1
|
Suckow MA, Bolton ID, McDowell MA. Overview and Approaches for Handling of Animal Models of Leishmaniasis. Comp Med 2024; 74:148-155. [PMID: 39107941 PMCID: PMC11267445 DOI: 10.30802/aalas-cm-24-029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 08/10/2024]
Abstract
Leishmaniasis, a disease of global relevance, results from infection with the protozoan parasite, Leishmania, which is transmitted to susceptible hosts through the bite of sand flies. Multiple forms of leishmaniasis may occur, including cutaneous, mucocutaneous, and visceral. Research with animal models remains an important approach to help define basic pathophysi- ologic processes associated with infection and disease. In this regard, mice and hamsters represent the most commonly used models. The severity of leishmaniasis in animal models depends on several factors, including genotype of the host and parasite and the dose and route of administration of the parasite to the host, and severity of outcome may range from subclinical to severe illness. This review provides basic background on leishmaniasis, relevant animal models, the pathophysiology and clinical signs in animals used as models of leishmaniasis, and general approaches to mitigate risk to personnel.
Collapse
Affiliation(s)
- Mark A Suckow
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky
| | - Iris D Bolton
- Freimann Life Science Center, University of Notre Dame, Notre Dame, Indiana; and
| | - Mary Ann McDowell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
2
|
Miranda DEDO, Sales KGDS, Figueredo LA, de Oliveira SA, do Nascimento AV, Torres DJL, Sumova P, Volf P, Brandão-Filho SP, de Albuquerque SDCG, de Lorena VMB, Dantas-Torres F. Effects of Migonemyia migonei salivary gland homogenates on Leishmania (Viannia) braziliensis infection in BALB/c mice. Acta Trop 2022; 227:106271. [PMID: 34906551 DOI: 10.1016/j.actatropica.2021.106271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/18/2022]
Abstract
Cutaneous leishmaniasis caused by Leishmania (Viannia) braziliensis is the most widespread clinical form of leishmaniasis in the Americas. Migonemyia migonei is a widely distributed phlebotomine sand fly species in Brazil and has been implicated as a vector for L. (V.) braziliensis. In the present study, we investigated the effects of salivary gland homogenates (SGH) of Mg. migonei on the course of L. (V.) braziliensis infection in BALB/c mice. Mice were separated into four groups (six mice per group): CTRL (uninfected mice); SGH (mice inoculated with Mg. migonei SGH); SGH+LEISH (mice inoculated with Mg. migonei SGH plus L. (V.) braziliensis promastigotes); LEISH (mice inoculated with L. (V.) braziliensis promastigotes). Mice were followed up for 8 weeks and the cellular immune response was evaluated by flow cytometry at the end of the experiment. Analysis of cytokine production by splenic cells stimulated with 0.5 SGH, 0.25 SGH of Mg. migonei or L. (V.) braziliensis soluble antigen stimulation (LSA) demonstrated that upon stimulation with SGH 0.25, the production of IL-17A and TNF was not sustained in the SGH group, with decreasing levels of these cytokines after 5 days compared to 3 days of incubation. Analyzing the production of cytokines after LSA stimulation, we observed lower levels of IL-17A in the SGH group after 5 days compared to 3 days. The same was observed for IFN-γ in the SGH group. Yet, the levels of TNF were significantly higher in the LEISH group after 5 days compared to 3 days. Among SGH+LEISH and LEISH mice, three animals in each group developed skin lesions on the tail, the mean lesion size was significantly higher in the LEISH group. Our study suggests that Mg. migonei SGH may modulate BALB/c immune response, as reflected by the low production or early decrease of pro-inflammatory cytokines in splenic cell cultures following stimulation with L. (V.) braziliensis antigen. Our data also suggest that Mg. migonei saliva may reduce the lesion size in BALB/c mice, but further research with a larger sample size is needed to confirm this hypothesis.
Collapse
Affiliation(s)
| | | | - Luciana Aguiar Figueredo
- Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Sheilla Andrade de Oliveira
- Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | | | - Diego José Lira Torres
- Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | | | - Petr Volf
- Charles University, Prague, Czech Republic
| | - Sinval Pinto Brandão-Filho
- Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | | | | | - Filipe Dantas-Torres
- Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil.
| |
Collapse
|
3
|
Guerra PV, Andrade CM, Nunes IV, Gama BC, Tibúrcio R, Santos WLC, Azevedo VA, Tavares NM, Rebouças JDS, Maiolii TU, Faria AMC, Brodskyn CI. Oral Tolerance Induced by Heat Shock Protein 65-Producing Lactococcus lactis Mitigates Inflammation in Leishmania braziliensis Infection. Front Immunol 2021; 12:647987. [PMID: 34248935 PMCID: PMC8264454 DOI: 10.3389/fimmu.2021.647987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/07/2021] [Indexed: 12/05/2022] Open
Abstract
Cutaneous leishmaniasis caused by L. braziliensis induces a pronounced Th1 inflammatory response characterized by IFN-γ production. Even in the absence of parasites, lesions result from a severe inflammatory response in which inflammatory cytokines play an important role. Different approaches have been used to evaluate the therapeutic potential of orally administrated heat shock proteins (Hsp). These proteins are evolutionarily preserved from bacteria to humans, highly expressed under inflammatory conditions and described as immunodominant antigens. Tolerance induced by the oral administration of Hsp65 is capable of suppressing inflammation and inducing differentiation in regulatory cells, and has been successfully demonstrated in several experimental models of autoimmune and inflammatory diseases. We initially administered recombinant Lactococcus lactis (L. lactis) prior to infection as a proof of concept, in order to verify its immunomodulatory potential in the inflammatory response arising from L. braziliensis. Using this experimental approach, we demonstrated that the oral administration of a recombinant L. lactis strain, which produces and secretes Hsp65 from Mycobacterium leprae directly into the gut, mitigated the effects of inflammation caused by L. braziliensis infection in association or not with PAM 3CSK4 (N-α-Palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-L-cysteine, a TLR2 agonist). This was evidenced by the production of anti-inflammatory cytokines and the expansion of regulatory T cells in the draining lymph nodes of BALB/c mice. Our in vitro experimental results suggest that IL-10, TLR-2 and LAP are important immunomodulators in L. braziliensis infection. In addition, recombinant L. lactis administered 4 weeks after infection was observed to decrease lesion size, as well as the number of parasites, and produced a higher IL-10 production and decrease IFN-γ secretion. Together, these results indicate that Hsp65-producing L. lactis can be considered as an alternative candidate for treatment in both autoimmune diseases, as well as in chronic infections that cause inflammatory disease.
Collapse
Affiliation(s)
- Priscila Valera Guerra
- Laboratório da Interação Parasita-Hospedeiro e Epidemiologia (LAIPHE) Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Curso de Medicina, Centro Universitário Christus, Fortaleza, Brazil
| | - Camila Mattos Andrade
- Laboratório da Interação Parasita-Hospedeiro e Epidemiologia (LAIPHE) Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Ivanéia Valeriano Nunes
- Laboratório da Interação Parasita-Hospedeiro e Epidemiologia (LAIPHE) Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Brena Cardoso Gama
- Laboratório da Interação Parasita-Hospedeiro e Epidemiologia (LAIPHE) Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Rafael Tibúrcio
- Laboratório da Interação Parasita-Hospedeiro e Epidemiologia (LAIPHE) Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Washington Luis Conrado Santos
- Laboratório de Patologia Estrutural e Molecular (LAPEM), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Departamento de Patologia e Medicina Legal Faculdade de Medicina da Universidade Federal da Bahia, Salvador, Brazil
| | - Vasco Ariston Azevedo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biomédicas, Universidade Federal de Minais Gerais, Belo Horizonte, Brazil
| | - Natalia Machado Tavares
- Laboratório da Interação Parasita-Hospedeiro e Epidemiologia (LAIPHE) Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Juliana de Souza Rebouças
- Instituto de Ciências Biológicas, Programa de Pós Graduação em Ciências da Saúde, Universidade de Pernambuco, Recife, Brazil
| | - Tatiani Uceli Maiolii
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Caetano Faria
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cláudia Ida Brodskyn
- Laboratório da Interação Parasita-Hospedeiro e Epidemiologia (LAIPHE) Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| |
Collapse
|
4
|
Towards effective cutaneous leishmaniasis treatment with light-based technologies. A systematic review and meta-analysis of preclinical studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112236. [PMID: 34090038 DOI: 10.1016/j.jphotobiol.2021.112236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/12/2021] [Accepted: 05/29/2021] [Indexed: 02/02/2023]
Abstract
Cutaneous leishmaniasis (CL) is a neglected disease that represents a serious global public health concern. We performed a systematic review with meta-analysis targeting the use of light-based therapies on CL in preclinical studies since they are essential to identify the benefits, challenges, and limitations of proposing new technologies to fight CL. We searched Pubmed and Web of Science to include original preclinical researches in English that used light-based technologies to fight CL. Inclusion criteria encompassed any animal model for CL induction, an untreated infected group as the comparator, reliable and consistent methodology to develop and treat CL, focus on an antimicrobial therapeutic approach, and data for lesion size and/or parasite load in the infection site. We identified eight eligible articles, and all of them used photodynamic therapy (PDT). For the meta-analysis, three studies were included regarding the parasite load in the infection site and four comprised the lesion size. No overall statistically significant differences were observed between untreated control and PDT groups for parasite load. Differently, PDT significantly reduced the lesion size regardless of the protocol used to treat CL (in mm, SMD: -1.90; 95% CI: -3.74 to -0.07, p = 0.04). This finding is particularly encouraging since CL promotes disfiguring lesions that profoundly affect the quality of life of patients. We conclude that PDT is a new promising technology able to be topically used against CL if applied in more than one session, making it a promising ally for the management of CL.
Collapse
|
5
|
Khanh Vu TH, Chen H, Pan L, Cho KS, Doesburg D, Thee EF, Wu N, Arlotti E, Jager MJ, Chen DF. CD4 + T-Cell Responses Mediate Progressive Neurodegeneration in Experimental Ischemic Retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1723-1734. [PMID: 32389572 DOI: 10.1016/j.ajpath.2020.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 11/17/2022]
Abstract
Retinal ischemic events, which result from occlusion of the ocular vasculature share similar causes as those for central nervous system stroke and are among the most common cause of acute and irreversible vision loss in elderly patients. Currently, there is no established treatment, and the condition often leaves patients with seriously impaired vision or blindness. The immune system, particularly T-cell-mediated responses, is thought to be intricately involved, but the exact roles remain elusive. We found that acute ischemia-reperfusion injury to the retina induced a prolonged phase of retinal ganglion cell loss that continued to progress during 8 weeks after the procedure. This phase was accompanied by microglial activation and CD4+ T-cell infiltration into the retina. Adoptive transfer of CD4+ T cells isolated from diseased mice exacerbated retinal ganglion cell loss in mice with retinal reperfusion damage. On the other hand, T-cell deficiency or administration of T-cell or interferon-γ-neutralizing antibody attenuated retinal ganglion cell degeneration and retinal function loss after injury. These findings demonstrate a crucial role for T-cell-mediated responses in the pathogenesis of neural ischemia. These findings point to novel therapeutic targets of limiting or preventing neuron and function loss for currently untreatable conditions of optic neuropathy and/or central nervous system ischemic stroke.
Collapse
Affiliation(s)
- Thi Hong Khanh Vu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Huihui Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Pan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Geriatric Research Education and Clinical Center, Office of Research and Development, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, Massachusetts
| | - Djoeke Doesburg
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Eric F Thee
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Nan Wu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Elisa Arlotti
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
6
|
Mohammadi AM, Javadi A, Firooz A, Khamesipour A. Comparison of cytokine profile of IFN-γ, IL-5 and IL-10 in cutaneous leishmaniasis using PBMC vs. whole blood. IRANIAN JOURNAL OF MICROBIOLOGY 2019; 11:431-439. [PMID: 32148674 PMCID: PMC7049321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND OBJECTIVES The surrogate marker (s) of cure and protection in intracellular pathogens is not yet well defined. The aim of this study was to compare the cytokine profile using whole blood cells (WBC) vs. peripheral blood mononuclear cells (PBMC) in healthy and cutaneous leishmaniasis (CL) volunteers. MATERIALS AND METHODS In this study, WBC and PBMC of the volunteers with history of CL (HCL), Active lesion (ACL) and healthy volunteers were collected. The WBC and PBMC were cultured and stimulated with either PHA or soluble Leishmania antigens (SLA), after 72 hours, the supernatants were collected and the levels of IFN-γ, IL-5 and IL-10 were titrated using ELISA method. RESULTS The mean ± SD of cytokines using WBC and PBMC in cutaneous leishmaniasis volunteers stimulated with phytohemagglutin (PHA) or SLA are as follow, PHA, IFN-γ=2295±995 vs. 2339±1115, IL-10=853±309 vs. 1330±966, and IL-5=299±136 vs. 352+156, SLA, IFN-γ, 931±824 vs. 825±532, IL-10, 233±78 vs. 408±381, and IL-5, 185±59 vs. 217±76, respectively. There was no significant difference between the IFN-γ, IL-5 and IL-10 levels using WBC vs. PBMC. There was a strong correlation between the cytokine profiles using WBC and PBMC in cutaneous leishmaniasis volunteers. CONCLUSION There was no significant difference between IFN-γ, IL-10, IL-5 levels in whole blood and PBMC of volunteers with active lesion or history of CL. Whole-blood culture which is easier, cheaper and more convenient could be used instead of PBMC to evaluate the cytokine profile in field conditions.
Collapse
Affiliation(s)
- Akram Miramin Mohammadi
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Javadi
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran,Department of Social Medicines, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Alireza Firooz
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Ali Khamesipour, PhD, Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran. Tel: 02188970657, Fax: 02188970658,
| |
Collapse
|
7
|
Experimental Cutaneous Leishmaniasis: Mouse Models for Resolution of Inflammation Versus Chronicity of Disease. Methods Mol Biol 2019; 1971:315-349. [PMID: 30980313 DOI: 10.1007/978-1-4939-9210-2_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Experimental cutaneous leishmaniasis of mice is a valuable model to study the immune response to the protozoan pathogen Leishmania and to define mechanisms of parasite control and resolution of inflammation as well as of parasite evasion and chronicity of disease. In addition, over many years Leishmania-infected mice have been successfully used to analyze the function of newly discovered immune cell types, transcription factors, cytokines, and effector mechanisms in vivo. In this chapter we present detailed protocols for the culture, propagation, and inoculation of Leishmania promastigotes, the monitoring of the course of cutaneous infection, the determination of the tissue parasite burden and for the phenotyping of the ensuing immune response. The focus lies on the L. major mouse model, but an overview on other established models of murine cutaneous leishmaniasis is also provided.
Collapse
|
8
|
Cysne-Finkelstein L, Silva-Almeida M, Pereira BAS, Dos Santos Charret K, Bertho ÁL, Bastos LS, de Oliveira Pinto L, de Oliveira FOR, da Souza Pereira MC, Alves CR. Evidence of Subpopulations with Distinct Biological Features Within a Leishmania (Viannia) braziliensis Strain. Protist 2017; 169:107-121. [PMID: 29482071 DOI: 10.1016/j.protis.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
The present study demonstrates that the Leishmania (Viannia) braziliensis strain MCAN/BR/1998/R619 is composed of multiple subpopulations with measurable distinctions. Single parasites were separated from a culture of promastigotes in stationary phase by cell sorting and then cultivated as subpopulations. Subsequently, these subpopulations were evaluated for features of in vitro growth, infectivity to murine macrophages and proteinase gene expression. The first evidence of distinct characteristics was observed during the in vitro cultivation of isolated subpopulations, as distinct clusters of patterns were formed among the cultures, indicating the existence of quantifiable fluctuations in metrics. Further, when infecting murine macrophages, the subpopulations induced distinct patterns of production of immune response mediators. While some subpopulations mainly induced the production of IL-1β, IL-6 and TNF-α, others induced the production of IL-12p70 and nitric oxide. Finally, amastigotes of these subpopulations had higher expression of proteinase genes than promastigotes. Additionally, cysteine proteinase, serine proteinase, metalloproteinase and aspartic proteinases were differentially expressed in promastigote and amastigote forms. These data suggest the existence of distinct profiles for the L. (V.) braziliensis MCAN/BR/1998/R619 strain and subpopulations that could drive the success of parasite adaptation to the environments that they inhabit.
Collapse
Affiliation(s)
- Léa Cysne-Finkelstein
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Imunoparasitologia - Instituto Oswaldo Cruz - Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Mariana Silva-Almeida
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas - Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Bernardo Acácio Santini Pereira
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas - Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Karen Dos Santos Charret
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas - Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Álvaro Luiz Bertho
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Imunoparasitologia - Instituto Oswaldo Cruz - Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Leonardo Soares Bastos
- Fundação Oswaldo Cruz, Programa de Computação Científica - Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Luzia de Oliveira Pinto
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Imunologia Viral - Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Francisco Odêncio Rodrigues de Oliveira
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz - Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Mirian Cláudia da Souza Pereira
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz - Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Carlos Roberto Alves
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas - Avenida Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
9
|
The role of monocytes in models of infection by protozoan parasites. Mol Immunol 2017; 88:174-184. [PMID: 28704704 DOI: 10.1016/j.molimm.2017.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/29/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023]
Abstract
The confirmation of developmental differences between tissue macrophages and peripheral monocytes has changed our view of the functions and dynamics of these two important components of the innate immune system. It has been demonstrated conclusively that homeostasis of tissue resident macrophages is maintained by a low proliferative turn over. During an inflammatory response, bone marrow derived monocytes enter the tissue in large numbers and take part in the defense against the pathogens. After the destruction of invading pathogens, these cells disappear and tissue resident macrophages can be detected again. This new appreciation of the innate immune response has not only answered many outstanding questions regarding the role of the different myeloid cell types in inflammation, but also opened up new areas of research relating to the tissue- and pathogen-specific fate of the inflammatory macrophages or dendritic cells (DCs), and the transfer of this knowledge from mouse models to the human immune system. Nevertheless, there is still confusion in infection models, and especially in studies of human infections, as to what extent these recent observations and findings influence previous interpretations of data. This review will focus on insights from mouse models, summarize the literature on the ontogeny of macrophages and monocytes, explain the role of frequently used monocyte markers and effector molecules, and finally, discuss the role of inflammatory monocytes/macrophages/DCs in two experimental parasitic diseases.
Collapse
|
10
|
Ribeiro-Romão RP, Saavedra AF, Da-Cruz AM, Pinto EF, Moreira OC. Development of real-time PCR assays for evaluation of immune response and parasite load in golden hamster (Mesocricetus auratus) infected by Leishmania (Viannia) braziliensis. Parasit Vectors 2016; 9:361. [PMID: 27350537 PMCID: PMC4924296 DOI: 10.1186/s13071-016-1647-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 06/15/2016] [Indexed: 11/17/2022] Open
Abstract
Background Cutaneous leishmaniasis (CL) is a neglected disease with a broad spectrum of clinical manifestations, ranging from small cutaneous nodules to severe mucosal tissue destruction. Leishmania (Viannia) braziliensis is the main species attributed to CL in the Americas. However, studies of experimental infection are limited in the murine model due to the self-resolutive pattern of the disease. Previously, our group demonstrated that the hamster model reproduces many of the clinical and histopathological features observed in humans. Herein, we standardized a RT-qPCR gene expression assay to evaluate a panel of immunological markers and a qPCR assay in order to quantify with high sensitivity and reproducibility the parasite load in skin lesions. Methods Hamsters were intradermally infected in the footpad with 105 promastigotes of L. (V.) braziliensis and 110 days post-infection skin lesions and popliteal lymph nodes were removed for RNA and DNA extraction, both from the same tissue fragment. Gene expression of IFN-ɣ, IL-10, TGF-β TNF, IL-4, IL-6, iNOS and arginase were measured using non-infected animal tissue as a calibrator. Parasite load was quantified from DNA extracted from lesions by qPCR targeting Leishmania kDNA and normalized by hamster GAPDH, using a SYBR Green-based absolute quantification methodology. Results A relative quantification RT-qPCR assay was standardized for the evaluation of mRNA levels from skin and lymph node samples of golden hamsters, with PCR efficiencies ranging from 92.3 to 116.4 %. In uninfected animals, higher basal mRNA levels in lymph nodes were observed for IFN-ɣ, TGF-β, TNF and IL-4 (111.4 ± 92.2; 5.6 ± 1.2; 5.3 ± 1.7; and 60.3 ± 26.8, respectively) in comparison to skin. In golden hamsters infected with L. (V.) braziliensis, an increase in the expression of all immunological markers evaluated was observed, ranging from 2.7 ± 0.2 for TGF-β to 1018.5 ± 809.0 for iNOS in skin lesions, and 2.4 ± 1.6 for TGF-β to 600.2 ± 666.4 for iNOS in popliteal lymph nodes. Interestingly, significantly higher levels of IFN-ɣ, TNF and IL-10 mRNA were observed in skin in comparison to lymph nodes, while a lower significant level of arginase mRNA was observed in skin. In parallel, parasite loads were quantified by qPCR from the skin lesions of infected animals, ranging from 27.0 to 6647.0, with a median of 553.4 (416.7–1504.0) parasites/mg skin equivalents, whereas lesion size varied from 0.3 to 3.1 mm. Despite the tendency of larger lesions to present higher parasite load, the correlation observed was not statistically significant. Conclusions In this study, we describe for the first time a sensitive, reproducible and cheaper molecular assay to quantify from the same tissue fragment the gene expression of immunological markers and the parasite load in skin lesions, observing a mixed profile of immune response in the hamster model infected by L. (V.) braziliensis. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1647-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Andrea Franco Saavedra
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz (FIOCRUZ/RJ), Rio de Janeiro, Brazil
| | - Alda Maria Da-Cruz
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz (FIOCRUZ/RJ), Rio de Janeiro, Brazil
| | - Eduardo Fonseca Pinto
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz (FIOCRUZ/RJ), Rio de Janeiro, Brazil
| | - Otacilio C Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (FIOCRUZ/RJ), Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Lage DP, Martins VT, Duarte MC, Costa LE, Tavares GDSV, Ramos FF, Chávez-Fumagalli MA, Menezes-Souza D, Roatt BM, Tavares CAP, Coelho EAF. Cross-protective efficacy of Leishmania infantum LiHyD protein against tegumentary leishmaniasis caused by Leishmania major and Leishmania braziliensis species. Acta Trop 2016; 158:220-230. [PMID: 26976272 DOI: 10.1016/j.actatropica.2016.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/25/2016] [Accepted: 03/10/2016] [Indexed: 11/19/2022]
Abstract
Vaccination can be considered the most cost-effective strategy to control neglected diseases, but nowadays there is not an effective vaccine available against leishmaniasis. In the present study, a vaccine based on the combination of the Leishmania-specific hypothetical protein (LiHyD) with saponin was tested in BALB/c mice against infection caused by Leishmania major and Leishmania braziliensis species. This antigen was firstly identified in Leishmania infantum and showed to be protective against infection of BALB/c mice using this parasite species. The immunogenicity of rLiHyD/saponin vaccine was evaluated, and the results showed that immunized mice produced high levels of IFN-γ, IL-12 and GM-CSF after in vitro stimulation with rLiHyD, as well as by using L. major or L. braziliensis protein extracts. After challenge, vaccinated animals showed significant reductions in the infected footpad swellings, as well as in the parasite burden in the infection site, liver, spleen, and infected paws draining lymph nodes, when compared to those that were inoculated with the vaccine diluent (saline) or immunized with saponin. The immunization of rLiHyD without adjuvant was not protective against both challenges. The partial protection obtained by the rLiHyD/saponin vaccine was associated with a parasite-specific IL-12-dependent IFN-γ secretion, which was produced mainly by CD4(+) T cells. In these animals, a decrease in the parasite-mediated IL-4 and IL-10 responses, associated with the presence of high levels of LiHyD- and parasite-specific IgG2a isotype antibodies, were also observed. The present study showed that a hypothetical protein that was firstly identified in L. infantum, when combined to a Th1 adjuvant, was able to confer a cross-protection against highly infective stationary-phase promastigotes of two Leishmania species causing tegumentary leishmaniasis.
Collapse
Affiliation(s)
- Daniela Pagliara Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vívian Tamietti Martins
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Costa Duarte
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lourena Emanuele Costa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele de Sousa Vieira Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Fonseca Ramos
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno Mendes Roatt
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Alberto Pereira Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Coelho AC, Oliveira JC, Espada CR, Reimão JQ, Trinconi CT, Uliana SRB. A Luciferase-Expressing Leishmania braziliensis Line That Leads to Sustained Skin Lesions in BALB/c Mice and Allows Monitoring of Miltefosine Treatment Outcome. PLoS Negl Trop Dis 2016; 10:e0004660. [PMID: 27144739 PMCID: PMC4856402 DOI: 10.1371/journal.pntd.0004660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/02/2016] [Indexed: 11/18/2022] Open
Abstract
Background Leishmania braziliensis is the most prevalent species isolated from patients displaying cutaneous and muco-cutaneous leishmaniasis in South America. However, there are difficulties for studying L. braziliensis pathogenesis or response to chemotherapy in vivo due to the natural resistance of most mouse strains to infection with these parasites. The aim of this work was to develop an experimental set up that could be used to assess drug efficacy against L. braziliensis. The model was tested using miltefosine. Methodology/Principal Findings A L. braziliensis line, originally isolated from a cutaneous leishmaniasis patient, was passaged repeatedly in laboratory rodents and further genetically manipulated to express luciferase. Once collected from a culture of parasites freshly transformed from amastigotes, 106 wild type or luciferase-expressing stationary phase promastigotes were inoculated subcutaneously in young BALB/c mice or golden hamsters. In both groups, sustained cutaneous lesions developed at the site of inoculation, no spontaneous self- healing being observed 4 months post-inoculation, if left untreated. Compared to the wild type line features, no difference was noted for the luciferase-transgenic line. Infected animals were treated with 5 or 15 mg/kg/day miltefosine orally for 15 days. At the end of treatment, lesions had regressed and parasites were not detected. However, relapses were observed in animals treated with both doses of miltefosine. Conclusions/Significance Here we described experimental settings for a late-healing model of cutaneous leishmaniasis upon inoculation of a luciferase-expressing L. braziliensis line that can be applied to drug development projects. These settings allowed the monitoring of the transient efficacy of a short-term miltefosine administration. Leishmania braziliensis is the most prevalent species isolated from patients displaying either cutaneous or mucocutaneous leishmaniasis in South America. In this study, we developed a transgenic luciferase-expressing L. braziliensis line. These parasites were passaged in hamsters and mice and then transformed back into promastigotes. Once inoculated subcutaneously in the footpad of young laboratory animals—BALB/c mice or golden hamsters, rapid and sustained footpad thickness increase developed. This experimental model was used to monitor the parasite load fluctuations and the response to miltefosine treatment. Mice were treated orally over a two-week period, starting at week 4 post-inoculation. Though such a regimen was shown to display efficacy, the effect was not sustained and both parasite re-expansion and delayed footpad thickness increase were noticed.
Collapse
Affiliation(s)
- Adriano C. Coelho
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Jordana C. Oliveira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Caroline R. Espada
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Juliana Q. Reimão
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Cristiana T. Trinconi
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Silvia R. B. Uliana
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
13
|
Martins VT, Lage DP, Duarte MC, Costa LE, Chávez-Fumagalli MA, Roatt BM, Menezes-Souza D, Tavares CAP, Coelho EAF. Cross-protective efficacy from a immunogen firstly identified inLeishmania infantumagainst tegumentary leishmaniasis. Parasite Immunol 2016; 38:108-17. [DOI: 10.1111/pim.12304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/06/2016] [Indexed: 01/20/2023]
Affiliation(s)
- V. T. Martins
- Departamento de Bioquímica e Imunologia; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - D. P. Lage
- Faculdade de Medicina; Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - M. C. Duarte
- Departamento de Patologia Clínica; COLTEC; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - L. E. Costa
- Faculdade de Medicina; Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - M. A. Chávez-Fumagalli
- Faculdade de Medicina; Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - B. M. Roatt
- Departamento de Patologia Clínica; COLTEC; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - D. Menezes-Souza
- Departamento de Patologia Clínica; COLTEC; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - C. A. P. Tavares
- Departamento de Bioquímica e Imunologia; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - E. A. F. Coelho
- Faculdade de Medicina; Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| |
Collapse
|
14
|
Mears ER, Modabber F, Don R, Johnson GE. A Review: The Current In Vivo Models for the Discovery and Utility of New Anti-leishmanial Drugs Targeting Cutaneous Leishmaniasis. PLoS Negl Trop Dis 2015; 9:e0003889. [PMID: 26334763 PMCID: PMC4559374 DOI: 10.1371/journal.pntd.0003889] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The current in vivo models for the utility and discovery of new potential anti-leishmanial drugs targeting Cutaneous Leishmaniasis (CL) differ vastly in their immunological responses to the disease and clinical presentation of symptoms. Animal models that show similarities to the human form of CL after infection with Leishmania should be more representative as to the effect of the parasite within a human. Thus, these models are used to evaluate the efficacy of new anti-leishmanial compounds before human clinical trials. Current animal models aim to investigate (i) host–parasite interactions, (ii) pathogenesis, (iii) biochemical changes/pathways, (iv) in vivo maintenance of parasites, and (v) clinical evaluation of drug candidates. This review focuses on the trends of infection observed between Leishmania parasites, the predictability of different strains, and the determination of parasite load. These factors were used to investigate the overall effectiveness of the current animal models. The main aim was to assess the efficacy and limitations of the various CL models and their potential for drug discovery and evaluation. In conclusion, we found that the following models are the most suitable for the assessment of anti-leishmanial drugs: L. major–C57BL/6 mice (or–vervet monkey, or–rhesus monkeys), L. tropica–CsS-16 mice, L. amazonensis–CBA mice, L. braziliensis–golden hamster (or–rhesus monkey). We also provide in-depth guidance for which models are not suitable for these investigations.
Collapse
Affiliation(s)
- Emily Rose Mears
- College of Medicine, Swansea University, Swansea, United Kingdom
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- * E-mail:
| | - Farrokh Modabber
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
- Center for Research and Training on Skin Diseases and Leprosy (CRTSDL), Tehran University Medical Sciences, Tehran, Iran
| | - Robert Don
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | | |
Collapse
|
15
|
Silva VMG, de-Araújo CF, Navarro IC, Oliveira PRS, Pontes-de-Carvalho L. Enhancement of experimental cutaneous leishmaniasis by Leishmania extract: identification of a disease-associated antibody specificity. BMC Res Notes 2015; 8:197. [PMID: 25971623 PMCID: PMC4440558 DOI: 10.1186/s13104-015-1158-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 04/30/2015] [Indexed: 12/03/2022] Open
Abstract
Background Both Leishmania braziliensis and Leishmania amazonensis induce cutaneous disease when injected in the skin of BALB/c mice. However, L. amazonensis may also visceralize in that strain of mice, infecting mainly the liver and spleen. In addition, whereas BALB/c mice die with a progressive cutaneous disease when infected by L. amazonensis, the infection by L. braziliensis is spontaneously cured. In a previous work, we have found that intravenous injections of L. amazonensis amastigote extract (LaE) potentiated a L. braziliensis infection in BALB/c mice, and that this infection-promoting activity could be inhibited by the addition of protease inhibitors to the extract. Methods In order to detect markers of disease evolution, in the present work we analyzed the specificity of the anti-L. amazonensis antibody response of L. braziliensis-infected BALB/c mice injected intravenously with saline or LaE, supplemented or not with protease inhibitors, by the Western blot technique. Results IgG1 antibodies recognizing an antigen with apparent molecular weight of 116 kDa were specifically detected in BALB/c mice that had been turned susceptible to L. braziliensis infection by injections of LaE. Conclusion A Th2 immune response (IgG1 antibody-producing) against this 116 kDa antigen, therefore, could be associated with susceptibility to severe Leishmania infection.
Collapse
Affiliation(s)
- Virgínia M G Silva
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, 40296-710, Brazil. .,Universidade Estadual do Sudoeste da Bahia, Departamento de Ciências Biológicas, Jequié, BA, 45206-190, Brazil.
| | - Cíntia F de-Araújo
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, 40296-710, Brazil.
| | - Isabela C Navarro
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, 40296-710, Brazil.
| | - Pablo R S Oliveira
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, 40296-710, Brazil.
| | - Lain Pontes-de-Carvalho
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, 40296-710, Brazil. .,Escola Bahiana de Medicina e Saúde Pública, Salvador, BA, 40050-420, Brazil.
| |
Collapse
|
16
|
Intranasal vaccination with leishmanial antigens protects golden hamsters (Mesocricetus auratus) against Leishmania (Viannia) Braziliensis infection. PLoS Negl Trop Dis 2015; 9:e3439. [PMID: 25569338 PMCID: PMC4287559 DOI: 10.1371/journal.pntd.0003439] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022] Open
Abstract
Background Previous results have shown that oral and intranasal administration of particulate Leishmania (Leishmania) amazonensis antigens (LaAg) partially protects mice against L. amazonensis infection. However, vaccination studies on species of the subgenus Viannia, the main causative agent of cutaneous and mucosal leishmaniasis in the Americas, have been hampered by the lack of easy-to-handle bio-models that accurately mimic the human disease. Recently, we demonstrated that the golden hamster is an appropriate model for studying the immunopathogenesis of cutaneous leishmaniasis caused by L. (Viannia) braziliensis. Using the golden hamster model, our current study investigated whether the protective effect of intranasal immunisation with LaAg can be extended to L. braziliensis infection. Methodology/Principal Findings Golden hamsters vaccinated with either two intranasal (IN) doses of LaAg (10 µg) or two intramuscular doses of LaAg (20 µg) were challenged 2 weeks post-vaccination with L. braziliensis. The results showed that IN immunisation with LaAg significantly reduced lesion growth and parasitic load as well as serum IgG and IgG2 levels. At the experimental endpoint on day 114 post-infection, IN-immunised hamsters that were considered protected expressed IFN-γ and IL10 mRNA levels that returned to uninfected skin levels. In contrast to the nasal route, intramuscular (IM) immunisation failed to provide protection. Conclusions/Significance These results demonstrate for the first time that the nasal route of immunisation can induce cross protection against L. braziliensis infection. Leishmaniasis is a disease that is common in most tropical countries. In Brazil, the cutaneous form of the disease is highly prevalent, with approximately 28,000 new cases reported annually. L. (Viannia) braziliensis is the main causative agent of cutaneous leishmaniasis; however, vaccine studies against protozoans of the subgenus Viannia have been largely neglected, mainly due to the high resistance of most mouse strains to the infection. Here, the authors used the golden hamster, which is highly susceptible to dermotropic Leishmania spp infection. It was previously shown that oral and intranasal vaccination with whole L. (Leishmania) amazonensis antigens (LaAg) protected mice against L. amazonensis infection. In the present study, the authors investigated whether the protective effect of intranasal immunisation with LaAg can be extended to L. braziliensis infection using the golden hamster model. The results showed that intranasal immunisation with LaAg significantly reduced lesion growth and parasitic load as well as IgG and IgG2 serum levels. At the endpoint of the experiment, intranasally immunised hamsters that were considered protected expressed IFN-γ and IL10 mRNA at levels similar to those in uninfected skin. These data show that the use of a proper animal model and/or different vaccination strategies may facilitate the development of an effective vaccine against L. braziliensis.
Collapse
|
17
|
Francesquini FC, Silveira FT, Passero LFD, Tomokane TY, Carvalho AK, Corbett CEP, Laurenti MD. Salivary gland homogenates from wild-caught sand flies Lutzomyia flaviscutellata and Lutzomyia (Psychodopygus) complexus showed inhibitory effects on Leishmania (Leishmania) amazonensis and Leishmania (Viannia) braziliensis infection in BALB/c mice. Int J Exp Pathol 2014; 95:418-26. [PMID: 25476864 DOI: 10.1111/iep.12104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/28/2014] [Indexed: 11/29/2022] Open
Abstract
During the natural transmission of Leishmania parasites, the infected sand fly female regurgitates promastigotes into the host's skin together with its saliva. It has been reported that vector saliva contains immunomodulatory molecules that facilitate the establishment of infection. Thus, the main objective of this study was to evaluate the specificity of Lutzomyia (Lu.) flaviscutellata and Lu. (Psychodopygus) complexus salivas on the infectivity of Leishmania (L.) (Leishmania) amazonensis and L. (Viannia) braziliensis, respectively. BALB/c mice were inoculated into the skin of hind footpad with L. (L.) amazonensis and L. (V.) braziliensis promastigotes in the absence or presence of Lu. flaviscutellata and Lu. (P.) complexus salivary gland homogenates (SGHs). The evolution of the infection was evaluated by lesion size, histopathological analysis and determination of the parasite load in the skin biopsies collected from the site of infection at 4 and 8 weeks PI. The lesion size and the parasite load of both groups of mice infected in the presence of SGHs were smaller than the control groups. The histopathological features showed that the inflammatory reaction was less prominent in the groups of mice infected in the presence of both SGHs when compared to the control group. The results showed that the presence of SGHs of Lu. flaviscutellata and Lu. (P.) complexus led to induction of processes that were disadvantageous to parasite establishment during infection by L. (L.) amazonensis and L. (V.) braziliensis. An inhibitory effect on Leishmania infection could be observed in both groups inoculated with SGHs, especially when the SGH from Lu. (P.) complexus was used.
Collapse
Affiliation(s)
- Fernanda C Francesquini
- Laboratory of Pathology of Infectious Diseases LIM-50, Medical School, University of São Paulo, São Paulo, São Paulo State, Brazil
| | | | | | | | | | | | | |
Collapse
|
18
|
Costa L, Pinheiro RO, Dutra PML, Santos RF, Cunha-Júnior EF, Torres-Santos EC, da Silva AJM, Costa PRR, Da-Silva SAG. Pterocarpanquinone LQB-118 induces apoptosis in Leishmania (Viannia) braziliensis and controls lesions in infected hamsters. PLoS One 2014; 9:e109672. [PMID: 25340550 PMCID: PMC4207686 DOI: 10.1371/journal.pone.0109672] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/03/2014] [Indexed: 01/02/2023] Open
Abstract
Previous results demonstrate that the hybrid synthetic pterocarpanquinone LQB-118 presents antileishmanial activity against Leishmania amazonensis in a mouse model. The aim of the present study was to use a hamster model to investigate whether LQB-118 presents antileishmanial activity against Leishmania (Viannia) braziliensis, which is the major Leishmania species related to American tegumentary leishmaniasis. The in vitro antileishmanial activity of LQB-118 on L. braziliensis was tested on the promastigote and intracellular amastigote forms. The cell death induced by LQB-118 in the L. braziliensis promastigotes was analyzed using an annexin V-FITC/PI kit, the oxidative stress was evaluated by 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) and the ATP content by luminescence. In situ labeling of DNA fragments by terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) was used to investigate apoptosis in the intracellular amastigotes. L. braziliensis-infected hamsters were treated from the seventh day of infection with LQB-118 administered intralesionally (26 µg/kg/day, three times a week) or orally (4,3 mg/kg/day, five times a week) for eight weeks. LQB-118 was active against the L. braziliensis promastigotes and intracellular amastigotes, producing IC50 (50% inhibitory concentration) values of 3,4±0,1 and 7,5±0,8 µM, respectively. LQB-118 induced promastigote phosphatidylserine externalization accompanied by increased reactive oxygen species production and ATP depletion. Intracellular amastigote DNA fragmentation was also observed, without affecting the viability of macrophages. The treatment of L. braziliensis-infected hamsters with LQB-118, either orally or intralesionally, was effective in the control of lesion size, parasite load and increase intradermal reaction to parasite antigen. Taken together, these results show that the antileishmanial effect of LQB-118 extends to L. braziliensis in the hamster model, involves the induction of parasite apoptosis and shows promising therapeutic option by oral or local routes in leishmaniasis.
Collapse
Affiliation(s)
- Luciana Costa
- Laboratório de Imunofarmacologia Parasitária, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberta O. Pinheiro
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Patrícia M. L. Dutra
- Laboratório de Bioquímica de Protozoários e Imunofisiologia do Exercício, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosiane F. Santos
- Laboratório de Imunofarmacologia Parasitária, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edézio F. Cunha-Júnior
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Eduardo C. Torres-Santos
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Alcides J. M. da Silva
- Laboratório de Catálise Orgânica, Núcleo de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo R. R. Costa
- Laboratório de Química Bioorgânica – Núcleo de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia A. G. Da-Silva
- Laboratório de Imunofarmacologia Parasitária, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
19
|
Comparative evaluation of lesion development, tissue damage, and cytokine expression in golden hamsters (Mesocricetus auratus) infected by inocula with different Leishmania (Viannia) braziliensis concentrations. Infect Immun 2014; 82:5203-13. [PMID: 25287925 DOI: 10.1128/iai.02083-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The golden hamster (Mesocricetus auratus) is a susceptible model to Leishmania (Viannia) spp.; however, available studies employ different infection protocols, which account for clinical and pathological presentation differences. Herein, L. (V.) braziliensis preparations were standardized to contain 10(4), 10(5), or 10(6) parasites to determine an optimal inoculum that ensured cutaneous lesions without causing a disseminated infection in hamsters. Lesion development was followed for 105 days by size measurements, and skin, draining lymph node, spleen, and sera were investigated to check parasite load, spleen visceralization, cytokine expression, histopathological changes, and anti-Leishmania IgG levels. The lesion emergence time was inversely proportional to the parasite concentration in the inocula. Animals infected by 10(4) parasites presented nodular lesions, while those infected with 10(6) parasites often exhibited ulcerated lesions. The differences in the final lesion sizes were observed between 10(4) and 10(5) inocula or 10(4) and 10(6) inocula. High IFNG expression, anti-Leishmania IgG levels, and parasite load occurred independently of the inoculum used. A mild inflammatory skin involvement was observed in animals infected with 10(4) parasites, while extensive tissue damage and parasite spleen visceralization occurred with 10(5) and 10(6) parasites. These results indicate that inocula with different concentrations of parasites generate differences in the time of lesion emergence, clinical presentation, and systemic commitment, despite high and similar IFNG expression and parasite load. This suggests that a modulation in the immune response to different parasite numbers occurs in an early phase of the infection, which could dictate the establishment and magnitude of the chronic phase of the disease.
Collapse
|
20
|
Repeated exposure to Lutzomyia intermedia sand fly saliva induces local expression of interferon-inducible genes both at the site of injection in mice and in human blood. PLoS Negl Trop Dis 2014; 8:e2627. [PMID: 24421912 PMCID: PMC3888461 DOI: 10.1371/journal.pntd.0002627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 11/26/2013] [Indexed: 11/19/2022] Open
Abstract
During a blood meal, Lutzomyia intermedia sand flies transmit Leishmania braziliensis, a parasite causing tegumentary leishmaniasis. In experimental leishmaniasis, pre-exposure to saliva of most blood-feeding sand flies results in parasite establishment in absence of any skin damages in mice challenged with dermotropic Leishmania species together with saliva. In contrast, pre-immunization with Lu. intermedia salivary gland sonicate (SGS) results in enhanced skin inflammatory exacerbation upon co-inoculation of Lu. intermedia SGS and L. braziliensis. These data highlight potential unique features of both L. braziliensis and Lu. intermedia. In this study, we investigated the genes modulated by Lu. intermedia SGS immunization to understand their potential impact on the subsequent cutaneous immune response following inoculation of both SGS and L. braziliensis. The cellular recruitment and global gene expression profile was analyzed in mice repeatedly inoculated or not with Lu. intermedia. Microarray gene analysis revealed the upregulation of a distinct set of IFN-inducible genes, an immune signature not seen to the same extent in control animals. Of note this INF-inducible gene set was not induced in SGS pre-immunized mice subsequently co-inoculated with SGS and L. braziliensis. These data suggest the parasite prevented the upregulation of this Lu. intermedia saliva-related immune signature. The presence of these IFN-inducible genes was further analyzed in peripheral blood mononuclear cells (PBMCs) sampled from uninfected human individuals living in a L. braziliensis-endemic region of Brazil thus regularly exposed to Lu. intermedia bites. PBMCs were cultured in presence or absence of Lu. intermedia SGS. Using qRT-PCR we established that the IFN-inducible genes induced in the skin of SGS pre-immunized mice, were also upregulated by SGS in PBMCs from human individuals regularly exposed to Lu. intermedia bites, but not in PBMCs of control subjects. These data demonstrate that repeated exposure to Lu. intermedia SGS induces the expression of potentially host-protective IFN-inducible genes. Leishmaniasis is a vector-borne parasitic disease of serious public health importance. No efficient vaccine is currently available. Parasites are transmitted to mammalian hosts during sand fly bites. During this process, both parasites and sand fly salivary products are delivered into the skin. Immunization with salivary proteins from most sand fly species can protect mice against cutaneous leishmaniasis; however, immunization with sand fly saliva of Lutzomyia intermedia leads to aggravation of leishmaniasis. We investigated the impact of Lutzomyia intermedia saliva exposure on the development of immune response to Leishmania braziliensis, the major causative agent of tegumentary leishmaniasis in Brazil. To this end, we analyzed in mice the gene expression pattern induced by immunization with salivary gland extracts. Among the genes highly induced were the interferon-inducible genes known to contribute to resistance against parasite infections. These genes were also induced in blood cells of human individuals that were naturally pre-exposed to bites of Lutzomyia intermedia sand flies. Interestingly, subsequent infection with Leishmania braziliensis blocked the induction of these genes in mice. These data show that the induction of potentially protective genes by insect saliva can be altered by the infecting parasite. This should be considered when including salivary components in a vaccine.
Collapse
|
21
|
Role of Toll-like receptor 9 signaling in experimental Leishmania braziliensis infection. Infect Immun 2013; 81:1575-84. [PMID: 23439309 DOI: 10.1128/iai.01401-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with Leishmania braziliensis causes cutaneous or mucocutaneous leishmaniasis in humans. Toll-like receptor 9 (TLR9) expression has been found in granulomas of lesions in L. braziliensis-infected individuals. L. braziliensis inoculation in mice induces very small lesions that are self-healing, whereas deficiency in the TLR adaptor molecule, MyD88, renders mice susceptible to infection. The TLR involved has not been identified, prompting us to investigate if TLR9 triggering by the parasite contributes to the strong resistance to infection observed in L. braziliensis-inoculated mice. The parasites activated wild-type (WT) dendritic cells (DCs) in vitro but not DCs derived from TLR9(-/-) mice. TLR9(-/-) mice inoculated with L. braziliensis exhibited a transient susceptibility characterized by increased lesion size and parasite burden compared to those of WT mice. Surprisingly, elevated levels of gamma interferon (IFN-γ) were measured at the site of infection and in draining lymph node T cells of TLR9(-/-) mice at the peak of susceptibility, suggesting that unlike observations in vitro, the parasite could induce DC activation leading to the development of Th1 cells in the absence of TLR9 expression. Taken together, these data show that TLR9 signaling is important for the early control of lesion development and parasite burden but is dispensable for the differentiation of Th1 cells secreting IFN-γ, and the high levels of this cytokine are not sufficient to control early parasite replication following L. braziliensis infection.
Collapse
|
22
|
Golden hamster (Mesocricetus auratus) as an experimental model for Leishmania (Viannia) braziliensis infection. Parasitology 2013; 140:771-9. [PMID: 23369503 DOI: 10.1017/s0031182012002156] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The lack of an adequate model for Leishmania (Viannia) braziliensis infection is a limiting factor for studying American tegumentary leishmaniasis (ATL). The golden hamster (Mesocricetus auratus) is a promising model because besides being highly susceptible to dermotropic Leishmania infection, the lesions are very similar to cutaneous leishmaniasis (CL) in humans. However, different Leishmania isolates or species and/or protocols have resulted in different outcomes, whereas no study has evaluated the reproducibility of L. braziliensis infection in this model. The natural history of L. braziliensis infection in 34 hamsters was evaluated by using a single parasite isolate in 8 independent experiments under similar experimental conditions. Clinical, histological and immunological analyses were performed. The hamsters presented skin ulcers similar to those observed in ATL. The intra-experiment lesion increment tended to show an intermediary variance. Histological analysis of infected skins showed granulomatous reaction, scarce amastigotes, and Schaumann's bodies. Blood lymphocytes proliferated in response to leishmanial antigens. The severity of the infection was positively correlated to spleen weight, and the titres of anti-Leishmania IgG antibodies. Our findings indicate that the hamster is an appropriate model for immunopathogenesis studies of CL caused by L. braziliensis, supporting its use in clinical, vaccine and chemotherapy experimental protocols.
Collapse
|
23
|
Hartley MA, Ronet C, Zangger H, Beverley SM, Fasel N. Leishmania RNA virus: when the host pays the toll. Front Cell Infect Microbiol 2012; 2:99. [PMID: 22919688 PMCID: PMC3417650 DOI: 10.3389/fcimb.2012.00099] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/27/2012] [Indexed: 12/21/2022] Open
Abstract
The presence of an RNA virus in a South American subgenus of the Leishmania parasite, L. (Viannia), was detected several decades ago but its role in leishmanial virulence and metastasis was only recently described. In Leishmania guyanensis, the nucleic acid of Leishmania RNA virus (LRV1) acts as a potent innate immunogen, eliciting a hyper-inflammatory immune response through toll-like receptor 3 (TLR3). The resultant inflammatory cascade has been shown to increase disease severity, parasite persistence, and perhaps even resistance to anti-leishmanial drugs. Curiously, LRVs were found mostly in clinical isolates prone to infectious metastasis in both their human source and experimental animal model, suggesting an association between the viral hyperpathogen and metastatic complications such as mucocutaneous leishmaniasis (MCL). MCL presents as chronic secondary lesions in the mucosa of the mouth and nose, debilitatingly inflamed and notoriously refractory to treatment. Immunologically, this outcome has many of the same hallmarks associated with the reaction to LRV: production of type 1 interferons, bias toward a chronic Th1 inflammatory state and an impaired ability of host cells to eliminate parasites through oxidative stress. More intriguing, is that the risk of developing MCL is found almost exclusively in infections of the L. (Viannia) subtype, further indication that leishmanial metastasis is caused, at least in part, by a parasitic component. LRV present in this subgenus may contribute to the destructive inflammation of metastatic disease either by acting in concert with other intrinsic "metastatic factors" or by independently preying on host TLR3 hypersensitivity. Because LRV amplifies parasite virulence, its presence may provide a unique target for diagnostic and clinical intervention of metastatic leishmaniasis. Taking examples from other members of the Totiviridae virus family, this paper reviews the benefits and costs of endosymbiosis, specifically for the maintenance of LRV infection in Leishmania parasites, which is often at the expense of its human host.
Collapse
Affiliation(s)
- Mary-Anne Hartley
- Department of Biochemistry, University of Lausanne Epalinges, Switzerland
| | | | | | | | | |
Collapse
|
24
|
de Oliveira CI, Brodskyn CI. The immunobiology of Leishmania braziliensis infection. Front Immunol 2012; 3:145. [PMID: 22701117 PMCID: PMC3370302 DOI: 10.3389/fimmu.2012.00145] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/18/2012] [Indexed: 11/13/2022] Open
Abstract
Leishmaniases are a group of diseases caused by protozoa of the genus Leishmania that affect millions of people worldwide. These diseases are caused by distinct Leishmania species, of which L. braziliensis, a New World representative of the Leishmania genus, has been the least studied. Although leishmaniasis caused by L. braziliensis induces a range of clinical manifestations ranging from mild localized lesions to severe mucosal involvement, few studies have focused on elucidating the immune mechanisms behind this pathology. In this review, we focus on the immunobiology of L. braziliensis infection, emphasizing the innate and adaptive immune responses and taking into consideration both studies performed in endemic areas and experimental models of infection. Additionally, we address recent findings regarding the role of sand fly saliva in disease immunopathogenesis and vaccine development.
Collapse
|
25
|
Reactive oxygen species and nitric oxide in cutaneous leishmaniasis. J Parasitol Res 2012; 2012:203818. [PMID: 22570765 PMCID: PMC3337613 DOI: 10.1155/2012/203818] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 01/03/2023] Open
Abstract
Cutaneous leishmaniasis affects millions of people around the world. Several species of Leishmania infect mouse strains, and murine models closely reproduce the cutaneous lesions caused by the parasite in humans. Mouse models have enabled studies on the pathogenesis and effector mechanisms of host resistance to infection. Here, we review the role of nitric oxide (NO), reactive oxygen species (ROS), and peroxynitrite (ONOO−) in the control of parasites by macrophages, which are both the host cells and the effector cells. We also discuss the role of neutrophil-derived oxygen and nitrogen reactive species during infection with Leishmania. We emphasize the role of these cells in the outcome of leishmaniasis early after infection, before the adaptive Th-cell immune response.
Collapse
|
26
|
Xin L, Wanderley JL, Wang Y, Vargas-Inchaustegui DA, Soong L. The magnitude of CD4(+) T-cell activation rather than TCR diversity determines the outcome of Leishmania infection in mice. Parasite Immunol 2011; 33:170-80. [PMID: 21306400 DOI: 10.1111/j.1365-3024.2010.01268.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
CD4(+) T cells play a critical role in determining the disease outcome in murine cutaneous leishmaniasis, and selective usage of T-cell receptor (TCR) is implied in promoting Leishmania major infection. However, little information is available on TCR usage in Leishmania-specific, IFN-γ-producing CD4(+) T cells. In this study, we investigated the TCR diversity and activation of CD4(+) T cells in a nonhealing model associated with L. amazonensis (La) infection and a self-healing model associated with L. braziliensis (Lb) infection. While marked expansion in the absolute number of several subsets was observed in Lb-infected mice, the percentages of TCR Vβ(+) CD4(+) -cell subsets were comparable in draining LN- and lesion-derived T cells in two infection models. We found that multiple TCR Vβ CD4(+) T cells contributed collectively and comparably to IFN-γ production and that the overall levels of IFN-γ production positively correlated with the control of Lb infection. Moreover, pre-infection with Lb parasites provided cross-protection against secondary La infection, owing to an enhanced magnitude of T-cell activation and IFN-γ production. Collectively, this study suggests that the magnitude of CD4(+) T-cell activation, rather than the TCR diversity, is the major determining factor for the outcome of Leishmania infection.
Collapse
Affiliation(s)
- L Xin
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-107, USA
| | | | | | | | | |
Collapse
|
27
|
Costa DL, Carregaro V, Lima-Júnior DS, Silva NM, Milanezi CM, Cardoso CR, Giudice Â, de Jesus AR, Carvalho EM, Almeida RP, Silva JS. BALB/c mice infected with antimony treatment refractory isolate of Leishmania braziliensis present severe lesions due to IL-4 production. PLoS Negl Trop Dis 2011; 5:e965. [PMID: 21390155 PMCID: PMC3046967 DOI: 10.1371/journal.pntd.0000965] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 01/13/2011] [Indexed: 11/18/2022] Open
Abstract
Background Leishmania braziliensis is the main causative agent of cutaneous leishmaniasis in Brazil. Protection against infection is related to development of Th1 responses, but the mechanisms that mediate susceptibility are still poorly understood. Murine models have been the most important tools in understanding the immunopathogenesis of L. major infection and have shown that Th2 responses favor parasite survival. In contrast, L. braziliensis–infected mice develop strong Th1 responses and easily resolve the infection, thus making the study of factors affecting susceptibility to this parasite difficult. Methodology/Principal Findings Here, we describe an experimental model for the evaluation of the mechanisms mediating susceptibility to L. braziliensis infection. BALB/c mice were inoculated with stationary phase promastigotes of L. braziliensis, isolates LTCP393(R) and LTCP15171(S), which are resistant and susceptible to antimony and nitric oxide (NO), respectively. Mice inoculated with LTCP393(R) presented larger lesions that healed more slowly and contained higher parasite loads than lesions caused by LTCP15171(S). Inflammatory infiltrates in the lesions and production of IFN-γ, TNF-α, IL-10 and TGF-β were similar in mice inoculated with either isolate, indicating that these factors did not contribute to the different disease manifestations observed. In contrast, IL-4 production was strongly increased in LTCP393(R)-inoculated animals and also arginase I (Arg I) expression. Moreover, anti-IL-4 monoclonal antibody (mAb) treatment resulted in decreased lesion thickness and parasite burden in animals inoculated with LTCP393(R), but not in those inoculated with LTCP15171(S). Conclusion/Significance We conclude that the ability of L. braziliensis isolates to induce Th2 responses affects the susceptibility to infection with these isolates and contributes to the increased virulence and severity of disease associated with them. Since these data reflect what happens in human infection, this model could be useful to study the pathogenesis of the L. braziliensis infection, as well as to design new strategies of therapeutic intervention. Leishmaniasis is a neglected disease that affects more than 12 million people worldwide. In Brazil, the cutaneous disease is more prevalent with about 28,000 new cases reported each year, and L. braziliensis is the main causative agent. The interesting data about the infection with this parasite is the wide variety of clinical manifestations that ranges from single ulcerated lesions to mucocutaneous and disseminated disease. However, experimental models to study the infection with this parasite are difficult to develop due to high resistance of most mouse strains to the infection, and the mechanisms underlying the distinct manifestations remain poorly understood. Here, the authors use a mouse experimental model of infection with different L. braziliensis isolates, known to induce diseases with distinct severity in the human hosts, to elucidate immune mechanisms that may be involved in the different manifestations. They showed that distinct parasite isolates may modulate host response, and increased IL-4 production and Arg I expression was related to more severe disease, resulting in longer length of disease with larger lesions and reduced parasite clearance. These findings may be useful in the identification of immunological targets to control L. braziliensis infection and potential clinical markers of disease progression.
Collapse
Affiliation(s)
- Diego L. Costa
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Carregaro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Djalma S. Lima-Júnior
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Neide M. Silva
- Biomedical Sciences Institute, Federal University of Uberlândia, Uberlândia, Brazil
| | - Cristiane M. Milanezi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cristina R. Cardoso
- Department of Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Ângela Giudice
- Immunology Service, Professor Edgar Santos Universitary Hospital, Federal University of Bahia, Salvador, Brazil
| | - Amélia R. de Jesus
- Department of Internal Medicine and Pathology, Federal University of Sergipe, Aracajú, Brazil
| | - Edgar M. Carvalho
- Immunology Service, Professor Edgar Santos Universitary Hospital, Federal University of Bahia, Salvador, Brazil
| | - Roque P. Almeida
- Department of Internal Medicine and Pathology, Federal University of Sergipe, Aracajú, Brazil
| | - João S. Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- * E-mail:
| |
Collapse
|
28
|
Enhancement of experimental cutaneous leishmaniasis by Leishmania molecules is dependent on interleukin-4, serine protease/esterase activity, and parasite and host genetic backgrounds. Infect Immun 2010; 79:1236-43. [PMID: 21173308 DOI: 10.1128/iai.00309-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most inbred strains of mice, like the BALB/c strain, are susceptible to Leishmania amazonensis infections and resistant to Leishmania braziliensis infections. This parasite-related difference could result from the activity of an L. amazonensis-specific virulence factor. In agreement with this hypothesis, it is shown here that the intravenous injection of BALB/c mice with L. amazonensis amastigote extract (LaE) but not the L. braziliensis extract confers susceptibility to L. braziliensis infection. This effect was associated with high circulating levels of IgG1 anti-L. amazonensis antibodies and with an increase in interleukin-4 (IL-4) production and a decrease in gamma interferon production by draining lymph node cells. Moreover, the effect was absent in IL-4-knockout mice. The biological activity in the LaE was not mediated by amphiphilic molecules and was inhibited by pretreatment of the extract with irreversible serine protease inhibitors. These findings indicate that the LaE contains a virulence-related factor that (i) enhances the Leishmania infection by promoting Th2-type immune responses, (ii) is not one of the immunomodulatory Leishmania molecules described so far, and (iii) is either a serine protease or has an effect that depends on that protease activity. In addition to being Leishmania species specific, the infection-enhancing activity was also shown to depend on the host genetic makeup, as LaE injections did not affect the susceptibility of C57BL/6 mice to L. braziliensis infection. The identification of Leishmania molecules with infection-enhancing activity could be important for the development of a vaccine, since the up- or downmodulation of the immune response against a virulence factor could well contribute to controlling the infection.
Collapse
|
29
|
Challenges and perspectives in vaccination against leishmaniasis. Parasitol Int 2009; 58:319-24. [DOI: 10.1016/j.parint.2009.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 07/28/2009] [Accepted: 07/31/2009] [Indexed: 11/24/2022]
|
30
|
Pereira CG, Silva ALN, de Castilhos P, Mastrantonio EC, Souza RA, Romão RP, Rezende RJ, Pena JDO, Beletti ME, Souza MA. Different isolates from Leishmania braziliensis complex induce distinct histopathological features in a murine model of infection. Vet Parasitol 2009; 165:231-40. [PMID: 19656631 DOI: 10.1016/j.vetpar.2009.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 07/03/2009] [Accepted: 07/13/2009] [Indexed: 12/01/2022]
Abstract
The aim of this study was to evaluate the histopathological features in tissues of mice infected by human isolates (I, II, and III) or the reference M2903 strain of Leishmania braziliensis complex. BALB/c and C57Bl/6 mice were infected in the hind footpad with 10(6) stationary-phase promastigotes of L. braziliensis complex. The evolution of lesions was observed for 10 weeks and the animals were then euthanized and liver, spleen and popliteal lymph nodes were collected. Tissues were stained with hematoxylin and eosin and analyzed by immunohistochemistry assay. Increased thickness of infected footpads was observed in all animals, lesions were nodular and non-ulcerated. Mice infected with isolate I presented inflammatory infiltrates consisting predominantly of mononuclear cells in all tissues examined, and also a great number of megakaryocytes, compared with other isolates. Infection with isolate II led to an infected footpad enlargement not seen in other isolates. In addition, mononuclear infiltrates in the liver and hemosiderin in spleen were noted. Conversely, mice infected with either isolate III or M2903 strain only showed an increased number of megakaryocytes in spleen. All tissues examined had detectable amastigote forms of Leishmania by immunohistochemistry in all groups. Taking together, our results showed an unforeseen behavior of different isolates of L. braziliensis complex that led to diverse pathological findings.
Collapse
Affiliation(s)
- Cristiano G Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Distinct roles for MyD88 and Toll-like receptor 2 during Leishmania braziliensis infection in mice. Infect Immun 2009; 77:2948-56. [PMID: 19364834 DOI: 10.1128/iai.00154-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that Leishmania braziliensis infection can activate murine dendritic cells (DCs) and upregulate signaling pathways that are essential for the initiation of innate immunity. However, it remains unclear whether Toll-like receptors (TLRs) are involved in L. braziliensis-mediated DC activation. To address this issue, we generated bone marrow-derived DCs from MyD88(-/-) and TLR2(-/-) mice and examined their responsiveness to parasite infection. While wild-type DCs were efficiently activated to produce cytokines and prime naïve CD4(+) T cells, L. braziliensis-infected MyD88(-/-) DCs exhibited less activation and decreased production of interleukin-12 (IL-12) p40. Furthermore, MyD88(-/-) mice were more susceptible to infection in that they developed larger and prolonged lesions compared to those in control mice. In sharp contrast, the lack of TLR2 resulted in an enhanced DC activation and increased IL-12 p40 production after infection. As such, L. braziliensis-infected TLR2(-/-) DCs were more competent in priming naïve CD4(+) T cells in vitro than were their controls, findings which correlated with an increased gamma interferon production in vivo and enhanced resistance to infection. Our results suggest that while MyD88 is indispensable for the generation of protective immunity to L. braziliensis, TLR2 seems to have a regulatory role during infection.
Collapse
|
32
|
Vargas-Inchaustegui DA, Xin L, Soong L. Leishmania braziliensis infection induces dendritic cell activation, ISG15 transcription, and the generation of protective immune responses. THE JOURNAL OF IMMUNOLOGY 2008; 180:7537-45. [PMID: 18490754 DOI: 10.4049/jimmunol.180.11.7537] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leishmania (Viannia) braziliensis is the causative agent of cutaneous and mucosal leishmaniasis in South America, and the latter is a severe and disfiguring form of the disease. Our understanding of how L. braziliensis parasites interact with dendritic cells (DCs) is limited, partially due to the difficulty in generating axenic amastigotes. In this study, we successfully generated axenic amastigotes of L. braziliensis and used them to test the hypothesis that L. braziliensis infection efficiently triggers innate responses in DCs and the subsequent adaptive immune responses for parasite clearance. This study has revealed unique immunological features of L. braziliensis infection. Firstly, axenic amastigotes showed higher infectivity and the potential to stimulate C57BL/6 (B6) bone marrow-derived dendritic cells to produce IL-12p40 when compared with their promastigote counterparts. Both parasite-carrying and bystander DCs displayed an activated (CD11c(high)CD45RB(-)CD83(+)CD40(+)CD80(+)) phenotype. Secondly, L. braziliensis infection triggered transcription and phosphorylation of STAT molecules and IFN-stimulated gene 15 (ISG15). Finally, the self-healing of the infection in mice was correlated to the expansion of IFN-gamma- and IL-17-producing CD4(+) cells, suggesting the existence of active mechanisms to regulate local inflammation. Collectively, this study supports the view that innate responses at the DC level determine parasite-specific T cell responses and disease outcomes.
Collapse
Affiliation(s)
- Diego A Vargas-Inchaustegui
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | |
Collapse
|
33
|
Rocha FJS, Schleicher U, Mattner J, Alber G, Bogdan C. Cytokines, signaling pathways, and effector molecules required for the control of Leishmania (Viannia) braziliensis in mice. Infect Immun 2007; 75:3823-32. [PMID: 17517868 PMCID: PMC1951993 DOI: 10.1128/iai.01335-06] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cutaneous leishmaniasis is caused by protozoan parasites of the genus Leishmania. The mechanisms of pathogen control have been established primarily in the mouse model of Leishmania major infection, but they might not hold true for other Leishmania species associated with cutaneous disease. Here, we analyzed the role of cytokines, signaling components, and effector molecules in the control of New World cutaneous leishmaniasis due to L. braziliensis. Unlike L. major, L. braziliensis caused small, nonulcerative, and self-healing skin swelling in C57BL/6 mice, as well as BALB/c mice. In contrast to the results obtained for L. mexicana, mice deficient for interleukin-12 or its key signaling molecule, signal transducer and activator of transcription 4, rapidly succumbed to severe visceral leishmaniasis. Infection of tumor necrosis factor knockout mice with L. braziliensis led to progressive, nonhealing skin lesions with erosions and hemorrhagic ulcerations, but in contrast to the results with L. major, only 20 to 30% of the mice developed fatal visceral disease. As seen with L. major, mice with a deleted inducible nitric oxide synthase gene (iNOS(-/-)) were unable to contain L. braziliensis in the skin, whereas the control of the parasite in the spleen remained unimpaired. Unlike what happens in L. major infections, NADPH oxidase had no impact on the course of disease in L. braziliensis-infected mice. These results not only define essential components of a protective immune response to L. braziliensis but also illustrate that the requirements for the control of cutaneous leishmaniasis vary between different parasite species.
Collapse
Affiliation(s)
- F Janaina Soares Rocha
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Wasserturmstrasse 3-5, D-91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
34
|
Tavares D, da Conceição Ribeiro R, Carlos da Silva A. Inflammatory lesion and parasite load are inversely associated in Leishmania amazonensis infected mice genetically selected according to oral tolerance susceptibility. Microbes Infect 2006; 8:957-64. [PMID: 16516520 DOI: 10.1016/j.micinf.2005.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2005] [Revised: 09/16/2005] [Accepted: 09/18/2005] [Indexed: 12/01/2022]
Abstract
Two strains of mice selected according to extreme phenotypes of susceptibility and resistance to oral tolerance (TS and TR mice, respectively) were infected with 1 x 10(7) Leishmania amazonensis promastigotes and studied comparatively. TS mice developed a minor pathology while permitting parasite growth with the presence of increased IL-4, IL-10 and IFN-gamma, and lower NO and IL-2 levels and delayed-type hypersensitivity (DTH). In contrast, in TR mice, footpad swelling was increased but parasite growth was reduced. They produced lower IL-4, IL-10 and IFN-gamma but increased NO, IL-2 levels, DTH, activated spleen macrophages and periarteriolar lymphoid sheaths. The results suggest that the tolerogenic TS mouse profile, with higher IL-10 production, impaired lesion development but also avoided macrophage leishmanicidal activity, maintaining in this manner a silent parasite load. On the other hand, the TR mouse profile contributed to lesion progression with controlled parasite load. To directly address the influence of oral tolerance on infection, mice were gavaged with OVA, and 7 days afterwards were infected and challenged to bystander suppression with OVA in the same footpad. In TR mice gavaged with 25 mg OVA the inflammatory lesion was largely enhanced, while with 5 mg OVA the lesion was diminished. In TS mice the footpad swelling was always lower. However, the bystander effect did not modify the establishment of infection; and similarly to the control non-bystander mice, parasite clearance was maintained in TR and prevented in TS mice. Therefore, a better comprehension of immunoregulation of innate and adaptive immunity in the early stages of infection is necessary for the development of protocols preventing inflammation and contributing to the elimination of parasites.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Animals, Outbred Strains
- Cells, Cultured
- Cytokines/analysis
- Disease Models, Animal
- Female
- Genetic Predisposition to Disease
- Immune Tolerance/genetics
- Inflammation/pathology
- Leishmania/immunology
- Leishmania/isolation & purification
- Leishmaniasis, Cutaneous/genetics
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/parasitology
- Leishmaniasis, Cutaneous/pathology
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Nitric Oxide/biosynthesis
- Ovalbumin/administration & dosage
- Ovalbumin/immunology
- Parasite Egg Count
- Phagocytosis
- Selection, Genetic
- Skin/parasitology
- Skin/pathology
- Spleen/immunology
Collapse
Affiliation(s)
- Daniel Tavares
- Laboratório de Imunobiologia, Departamento Biologia Celular e Genética, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Rua S. Francisco Xavier, 524, PHLC, Maracanã, CEP 20559-900 Rio de Janeiro, Brazil
| | | | | |
Collapse
|
35
|
de Moura TR, Novais FO, Oliveira F, Clarêncio J, Noronha A, Barral A, Brodskyn C, de Oliveira CI. Toward a novel experimental model of infection to study American cutaneous leishmaniasis caused by Leishmania braziliensis. Infect Immun 2005; 73:5827-34. [PMID: 16113301 PMCID: PMC1231065 DOI: 10.1128/iai.73.9.5827-5834.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leishmania spp. cause a broad spectrum of diseases collectively known as leishmaniasis. Leishmania braziliensis is the main etiological agent of American cutaneous leishmaniasis (ACL) and mucocutaneous leishmaniasis. In the present study, we have developed an experimental model of infection that closely resembles ACL caused by L. braziliensis. In order to do so, BALB/c mice were infected in the ear dermis with 10(5) parasites and distinct aspects of the infection were evaluated. Following inoculation, parasite expansion in the ear dermis was accompanied by the development of an ulcerated dermal lesion which healed spontaneously, as seen by the presence of a scar. Histological analysis of infected ears showed the presence of a mixed inflammatory infiltrate consisting of both mononuclear and polymorphonuclear cells. In draining lymph nodes, parasite replication was detected throughout the infection. In vitro restimulation of draining lymph node cells followed by intracellular staining showed an up-regulation in the production of gamma interferon (IFN-gamma) and in the frequency of IFN-gamma-secreting CD4(+) and CD8(+) T cells. Reverse transcription-PCR of ears and draining lymph node cells showed the expression of CC chemokines. The dermal model of infection with L. braziliensis herein is able to reproduce aspects of the natural infection, such as the presence of an ulcerated lesion, parasite dissemination to lymphoid areas, and the development of a Th1-type immune response. These results indicate that this model shall be useful to address questions related to the concomitant immunity to reinfection and parasite persistence leading to mucocutaneous leishmaniasis.
Collapse
Affiliation(s)
- Tatiana R de Moura
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Rua Waldemar Falcão, 121, Salvador, BA 40295-001, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sousa-Franco J, Araújo-Mendes E, Silva-Jardim I, L-Santos J, Faria DR, Dutra WO, Horta MDF. Infection-induced respiratory burst in BALB/c macrophages kills Leishmania guyanensis amastigotes through apoptosis: possible involvement in resistance to cutaneous leishmaniasis. Microbes Infect 2005; 8:390-400. [PMID: 16242371 DOI: 10.1016/j.micinf.2005.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 05/12/2005] [Accepted: 07/04/2005] [Indexed: 11/17/2022]
Abstract
The immune mechanisms that underlie resistance and susceptibility to leishmaniasis are not completely understood for all species of Leishmania. It is becoming clear that the immune response, the parasite elimination by the host and, as a result, the outcome of the disease depend both on the host and on the species of the infecting Leishmania. Here, we analyzed the outcome of the infection of BALB/c mice with L. guyanensis in vivo and in vitro. We showed that BALB/c mice, which are a prototype of susceptible host for most species of Leishmania, dying from these infections, develop insignificant or no cutaneous lesions and eliminate the parasite when infected with promastigotes of L. guyanensis. In vitro, we found that thioglycollate-elicited BALB/c peritoneal macrophages, which are unable to eliminate L. amazonensis without previous activation with cytokines or lipopolysaccharide, can kill L. guyanensis amastigotes. This is the first report showing that infection of peritoneal macrophages with stationary phase promastigotes efficiently triggers innate microbicidal mechanisms that are effective in eliminating the amastigotes, without exogenous activation. We demonstrated that L. guyanensis amastigotes die inside the macrophages through an apoptotic process that is independent of nitric oxide and is mediated by reactive oxygen intermediates generated in the host cell during infection. This innate killing mechanism of macrophages may account for the resistance of BALB/c mice to infection by L. guyanensis.
Collapse
Affiliation(s)
- Junia Sousa-Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, C.P. 486, 31270-901 Belo Horizonte, MG 30161-970, Brazil
| | | | | | | | | | | | | |
Collapse
|
37
|
Indiani de Oliveira C, Teixeira MJ, Teixeira CR, Ramos de Jesus J, Bomura Rosato A, Santa da Silva J, Brodskyn C, Barral-Netto M, Barral A. Leishmania braziliensis isolates differing at the genome level display distinctive features in BALB/c mice. Microbes Infect 2005; 6:977-84. [PMID: 15345228 DOI: 10.1016/j.micinf.2004.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 05/13/2004] [Indexed: 10/26/2022]
Abstract
Leishmania braziliensis is the species responsible for the majority of cases of human cutaneous leishmaniasis in Brazil. In the present study, L. braziliensis isolates from two different geographic areas in Brazil were studied by RAPD, using arbitrary primers. We also evaluated other biological features of these two isolates. We compared (a) the clinical features they initiate or not once delivered subcutaneously as stationary-phase promastigotes in the footpad of BALB/c mice; (b) the parasite load in both the footpad and the draining lymph node; (c) the cytokines present in the supernatant of cultures of the cell suspensions from the draining lymph nodes; and (d) the cell types present at the site of parasite delivery. The results show that the L. braziliensis strain from Ceará (H3227) is genotypically different from the L. braziliensis strain from Bahia (BA788). H3227-parasitized mice developed detectable lesions, whereas BA788-parasitized mice did not. Fifteen days post parasite inoculation there was an increase in the numbers of macrophages and lymphocytes in the footpads, whatever the parasite inoculum. Parasite load at the inoculation site--namely the footpad--did not differ significantly; in draining lymph nodes, however, it increased over the period under study. Early after parasite inoculation, the cells recovered from the draining lymph nodes of BA788-parasitized mice produced higher levels of IFN-gamma, a feature coupled to a higher number of NK cells. Later, after the parasite inoculation, there was an increased content of IL-12p70 and IL-10 in the supernatant of cells recovered from the lymph nodes of H3227-parasitized mice. This comparative analysis points out that L. braziliensis isolates differing in their genomic profiles do establish different parasitic processes in BALB/c mice.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cytokines/analysis
- DNA Fingerprinting
- DNA, Protozoan/analysis
- DNA, Protozoan/isolation & purification
- Disease Models, Animal
- Genome, Protozoan
- Interferon-gamma/analysis
- Interleukin-10/analysis
- Interleukin-12/analysis
- Killer Cells, Natural
- Leishmania braziliensis/genetics
- Leishmania braziliensis/isolation & purification
- Leishmania braziliensis/pathogenicity
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/parasitology
- Leishmaniasis, Cutaneous/pathology
- Lymph Nodes/parasitology
- Lymph Nodes/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Polymorphism, Genetic
- Protein Subunits/analysis
- Random Amplified Polymorphic DNA Technique
Collapse
Affiliation(s)
- Camila Indiani de Oliveira
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Rua Waldemar Falcão, 121, Salvador, BA 40295-001, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Maioli TU, Takane E, Arantes RME, Fietto JLR, Afonso LCC. Immune response induced by New World Leishmania species in C57BL/6 mice. Parasitol Res 2004; 94:207-12. [PMID: 15378352 DOI: 10.1007/s00436-004-1193-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 06/21/2004] [Indexed: 10/26/2022]
Abstract
In the present study, C57BL/6 mice were inoculated with metacyclic Leishmania amazonensis or L. braziliensis promastigotes. While these animals were capable of controlling the infection by L. braziliensis, they developed chronic lesions with elevated numbers of parasites when infected by L. amazonensis. The differences in parasite control were associated with a decreased production of IFN-gamma and TNF by lymph node cells from L. amazonensis-infected mice. Furthermore, these animals presented decreased spleen cell proliferation and activation of germinal centers. In addition, we compared the ability of these parasites to hydrolyze extracellular ATP and AMP. While the ATPase activity of both parasite species was similar, L. amazonensis promastigotes presented higher AMP hydrolytic activity. This increased activity may lead to an increased production of adenosine, which has been shown to present anti-inflammatory activity and may thus be involved in the establishment of the immunosuppression observed in mice infected by L. amazonensis.
Collapse
Affiliation(s)
- Tatiani Uceli Maioli
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas/NUPEB, Universidade Federal de Ouro Preto, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
40
|
Theodos CM, Morris RV, Bishop JV, Jones JD, McMaster WR, Titus RG. Characterization of an I-E-restricted, gp63-specific, CD4-T-cell clone from Leishmania major-resistant C3H mice that secretes type 2 cytokines and exacerbates infection with L. major. Infect Immun 2004; 72:4486-93. [PMID: 15271907 PMCID: PMC470630 DOI: 10.1128/iai.72.8.4486-4493.2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 03/21/2004] [Accepted: 04/19/2004] [Indexed: 11/20/2022] Open
Abstract
A T-cell clone (designated KLmB-3) was derived from resistant C3H mice 2 weeks after infection with Leishmania major. KLmB-3 was a CD4-T-cell clone that utilized the V beta 8.1 T-cell receptor. When adoptively transferred to naive C3H mice, KLmB-3 unexpectedly exacerbated infection with L. major (it increased the cutaneous lesion size and the parasite burden within the lesion). The ability of KLmB-3 to exacerbate disease correlated with its ability to produce the type 2-associated cytokines interleukin-4 (IL-4), IL-5, IL-10, and transforming growth factor beta. Interestingly, KLmB-3 was specific for an epitope in the amino-terminal end of the L. major surface gp63 zinc metalloproteinase (leishmanolysin) that has been shown to be capable of inducing a protective immune response. Moreover, KLmB-3 was activated when this epitope was presented in the context of H-2 I-E rather than H-2 I-A.
Collapse
|
41
|
de Souza-Neto SM, Carneiro CM, Vieira LQ, Afonso LCC. Leishmania braziliensis: partial control of experimental infection by interleukin-12 p40 deficient mice. Mem Inst Oswaldo Cruz 2004; 99:289-94. [PMID: 15273802 DOI: 10.1590/s0074-02762004000300009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Resistance to infection by Leishmania major has been associated with the development of a Th1 type response that is dependent on the presence of interleukin 12 (IL-12). In this work the involvement of this cytokine in the response to infection by L. braziliensis, a less virulent species in the mouse model, was evaluated. Our results show that while interferon (IFN-gamma) deficient (-/-) mice inoculated L. braziliensis develop severe uncontrolled lesions, chronic lesions that remained under control up to 12 weeks of infection were observed in IL-12p40 -/- mice. IL 12p40 -/- mice had fewer parasites in their lesions than IFN-gamma (-/-) mice. Lymph node cells from IL-12p40 -/- were capable of producing low but consistent levels of IFN-gamma suggestive of its involvement in parasite control. Furthermore, as opposed to previous reports on L. major-infected animals, no switch to a Th2 response was observed in IL-12p40 -/- infected with L. braziliensis.
Collapse
|
42
|
Guilpin VO, Swardson-Olver C, Nosbisch L, Titus RG. Maxadilan, the vasodilator/immunomodulator from Lutzomyia longipalpis sand fly saliva, stimulates haematopoiesis in mice. Parasite Immunol 2002; 24:437-46. [PMID: 12406198 DOI: 10.1046/j.1365-3024.2002.00484.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protozoal parasites of the genus Leishmania are transmitted to their vertebrate host within the saliva of the sand fly during a blood meal. The saliva of the sand fly Lutzomyia longipalpis contains maxadilan, a potent vasodilator and immunomodulator. Maxadilan has been shown to enhance the virulence of L. major in all strains of laboratory mice when injected along with the organism. Increased haematopoiesis has been associated with enhanced susceptibility to Leishmania organisms. Here, we show that maxadilan alone stimulates bone marrow haematopoiesis through its ability to stimulate interleukin-6 production by bone marrow stromal cells. Moreover, these effects of maxadilan are mediated through the interaction of maxadilan with the pituitary adenylate cyclase activating polypeptide receptor. These data suggest that increasing haematopoiesis may be yet another way that maxadilan enhances susceptibility of mice to Leishmania infection.
Collapse
Affiliation(s)
- Valerie O Guilpin
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1671, USA
| | | | | | | |
Collapse
|
43
|
Jones DE, Ackermann MR, Wille U, Hunter CA, Scott P. Early enhanced Th1 response after Leishmania amazonensis infection of C57BL/6 interleukin-10-deficient mice does not lead to resolution of infection. Infect Immun 2002; 70:2151-8. [PMID: 11895981 PMCID: PMC127855 DOI: 10.1128/iai.70.4.2151-2158.2002] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C3H and C57BL/6 mice are resistant to Leishmania major but develop chronic lesions with persistent parasite loads when they are infected with Leishmania amazonensis. These lesions develop in the absence of interleukin-4 (IL-4), indicating that susceptibility to this parasite is not a result of development of a Th2 response. Expression of the cytokine IL-10 during infection could account for the lack of IL-12 expression and poor cell-mediated immunity towards the parasite. Therefore, we tested the hypothesis that IL-10 plays a central role in downmodulating the Th1 response after L. amazonensis infection. Infection of C57BL/6 IL-10-deficient mice indicated that in the absence of IL-10 there was early enhancement of a Th1 response, which was downregulated during the more chronic stage of infection. In addition, although there were 1- to 2-log reductions in the parasite loads within the lesions, the parasites continued to persist, and they were associated with chronic lesions whose size was similar to that of the control lesions. These experiments indicated that L. amazonensis resistance to killing in vivo is only partially dependent on expression of host IL-10. However, IL-10-deficient mice had an enhanced delayed-type hypersensitivity response during the chronic phase of infection, indicating that there were Th1 type effector cells in vivo at this late stage of infection. These results indicate that although IL-10 plays a role in limiting the Th1 response during the acute infection phase, other immunomodulatory factors are responsible for limiting the Th1 response during the chronic phase.
Collapse
Affiliation(s)
- Douglas E Jones
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, USA.
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Lemos de Souza V, Ascenção Souza J, Correia Silva TM, Sampaio Tavares Veras P, Rodrigues de-Freitas LA. Different Leishmania species determine distinct profiles of immune and histopathological responses in CBA mice. Microbes Infect 2000; 2:1807-15. [PMID: 11165924 DOI: 10.1016/s1286-4579(00)01340-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most experimental studies on leishmaniasis compare two different inbred strains of mice that are resistant or susceptible to one species of Leishmania. In the present study we characterized some cytokines and nitric oxide production as well as histological changes related to resistance and susceptibility in isogenic CBA mice infected with Leishmania major or Leishmania amazonensis. CBA mice are capable of controlling infection with L. major, but they succumb to infection with L. amazonensis. Cells from susceptible L. amazonensis-infected CBA mice produced interleukin (IL)-4 and IL-10 but no interferon (IFN)-gamma. On the other hand, resistant L. major-infected CBA mice produced IFN-gamma and IL-10, but IL-4 was detected only in the first week of infection. Histopathological studies showed patterns of tissue responses at the site of the infection and in the draining lymph nodes that correlated with resistance or susceptibility. Resistant mice showed a mixed inflammatory cell infiltration and granulomas in the lesions, whereas in susceptible mice only heavily parasitized macrophages were seen. Our results indicate an important role of the parasite species in determining the pattern of immune response. L. amazonensis induces a Th2-type immune response, whereas L. major induces a Th1-type response. These factors must be identified and taken into account in the strategies for the development of vaccines against leishmaniasis. The model presented here will be useful for the study of such factors.
Collapse
Affiliation(s)
- V Lemos de Souza
- LPBC, Laboratory of Pathology and Cellular Biology, Gonçalo Moniz Research Center, Oswaldo Cruz Foundation (FIOCRUZ), 121, R Valdemar Falcão, Brotas, Salvador, 40295-001, Bahia, Brazil
| | | | | | | | | |
Collapse
|
46
|
Lima HC, DeKrey GK, Titus RG. Resolution of an infection with Leishmania braziliensis confers complete protection to a subsequent challenge with Leishmania major in BALB/c mice. Mem Inst Oswaldo Cruz 1999; 94:71-6. [PMID: 10029914 DOI: 10.1590/s0074-02761999000100015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both Leishmania major and L. braziliensis induce cutaneous leishmaniasis in BALB/c mice. Whereas BALB/c mice die of infection with L. major, they cure an infection with L. braziliensis. We report here that after curing an infection with L. braziliensis, BALB/c mice are resistant to challenge with L. major. When challenged with L. major, L. braziliensis pre-treated BALB/c mice mounted a delayed-type hypersensitivity response to L. major and produced high amounts of interferon-gamma (IFN-gamma) but low amounts of interleukin-4. The IFN-gamma produced by the L. braziliensis pre-infected mice was involved in the protection seen against L. major challenge since treating the mice with a neutralizing anti-IFN-gamma abrogated the protection. This suggests that cross-reactive antigen epitopes exist between L. braziliensis and L. major and that pre-infection with L. braziliensis primes BALB/c mice to epitopes on L. major that can elicit a protective Th1 response to the parasite.
Collapse
Affiliation(s)
- H C Lima
- Department of Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523-1671, USA
| | | | | |
Collapse
|