1
|
Barnett KC, Li S, Liang K, Ting JPY. A 360° view of the inflammasome: Mechanisms of activation, cell death, and diseases. Cell 2023; 186:2288-2312. [PMID: 37236155 PMCID: PMC10228754 DOI: 10.1016/j.cell.2023.04.025] [Citation(s) in RCA: 106] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
Inflammasomes are critical sentinels of the innate immune system that respond to threats to the host through recognition of distinct molecules, known as pathogen- or damage-associated molecular patterns (PAMPs/DAMPs), or disruptions of cellular homeostasis, referred to as homeostasis-altering molecular processes (HAMPs) or effector-triggered immunity (ETI). Several distinct proteins nucleate inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRC4/NAIP, AIM2, pyrin, and caspases-4/-5/-11. This diverse array of sensors strengthens the inflammasome response through redundancy and plasticity. Here, we present an overview of these pathways, outlining the mechanisms of inflammasome formation, subcellular regulation, and pyroptosis, and discuss the wide-reaching effects of inflammasomes in human disease.
Collapse
Affiliation(s)
- Katherine C Barnett
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Sirui Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kaixin Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Abstract
The biggest challenge to immune control of HIV infection is the rapid within-host viral evolution, which allows selection of viral variants that escape from T cell and antibody recognition. Thus, it is impossible to clear HIV infection without targeting "immutable" components of the virus. Unlike the adaptive immune system that recognizes cognate epitopes, the CARD8 inflammasome senses the essential enzymatic activity of the HIV-1 protease, which is immutable for the virus. Hence, all subtypes of HIV clinical isolates can be recognized by CARD8. In HIV-infected cells, the viral protease is expressed as a subunit of the viral Gag-Pol polyprotein and remains functionally inactive prior to viral budding. A class of anti-HIV drugs, the non-nucleoside reverse transcriptase inhibitors (NNRTIs), can promote Gag-pol dimerization and subsequent premature intracellular activation of the viral protease. NNRTI treatment triggers CARD8 inflammasome activation, which leads to pyroptosis of HIV-infected CD4+ T cells and macrophages. Targeting the CARD8 inflammasome can be a potent and broadly effective strategy for HIV eradication.
Collapse
Affiliation(s)
- Kolin M Clark
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Priya Pal
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Josh G Kim
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Qiankun Wang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
3
|
Nozaki K, Li L, Miao EA. Innate Sensors Trigger Regulated Cell Death to Combat Intracellular Infection. Annu Rev Immunol 2022; 40:469-498. [PMID: 35138947 PMCID: PMC9614550 DOI: 10.1146/annurev-immunol-101320-011235] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intracellular pathogens pose a significant threat to animals. In defense, innate immune sensors attempt to detect these pathogens using pattern recognition receptors that either directly detect microbial molecules or indirectly detect their pathogenic activity. These sensors trigger different forms of regulated cell death, including pyroptosis, apoptosis, and necroptosis, which eliminate the infected host cell niche while simultaneously promoting beneficial immune responses. These defenses force intracellular pathogens to evolve strategies to minimize or completely evade the sensors. In this review, we discuss recent advances in our understanding of the cytosolic pattern recognition receptors that drive cell death, including NLRP1, NLRP3, NLRP6, NLRP9, NLRC4, AIM2, IFI16, and ZBP1. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kengo Nozaki
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA;
| | - Lupeng Li
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA; .,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Edward A Miao
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA;
| |
Collapse
|
4
|
Taabazuing CY, Griswold AR, Bachovchin DA. The NLRP1 and CARD8 inflammasomes. Immunol Rev 2020; 297:13-25. [PMID: 32558991 PMCID: PMC7483925 DOI: 10.1111/imr.12884] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/28/2022]
Abstract
Inflammasomes are multiprotein complexes that activate inflammatory cytokines and induce pyroptosis in response to intracellular danger-associated signals. NLRP1 and CARD8 are related germline-encoded pattern recognition receptors that form inflammasomes, but their activation mechanisms and biological purposes have not yet been fully established. Both NLRP1 and CARD8 undergo post-translational autoproteolysis to generate two non-covalently associated polypeptide chains. NLRP1 and CARD8 activators induce the proteasome-mediated destruction of the N-terminal fragment, liberating the C-terminal fragment to form an inflammasome. Here, we review the danger-associated stimuli that have been reported to activate NLRP1 and/or CARD8, including anthrax lethal toxin, Toxoplasma gondii, Shigella flexneri and the small molecule DPP8/9 inhibitor Val-boroPro, focusing on recent mechanistic insights and highlighting unresolved questions. In addition, we discuss the recently identified disease-associated mutations in NLRP1 and CARD8, the potential role that DPP9's protein structure plays in inflammasome regulation, and the emerging link between NLRP1 and metabolism. Finally, we summarize all of this latest research and consider the possible biological purposes of these enigmatic inflammasomes.
Collapse
Affiliation(s)
| | - Andrew R Griswold
- Weill Cornell, Rockefeller, Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA.,Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel A Bachovchin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
5
|
Gholami M, Moghbeli M, Kafilzadeh F, Kargar M, Torbati MB, Tavizi A, Bellevile S, Hatami J, Eslami Z. Production of recombinant lethal factor of Bacillus anthracis in Bacillus subtilis. Prep Biochem Biotechnol 2020; 51:9-15. [PMID: 32393098 DOI: 10.1080/10826068.2020.1762215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cancer is considered as a disease with high rates of mortality and morbidity. The limitations and side effects of common treatments have prompted the need for innovative cancer therapies. Furthermore, selectivity and targeting of cancer cells are crucial factors to successful treatment of cancer. One of these methods is the use of bacterial toxins including Bacillus anthracis toxin to aid cancer therapy. This toxin is composed of three polypeptides: protective factor (PA), lethal factor (LF), and edema factor (EF). PA can bind to various surface receptors of all types of human cells and it internalizes the lethal factor and edema factor subunits of the toxin in the cytosol. In the present study, we cloned and expressed the lef gene of B. anthracis as the lethal part of the toxin in Bacillus subtilis WB600 by a shuttle expression vector PHT4. The rLF made in B. subtilis is efficiently secreted by the host into the culture medium which facilitates downstream processing. The rLF can be used to study cancer treatment. Abbreviations: EF: edema factor; LF: lethal factor; PA: protective factor; rLF: recombinant lethal factor; rPAm: recombinant protective factor mutants; uPA: urokinase-type plasminogen activator; uPAR: urokinase-type plasminogen activator receptor.
Collapse
Affiliation(s)
| | - Majid Moghbeli
- Department of Biology, Islamic Azad University, Damghan, Iran
| | | | - Mohammad Kargar
- Department of Microbiology, Islamic Azad University, Jahrom, Iran
| | | | | | | | - Javad Hatami
- Department of Education, Tarbiat Modares University, Tehran, Iran
| | - Zahra Eslami
- ALHSB Health Research Institute, Cleveland, OH, USA
| |
Collapse
|
6
|
Xu H, Shi J, Gao H, Liu Y, Yang Z, Shao F, Dong N. The N-end rule ubiquitin ligase UBR2 mediates NLRP1B inflammasome activation by anthrax lethal toxin. EMBO J 2019; 38:e101996. [PMID: 31268597 PMCID: PMC6600268 DOI: 10.15252/embj.2019101996] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 11/09/2022] Open
Abstract
Anthrax lethal toxin (LT) is known to induce NLRP1B inflammasome activation and pyroptotic cell death in macrophages from certain mouse strains in its metalloprotease activity-dependent manner, but the underlying mechanism is unknown. Here, we establish a simple but robust cell system bearing dual-fluorescence reporters for LT-induced ASC specks formation and pyroptotic lysis. A genome-wide siRNA screen and a CRISPR-Cas9 knockout screen were applied to this system for identifying genes involved in LT-induced inflammasome activation. UBR2, an E3 ubiquitin ligase of the N-end rule degradation pathway, was found to be required for LT-induced NLRP1B inflammasome activation. LT is known to cleave NLRP1B after Lys44. The cleaved NLRP1B, bearing an N-terminal leucine, was targeted by UBR2-mediated ubiquitination and degradation. UBR2 partnered with an E2 ubiquitin-conjugating enzyme UBE2O in this process. NLRP1B underwent constitutive autocleavage before the C-terminal CARD domain. UBR2-mediated degradation of LT-cleaved NLRP1B thus triggered release of the noncovalent-bound CARD domain for subsequent caspase-1 activation. Our study illustrates a unique mode of inflammasome activation in cytosolic defense against bacterial insults.
Collapse
Affiliation(s)
- Hao Xu
- National Institute of Biological SciencesBeijingChina
- Present address:
Molecular Pathogenesis ProgramThe Kimmel Center for Biology and Medicine of the Skirball InstituteNew York University School of MedicineNew YorkNYUSA
| | - Jianjin Shi
- National Institute of Biological SciencesBeijingChina
- Present address:
Department of BiologyStanford UniversityStanfordCAUSA
| | - Hang Gao
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Ying Liu
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Zhenxiao Yang
- National Institute of Biological SciencesBeijingChina
| | - Feng Shao
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijingChina
| | - Na Dong
- National Institute of Biological SciencesBeijingChina
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
7
|
Mitchell PS, Sandstrom A, Vance RE. The NLRP1 inflammasome: new mechanistic insights and unresolved mysteries. Curr Opin Immunol 2019; 60:37-45. [PMID: 31121538 DOI: 10.1016/j.coi.2019.04.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 11/25/2022]
Abstract
Nucleotide-binding domain, leucine-rich repeat (NLR) proteins constitute a diverse class of innate immune sensors that detect pathogens or stress-associated stimuli in plants and animals. Some NLRs are activated upon direct binding to pathogen-derived ligands. In contrast, we focus here on a vertebrate NLR called NLRP1 that responds to the enzymatic activities of pathogen effectors. We discuss a newly proposed 'functional degradation' mechanism that explains activation and assembly of NLRP1 into an oligomeric complex called an inflammasome. We also discuss how NLRP1 is activated by non-pathogen-associated triggers such as the anti-cancer drug Val-boroPro, or by human disease-associated mutations. Finally, we discuss how research on NLRP1 has led to additional biological insights, including the unexpected discovery of a new CARD8 inflammasome.
Collapse
Affiliation(s)
- Patrick S Mitchell
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, and Cancer Research Laboratory, University of California, Berkeley, CA, USA
| | - Andrew Sandstrom
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, and Cancer Research Laboratory, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Russell E Vance
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, and Cancer Research Laboratory, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
8
|
Chui AJ, Okondo MC, Rao SD, Gai K, Griswold AR, Johnson DC, Ball DP, Taabazuing CY, Orth EL, Vittimberga BA, Bachovchin DA. N-terminal degradation activates the NLRP1B inflammasome. Science 2019; 364:82-85. [PMID: 30872531 PMCID: PMC6610862 DOI: 10.1126/science.aau1208] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/02/2018] [Accepted: 03/05/2019] [Indexed: 12/29/2022]
Abstract
Intracellular pathogens and danger signals trigger the formation of inflammasomes, which activate inflammatory caspases and induce pyroptosis. The anthrax lethal factor metalloprotease and small-molecule DPP8/9 inhibitors both activate the NLRP1B inflammasome, but the molecular mechanism of NLRP1B activation is unknown. In this study, we used genome-wide CRISPR-Cas9 knockout screens to identify genes required for NLRP1B-mediated pyroptosis. We discovered that lethal factor induces cell death via the N-end rule proteasomal degradation pathway. Lethal factor directly cleaves NLRP1B, inducing the N-end rule-mediated degradation of the NLRP1B N terminus and freeing the NLRP1B C terminus to activate caspase-1. DPP8/9 inhibitors also induce proteasomal degradation of the NLRP1B N terminus but not via the N-end rule pathway. Thus, N-terminal degradation is the common activation mechanism of this innate immune sensor.
Collapse
Affiliation(s)
- Ashley J Chui
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marian C Okondo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sahana D Rao
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kuo Gai
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew R Griswold
- Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Darren C Johnson
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel P Ball
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cornelius Y Taabazuing
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elizabeth L Orth
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Brooke A Vittimberga
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel A Bachovchin
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
9
|
Sandstrom A, Mitchell PS, Goers L, Mu EW, Lesser CF, Vance RE. Functional degradation: A mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes. Science 2019; 364:science.aau1330. [PMID: 30872533 PMCID: PMC6532986 DOI: 10.1126/science.aau1330] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/05/2018] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
Inflammasomes are multiprotein platforms that initiate innate immunity by recruitment and activation of caspase-1. The NLRP1B inflammasome is activated upon direct cleavage by the anthrax lethal toxin protease. However, the mechanism by which cleavage results in NLRP1B activation is unknown. In this study, we find that cleavage results in proteasome-mediated degradation of the amino-terminal domains of NLRP1B, liberating a carboxyl-terminal fragment that is a potent caspase-1 activator. Proteasome-mediated degradation of NLRP1B is both necessary and sufficient for NLRP1B activation. Consistent with our functional degradation model, we identify IpaH7.8, a Shigella flexneri ubiquitin ligase secreted effector, as an enzyme that induces NLRP1B degradation and activation. Our results provide a unified mechanism for NLRP1B activation by diverse pathogen-encoded enzymatic activities.
Collapse
Affiliation(s)
- Andrew Sandstrom
- Division of Immunology and Pathogenesis, Department of Molecular & Cell Biology, and Cancer Research Laboratory, University of California, Berkeley, CA, USA.,Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Patrick S Mitchell
- Division of Immunology and Pathogenesis, Department of Molecular & Cell Biology, and Cancer Research Laboratory, University of California, Berkeley, CA, USA
| | - Lisa Goers
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Edward W Mu
- Division of Immunology and Pathogenesis, Department of Molecular & Cell Biology, and Cancer Research Laboratory, University of California, Berkeley, CA, USA
| | - Cammie F Lesser
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Russell E Vance
- Division of Immunology and Pathogenesis, Department of Molecular & Cell Biology, and Cancer Research Laboratory, University of California, Berkeley, CA, USA. .,Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
10
|
Khandia R, Pattnaik B, Rajukumar K, Pateriya A, Bhatia S, Murugkar H, Prakash A, Pradhan HK, Dhama K, Munjal A, Joshi SK. Anti-proliferative role of recombinant lethal toxin of Bacillus anthracis on primary mammary ductal carcinoma cells revealing its therapeutic potential. Oncotarget 2018; 8:35835-35847. [PMID: 28415766 PMCID: PMC5482621 DOI: 10.18632/oncotarget.16214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Bacillus anthracis secretes three secretary proteins; lethal factor (LF), protective antigen (PA) and edema factor (EF). The LF has ability to check proliferation of mammary tumors, chiefly depending on mitogen activated protein kinase (MAPK) signaling pathway. Evaluation of therapeutic potential of recombinant LF (rLF), recombinant PA (rPA) and lethal toxin (rLF + rPA = LeTx) on the primary mammary ductal carcinoma cells revealed significant (p < 0.01) reduction in proliferation of tumor cells with mean inhibition indices of 28.0 ± 1.37% and 19.6 ± 1.47% respectively. However, treatment with rPA alone had no significant anti-proliferative effect as evident by low mean inhibition index of 3.4 ± 3.87%. The higher inhibition index observed for rLF alone as compared to LeTx is contrary to the existing knowledge on LF, which explains the requirement of PA dependent endocytosis for its enzymatic activity. Therefore, the plausible existence of PA independent mode of action of LF including direct receptor mediated endocytosis or modulation of signal transduction cascade via unknown means is hypothesized. In silico protein docking analysis of other cellular receptors for any plausibility to play the role of receptor for LF revealed c-Met receptor showing strongest affinity for LF (H bond = 19; Free energy = −773.96), followed by nerve growth factor receptor (NGFR) and human epidermal growth factor receptor (HER)-1. The study summarizes the use of rLF or LeTx as therapeutic molecule against primary mammary ductal carcinoma cells and also the c-Met as potential alternative receptor for LF to mediate and modulate PA independent signal transduction.
Collapse
Affiliation(s)
- Rekha Khandia
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India.,Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Bramhadev Pattnaik
- Project Directorate on Foot and Mouth Disease, Mukteswar, Uttarakhand, India
| | | | - Atul Pateriya
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - Sandeep Bhatia
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - Harshad Murugkar
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - Anil Prakash
- Department of Microbiology, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Hare Krishna Pradhan
- Ex-Avian Influenza National Consultant, Indian Office of WHO Consultant, Bhartiya Kala Kendra, New Delhi, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly Uttar Pradesh, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Sunil K Joshi
- Cellular Immunology Laboratory, Frank Reidy Research Center of Bioelectrics, College of Health Sciences, Old Dominion University Norfolk, VA USA
| |
Collapse
|
11
|
Okondo MC, Rao SD, Taabazuing CY, Chui AJ, Poplawski SE, Johnson DC, Bachovchin DA. Inhibition of Dpp8/9 Activates the Nlrp1b Inflammasome. Cell Chem Biol 2018; 25:262-267.e5. [PMID: 29396289 DOI: 10.1016/j.chembiol.2017.12.013] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/13/2017] [Accepted: 12/22/2017] [Indexed: 12/26/2022]
Abstract
Val-boroPro (PT-100, Talabostat) induces powerful anti-tumor immune responses in syngeneic cancer models, but its mechanism of action has not yet been established. Val-boroPro is a non-selective inhibitor of post-proline-cleaving serine proteases, and the inhibition of the highly related cytosolic serine proteases Dpp8 and Dpp9 (Dpp8/9) by Val-boroPro was recently demonstrated to trigger an immunostimulatory form of programmed cell death known as pyroptosis selectively in monocytes and macrophages. Here we show that Dpp8/9 inhibition activates the inflammasome sensor protein Nlrp1b, which in turn activates pro-caspase-1 to mediate pyroptosis. This work reveals a previously unrecognized mechanism for activating an innate immune pattern recognition receptor and suggests that Dpp8/9 serve as an intracellular checkpoint to restrain Nlrp1b and the innate immune system.
Collapse
Affiliation(s)
- Marian C Okondo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sahana D Rao
- Tri-institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cornelius Y Taabazuing
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ashley J Chui
- Tri-institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarah E Poplawski
- Department of Developmental, Chemical, & Molecular Biology, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Darren C Johnson
- Tri-institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel A Bachovchin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
12
|
Khan AA, Khan Z, Kalam MA, Khan AA. Inter-kingdom prediction certainty evaluation of protein subcellular localization tools: microbial pathogenesis approach for deciphering host microbe interaction. Brief Bioinform 2016; 19:12-22. [DOI: 10.1093/bib/bbw093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Indexed: 12/19/2022] Open
|
13
|
Hegde AN. Proteolysis, synaptic plasticity and memory. Neurobiol Learn Mem 2016; 138:98-110. [PMID: 27614141 DOI: 10.1016/j.nlm.2016.09.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/25/2016] [Accepted: 09/05/2016] [Indexed: 12/30/2022]
Abstract
Protein degradation has many critical functions in the nervous system such as refinement of synaptic connections during development and synaptic plasticity and memory in the adult organisms. A major cellular machinery of proteolysis is the ubiquitin-proteasome pathway (UPP). The UPP precisely regulates proteolysis by covalently attaching ubiquitin, a small protein, to substrates through sequential enzymatic reactions and the proteins marked with the ubiquitin tag are degraded by complex containing many subunits called the proteasome. Research over the years has shown a role for the UPP in regulating presynaptic and postsynaptic proteins critical for neurotransmission and synaptic plasticity. Studies have also revealed a role for the UPP in various forms of memory. Mechanistic investigations suggest that the function of the UPP in neurons is not homogenous and is subject to local regulation in different neuronal sub-compartments. In both invertebrate and vertebrate model systems, local roles have been found for enzymes that attach ubiquitin to substrate proteins as well as for enzymes that remove ubiquitin from substrates. The proteasome also has disparate functions in different parts of the neuron. In addition to the UPP, proteolysis by the lysosome and autophagy play a role in synaptic plasticity and memory. This review details the functions of proteolysis in synaptic plasticity and summarizes the findings on the connection between proteolysis and memory mainly focusing on the UPP including its local roles.
Collapse
Affiliation(s)
- Ashok N Hegde
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA.
| |
Collapse
|
14
|
Global translation variations in host cells upon attack of lytic and sublytic Staphylococcus aureus α-haemolysin1. Biochem J 2015; 472:83-95. [DOI: 10.1042/bj20150284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/11/2015] [Indexed: 02/07/2023]
Abstract
Staphylococcal alpha-hemolysin (AHL) is a clinically relevant toxin, whose effects on host translation are poorly understood. We characterized genome-wide alterations induced at transcriptional and transational levels by lytic and sublytic AHL, pinpointing the importance of translational control during host-pathogen interaction.
Collapse
|
15
|
Zambelloni R, Marquez R, Roe AJ. Development of Antivirulence Compounds: A Biochemical Review. Chem Biol Drug Des 2014; 85:43-55. [DOI: 10.1111/cbdd.12430] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/20/2014] [Accepted: 08/26/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Riccardo Zambelloni
- Institute of Infection Immunity and Inflammation; University of Glasgow; Sir Graeme Davies Building 120 University Place Glasgow G12 8TA UK
- Institute of Molecular and Cell Biology and Chemistry; University of Glasgow; Joseph Black Building Glasgow G12 8QQ UK
| | - Rudi Marquez
- Institute of Molecular and Cell Biology and Chemistry; University of Glasgow; Joseph Black Building Glasgow G12 8QQ UK
| | - Andrew J. Roe
- Institute of Molecular and Cell Biology and Chemistry; University of Glasgow; Joseph Black Building Glasgow G12 8QQ UK
| |
Collapse
|
16
|
Hegde AN, Haynes KA, Bach SV, Beckelman BC. Local ubiquitin-proteasome-mediated proteolysis and long-term synaptic plasticity. Front Mol Neurosci 2014; 7:96. [PMID: 25520617 PMCID: PMC4248836 DOI: 10.3389/fnmol.2014.00096] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/14/2014] [Indexed: 12/18/2022] Open
Abstract
The ubiquitin-proteasome pathway (UPP) of protein degradation has many roles in synaptic plasticity that underlies memory. Work on both invertebrate and vertebrate model systems has shown that the UPP regulates numerous substrates critical for synaptic plasticity. Initial research took a global view of ubiquitin-protein degradation in neurons. Subsequently, the idea of local protein degradation was proposed a decade ago. In this review, we focus on the functions of the UPP in long-term synaptic plasticity and discuss the accumulated evidence in support of the idea that the components of the UPP often have disparate local roles in different neuronal compartments rather than a single cell-wide function.
Collapse
Affiliation(s)
- Ashok N Hegde
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences Winston-Salem, NC, USA
| | - Kathryn A Haynes
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences Winston-Salem, NC, USA
| | - Svitlana V Bach
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences Winston-Salem, NC, USA
| | - Brenna C Beckelman
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences Winston-Salem, NC, USA
| |
Collapse
|
17
|
Proteasome modulates positive and negative translational regulators in long-term synaptic plasticity. J Neurosci 2014; 34:3171-82. [PMID: 24573276 DOI: 10.1523/jneurosci.3291-13.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Proteolysis by the ubiquitin-proteasome pathway appears to have a complex role in synaptic plasticity, but its various functions remain to be elucidated. Using late phase long-term potentiation (L-LTP) in the hippocampus of the mouse as a model for long-term synaptic plasticity, we previously showed that inhibition of the proteasome enhances induction but blocks maintenance of L-LTP. In this study, we investigated the possible mechanisms by which proteasome inhibition has opposite effects on L-LTP induction and maintenance. Our results show that inhibiting phosphatidyl inositol-3 kinase or blocking the interaction between eukaryotic initiation factors 4E (eIF4E) and 4G (eIF4G) reduces the enhancement of L-LTP induction brought about by proteasome inhibition suggesting interplay between proteolysis and the signaling pathway mediated by mammalian target of rapamycin (mTOR). Also, proteasome inhibition leads to accumulation of translational activators in the mTOR pathway such as eIF4E and eukaryotic elongation factor 1A (eEF1A) early during L-LTP causing increased induction. Furthermore, inhibition of the proteasome causes a buildup of translational repressors, such as polyadenylate-binding protein interacting protein 2 (Paip2) and eukaryotic initiation factor 4E-binding protein 2 (4E-BP2), during late stages of L-LTP contributing to the blockade of L-LTP maintenance. Thus, the proteasome plays a critical role in regulating protein synthesis during L-LTP by tightly controlling translation. Our results provide novel mechanistic insights into the interplay between protein degradation and protein synthesis in long-term synaptic plasticity.
Collapse
|
18
|
Abstract
Bacillus anthracis, the causative agent of anthrax, has become an increasingly important scientific topic due to its potential role in bioterrorism. The lethal toxin (LT) of B. anthracis consists of lethal factor (LF) and a protective antigen (PA). This study investigated whether only lethal factor was efficient as a hepatotoxin in the absence of the PA. To achieve this aim, LF (100 µg/kg body weight, dissolved in sterile distilled water) or distilled water vehicle were intraperitoneally injected once into adult rats. At 24 h post-injection, the hosts were euthanized and their livers removed and tissue samples examined under light and electron microscopes. As a result of LF application, hepatic injury - including cytoplasmic and nuclear damage in hepatocytes, sinusoidal dilatation, and hepatocellular lysis - became apparent. Further, light microscopic analyses of liver sections from the LF-injected rats revealed ballooning degeneration and cytoplasmic loss within hepatocytes, as well as peri-sinusoidal inflammation. Additionally, an increase in the numbers of Kupffer cells was evident. Common vascular injuries were also found in the liver samples; these injuries caused hypoxia and pathological changes. In addition, some cytoplasmic and nuclear changes were detected within the liver ultrastructure. The results of these studies allow one to suggest that LF could be an effective toxicant alone and that PA might act in situ to modify the effect of this agent (or the reverse situation wherein LF modifies effects of PA) such that lethality results.
Collapse
Affiliation(s)
- Berrin Zuhal Altunkaynak
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University , Samsun , Turkey and
| | | |
Collapse
|
19
|
Leysath CE, Phillips DD, Crown D, Fattah RJ, Moayeri M, Leppla SH. Anthrax edema factor toxicity is strongly mediated by the N-end rule. PLoS One 2013; 8:e74474. [PMID: 24015319 PMCID: PMC3755998 DOI: 10.1371/journal.pone.0074474] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/30/2013] [Indexed: 11/29/2022] Open
Abstract
Anthrax edema factor (EF) is a calmodulin-dependent adenylate cyclase that converts adenosine triphosphate (ATP) into 3’–5’-cyclic adenosine monophosphate (cAMP), contributing to the establishment of Bacillus anthracis infections and the resulting pathophysiology. We show that EF adenylate cyclase toxin activity is strongly mediated by the N-end rule, and thus is dependent on the identity of the N-terminal amino acid. EF variants having different N-terminal residues varied by more than 100-fold in potency in cultured cells and mice. EF variants having unfavorable, destabilizing N-terminal residues showed much greater activity in cells when the E1 ubiquitin ligase was inactivated or when proteasome inhibitors were present. Taken together, these results show that EF is uniquely affected by ubiquitination and/or proteasomal degradation.
Collapse
Affiliation(s)
- Clinton E. Leysath
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Damilola D. Phillips
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Devorah Crown
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rasem J. Fattah
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen H. Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
20
|
Chemical genetics reveals a kinase-independent role for protein kinase R in pyroptosis. Nat Chem Biol 2013; 9:398-405. [PMID: 23603659 DOI: 10.1038/nchembio.1236] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/21/2013] [Indexed: 12/15/2022]
Abstract
Formation of the inflammasome, a scaffolding complex that activates caspase-1, is important in numerous diseases. Pyroptotic cell death induced by anthrax lethal toxin (LT) is a model for inflammasome-mediated caspase-1 activation. We discovered 7-desacetoxy-6,7-dehydrogedunin (7DG) in a phenotypic screen as a small molecule that protects macrophages from LT-induced death. Using chemical proteomics, we identified protein kinase R (PKR) as the target of 7DG and show that RNAi knockdown of PKR phenocopies treatment with 7DG. Further, we show that PKR's role in ASC assembly and caspase-1 activation induced by several different inflammasome stimuli is independent of PKR's kinase activity, demonstrating that PKR has a previously uncharacterized role in caspase-1 activation and pyroptosis that is distinct from its reported kinase-dependent roles in apoptosis and inflammasome formation in lipopolysaccharide-primed cells. Remarkably, PKR has different roles in two distinct cell death pathways and has a broad role in inflammasome function relevant in other diseases.
Collapse
|
21
|
Identification of survival factors in LPS-stimulated anthrax lethal toxin tolerant RAW 264.7 cells through proteomic approach. BIOCHIP JOURNAL 2013. [DOI: 10.1007/s13206-013-7112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Liao KC, Mogridge J. Activation of the Nlrp1b inflammasome by reduction of cytosolic ATP. Infect Immun 2013; 81:570-9. [PMID: 23230290 PMCID: PMC3553809 DOI: 10.1128/iai.01003-12] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/01/2012] [Indexed: 01/22/2023] Open
Abstract
The efficacy of the innate immune system depends on its ability to mount an appropriate response to diverse infections and damaging agents. Key components of this system are pattern recognition receptors that detect pathogen-associated and damage-associated molecular patterns (PAMPs and DAMPs). Nlrp1b is a pattern recognition receptor that forms a caspase-1 activation platform, known as an inflammasome, upon sensing the proteolytic activity of anthrax lethal toxin. The activation of caspase-1 leads to the release of proinflammatory cytokines that aid in the clearance of the anthrax infection. Here, we demonstrate that Nlrp1b also becomes activated in cells that are subjected to energy stress caused by metabolic inhibitors or by nutrient deprivation. Glucose starvation and hypoxia were used to correlate the level of cytosolic ATP to the degree of inflammasome activation. Because lowering the ratio of cytosolic ATP to AMP activates the main cellular energy sensor, AMP-activated protein kinase (AMPK), we assessed whether AMPK promoted inflammasome activity by using a combination of small interfering RNA (siRNA) and transfection of a dominant negative AMPK subunit. We found that AMPK promoted inflammasome activity, but activation of AMPK in the absence of ATP depletion was not sufficient for caspase-1-mediated pro-interleukin 1β (pro-IL-1β) processing. Finally, we found that mutation of the ATP-binding motif of Nlrp1b caused constitutive activation, suggesting that ATP might inhibit the Nlrp1b inflammasome instead of being required for its assembly.
Collapse
Affiliation(s)
- Kuo-Chieh Liao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
23
|
Rubert Pérez C, López-Pérez D, Chmielewski J, Lipton M. Small molecule inhibitors of anthrax toxin-induced cytotoxicity targeted against protective antigen. Chem Biol Drug Des 2012; 79:260-9. [PMID: 22146079 DOI: 10.1111/j.1747-0285.2011.01285.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two molecular scaffolds were designed using the CAVEAT molecular design package to inhibit the oligomerization of protective antigen (PA(63) ), a key protein component of anthrax toxin. The inhibitors were designed to prevent heptamerization of PA(63) by mimicking key residues of PA(63) needed for the intermolecular interactions that stabilize the heptamer. Using the scaffolds identified by CAVEAT, seven candidate inhibitors were synthesized and tested for their ability to inhibit anthrax toxin-induced cytotoxicity, with three of the agents demonstrating modest inhibition in murine J774A.1 macrophage cells.
Collapse
|
24
|
Gulder TAM, Moore BS. Salinosporamide natural products: Potent 20 S proteasome inhibitors as promising cancer chemotherapeutics. Angew Chem Int Ed Engl 2010; 49:9346-67. [PMID: 20927786 PMCID: PMC3103133 DOI: 10.1002/anie.201000728] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteasome inhibitors are rapidly evolving as potent treatment options in cancer therapy. One of the most promising drug candidates of this type is salinosporamide A from the bacterium Salinispora tropica. This marine natural product possesses a complex, densely functionalized γ-lactam-β-lactone pharmacophore, which is responsible for its irreversible binding to its target, the β subunit of the 20S proteasome. Salinosporamide A entered phase I clinical trials for the treatment of multiple myeloma only three years after its discovery. The strong biological activity and the challenging structure of this compound have fueled intense academic and industrial research in recent years, which has led to the development of more than ten syntheses, the elucidation of its biosynthetic pathway, and the generation of promising structure-activity relationships and oncological data. Salinosporamide A thus serves as an intriguing example of the successful interplay of modern drug discovery and biomedical research, medicinal chemistry and pharmacology, natural product synthesis and analysis, as well as biosynthesis and bioengineering.
Collapse
Affiliation(s)
- Tobias A. M. Gulder
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0204 (USA), Fax: (+1)858-534-1305, , Homepage: http://moorelab.ucsd.edu
| | - Bradley S. Moore
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0204 (USA), Fax: (+1)858-534-1305, , Homepage: http://moorelab.ucsd.edu
| |
Collapse
|
25
|
Gulder TAM, Moore BS. Salinosporamid-Naturstoffe: potente Inhibitoren des 20S-Proteasoms als vielversprechende Krebs-Chemotherapeutika. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201000728] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Muehlbauer SM, Lima H, Goldman DL, Jacobson LS, Rivera J, Goldberg MF, Palladino MA, Casadevall A, Brojatsch J. Proteasome inhibitors prevent caspase-1-mediated disease in rodents challenged with anthrax lethal toxin. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:735-43. [PMID: 20595632 DOI: 10.2353/ajpath.2010.090828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
NOD-like receptors (NLRs) and caspase-1 are critical components of innate immunity, yet their over-activation has been linked to a long list of microbial and inflammatory diseases, including anthrax. The Bacillus anthracis lethal toxin (LT) has been shown to activate the NLR Nalp1b and caspase-1 and to induce many symptoms of the anthrax disease in susceptible murine strains. In this study we tested whether it is possible to prevent LT-mediated disease by pharmacological inhibition of caspase-1. We found that caspase-1 and proteasome inhibitors blocked LT-mediated caspase-1 activation and cytolysis of LT-sensitive (Fischer and Brown-Norway) rat macrophages. The proteasome inhibitor NPI-0052 also prevented disease progression and death in susceptible Fischer rats and increased survival in BALB/c mice after LT challenge. In addition, NPI-0052 blocked rapid disease progression and death in susceptible Fischer rats and BALB/c mice challenged with LT. In contrast, Lewis rats, which harbor LT-resistant macrophages, showed no signs of caspase-1 activation after LT injection and did not exhibit rapid disease progression. Taken together, our findings indicate that caspase-1 activation is critical for rapid disease progression in rodents challenged with LT. Our studies indicate that pharmacological inhibition of NLR signaling and caspase-1 can be used to treat inflammatory diseases.
Collapse
Affiliation(s)
- Stefan M Muehlbauer
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Proteolysis by the ubiquitin-proteasome pathway (UPP) has emerged as a new molecular mechanism that controls wide-ranging functions in the nervous system, including fine-tuning of synaptic connections during development and synaptic plasticity in the adult organism. In the UPP, attachment of a small protein, ubiquitin, tags the substrates for degradation by a multisubunit complex called the proteasome. Linkage of ubiquitin to protein substrates is highly specific and occurs through a series of well-orchestrated enzymatic steps. The UPP regulates neurotransmitter receptors, protein kinases, synaptic proteins, transcription factors, and other molecules critical for synaptic plasticity. Accumulating evidence indicates that the operation of the UPP in neurons is not homogeneous and is subject to tightly managed local regulation in different neuronal subcompartments. Investigations on both invertebrate and vertebrate model systems have revealed local roles for enzymes that attach ubiquitin to substrate proteins, as well as for enzymes that remove ubiquitin from substrates. The proteasome also has been shown to possess disparate functions in different parts of the neuron. Here I give a broad overview of the role of the UPP in synaptic plasticity and highlight the local roles and regulation of the proteolytic pathway in neurons.
Collapse
Affiliation(s)
- Ashok N Hegde
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| |
Collapse
|
28
|
The role of NF-kappaB and H3K27me3 demethylase, Jmjd3, on the anthrax lethal toxin tolerance of RAW 264.7 cells. PLoS One 2010; 5:e9913. [PMID: 20360974 PMCID: PMC2848010 DOI: 10.1371/journal.pone.0009913] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 03/05/2010] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND In Bacillus anthracis, lethal toxin (LeTx) is a critical virulence factor that causes immune suppression and toxic shock in the infected host. NF-kappaB is a key mediator of the inflammatory response and is crucial for the plasticity of first level immune cells such as macrophages, monocytes and neutrophils. In macrophages, this inflammatory response, mediated by NF-kappaB, can regulate host defense against invading pathogens. A Jumonji C family histone 3 lysine-27 (H3K27) demethylase, Jmjd3, plays a crucial role in macrophage plasticity and inflammation. Here we report that NF-kappaB and Jmjd3 can modulate the LeTx intoxication resistance of RAW 264.7 cells. PRINCIPAL FINDINGS This study showed that a 2 h exposure of macrophages to LeTx caused substantial cell death with a survival rate of around 40%. The expression of the Jmjd3 gene was induced 8-fold in intoxication-resistant cells generated by treatment with lipopolysaccharides of RAW 264.7 cells. These intoxication-resistant cell lines (PLx intox and PLxL intox) were maintained for 8 passages and had a survival rate of around 100% on secondary exposure to LeTx and lipopolysaccharides. Analysis of NF-kappaB gene expression showed that the expression of p100, p50 and p65 was induced around 20, 7 and 4 fold, respectively, in both of the intoxication-resistant cell lines following a 2 h treatment with PLxL (0.1+0.1+1 microg/ml). In contrast, these NF-kappaB genes were not induced following treatment with PLx treatment at the same concentrations. CONCLUSIONS Although LeTx influences macrophage physiology and causes defects of some key signaling pathways such as GSK3beta which contributes to cytotoxicity, these results indicate that modulation of NF-kappaB by p50, p100 and Jmjd3 could be vital for the recovery of murine macrophages from exposure to the anthrax lethal toxin.
Collapse
|
29
|
Averette KM, Pratt MR, Yang Y, Bassilian S, Whitelegge JP, Loo JA, Muir TW, Bradley KA. Anthrax lethal toxin induced lysosomal membrane permeabilization and cytosolic cathepsin release is Nlrp1b/Nalp1b-dependent. PLoS One 2009; 4:e7913. [PMID: 19924255 PMCID: PMC2775945 DOI: 10.1371/journal.pone.0007913] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 10/18/2009] [Indexed: 12/15/2022] Open
Abstract
NOD-like receptors (NLRs) are a group of cytoplasmic molecules that recognize microbial invasion or 'danger signals'. Activation of NLRs can induce rapid caspase-1 dependent cell death termed pyroptosis, or a caspase-1 independent cell death termed pyronecrosis. Bacillus anthracis lethal toxin (LT), is recognized by a subset of alleles of the NLR protein Nlrp1b, resulting in pyroptotic cell death of macrophages and dendritic cells. Here we show that LT induces lysosomal membrane permeabilization (LMP). The presentation of LMP requires expression of an LT-responsive allele of Nlrp1b, and is blocked by proteasome inhibitors and heat shock, both of which prevent LT-mediated pyroptosis. Further the lysosomal protease cathepsin B is released into the cell cytosol and cathepsin inhibitors block LT-mediated cell death. These data reveal a role for lysosomal membrane permeabilization in the cellular response to bacterial pathogens and demonstrate a shared requirement for cytosolic relocalization of cathepsins in pyroptosis and pyronecrosis.
Collapse
Affiliation(s)
- Kathleen M. Averette
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Matthew R. Pratt
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, New York, United States of America
| | - Yanan Yang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sara Bassilian
- The Pasarow Mass Spectrometry Laboratory, The NPI-Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Julian P. Whitelegge
- The Pasarow Mass Spectrometry Laboratory, The NPI-Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tom W. Muir
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, New York, United States of America
| | - Kenneth A. Bradley
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Ha SD, Ham B, Mogridge J, Saftig P, Lin S, Kim SO. Cathepsin B-mediated autophagy flux facilitates the anthrax toxin receptor 2-mediated delivery of anthrax lethal factor into the cytoplasm. J Biol Chem 2009; 285:2120-9. [PMID: 19858192 DOI: 10.1074/jbc.m109.065813] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anthrax lethal toxin (LeTx) is a virulence factor secreted by Bacillus anthracis and has direct cytotoxic effects on most cells once released into the cytoplasm. The cytoplasmic delivery of the proteolytically active component of LeTx, lethal factor (LF), is carried out by the transporter component, protective antigen, which interacts with either of two known surface receptors known as anthrax toxin receptor (ANTXR) 1 and 2. We found that the cytoplasmic delivery of LF by ANTXR2 was mediated by cathepsin B (CTSB) and required lysosomal fusion with LeTx-containing endosomes. Also, binding of protective antigen to ANXTR1 or -2 triggered autophagy, which facilitated the cytoplasmic delivery of ANTXR2-associated LF. We found that whereas cells treated with the membrane-permeable CTSB inhibitor CA074-Me- or CTSB-deficient cells had no defect in fusion of LC3-containing autophagic vacuoles with lysosomes, autophagic flux was significantly delayed. These results suggested that the ANTXR2-mediated cytoplasmic delivery of LF was enhanced by CTSB-dependent autophagic flux.
Collapse
Affiliation(s)
- Soon-Duck Ha
- Department of Microbiology and Immunology, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G2V4, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Koçer SS, Matic M, Ingrassia M, Walker SG, Roemer E, Licul G, Simon SR. Effects of anthrax lethal toxin on human primary keratinocytes. J Appl Microbiol 2009; 105:1756-67. [PMID: 19120626 DOI: 10.1111/j.1365-2672.2008.03806.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS To investigate the effects of anthrax lethal toxin (LeTx) on human primary keratinocytes. METHODS AND RESULTS We show here that human primary keratinocytes are resistant to LeTx-triggered cytotoxicity. All but one of the MEKs (mitogen-activated protein kinase kinases) are cleaved within 3 h, and the cleavage of MEKs in keratinocytes leads to their subsequent proteasome-mediated degradation at different rates. Moreover, LeTx reduced the concentration of several cytokines except RANTES in culture. CONCLUSIONS Our results indicate that primary keratinocytes are resistant to LeTx cytotoxicity, and MEK cleavage does not correlate with LeTx cytotoxicity. Although LeTx is considered as an anti-inflammatory agent, it upregulates RANTES. SIGNIFICANCE AND IMPACT OF THE STUDY According to a current view, the action of LeTx results in downregulation of the inflammatory response, as evidenced by diminished expression of several inflammatory biomarkers. Paradoxically, LeTx has been reported to attract neutrophils to cutaneous infection sites. This paper, which shows that RANTES, a chemoattractant for immune cells, is upregulated after exposure of keratinocytes to LeTx, although a number of other markers of the inflammatory response are downregulated. Our results might explain why the exposure of keratinocytes to LeTx results in the recruitment of neutrophils to cutaneous infection sites, while the expression of several inflammatory biomarkers is diminished.
Collapse
Affiliation(s)
- S S Koçer
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, New York, NY 11794-8691, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The innate immune system is critical in recognizing bacterial and viral infections to evoke a proper immune response. Certain members of the intracellular nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family detect microbial components in the cytosol and trigger the assembly of large caspase-1-activating complexes termed inflammasomes. Autoproteolytic maturation of caspase-1 zymogens within these inflammasomes leads to maturation and secretion of the pro-inflammatory cytokines interleukin-1 beta (IL-1 beta) and IL-18. The NLR proteins ICE protease-activating factor (IPAF), NALP1b (NACHT domain-, leucine-rich repeat-, and PYD-containing protein 1b), and cryopyrin/NALP3 assemble caspase-1-activating inflammasomes in a stimulus-dependent manner. Bacterial flagellin is sensed by IPAF, whereas mouse NALP1b detects anthrax lethal toxin. Cryopyrin/NALP3 mediates caspase-1 activation in response to a wide variety of microbial components and in response to crystalline substances such as the endogenous danger signal uric acid. Genetic variations in Nalp1 and cryopyrin/Nalp3 are associated with autoinflammatory disorders and increased susceptibility to microbial infection. Further understanding of inflammasomes and their role in innate immunity should provide new insights into the mechanisms of host defense and the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Mohamed Lamkanfi
- Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA
| | | |
Collapse
|
33
|
Moayeri M, Leppla SH. Cellular and systemic effects of anthrax lethal toxin and edema toxin. Mol Aspects Med 2009; 30:439-55. [PMID: 19638283 DOI: 10.1016/j.mam.2009.07.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 07/21/2009] [Indexed: 12/21/2022]
Abstract
Anthrax lethal toxin (LT) and edema toxin (ET) are the major virulence factors of anthrax and can replicate the lethality and symptoms associated with the disease. This review provides an overview of our current understanding of anthrax toxin effects in animal models and the cytotoxicity (necrosis and apoptosis) induced by LT in different cells. A brief reexamination of early historic findings on toxin in vivo effects in the context of our current knowledge is also presented.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Bacterial Toxins and Therapeutics Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 33, Room 1W20B, Bethesda, MD 20892, USA.
| | | |
Collapse
|
34
|
Panchal RG, Ulrich RL, Bradfute SB, Lane D, Ruthel G, Kenny TA, Iversen PL, Anderson AO, Gussio R, Raschke WC, Bavari S. Reduced expression of CD45 protein-tyrosine phosphatase provides protection against anthrax pathogenesis. J Biol Chem 2009; 284:12874-85. [PMID: 19269962 DOI: 10.1074/jbc.m809633200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The modulation of cellular processes by small molecule inhibitors, gene inactivation, or targeted knockdown strategies combined with phenotypic screens are powerful approaches to delineate complex cellular pathways and to identify key players involved in disease pathogenesis. Using chemical genetic screening, we tested a library of known phosphatase inhibitors and identified several compounds that protected Bacillus anthracis infected macrophages from cell death. The most potent compound was assayed against a panel of sixteen different phosphatases of which CD45 was found to be most sensitive to inhibition. Testing of a known CD45 inhibitor and antisense phosphorodiamidate morpholino oligomers targeting CD45 also protected B. anthracis-infected macrophages from cell death. However, reduced CD45 expression did not protect anthrax lethal toxin (LT) treated macrophages, suggesting that the pathogen and independently added LT may signal through distinct pathways. Subsequent, in vivo studies with both gene-targeted knockdown of CD45 and genetically engineered mice expressing reduced levels of CD45 resulted in protection of mice after infection with the virulent Ames B. anthracis. Intermediate levels of CD45 expression were critical for the protection, as mice expressing normal levels of CD45 or disrupted CD45 phosphatase activity or no CD45 all succumbed to this pathogen. Mechanism-based studies suggest that the protection provided by reduced CD45 levels results from regulated immune cell homeostasis that may diminish the impact of apoptosis during the infection. To date, this is the first report demonstrating that reduced levels of host phosphatase CD45 modulate anthrax pathogenesis.
Collapse
Affiliation(s)
- Rekha G Panchal
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702-5011, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Levin TC, Wickliffe KE, Leppla SH, Moayeri M. Heat shock inhibits caspase-1 activity while also preventing its inflammasome-mediated activation by anthrax lethal toxin. Cell Microbiol 2008; 10:2434-46. [PMID: 18671821 DOI: 10.1111/j.1462-5822.2008.01220.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Anthrax lethal toxin (LT) rapidly kills macrophages from certain mouse strains in a mechanism dependent on the breakdown of unknown protein(s) by the proteasome, formation of the Nalp1b (NLRP1b) inflammasome and subsequent activation of caspase-1. We report that heat-shocking LT-sensitive macrophages rapidly protects them against cytolysis by inhibiting caspase-1 activation without upstream effects on LT endocytosis or cleavage of the toxin's known cytosolic substrates (mitogen-activated protein kinases). Heat shock protection against LT occurred through a mechanism independent of de novo protein synthesis, HSP90 activity, p38 activation or proteasome inhibition and was downstream of mitogen-activated protein kinase cleavage and degradation of an unknown substrate by the proteasome. The heat shock inhibition of LT-mediated caspase-1 activation was not specific to the Nalp1b (NLRP1b) inflammasome, as heat shock also inhibited Nalp3 (NLRP3) inflammasome-mediated caspase-1 activation in macrophages. We found that heat shock induced pro-caspase-1 association with a large cellular complex that could prevent its activation. Additionally, while heat-shocking recombinant caspase-1 did not affect its activity in vitro, lysates from heat-shocked cells completely inhibited recombinant active caspase-1 activity. Our results suggest that heat shock inhibition of active caspase-1 can occur independently of an inflammasome platform, through a titratable factor present within intact, functioning heat-shocked cells.
Collapse
Affiliation(s)
- Tera C Levin
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
36
|
Giguere CJ, Schnellmann RG. Limitations of SLLVY-AMC in calpain and proteasome measurements. Biochem Biophys Res Commun 2008; 371:578-81. [PMID: 18457661 DOI: 10.1016/j.bbrc.2008.04.133] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 04/23/2008] [Indexed: 12/22/2022]
Abstract
Succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin (SLLVY-AMC) is a fluorogenic substrate used to measure calpain activity and the "chymotrypsin-like" activity of the 20s proteasome. The goal of this study was to determine the relative role of calpains and the proteasome on SLLVY-AMC cleavage in attached and suspended renal epithelial cells (NRK-52E). The proteasome inhibitor epoxomicin did not inhibit purified calpain 1 or calpain 10 cleavage of SLLVY-AMC. Epoxomicin inhibited 11% of total SLLVY-AMC cleavage in attached cells and increasing concentrations of the calpain inhibitor calpeptin were additive. In contrast, cell suspensions had a 3.5-fold higher rate of SLLVY-AMC cleavage, epoxomicin inhibited cleavage 65% and calpeptin inhibited cleavage an additional 26%. Calpeptin alone also inhibited proteasomal activity. In conclusion, (1) SLLVY-AMC is cleaved in cells by calpain and the proteasome, (2) proteasome activity can be measured with epoxomicin, and (3) calpeptin can inhibit proteasome activity in some cases; thus limiting the use of SLLVY-AMC and calpeptin.
Collapse
Affiliation(s)
- Christopher J Giguere
- Center for Cell Death, Injury, and Regeneration, Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina, Charleston, SC 29425-1400, USA
| | | |
Collapse
|
37
|
Dong C, Upadhya SC, Ding L, Smith TK, Hegde AN. Proteasome inhibition enhances the induction and impairs the maintenance of late-phase long-term potentiation. Learn Mem 2008; 15:335-47. [PMID: 18441292 PMCID: PMC2364605 DOI: 10.1101/lm.984508] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 03/20/2008] [Indexed: 01/21/2023]
Abstract
Protein degradation by the ubiquitin-proteasome pathway plays important roles in synaptic plasticity, but the molecular mechanisms by which proteolysis regulates synaptic strength are not well understood. We investigated the role of the proteasome in hippocampal late-phase long-term potentiation (L-LTP), a model for enduring synaptic plasticity. We show here that inhibition of the proteasome enhances the induction of L-LTP, but inhibits its maintenance. Proteasome inhibitor-mediated enhancement of the early part of L-LTP requires activation of NMDA receptors and the cAMP-dependent protein kinase. Augmentation of L-LTP induction by proteasome inhibition is blocked by a protein synthesis inhibitor anisomycin and is sensitive to the drug rapamycin. Our findings indicate that proteasome inhibition increases the induction of L-LTP by stabilizing locally translated proteins in dendrites. In addition, our data show that inhibition of the proteasome blocks transcription of brain-derived neurotrophic factor (BDNF), which is a cAMP-responsive element-binding protein (CREB)-inducible gene. Furthermore, our results demonstrate that the proteasome inhibitors block degradation of ATF4, a CREB repressor. Thus, proteasome inhibition appears to hinder CREB-mediated transcription. Our results indicate that blockade of proteasome activity obstructs the maintenance of L-LTP by interfering with transcription as well as translation required to sustain L-LTP. Thus, proteasome-mediated proteolysis has different roles during the induction and the maintenance of L-LTP.
Collapse
Affiliation(s)
- Chenghai Dong
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | - Sudarshan C. Upadhya
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | - Lan Ding
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | - Thuy K. Smith
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | - Ashok N. Hegde
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| |
Collapse
|
38
|
Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms. Proc Natl Acad Sci U S A 2008; 105:4312-7. [PMID: 18337499 DOI: 10.1073/pnas.0707370105] [Citation(s) in RCA: 319] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Caspase-1 cleaves the inactive IL-1beta and IL-18 precursors into active inflammatory cytokines. In Salmonella-infected macrophages, caspase-1 also mediates a pathway of proinflammatory programmed cell death termed "pyroptosis." We demonstrate active caspase-1 diffusely distributed in the cytoplasm and localized in discrete foci within macrophages responding to either Salmonella infection or intoxication by Bacillus anthracis lethal toxin (LT). Both stimuli triggered caspase-1-dependent lysis in macrophages and dendritic cells. Activation of caspase-1 by LT required binding, uptake, and endosome acidification to mediate translocation of lethal factor (LF) into the host cell cytosol. Catalytically active LF cleaved cytosolic substrates and activated caspase-1 by a mechanism involving proteasome activity and potassium efflux. LT activation of caspase-1 is known to require the inflammasome adapter Nalp1. In contrast, Salmonella infection activated caspase-1 through an independent pathway requiring the inflammasome adapter Ipaf. These distinct mechanisms of caspase-1 activation converged on a common pathway of caspase-1-dependent cell death featuring DNA cleavage, cytokine activation, and, ultimately, cell lysis resulting from the formation of membrane pores between 1.1 and 2.4 nm in diameter and pathological ion fluxes that can be blocked by glycine. These findings demonstrate that distinct activation pathways elicit the conserved cell death effector mechanism of caspase-1-mediated pyroptosis and support the notion that this pathway of proinflammatory programmed cell death is broadly relevant to cell death and inflammation invoked by diverse stimuli.
Collapse
|
39
|
Li H, Soroka SD, Taylor TH, Stamey KL, Stinson KW, Freeman AE, Abramson DR, Desai R, Cronin LX, Oxford JW, Caba J, Pleatman C, Pathak S, Schmidt DS, Semenova VA, Martin SK, Wilkins PP, Quinn CP. Standardized, mathematical model-based and validated in vitro analysis of anthrax lethal toxin neutralization. J Immunol Methods 2008; 333:89-106. [PMID: 18304568 DOI: 10.1016/j.jim.2008.01.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 01/11/2008] [Accepted: 01/17/2008] [Indexed: 01/15/2023]
Abstract
Quantification of anthrax lethal toxin (LTx) neutralization activity (TNA) is pivotal in assessing protective antibody responses to anthrax vaccines and for evaluation of immunotherapies for anthrax. We have adapted and redesigned the TNA assay to establish a unifying, standardized, quantitative and validated technology platform for LTx neutralization in the J774A.1 murine cell line. Critical design features of this platform are 1) the application of a free-form or constrained 4 parameter logistic (4-PL) function to model neutralization responses within and between boundary limits of 100% cell survival and 95% cell lysis and 2) to exploit innovative assay curve recognition algorithms for interpretive endpoints. The assay was validated using human serum ED50 (dilution of serum effecting 50% neutralization) as the primary reportable value (RV). Intra-operator and intermediate precision, expressed as the coefficient of variation (%CV), were high at 10.5-15.5%CV and 13.5-14.5%CV respectively. TNA assay dilutional linearity was demonstrated for human sera using linear regression analysis of log(10) transformed data with slope=0.99, intercept=-0.03 and r(2)=0.985. Assay accuracy, inferred from the precision and linearity data and using a spike-recovery approach, was high with a percent error (%E) range of only 3.4-20.5%E. The lower limit of detection (LLOD) was ED50=12 and the lower limit of quantification (LLOQ) was ED50=36. The cell-based assay was robust, tolerating incubation temperatures from 35 to 39 degrees C, CO(2) concentrations from 3% to 7% and reporter substrate (MTT) concentrations of 2.5-7.5 mg/ml. Strict assay quality control parameters were met for up to 25 cell culture passages. The long term (50 month) assay stability, determined using human reference standards AVR414 and AVR801, indicated high precision, consistent accuracy and no detectable assay drift. A customized software program provided two additional assay metrics, Quantification Titer (QT) and Threshold Titer (TT), both of which demonstrate acceptable accuracy, precision and dilutional linearity. The TT was also used to establish the assay reactivity threshold (RT). The application of the assay to sera from humans, Rhesus macaques and rabbits was demonstrated separately and by aggregate dilutional linearity analysis of the ED50 (slope=0.98, intercept=0.003, r(2)=0.989). We propose this TNA assay format with a qualified standard reference serum and customized interpretive software as a unifying platform technology for determination of functional serologic responses to anthrax vaccines and for evaluation of anthrax immunotherapeutics.
Collapse
Affiliation(s)
- Han Li
- Microbial Pathogenesis & Immune Response Laboratory, Meningitis and Vaccine Preventable Diseases Branch, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wickliffe KE, Leppla SH, Moayeri M. Killing of macrophages by anthrax lethal toxin: involvement of the N-end rule pathway. Cell Microbiol 2008; 10:1352-62. [PMID: 18266992 DOI: 10.1111/j.1462-5822.2008.01131.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Macrophages from certain inbred mouse strains are rapidly killed (< 90 min) by anthrax lethal toxin (LT). LT cleaves cytoplasmic MEK proteins at 20 min and induces caspase-1 activation in sensitive macrophages at 50-60 min, but the mechanism of LT-induced death is unknown. Proteasome inhibitors block LT-mediated caspase-1 activation and can protect against cell death, indicating that the degradation of at least one cellular protein is required for LT-mediated cell death. Proteins can be degraded by the proteasome via the N-end rule, in which a protein's stability is determined by its N-terminal residue. Using amino acid derivatives that act as inhibitors of this pathway, we show that the N-end rule is required for LT-mediated caspase-1 activation and cell death. We also found that bestatin methyl ester, an aminopeptidase inhibitor protects against LT in vitro and in vivo and that the different inhibitors of the protein degradation pathway act synergistically in protecting against LT. We identify c-IAP1, a mammalian member of the inhibitor of apoptosis protein (IAP) family, as a novel N-end rule substrate degraded in macrophages treated with LT. We also show that LT-induced c-IAP1 degradation is independent of the IAP-antagonizing proteins Smac/DIABLO and Omi/HtrA2, but dependent on caspases.
Collapse
Affiliation(s)
- Katherine E Wickliffe
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
41
|
Chapelsky S, Batty S, Frost M, Mogridge J. Inhibition of anthrax lethal toxin-induced cytolysis of RAW264.7 cells by celastrol. PLoS One 2008; 3:e1421. [PMID: 18183301 PMCID: PMC2170518 DOI: 10.1371/journal.pone.0001421] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 12/17/2007] [Indexed: 01/23/2023] Open
Abstract
Background Bacillus anthracis is the bacterium responsible for causing anthrax. The ability of B. anthracis to cause disease is dependent on a secreted virulence factor, lethal toxin, that promotes survival of the bacteria in the host by impairing the immune response. A well-studied effect of lethal toxin is the killing of macrophages, although the molecular mechanisms involved have not been fully characterized. Methodology/Principal Findings Here, we demonstrate that celastrol, a quinone methide triterpene derived from a plant extract used in herbal medicine, inhibits lethal toxin-induced death of RAW264.7 murine macrophages. Celastrol did not prevent cleavage of mitogen activated protein kinase kinase 1, a cytosolic target of the toxin, indicating that it did not inhibit the uptake or catalytic activity of lethal toxin. Surprisingly, celastrol conferred almost complete protection when it was added up to 1.5 h after intoxication, indicating that it could rescue cells in the late stages of intoxication. Since the activity of the proteasome has been implicated in intoxication using other pharmacological agents, we tested whether celastrol blocked proteasome activity. We found that celastrol inhibited the proteasome-dependent degradation of proteins in RAW264.7 cells, but only slightly inhibited proteasome-mediated cleavage of fluorogenic substrates in vitro. Furthermore, celastrol blocked stimulation of IL-18 processing, indicating that celastrol acted upstream of inflammasome activation. Conclusions/Significance This work identifies celastrol as an inhibitor of lethal toxin-mediated macrophage lysis and suggests an inhibitory mechanism involving inhibition of the proteasome pathway.
Collapse
Affiliation(s)
- Sarah Chapelsky
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Batty
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mia Frost
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jeremy Mogridge
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Squires RC, Muehlbauer SM, Brojatsch J. Proteasomes control caspase-1 activation in anthrax lethal toxin-mediated cell killing. J Biol Chem 2007; 282:34260-7. [PMID: 17878154 DOI: 10.1074/jbc.m705687200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Activation of caspase-1 through the inflammasome protein Nalp1b controls anthrax lethal toxin (LT)-induced necrosis in murine macrophages. In this study we analyzed physiological changes controlled by caspase-1 in LT-treated murine macrophages. The caspase-1 inhibitor Boc-D-cmk blocked caspase-1 activity and membrane impairment in LT-treated cells. To determine the relationship between caspase-1 activation and membrane integrity, we added Boc-D-cmk to J774A.1 macrophages at different time points following LT exposure. Remarkably, Boc-D-cmk rescued LT-treated macrophages, even when added at the peak of caspase-1 activation. Late addition of the caspase-1 inhibitor reversed the losses of plasma membrane integrity and metabolic activity in these cells. Similar results were obtained with the proteasome inhibitor MG132, one of the most potent inhibitors of LT toxicity. LT-treated macrophages displaying evidence of membrane impairment recovered upon the addition of MG132, mirroring the Boc-D-cmk response. Strikingly, late addition of proteasome inhibitors also abrogated caspase-1 activity in LT-treated macrophages. Proteasomal control of caspase-1 activity and membrane impairment, however, was restricted to LT-induced cytolysis, because proteasome inhibitors did not block caspase-1 activation and cell death triggered by lipopolysaccharide and nigericin. Our findings indicate that proteasome inhibitors do not target caspase-1 directly but instead control an upstream event in LT-treated macrophages leading to caspase-1 activation. Taken together, caspase-1-mediated necrosis appears to be tightly controlled and differentially regulated by proteasomes depending on the source of caspase-1 induction.
Collapse
Affiliation(s)
- Raynal C Squires
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
43
|
Wickliffe KE, Leppla SH, Moayeri M. Anthrax lethal toxin-induced inflammasome formation and caspase-1 activation are late events dependent on ion fluxes and the proteasome. Cell Microbiol 2007; 10:332-43. [PMID: 17850338 PMCID: PMC2515708 DOI: 10.1111/j.1462-5822.2007.01044.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Anthrax lethal toxin (LT) is cytotoxic to macrophages from certain inbred mouse strains. The gene controlling macrophage susceptibility to LT is Nalp1b. Nalp1b forms part of the inflammasome, a multiprotein complex involved in caspase-1 activation and release of interleukin (IL)-1beta and IL-18. We confirm the role of caspase-1 in LT-mediated death by showing that caspase inhibitors differentially protected cells against LT, with the degree of protection corresponding to each compound's ability to inhibit caspase-1. Caspase-1 activation and cytokine processing and release were late events inhibited by elevated levels of KCl and sucrose, by potassium channel blockers, and by proteasome inhibitors, suggesting that inflammasome formation requires a protein-degradation event and occurs downstream of LT-mediated potassium efflux. In addition, IL-18 and IL-1beta release was dependent on cell death, indicating that caspase-1-mediated cytotoxicity is independent of these cytokines. Finally, inducing NALP3-inflammasome formation in LT-resistant macrophages did not sensitize cells to LT, suggesting that general caspase-1 activation cannot account for sensitivity to LT and that a Nalp1b-mediated event is specifically required for death. Our data indicate that inflammasome formation is a contributing, but not initiating, event in LT-mediated cytotoxicity and that earlier LT-mediated events leading to ion fluxes are required for death.
Collapse
Affiliation(s)
| | | | - Mahtab Moayeri
- Corresponding Author Dr. Mahtab Moayeri Building 33, Room 1W20B National Institutes of Health Bethesda, MD 20892 Phone: 301-496-1821 Fax: 301-480-0326
| |
Collapse
|
44
|
Banan A, Keshavarzian A, Zhang L, Shaikh M, Forsyth CB, Tang Y, Fields JZ. NF-kappaB activation as a key mechanism in ethanol-induced disruption of the F-actin cytoskeleton and monolayer barrier integrity in intestinal epithelium. Alcohol 2007; 41:447-60. [PMID: 17869053 DOI: 10.1016/j.alcohol.2007.07.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 07/02/2007] [Accepted: 07/02/2007] [Indexed: 12/23/2022]
Abstract
Intestinal barrier disruption has been implicated in several intestinal and systemic disorders including alcoholic liver disease (ALD). Using monolayers of intestinal (Caco-2) cells, we showed that ethanol (EtOH) disrupts the barrier integrity via destabilization of the cytoskeleton. Because proinflammatory conditions are associated with activation of NF-kappa B (NF-kappaB), we hypothesized that EtOH induces disruption of cytoskeletal assembly and barrier integrity by activating NF-kappaB. Parental cells were pretreated with pharmacological modulators of NF-kappaB. Other cells were stably transfected with a dominant negative mutant for the NF-kappaB inhibitor, I-kappaBalpha. Monolayers of each cell type were exposed to EtOH and we then monitored monolayer barrier integrity (permeability); cytoskeletal stability and molecular dynamics (confocal microscopy and immunoblotting); intracellular levels of the I-kappaBalpha (immunoblotting); subcellular distribution and activity of NF-kappaB (immunoblotting and sensitive ELISA); and intracellular alterations in the 43kDa protein of the actin cytoskeleton, polymerized F-actin, and monomeric G-actin (SDS-PAGE fractionation). EtOH caused destabilizing alterations, including I-kappaBalpha degradation, NF-kappaB nuclear translocation, NF-kappaB subunit (p50 and p65) activation, actin disassembly (upward arrow G-, downward arrow F-), actin cytoskeleton instability, and barrier disruption. Inhibitors of NF-kappaB and stabilizers of I-kappaBalpha (e.g., MG-132, lactacystin, etc) prevented NF-kappaB activation while protecting against EtOH-induced injury. In transfected I-kappaBalpha mutant clones, stabilization of I-kappaBalpha to inactivate NF-kappaB protected against all measures of EtOH-induced injury. Our data support several novel mechanisms where NF-kappaB can affect the molecular dynamics of the F-actin cytoskeleton and intestinal barrier integrity under conditions of EtOH injury. (1) EtOH induces disruption of the F-actin cytoskeleton and of intestinal barrier integrity, in part, through I-kappaBalpha degradation and NF-kappaB activation; (2) The mechanism underlying this pathophysiological effect of the NF-kappaB appears to involve instability of the assembly of the subunit components of actin network.
Collapse
Affiliation(s)
- A Banan
- Department of Internal Medicine, Section of Gastroenterology & Nutrition, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Ha SD, Ng D, Lamothe J, Valvano MA, Han J, Kim SO. Mitochondrial Proteins Bnip3 and Bnip3L Are Involved in Anthrax Lethal Toxin-induced Macrophage Cell Death. J Biol Chem 2007; 282:26275-83. [PMID: 17623653 DOI: 10.1074/jbc.m703668200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Anthrax lethal toxin (LeTx) induces rapid cell death of RAW246.7 macrophages. We recently found that a small population of these macrophages is spontaneously and temporally refractory to LeTx-induced cytotoxicity. Analysis of genome-wide transcripts of a resistant clone before and after regaining LeTx sensitivity revealed that a reduction of two closely related mitochondrial proteins, Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (Bnip3) and Bnip3-like (Bnip3L), correlates with LeTx resistance. Down-regulation of Bnip3 and Bnip3L was also found in "toxin-induced resistance" whereby sublethal doses of LeTx induce resistance to subsequent exposure to cytolytic toxin doses. The role of Bnip3 and Bnip3L in LeTx-induced cell death was confirmed by showing that overexpression of either Bnip3 or Bnip3L rendered the resistant cells susceptible to LeTx, whereas down-regulation of Bnip3 and Bnip3L in wild-type macrophages conferred resistance. The down-regulation of Bnip3 and Bnip3L mRNAs by LeTx occurred at both transcriptional and mRNA stability levels. Inhibition of the p38 pathway by lethal factor was responsible for the destabilization of Bnip3/Bnip3L mRNAs as confirmed by showing that p38 inhibitors stabilized Bnip3 and Bnip3L mRNAs and conferred resistance to LeTx cytotoxicity. Therefore, Bnip3/Bnip3L play a crucial role in LeTx-induced cytotoxicity, and down-regulation of Bnip3/Bnip3L is a mechanism of spontaneous or toxin-induced resistance of macrophages.
Collapse
Affiliation(s)
- Soon-Duck Ha
- Department of Microbiology and Immunology, Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Fulco TO, Lopes UG, Sarno EN, Sampaio EP, Saliba AM. The proteasome function is required for Mycobacterium leprae-induced apoptosis and cytokine secretion. Immunol Lett 2007; 110:82-5. [PMID: 17462745 DOI: 10.1016/j.imlet.2007.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 02/22/2007] [Accepted: 02/22/2007] [Indexed: 10/23/2022]
Abstract
Previous studies have demonstrated the importance of the ubiquitin-proteasome pathway in the immune response to bacterial pathogens. To investigate the role of this system in the context of leprosy, Mycobacterium leprae-stimulated peripheral blood mononuclear cells (PBMC) were treated with the proteasome inhibitor MG132 to assess the levels of apoptosis and cytokine secretion. The results showed that the inhibition of proteasome activity significantly reduced M. leprae-mediated cell death. In addition, MG132 treatment led to a significant decrease in M. leprae-induced TNF-alpha and IL-10 secretion. Together, these results suggest that modulations of the ubiquitin-proteasome pathway may participate in the human response to M. leprae.
Collapse
Affiliation(s)
- Tatiana O Fulco
- Leprosy Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
47
|
Abstract
Infectious microbes face an unwelcoming environment in their mammalian hosts, which have evolved elaborate multicelluar systems for recognition and elimination of invading pathogens. A common strategy used by pathogenic bacteria to establish infection is to secrete protein factors that block intracellular signalling pathways essential for host defence. Some of these proteins also act as toxins, directly causing pathology associated with disease. Bacillus anthracis, the bacterium that causes anthrax, secretes two plasmid-encoded enzymes, LF (lethal factor) and EF (oedema factor), that are delivered into host cells by a third bacterial protein, PA (protective antigen). The two toxins act on a variety of cell types, disabling the immune system and inevitably killing the host. LF is an extraordinarily selective metalloproteinase that site-specifically cleaves MKKs (mitogen-activated protein kinase kinases). Cleavage of MKKs by LF prevents them from activating their downstream MAPK (mitogen-activated protein kinase) substrates by disrupting a critical docking interaction. Blockade of MAPK signalling functionally impairs cells of both the innate and adaptive immune systems and induces cell death in macrophages. EF is an adenylate cyclase that is activated by calmodulin through a non-canonical mechanism. EF causes sustained and potent activation of host cAMP-dependent signalling pathways, which disables phagocytes. Here I review recent progress in elucidating the mechanisms by which LF and EF influence host signalling and thereby contribute to disease.
Collapse
Affiliation(s)
- Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
48
|
Panchal RG, Ruthel G, Brittingham KC, Lane D, Kenny TA, Gussio R, Lazo JS, Bavari S. Chemical Genetic Screening Identifies Critical Pathways in Anthrax Lethal Toxin-Induced Pathogenesis. ACTA ACUST UNITED AC 2007; 14:245-55. [PMID: 17379140 DOI: 10.1016/j.chembiol.2007.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 12/28/2006] [Accepted: 01/09/2007] [Indexed: 11/23/2022]
Abstract
Anthrax lethal toxin (LT)-induced cell death via mitogen-activated protein kinase kinase (MAPKK) cleavage remains questionable. Here, a chemical genetics approach was used to investigate what pathways mediate LT-induced cell death. Several small molecules were found to protect macrophages from anthrax LT cytotoxicity and MAPKK from cleavage by lethal factor (LF), without inhibiting LF enzymatic activity or cellular proteasome activity. Interestingly, the compounds activated MAPK-signaling molecules, induced proinflammatory cytokine production, and inhibited LT-induced macrophage apoptosis in a concentration-dependent manner. We propose that induction of antiapoptotic responses by MAPK-dependent or -independent pathways and activation of host innate responses may protect macrophages from anthrax LT-induced cell death. Altering host responses through a chemical genetics approach can help identify critical cellular pathways involved in the pathogenesis of anthrax and can be exploited to further explore host-pathogen interactions.
Collapse
Affiliation(s)
- Rekha G Panchal
- Target Structure-Based Drug Discovery Group, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Baldari CT, Tonello F, Paccani SR, Montecucco C. Anthrax toxins: a paradigm of bacterial immune suppression. Trends Immunol 2006; 27:434-40. [PMID: 16861036 DOI: 10.1016/j.it.2006.07.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 06/20/2006] [Accepted: 07/07/2006] [Indexed: 12/17/2022]
Abstract
Several species of microorganism have developed immune evasion and/or immunosuppression strategies. Bacillus anthracis secretes two toxins, edema toxin and lethal toxin, that enter the cytosol of almost every cell type, including the cells of the innate and adaptive immune systems, and subvert cell signaling. Edema toxin causes a consistent elevation of cyclic adenosine monophosphate, whereas lethal toxin cleaves most isoforms of mitogen-activated protein kinase kinases. In a concerted manner, these toxins alter major signaling pathways involved in the development of immune-cell effector functions, with the inhibition of bacterial clearance by phagocytes and of B. anthracis-specific responses. Thus, B. anthracis can invade the host, with ensuing massive bacteremia and toxemia. Here, we review the specific effects of B. anthracis on neutrophils, macrophages, dendritic cells, T- and B-lymphocytes.
Collapse
Affiliation(s)
- Cosima T Baldari
- Department of Evolutionary Biology, University of Siena, 53100, Siena, Italy
| | | | | | | |
Collapse
|
50
|
Kuhn JF, Hoerth P, Hoehn ST, Preckel T, Tomer KB. Proteomics study of anthrax lethal toxin-treated murine macrophages. Electrophoresis 2006; 27:1584-97. [PMID: 16609935 DOI: 10.1002/elps.200500747] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The anthrax lethal toxin (LeTx) is composed of two proteins, protective antigen and lethal factor, which bind and enter the cell through a host receptor termed the anthrax toxin receptor (ATR). In the cell, LeTx targets p38, part of the MAP kinase signaling pathway. The toxin appears to initiate an apoptotic pathway in infected cells, indicating additional downstream targets of the toxin. We have applied a proteomics approach to investigate these downstream targets and the affected processes. In this study we have used an improved strategy for fractionation based on protein pI, off-gel electrophoresis, employed in conjunction with relative quantitation using the mass labeling approach. In our survey, 67 proteins were observed and quantified from the cytosol of RAW 264.7 cells with respect to control versus toxin-treated cells. Many of these proteins are involved in the oxidative stress response, as well as apoptosis, and thus likely to be relevant to the effects of anthrax in infected cells. Our results indicate that the tumor necrosis factor-alpha-mediated pathway is compromised in intoxicated cells. The knowledge of such changes and the pathways leading to the changes should be of great value in understanding and combating this disease.
Collapse
Affiliation(s)
- Jeffrey F Kuhn
- National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, NC 27709, USA.
| | | | | | | | | |
Collapse
|