectious Diseases, Stockholm, Sweden
| | - Mattias Svensson
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Susanna Brighenti
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
32
|
Stylianou E, Diogo GR, Pepponi I, Dolleweerd C, Arias MA, Locht C, Rider CC, Sibley L, Cutting SM, Loxley A, Ma JK, Reljic R. Mucosal delivery of antigen‐coated nanoparticles to lungs confers protective immunity against tuberculosis infection in mice. Eur J Immunol 2013; 44:440-9. [DOI: 10.1002/eji.201343887] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/25/2013] [Accepted: 11/05/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Elena Stylianou
- Infection and Immunity Research CentreSt George's University of London London UK
- Jenner InstituteJohn Radcliffe HospitalUniversity of Oxford Oxford UK
| | - Gil R. Diogo
- Infection and Immunity Research CentreSt George's University of London London UK
| | - Ilaria Pepponi
- Infection and Immunity Research CentreSt George's University of London London UK
- Jenner InstituteJohn Radcliffe HospitalUniversity of Oxford Oxford UK
| | - Craig Dolleweerd
- Infection and Immunity Research CentreSt George's University of London London UK
| | - Mauricio A. Arias
- Infection and Immunity Research CentreSt George's University of London London UK
| | - Camille Locht
- Institute Pasteur de Lille Lille France
- Inserm U1019 Lille France
- CNRS UMR8204 Lille France
- Université Lille Nord de France Lille France
| | | | - Laura Sibley
- School of Biological SciencesRoyal Holloway University of London Egham UK
| | - Simon M. Cutting
- School of Biological SciencesRoyal Holloway University of London Egham UK
| | - Andrew Loxley
- Particle Sciences, Inc Pennsylvania, Bethlehem PA USA
| | - Julian K.C. Ma
- Infection and Immunity Research CentreSt George's University of London London UK
| | - Rajko Reljic
- Infection and Immunity Research CentreSt George's University of London London UK
| |
Collapse
|
33
|
Kaur R, Henriksen-Lacey M, Wilkhu J, Devitt A, Christensen D, Perrie Y. Effect of incorporating cholesterol into DDA:TDB liposomal adjuvants on bilayer properties, biodistribution, and immune responses. Mol Pharm 2013; 11:197-207. [PMID: 24171445 DOI: 10.1021/mp400372j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cholesterol is an abundant component of mammalian cell membranes and has been extensively studied as an artificial membrane stabilizer in a wide range of phospholipid liposome systems. In this study, the aim was to investigate the role of cholesterol in cationic liposomal adjuvant system based on dimethyldioctadecylammonium (DDA) and trehalose 6,6'-dibehenate (TDB) which has been shown as a strong adjuvant system for vaccines against a wide range of diseases. Packaging of cholesterol within DDA:TDB liposomes was investigated using differential scanning calorimetery and surface pressure-area isotherms of lipid monolayers; incorporation of cholesterol into liposomal membranes promoted the formation of a liquid-condensed monolayer and removed the main phase transition temperature of the system, resulting in an increased bilayer fluidity and reduced antigen retention in vitro. In vivo biodistribution studies found that this increase in membrane fluidity did not alter deposition of liposomes and antigen at the site of injection. In terms of immune responses, early (12 days after immunization) IgG responses were reduced by inclusion of cholesterol; thereafter there were no differences in antibody (IgG, IgG1, IgG2b) responses promoted by DDA:TDB liposomes with and without cholesterol. However, significantly higher levels of IFN-gamma were induced by DDA:TDB liposomes, and liposome uptake by macrophages in vitro was also shown to be higher for DDA:TDB liposomes compared to their cholesterol-containing counterparts, suggesting that small changes in bilayer mechanics can impact both cellular interactions and immune responses.
Collapse
Affiliation(s)
- Randip Kaur
- Medicines Research Unit, School of Life and Health Sciences, Aston University , Birmingham, B4 7ET United Kingdom
| | | | | | | | | | | |
Collapse
|
34
|
Perrie Y, Kastner E, Kaur R, Wilkinson A, Ingham AJ. A case-study investigating the physicochemical characteristics that dictate the function of a liposomal adjuvant. Hum Vaccin Immunother 2013; 9:1374-81. [PMID: 23584249 DOI: 10.4161/hv.24694] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A range of particulate delivery systems have been considered as vaccine adjuvants. Of these systems, liposomes offer a range of advantages including versatility and flexibility in design format and their ability to incorporate a range of immunomodulators and antigens. Here we briefly outline research, from within our laboratories, which focused on the systematic evaluation of cationic liposomes as vaccines adjuvants. Our aim was to identify physicochemical characteristics that correlate with vaccine efficacy, with particular consideration of the interlink between depot-forming action and immune responses. A variety of parameters were investigated and over a range of studies we have confirmed that cationic liposomes, based on dimethyldioctadecylammonium bromide and trehalose 6,6'-dibehenate formed a depot at the injection site, which stimulates recruitment of antigen presenting cells to the injection site and promotes strong humoral and cell-mediated immune responses. Physicochemical factors which promote a strong vaccine depot include the combination of a high cationic charge and electrostatic binding of the antigen to the liposome system and the use of lipids with high transition temperatures, which form rigid bilayer vesicles. Reduction in vesicle size of cationic vesicles did not promote enhanced drainage from the injection site. However, reducing the cationic nature through substitution of the cationic lipid for a neutral lipid, or by masking of the charge using PEGylation, resulted in a reduced depot formation and reduced Th1-type immune responses, while Th2-type responses were less influenced. These studies confirm that the physicochemical characteristics of particulate-based adjuvants play a key role in the modulation of immune responses.
Collapse
Affiliation(s)
- Yvonne Perrie
- School of Life and Health Sciences; Aston University; Birmingham, UK
| | | | | | | | | |
Collapse
|
35
|
IL12B expression is sustained by a heterogenous population of myeloid lineages during tuberculosis. Tuberculosis (Edinb) 2013; 93:343-56. [PMID: 23491716 DOI: 10.1016/j.tube.2013.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/21/2013] [Accepted: 02/04/2013] [Indexed: 01/17/2023]
Abstract
IL12B is required for resistance to Mycobacterium tuberculosis (Mtb) infection, promoting the initiation and maintenance of Mtb-specific effector responses. While this makes the IL12-pathway an attractive target for experimental tuberculosis (TB) therapies, data regarding what lineages express IL12B after infection is established are limited. This is not obvious in the lung, an organ in which both hematopoietic and non-hematopoietic lineages produce IL12p40 upon pathogen encounter. Here, we use radiation bone marrow chimeras and Yet40 reporter mice to determine what lineages produce IL12p40 during experimental TB. We observed that hematopoietic IL12p40-production was sufficient to control Mtb, with no contribution by non-hematopoietic lineages. Furthermore, rather than being produced by a single subset, IL12p40 was produced by cells that were heterogenous in their size, granularity, autofluorescence and expression of CD11c, CD11b and CD8α. While depending on the timepoint and tissue examined, the surface phenotype of IL12p40-producers most closely resembled macrophages based on previous surveys of lung myeloid lineages. Importantly, depletion of CD11c(hi) cells during infection had no affect on lung IL12p40-concentrations. Collectively, our data demonstrate that IL12p40 production is sustained by a heterogenous population of myeloid lineages during experimental TB, and that redundant mechanisms of IL12p40-production exist when CD11c(hi) lineages are absent.
Collapse
|
36
|
Uchegbu IF, Schätzlein AG, Cheng WP, Lalatsa A. Vaccines. FUNDAMENTALS OF PHARMACEUTICAL NANOSCIENCE 2013. [PMCID: PMC7120629 DOI: 10.1007/978-1-4614-9164-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vaccines continue to offer the key line of protection against a range of infectious diseases; however, the range of vaccines currently available is limited. One key consideration in the development of a vaccine is risk-versus-benefit, and in an environment of perceived low risk, the benefit of vaccination may not be recognised. To address this, there has been a move towards the use of subunit-based vaccines, which offer low side-effect profiles but are generally weakly immunogenic. This can be compensated for by the development of effective adjuvants. Nanotechnology offers key attributes in this field through the ability of nanoparticulates to incorporate and protect antigens from rapid degradation, combined with their potential to effectively deliver the antigens to appropriate cells within the immune system. These characteristics can be exploited in the development of new adjuvants. This chapter will outline the applications of nanosystems in vaccine formulations and consider the mechanisms of action behind a range of formulations.
Collapse
Affiliation(s)
- Ijeoma F. Uchegbu
- UCL School of Pharmacy, University College London, London, United Kingdom
| | | | | | - Aikaterini Lalatsa
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
37
|
Korsholm KS, Andersen PL, Christensen D. Cationic liposomal vaccine adjuvants in animal challenge models: overview and current clinical status. Expert Rev Vaccines 2012; 11:561-77. [PMID: 22827242 DOI: 10.1586/erv.12.22] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cationic liposome formulations can function as efficient vaccine adjuvants. However, due to the highly diverse nature of lipids, cationic liposomes have different physical-chemical characteristics that influence their adjuvant mechanisms and their relevance for use in different vaccines. These characteristics can be further manipulated by incorporation of additional lipids or stabilizers, and inclusion of carefully selected immunostimulators is a feasible strategy when tailoring cationic liposomal adjuvants for specific disease targets. Thus, cationic liposomes present a plasticity, which makes them promising adjuvants for future vaccines. This versatility has also led to a vast amount of literature on different experimental liposomal formulations in combination with a wide range of immunostimulators. Here, we have compiled information about the animal challenge models and administration routes that have been used to study vaccine adjuvants based on cationic liposomes and provide an overview of the applicability, progress and clinical status of cationic liposomal vaccine adjuvants.
Collapse
Affiliation(s)
- Karen Smith Korsholm
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, DK-2300 Copenhagen, Denmark.
| | | | | |
Collapse
|
38
|
Aaby P, Benn C, Nielsen J, Lisse IM, Rodrigues A, Ravn H. Testing the hypothesis that diphtheria-tetanus-pertussis vaccine has negative non-specific and sex-differential effects on child survival in high-mortality countries. BMJ Open 2012; 2:e000707. [PMID: 22619263 PMCID: PMC3364456 DOI: 10.1136/bmjopen-2011-000707] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 04/12/2012] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Measles vaccines (MV) have sex-differential effects on mortality not explained by protection against measles infection. OBJECTIVE The authors examined whether whole-cell diphtheria-tetanus-pertussis (DTP) vaccine has sex-differential and non-specific effects. DATA SOURCES AND ELIGIBILITY Following previous reviews and a new search, the effect of DTP on mortality up to the next vaccination was assessed in all studies where DTP was given after BCG or DTP was given after MV and there was prospective follow-up after ascertainment of vaccination status. SETTING High-mortality countries in Africa and Asia. METHODS The initial observation of negative effect of DTP generated six hypotheses, which were examined in all available studies and two randomised trials reducing the time of exposure to DTP. MAIN OUTCOME Consistency between studies. RESULTS In the first study, DTP had negative effects on survival in contrast to the beneficial effects of BCG and MV. This pattern was repeated in the six other studies available. Second, the two 'natural experiments' found significantly higher mortality for DTP-vaccinated compared with DTP-unvaccinated children. Third, the female-male mortality ratio was increased after DTP in all nine studies; in contrast, the ratio was decreased after BCG and MV in all studies. Fourth, the increased female mortality associated with high-titre measles vaccine was found only among children who had received DTP after high-titre measles vaccine. Fifth, in six randomised trials of early MV, female but not male mortality was increased if DTP was likely to be given after MV. Sixth, the mortality rate declined markedly for girls but not for boys when DTP-vaccinated children received MV. The authors reduced exposure to DTP as most recent vaccination by administering a live vaccine (MV and BCG) shortly after DTP. Both trials reduced child mortality. CONCLUSIONS These observations are incompatible with DTP merely protecting against the targeted diseases. With herd immunity to whooping cough, DTP is associated with higher mortality for girls. Randomised studies of DTP are warranted to measure the true impact on survival.
Collapse
Affiliation(s)
- Peter Aaby
- Bandim Health Project, INDEPTH Network, Statens Serum Institut, Bissau, Guinea-Bissau
- Research Centre for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
| | - Christine Benn
- Bandim Health Project, INDEPTH Network, Statens Serum Institut, Bissau, Guinea-Bissau
- Research Centre for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
| | - Jens Nielsen
- Bandim Health Project, INDEPTH Network, Statens Serum Institut, Bissau, Guinea-Bissau
- Research Centre for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
| | - Ida Maria Lisse
- Bandim Health Project, INDEPTH Network, Statens Serum Institut, Bissau, Guinea-Bissau
- Research Centre for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
| | - Amabelia Rodrigues
- Bandim Health Project, INDEPTH Network, Statens Serum Institut, Bissau, Guinea-Bissau
- Research Centre for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
| | - Henrik Ravn
- Bandim Health Project, INDEPTH Network, Statens Serum Institut, Bissau, Guinea-Bissau
- Research Centre for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
39
|
Christensen D, Henriksen-Lacey M, Kamath AT, Lindenstrøm T, Korsholm KS, Christensen JP, Rochat AF, Lambert PH, Andersen P, Siegrist CA, Perrie Y, Agger EM. A cationic vaccine adjuvant based on a saturated quaternary ammonium lipid have different in vivo distribution kinetics and display a distinct CD4 T cell-inducing capacity compared to its unsaturated analog. J Control Release 2012; 160:468-76. [PMID: 22709414 DOI: 10.1016/j.jconrel.2012.03.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 03/15/2012] [Accepted: 03/18/2012] [Indexed: 10/28/2022]
Abstract
Adjuvants are often composed of different constituents that can be divided into two groups based on their primary activity: the delivery system which carries and presents the vaccine antigen to antigen-presenting cells, and the immunostimulator that activates and modulates the ensuing immune response. Herein, we have investigated the importance of the delivery system and in particular its physical characteristics by comparing the delivery properties of two lipids which differ only in the degree of saturation of the acyl chains, rendering the liposomes either rigid (DDA, dimethyldioctadecylammonium) or highly fluid (DODA, dimethyldioleoylammonium) at physiological temperature. We show that these delivery systems are remarkably different in their ability to prime a Th1-directed immune response with the rigid DDA-based liposomes inducing a response more than 100 times higher compared to that obtained with the fluid DODA-based liposomes. Upon injection with a vaccine antigen, DDA-based liposomes form a vaccine depot that results in a continuous attraction of antigen-presenting cells that engulf a high amount of adjuvant and are subsequently efficiently activated as measured by an elevated expression of the co-stimulatory molecules CD40 and CD86. In contrast, the fluid DODA-based liposomes are more rapidly removed from the site of injection resulting in a lower up-regulation of co-stimulatory CD40 and CD86 molecules on adjuvant-positive antigen-presenting cells. Additionally, the vaccine antigen is readily dissociated from the DODA-based liposomes leading to a population of antigen-presenting cells that are antigen-positive but adjuvant-negative and consequently are not activated. These studies demonstrate the importance of studying in vivo characteristics of the vaccine components and furthermore show that physicochemical properties of the delivery system have a major impact on the vaccine-induced immune response.
Collapse
Affiliation(s)
- Dennis Christensen
- Dept. Infectious Disease Immunology, Statens Serum Institut, Copenhagen S, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The advent of vaccines targeting drugs of abuse heralded a fundamentally different approach to treating substance-related disorders. In contrast to traditional pharmacotherapies for drug abuse, vaccines act by sequestering circulating drugs and terminating the drug-induced 'high' without inducing unwanted neuromodulatory effects. Drug-targeting vaccines have entered clinical evaluation, and although these vaccines show promise from a biomedical viewpoint, the ethical and socioeconomic implications of vaccinating patients against drugs of abuse merit discussion within the scientific community.
Collapse
|
41
|
Buonaguro FM, Tornesello ML, Buonaguro L. New adjuvants in evolving vaccine strategies. Expert Opin Biol Ther 2011; 11:827-32. [PMID: 21609186 DOI: 10.1517/14712598.2011.587802] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adjuvants are becoming the key players of vaccine formulations to enhance the immunogenicity of subunit (peptides, proteins, virus-like particles (VLPs)) and DNA vaccines, as well as to reach the current new goals of preventing and/or treating chronic infectious diseases and cancers. Induction of humoral response, in particular neutralizing antibodies able to inhibit the binding of pathogens to their cellular receptors, remains a major goal of vaccines targeted to prevent acute lytic infections; induction/modulation of cellular immunity is, however, critical to fight latently/chronically infected cells as well as cancer cells. The new adjuvants, included in vaccine preparations, are currently able to modify the presentation of epitopes to the immune system with a specific T(H)1 versus T(H)2 polarization efficacy. A paradigm of the relevance of these new adjuvants is the immunological result obtained with the inclusion of monophosphoryl lipid A in the formulation of L1-based human papillomavirus (HPV)-naked VLPs. In the May issue of this journal, Garcon and colleagues describe the highly enhanced humoral and memory B cellular immunity of the AS04-adjuvanted HPV vaccine, which results in a long-lasting and broad spectrum immunity.
Collapse
Affiliation(s)
- Franco M Buonaguro
- Molecular Biology and Viral Oncology, Dpt of Experimental Oncology, Istituto Nazionale Tumori Fond Pascale, Napoli, Italy.
| | | | | |
Collapse
|
42
|
McNeil SE, Rosenkrands I, Agger EM, Andersen P, Perrie Y. Subunit Vaccines: Distearoylphosphatidylcholine-Based Liposomes Entrapping Antigen Offer a Neutral Alternative to Dimethyldioctadecylammonium-Based Cationic Liposomes as an Adjuvant Delivery System. J Pharm Sci 2011; 100:1856-65. [DOI: 10.1002/jps.22427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 11/10/2010] [Accepted: 11/10/2010] [Indexed: 12/17/2022]
|
43
|
Aaby P, Martins CL, Garly ML, Balé C, Andersen A, Rodrigues A, Ravn H, Lisse IM, Benn CS, Whittle HC. Non-specific effects of standard measles vaccine at 4.5 and 9 months of age on childhood mortality: randomised controlled trial. BMJ 2010; 341:c6495. [PMID: 21118875 PMCID: PMC2994348 DOI: 10.1136/bmj.c6495] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
OBJECTIVE To examine in a randomised trial whether a 25% difference in mortality exists between 4.5 months and 3 years of age for children given two standard doses of Edmonston-Zagreb measles vaccines at 4.5 and 9 months of age compared with those given one dose of measles vaccine at 9 months of age (current policy). DESIGN Randomised controlled trial. SETTING The Bandim Health Project, Guinea-Bissau, which maintains a health and demographic surveillance system in an urban area. PARTICIPANTS 6648 children aged 4.5 months of age who had received three doses of diphtheria-tetanus-pertussis vaccine at least four weeks before enrolment. A large proportion of the children (80%) had previously taken part in randomised trials of neonatal vitamin A supplementation. INTERVENTION Children were randomised to receive Edmonston-Zagreb measles vaccine at 4.5 and 9 months of age (group A), no vaccine at 4.5 months and Edmonston-Zagreb measles vaccine at 9 months of age (group B), or no vaccine at 4.5 months and Schwarz measles vaccine at 9 months of age (group C). Main outcome measure Mortality rate ratio between 4.5 and 36 months of age for group A compared with groups B and C. Secondary outcomes tested the hypothesis that the beneficial effect was stronger in the 4.5 to 9 months age group, in girls, and in the dry season, but the study was not powered to test whether effects differed significantly between subgroups. RESULTS In the intention to treat analysis of mortality between 4.5 and 36 months of age the mortality rate ratio of children who received two doses of Edmonston-Zagreb vaccine at 4.5 and 9 months of age compared with those who received a single dose of Edmonston-Zagreb vaccine or Schwarz vaccine at 9 months of age was 0.78 (95% confidence interval 0.59 to 1.05). In the analyses of secondary outcomes, the intention to treat mortality rate ratio was 0.67 (0.38 to 1.19) between 4.5 and 9 months and 0.83 (0.83 to 1.16) between 9 and 36 months of age. The effect on mortality between 4.5 and 36 months of age was significant for girls (intention to treat mortality rate ratio 0.64 (0.42 to 0.98)), although this was not significantly different from the effect in boys (0.95 (0.64 to 1.42)) (interaction test, P=0.18). The effect did not differ between the dry season and the rainy season. As neonatal vitamin A supplementation is not WHO policy, the analyses were done separately for the 3402 children who did not receive neonatal vitamin A. In these children, the two dose Edmonston-Zagreb measles vaccine schedule was associated with a significantly lower mortality between 4.5 and 36 months of age (intention to treat mortality rate ratio 0.59 (0.39 to 0.89)). The effect was again significant for girls but not statistically significant from the effect in boys. When measles cases were censored, the intention to treat mortality rate ratio was 0.65 (0.43 to 0.99). CONCLUSIONS Although the overall effect did not reach statistical significance, the results may indicate that a two dose schedule with Edmonston-Zagreb measles vaccine given at 4.5 and 9 months of age has beneficial non-specific effects on children's survival, particularly for girls and for children who have not received neonatal vitamin A. This should be tested in future studies in different locations. TRIAL REGISTRATION Clinical trials NCT00168558.
Collapse
Affiliation(s)
- Peter Aaby
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Incorporation of a synthetic mycobacterial monomycoloyl glycerol analogue stabilizes dimethyldioctadecylammonium liposomes and potentiates their adjuvant effect in vivo. Eur J Pharm Biopharm 2010; 77:89-98. [PMID: 20940050 DOI: 10.1016/j.ejpb.2010.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 12/30/2022]
Abstract
The combination of delivery systems such as cationic liposomes and immunopotentiating molecules is a promising approach for the rational design of vaccine adjuvants. In this study, a synthetic analogue of the mycobacterial lipid monomycoloyl glycerol (MMG), referred to as MMG-1, was synthesized and combined with the cationic surfactant dimethyldioctadecylammonium (DDA). The purpose of the study was to provide a thorough pharmaceutical characterization of the resulting DDA/MMG-1 binary system and to evaluate how incorporation of MMG-1 affected the adjuvant activity of DDA liposomes. Thermal analyses demonstrated that MMG-1 was incorporated into the DDA lipid bilayers, and cryo-transmission electron microscopy (TEM) confirmed that liposomes were formed. The particles had a polydisperse size distribution and an average diameter of approximately 400 nm. Evaluation of the colloidal stability indicated that at least 18 mol% MMG-1 was required to stabilize the DDA liposomes as the average particle size remained constant during storage for 6 months. The improved colloidal stability is most likely caused by increased hydration of the lipid bilayer. This was demonstrated by studying Langmuir-Blodgett monolayers of DDA and MMG-1 which revealed an increased surface pressure in the presence of high concentrations of MMG-1 when the DDA/MMG-1 monolayers were fully compressed, indicating an increased interaction with water due to enhanced hydration of the lipid head groups. Finally, immunization of mice with the tuberculosis fusion antigen Ag85B-ESAT-6 and DDA/MMG-1 liposomes induced a strong cell-mediated immune response characterized by a mixed Th1/Th17 profile and secretion of IgG1 and IgG2c antibodies. The Th1/Th17-biased immunostimulatory effect was increased in an MMG-1 concentration-dependent manner with maximal observed effect at 31 mol% MMG-1. Thus, incorporation of 31 mol% MMG-1 into DDA liposomes results in an adjuvant system with favorable physical as well as immunological properties.
Collapse
|
45
|
Lee SH, Lillehoj HS, Jang SI, Hong YH, Min W, Lillehoj EP, Yancey RJ, Dominowski P. Embryo vaccination of chickens using a novel adjuvant formulation stimulates protective immunity against Eimeria maxima infection. Vaccine 2010; 28:7774-8. [PMID: 20956029 PMCID: PMC7127098 DOI: 10.1016/j.vaccine.2010.09.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 08/27/2010] [Accepted: 09/13/2010] [Indexed: 11/05/2022]
Abstract
Our previous study demonstrated that chickens immunized subcutaneously with an Eimeria recombinant profilin protein vaccine emulsified in a Quil A/cholesterol/DDA/Carbopol (QCDC) adjuvant developed partial protection against experimental avian coccidiosis compared with animals immunized with profilin alone. Because in ovo vaccination is presently used in commercial applications worldwide throughout the poultry industry, the current study was undertaken to investigate chicken embryo vaccination with profilin plus QCDC adjuvant. Eighteen day-old embryos were immunized with isotonic saline (control), profilin alone, QCDC alone, or profilin plus QCDC, and orally challenged with live Eimeria maxima at 7 days post-hatch. Body weight gain, fecal oocyst output, and intestinal cytokine transcript levels were assessed as measures of protective immunity. While immunization with profilin alone or QCDC alone did not alter body weight gain of infected chickens compared with the saline control group, vaccination with profilin plus QCDC increased body weight gain such that it was equal to the uninfected controls. Immunization with profilin plus QCDC also reduced fecal oocyst shedding compared with unimmunized controls, although in this case QCDC failed to provide an adjuvant effect since no difference was observed between the profilin-only and profilin/QCDC groups. Finally, increased levels of transcripts encoding IL-1β, IL-15, and IFN-γ were seen in the intestinal tissues of animals given profilin plus QCDC compared with the profilin-only or QCDC-only groups. In summary, this study demonstrates an adjuvant effect of QCDC on body weight gain and intestinal cytokine responses following in ovo vaccination of chickens with an Eimeria profilin vaccine.
Collapse
Affiliation(s)
- Sung-Hyen Lee
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service-U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hein-Kristensen L, Jørgensen MJ, Ravn H, Wiese L, Kurtzhals J, Benn CS. Simultaneous Administration of Vitamin A and DTP Vaccine Modulates the Immune Response in a Murine Cerebral Malaria Model. Scand J Immunol 2010; 72:302-8. [DOI: 10.1111/j.1365-3083.2010.02431.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Lee SH, Lillehoj HS, Jang SI, Lee KW, Yancey RJ, Dominowski P. The effects of a novel adjuvant complex/Eimeria profilin vaccine on the intestinal host immune response against live E. acervulina challenge infection. Vaccine 2010; 28:6498-504. [PMID: 20637765 PMCID: PMC7127425 DOI: 10.1016/j.vaccine.2010.06.116] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/12/2010] [Accepted: 06/30/2010] [Indexed: 12/01/2022]
Abstract
The effects of a novel adjuvant composed of Quil A, cholesterol, dimethyl dioctadecyl ammonium bromide, and Carbopol (QCDC) on protective immunity against avian coccidiosis following immunization with an Eimeria recombinant protein were determined. Broiler chickens were subcutaneously immunized with isotonic saline (control), Eimeria recombinant profilin alone, or profilin emulsified with QCDC at 1 and 7 days post-hatch, and orally challenged with live Eimeria acervulina at 7 days following the last immunization. Body weight gains, gut lesion scores, fecal oocyst outputs, profilin serum antibody titers, lymphocyte proliferation, and intestinal cytokine transcript levels were assessed as measures of protective immunity. Chickens immunized with profilin plus QCDC showed increased body weight gains and decreased intestinal lesion scores compared with the profilin only or control groups. However, no differences were found in fecal oocyst shedding among the three groups. Profilin serum antibody titers and antigen-induced peripheral blood lymphocyte proliferation in the profilin/QCDC group were higher compared with the profilin only and control groups. Finally, while immunization with profilin alone or profilin plus QCDC uniformly increased the levels of intestinal transcripts encoding all cytokines examined (IL-1β, IL-10, IL-12, IL-15, IL-17F, and IFN-γ) compared with the control group, transcripts for IL-10 and IL-17F were further increased in the profilin/QCDC group compared with the profilin only group. In summary, this study provides the first evidence of the immunoenhancing activities of QCDC adjuvant in poultry.
Collapse
Affiliation(s)
- Sung-Hyen Lee
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Important new knowledge about the effect of aluminum adjuvants on the immune response in terms of their impact on cytokine profiles, uptake by antigen-presenting cells (APC), and surface marker expression has been published in recent years. However, although the knowledge about these adjuvants is thus more comprehensive now than ever before, the user is often still confined to a more empirical approach when confronted with practical issues when it comes to the handling and use of these adjuvants. In this chapter we have given focus to the user's perspective, discussing practicalities like dosage, temperature stability, relevant monographs, and preparation with antigen.
Collapse
|
49
|
Buonaguro FM, Tornesello ML, Buonaguro L. Virus-like particle vaccines and adjuvants: the HPV paradigm. Expert Rev Vaccines 2009; 8:1379-98. [PMID: 19803760 DOI: 10.1586/erv.09.81] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Complex antigen structures currently represent the most-studied approach for prophylactic as well as therapeutic vaccines. Different types of complex vaccines, including virus-like particles and virosomes, have been developed depending on the nature of the viral pathogen they are trying to replicate (enveloped vs naked) or the modality to express antigenic epitopes (i.e., the binding of envelope protein on liposomic structures). The complex structure of these vaccines provides them with some adjuvanted properties, not uniformly present for all virus-like particle types. The further inclusion of specific adjuvants in vaccine preparations can modify the presentation modality of such particles to the immune system with a specific Th1 versus Th2 polarization efficacy. A paradigm of the relevance of these new adjuvants are the immunological results obtained with the inclusion of monophosphoryl lipid A adjuvant in the formulation of L1-based human papillomavirus-naked virus-like particles to reduce a Th1 cellular immunity impairment, peculiar for alum-derived adjuvants, along with the induction of highly enhanced humoral and memory B-cellular immunity.
Collapse
Affiliation(s)
- Franco Maria Buonaguro
- Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale Tumori Fond Pascale, Via Mariano Semmola 142, 80131 Napoli, Italy.
| | | | | |
Collapse
|
50
|
Moreno-Mendieta SA, Rocha-Zavaleta L, Rodriguez-Sanoja R. Adjuvants in tuberculosis vaccine development. ACTA ACUST UNITED AC 2009; 58:75-84. [PMID: 20002177 DOI: 10.1111/j.1574-695x.2009.00629.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tuberculosis remains a major public health problem around the world. Because the Mycobacterium bovis Bacilli-Calmette-Guerin (BCG) vaccine fails to protect adults from pulmonary tuberculosis, there is an urgent need for improved vaccine formulations. Unlike BCG, recombinant vaccines purified from bacterial expression vectors, as well as naked DNA, require an additional adjuvant. Recent improvements in our understanding of disease immunopathology, together with advances in biochemical and molecular techniques, have permitted the successful development of promising tuberculosis vaccine delivery and adjuvant combinations for human use. Here, we summarize the current state of adjuvant development and its impact on tuberculosis vaccine progress.
Collapse
Affiliation(s)
- Silvia A Moreno-Mendieta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, México D.F., Mexico
| | | | | |
Collapse
|