1
|
Bamorovat M, Sharifi I, Tavakoli Oliaee R, Jafarzadeh A, Khosravi A. Determinants of Unresponsiveness to Treatment in Cutaneous Leishmaniasis: A Focus on Anthroponotic Form Due to Leishmania tropica. Front Microbiol 2021; 12:638957. [PMID: 34140933 PMCID: PMC8203913 DOI: 10.3389/fmicb.2021.638957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Cutaneous leishmaniasis (CL) is a curable disease; however, due to various risk factors, unresponsiveness to CL treatments is inevitable. The treatment of CL has been firmly correlated with multiple determinants, such as demographical, clinical, and environmental factors, the host’s immune response, poor treatment adherence, the parasite’s genetic make-up, and Leishmania RNA virus. This study primarily focuses on the risk factors associated with different therapeutic outcomes following meglumine antimoniate (MA; Glucantime®) treatment and policy approaches to prevent unresponsiveness in CL patients with a focus on anthroponotic form (ACL). Findings suggest that effective preventive and therapeutic measures should be more vigorously implemented, particularly in endemic areas. Accordingly, extensive training is essential to monitor drug unresponsiveness regularly, especially in tropical regions where the disease is prevalent. Since humans are the fundamental reservoir host of ACL due to L. tropica, prompt detection, early diagnosis, and timely and effective treatment could help control this disease. Furthermore, major challenges and gaps remain: efficacious vaccine, new tools, and expert staff are crucial before CL can be definitively controlled.
Collapse
Affiliation(s)
- Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Abdollah Jafarzadeh
- Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Zhang J, He J, Li J, Zhou Q, Chen H, Zheng Z, Chen Q, Chen D, Chen J. The immunogenicity and protective immunity of multi-epitopes DNA prime-protein boost vaccines encoding Amastin-Kmp-11, Kmp11-Gp63 and Amastin-Gp63 against visceral leishmaniasis. PLoS One 2020; 15:e0230381. [PMID: 32176727 PMCID: PMC7075555 DOI: 10.1371/journal.pone.0230381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/28/2020] [Indexed: 11/27/2022] Open
Abstract
Visceral leishmaniasis (VL) is the most fatal form of leishmaniasis if left untreated and 50,000 to 90,000 new cases of VL occur worldwide each year. Although various vaccines had been studied in animal models, none of them was eligible to prevent human from infections. In this study, according to the silico analysis of Leishmania Amastin, Kmp-11 and Gp63 protein, dominant epitope sequences of these proteins were selected and linked to construct dominant multi-epitopes DNA and protein vaccines (Amastin-Kmp-11, Amastin-Gp63 and Kmp-11-Gp63) against VL. BALB/c mice were immunized with a DNA prime-protein boost immunization strategy and challenged with a new Leishmania parasite strain isolated from a VL patient. After immunization, the results including specific antibody titers, IL-4 and TNF-α levels, and CD4 and CD8 T cell proportion suggested the potent immunogenicity of the three vaccines. After infection, the results of spleen parasite burdens in the three vaccine groups were significantly lower than those of control groups, and the parasite reduction rates of Amastin-Kmp-11, Amastin-Gp63 and Kmp-11-Gp63 groups were 89.38%, 91.01% and 88.42%, respectively. Spleen smear observation and liver histopathological changes showed that all vaccine groups could produce significant immunoprotection against VL and Amastin-Gp63 vaccine was the best. In conclusion, our work demonstrated that the three dominant multi-epitopes Amastin-Kmp-11, Amastin-Gp63 and Kmp-11-Gp63 DNA prime-protein boost vaccines might be new vaccine candidates for VL, and the Amastin-Gp63 vaccine have best efficacy.
Collapse
Affiliation(s)
- Jianhui Zhang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Qi Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Han Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Qiwei Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Loo TT, Gao Y, Lazarevic V. Transcriptional regulation of CD4 + T H cells that mediate tissue inflammation. J Leukoc Biol 2018; 104:1069-1085. [PMID: 30145844 DOI: 10.1002/jlb.1ri0418-152rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Acquired and genetic immunodeficiencies have revealed an indispensable role for CD4+ T cells in the induction of protective host immune responses against a myriad of microbial pathogens. Influenced by the cytokines present in the microenvironment, activated CD4+ T cells may differentiate into several highly-specialized helper subsets defined by the production of distinct signature cytokines tailored to combat diverse classes of pathogens. The process of specification and differentiation is controlled by networks of core, master, and accessory transcription factors, which ensure that CD4+ T helper (TH ) cell responses mounted against an invading microbe are of the correct specificity and type. However, aberrant activation or inactivation of transcription factors can result in sustained and elevated expression of immune-related genes, leading to chronic activation of CD4+ TH cells and organ-specific autoimmunity. In this review, we provide an overview of the molecular basis of CD4+ TH cell differentiation and examine how combinatorial expression of transcription factors, which promotes genetic plasticity of CD4+ TH cells, can contribute to immunological dysfunction of CD4+ TH responses. We also discuss recent studies which highlight the potential of exploiting the genetic plasticity of CD4+ TH cells in the treatment of autoimmune and other immune-mediated disorders.
Collapse
Affiliation(s)
- Tiffany T Loo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuanyuan Gao
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Zimara N, Chanyalew M, Aseffa A, van Zandbergen G, Lepenies B, Schmid M, Weiss R, Rascle A, Wege AK, Jantsch J, Schatz V, Brown GD, Ritter U. Dectin-1 Positive Dendritic Cells Expand after Infection with Leishmania major Parasites and Represent Promising Targets for Vaccine Development. Front Immunol 2018; 9:263. [PMID: 29535708 PMCID: PMC5834765 DOI: 10.3389/fimmu.2018.00263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/30/2018] [Indexed: 12/31/2022] Open
Abstract
Resistant mouse strains mount a protective T cell-mediated immune response upon infection with Leishmania (L.) parasites. Healing correlates with a T helper (Th) cell-type 1 response characterized by a pronounced IFN-γ production, while susceptibility is associated with an IL-4-dependent Th2-type response. It has been shown that dermal dendritic cells are crucial for inducing protective Th1-mediated immunity. Additionally, there is growing evidence that C-type lectin receptor (CLR)-mediated signaling is involved in directing adaptive immunity against pathogens. However, little is known about the function of the CLR Dectin-1 in modulating Th1- or Th2-type immune responses by DC subsets in leishmaniasis. We characterized the expression of Dectin-1 on CD11c+ DCs in peripheral blood, at the site of infection, and skin-draining lymph nodes of L. major-infected C57BL/6 and BALB/c mice and in peripheral blood of patients suffering from cutaneous leishmaniasis (CL). Both mouse strains responded with an expansion of Dectin-1+ DCs within the analyzed tissues. In accordance with the experimental model, Dectin-1+ DCs expanded as well in the peripheral blood of CL patients. To study the role of Dectin-1+ DCs in adaptive immunity against L. major, we analyzed the T cell stimulating potential of bone marrow-derived dendritic cells (BMDCs) in the presence of the Dectin-1 agonist Curdlan. These experiments revealed that Curdlan induces the maturation of BMDCs and the expansion of Leishmania-specific CD4+ T cells. Based on these findings, we evaluated the impact of Curdlan/Dectin-1 interactions in experimental leishmaniasis and were able to demonstrate that the presence of Curdlan at the site of infection modulates the course of disease in BALB/c mice: wild-type BALB/c mice treated intradermally with Curdlan developed a protective immune response against L. major whereas Dectin-1-/- BALB/c mice still developed the fatal course of disease after Curdlan treatment. Furthermore, the vaccination of BALB/c mice with a combination of soluble L. major antigens and Curdlan was able to provide a partial protection from severe leishmaniasis. These findings indicate that the ligation of Dectin-1 on DCs acts as an important checkpoint in adaptive immunity against L. major and should therefore be considered in future whole-organism vaccination strategies.
Collapse
Affiliation(s)
- Nicole Zimara
- Regensburg Center for Interventional Immunology (RCI), Institute of Immunology, University Medical Center Regensburg, University of Regensburg, Regensburg, Germany
| | - Menberework Chanyalew
- Armauer Hansen Research Institute, Leishmaniasis Research Laboratory, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Leishmaniasis Research Laboratory, Addis Ababa, Ethiopia
| | - Ger van Zandbergen
- Federal Institute for Vaccines and Biomedicines, Division of Immunology, Paul Ehrlich Institute, Langen, Germany
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Immunology Unit, Research Center for Emerging Infections and Zoonoses (RIZ), Hannover, Germany
| | - Maximilian Schmid
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Richard Weiss
- Department of Molecular Biology, Division of Allergy and Immunology, University of Salzburg, Salzburg, Austria
| | - Anne Rascle
- Regensburg Center for Interventional Immunology (RCI), Institute of Immunology, University Medical Center Regensburg, University of Regensburg, Regensburg, Germany
| | - Anja Kathrin Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Gordon D. Brown
- MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
| | - Uwe Ritter
- Regensburg Center for Interventional Immunology (RCI), Institute of Immunology, University Medical Center Regensburg, University of Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
House dust mite induced allergic airway disease is attenuated in CD11c creIL-4Rα -/l° x mice. Sci Rep 2018; 8:885. [PMID: 29343807 PMCID: PMC5772663 DOI: 10.1038/s41598-017-19060-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
The precise mechanisms leading to development of T helper type (Th)2-driven allergic responses are unknown. We aimed to determine how IL-4 receptor alpha (IL-4Rα) signaling on CD11c+ cells influences allergen-induced Th2 responses in mice. CD11ccreIL-4Rα−/l°x mice, deficient in IL-4Rα on dendritic cells and alveolar macrophages, were compared to IL-4Rα−/l°x littermate controls in models of allergic airway disease induced by OVA/alum, OVA alone or house dust mite. Cytokine responses, eosinophil and neutrophil infiltration into the lungs, airway hyperreactivity and mucus hypersecretion were evaluated after allergen challenge. In the OVA/alum model, CD11ccreIL-4Rα−/lox mice had similar airway hyperreactivity, eosinophil infiltration, Th2-type cytokine production and mucus hypersecretion to littermate controls. When alum was omitted during sensitization, CD11ccreIL-4Rα−/lox mice had similar airway hyperreactivity and mucus secretion but reduced Th2-type cytokine production and eosinophils, suggesting alum overrides the requirement for IL-4Rα signaling on CD11c+ cells in enhancing Th2-type responses. In the house dust mite model, CD11ccreIL-4Rα−/lox mice showed similar mucus secretion, but reduced Th2 responses, eosinophils, neutrophils and airway hyperreactivity, unlike previously tested LysMcreIL-4Rα−/lox mice, which lack IL-4Rα on alveolar macrophages but not on dendritic cells. Therefore, our results indicate that IL-4Rα signaling on dendritic cells promotes allergen-induced Th2 responses and eosinophil infiltration into the lung.
Collapse
|
6
|
Hurdayal R, Brombacher F. Interleukin-4 Receptor Alpha: From Innate to Adaptive Immunity in Murine Models of Cutaneous Leishmaniasis. Front Immunol 2017; 8:1354. [PMID: 29176972 PMCID: PMC5686050 DOI: 10.3389/fimmu.2017.01354] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022] Open
Abstract
The interleukin (IL)-4 receptor alpha (IL-4Rα), ubiquitously expressed on both innate and adaptive immune cells, controls the signaling of archetypal type 2 immune regulators; IL-4 and IL-13, which elicit their signaling action by the type 1 IL-4Rα/gamma common and/or the type 2 IL-4Rα/IL-13Rα complexes. Global gene-deficient mouse models targeting IL-4, IL-13, or the IL-4Rα chain, followed by the development of conditional mice and generation of important cell-type-specific IL-4Rα-deficient mouse models, were indeed critical to gaining in-depth understanding of detrimental T helper (Th) 2 mechanisms in type 1-controlled diseases. A primary example being cutaneous leishmaniasis, which is caused by the protozoan parasite Leishmania major, among others. The disease is characterized by localized self-healing cutaneous lesions and necrosis for which, currently, not a single vaccine has made it to a stage that can be considered effective. The spectrum of human leishmaniasis belongs to the top 10 infectious diseases according to the World Health Organization. As such, 350 million humans are at risk of infection and disease, with an incidence of 1.5–2 million new cases being reported annually. A major aim of our research is to identify correlates of host protection and evasion, which may aid in vaccine design and therapeutic interventions. In this review, we focus on the immune-regulatory role of the IL-4Rα chain from innate immune responses to the development of beneficial type 1 and detrimental type 2 adaptive immune responses during cutaneous Leishmania infection. We discuss the cell-specific requirements of the IL-4Rα chain on crucial innate immune cells during L. major infection, including, IL-4Rα-responsive skin keratinocytes, macrophages, and neutrophils, as well as dendritic cells (DCs). The latter, contributing to one of the paradigm shifts with respect to the role of IL-4 instructing DCs in vivo, to promote Th1 responses against L. major. Finally, we extend these innate responses and mechanisms to control of adaptive immunity and the effect of IL-4Rα-responsiveness on T and B lymphocytes orchestrating the development of CD4+ Th1/Th2 and B effector 1/B effector 2 B cells in response to L. major infection in the murine host.
Collapse
Affiliation(s)
- Ramona Hurdayal
- Faculty of Health Sciences, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Department of Molecular and Cell Biology Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- Faculty of Health Sciences, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| |
Collapse
|
7
|
Descatoire M, Hurrell BP, Govender M, Passelli K, Martinez-Salazar B, Hurdayal R, Brombacher F, Guler R, Tacchini-Cottier F. IL-4Rα Signaling in Keratinocytes and Early IL-4 Production Are Dispensable for Generating a Curative T Helper 1 Response in Leishmania major-Infected C57BL/6 Mice. Front Immunol 2017; 8:1265. [PMID: 29067025 PMCID: PMC5641309 DOI: 10.3389/fimmu.2017.01265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/22/2017] [Indexed: 01/18/2023] Open
Abstract
Experimental infection with the protozoan parasite Leishmania major has been extensively used to understand the mechanisms involved in T helper cell differentiation. Following infection, C57BL/6 mice develop a small self-healing cutaneous lesion and they are able to control parasite burden, a process linked to the development of T helper (Th) 1 cells. The local presence of IL-12 has been reported to be critical in driving Th1 cell differentiation. In addition, the early secretion of IL-4 was reported to potentially contribute to Th1 cell differentiation. Following infection with L. major, early keratinocyte-derived IL-4 was suggested to contribute to Th1 cell differentiation. To investigate a putative autocrine role of IL-4 signaling on keratinocytes at the site of infection, we generated C57BL/6 mice deficient for IL-4Rα expression selectively in keratinocytes. Upon infection with L. major, these mice could control their inflammatory lesion and parasite load correlating with the development of Th1 effector cells. These data demonstrate that IL-4 signaling on keratinocytes does not contribute to Th1 cell differentiation. To further investigate the source of IL-4 in the skin during the first days after L. major infection, we used C57BL/6 IL-4 reporter mice allowing the visualization of IL-4 mRNA expression and protein production. These mice were infected with L. major. During the first 3 days after infection, skin IL-4 mRNA expression was observed selectively in mast cells. However, no IL-4 protein production was detectable locally. In addition, early IL-4 blockade locally had no impact on subsequent Th1 cell differentiation and control of the disease. Taken together, the present data rule out a major role for skin IL-4 and keratinocyte IL-4Rα signaling in the development of a Th1 protective immune response following experimental infection with L. major.
Collapse
Affiliation(s)
- Marc Descatoire
- Department of Biochemistry, WHO-Immunology Research and Training Center, University of Lausanne, Lausanne, Switzerland
| | - Benjamin P Hurrell
- Department of Biochemistry, WHO-Immunology Research and Training Center, University of Lausanne, Lausanne, Switzerland
| | - Melissa Govender
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Katiuska Passelli
- Department of Biochemistry, WHO-Immunology Research and Training Center, University of Lausanne, Lausanne, Switzerland
| | - Berenice Martinez-Salazar
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Ramona Hurdayal
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Reto Guler
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Fabienne Tacchini-Cottier
- Department of Biochemistry, WHO-Immunology Research and Training Center, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Ribeiro HAL, Maioli TU, de Freitas LM, Tieri P, Castiglione F. Modeling Immune Response to Leishmania Species Indicates Adenosine As an Important Inhibitor of Th-Cell Activation. Front Cell Infect Microbiol 2017; 7:309. [PMID: 28775959 PMCID: PMC5517480 DOI: 10.3389/fcimb.2017.00309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/22/2017] [Indexed: 12/20/2022] Open
Abstract
Infection by Leishmania protozoan parasites can cause a variety of disease outcomes in humans and other mammals, from single self-healing cutaneous lesions to a visceral dissemination of the parasite. The correlation between chronic lesions and ecto-nucleotidase enzymes activity on the surface of the parasite is addressed here using damage caused in epithelial cells by nitric oxide. In order to explore the role of purinergic metabolism in lesion formation and the outcome of the infection, we implemented a cellular automata/lattice gas model involving major immune characters (Th1 and Th2 cells, IFN-γ, IL-4, IL-12, adenosine-Ado-, NO) and parasite players for the dynamic analysis of the disease progress. The model were analyzed using partial ranking correlation coefficient (PRCC) to indicate the components that most influence the disease progression. Results show that low Ado inhibition rate over Th-cells is shared by L. major and L. braziliensis, while in L. amazonensis infection the Ado inhibition rate over Th-cells reaches 30%. IL-4 inhibition rate over Th-cell priming to Th1 independent of IL-12 are exclusive of L. major. The lesion size and progression showed agreement with published biological data and the model was able to simulate cutaneous leishmaniasis outcomes. The sensitivity analysis suggested that Ado inhibition rate over Th-cells followed by Leishmania survival probability were the most important characteristics of the process, with PRCC of 0.89 and 0.77 respectively. The simulations also showed a non-linear relationship between Ado inhibition rate over Th-cells and lesion size measured as number of dead epithelial cells. In conclusion, this model can be a useful tool for the quantitative understanding of the immune response in leishmaniasis.
Collapse
Affiliation(s)
- Henrique A. L. Ribeiro
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del CalcoloRome, Italy
- Departamento de Nutrição, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Tatiani U. Maioli
- Departamento de Nutrição, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | | | - Paolo Tieri
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del CalcoloRome, Italy
| | - Filippo Castiglione
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del CalcoloRome, Italy
| |
Collapse
|
9
|
Adenosine generated by ectonucleotidases modulates the host immune system during visceral leishmaniasis. Cytokine 2017; 91:170-179. [DOI: 10.1016/j.cyto.2017.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 11/20/2022]
|
10
|
Thawer S, Auret J, Schnoeller C, Chetty A, Smith K, Darby M, Roberts L, Mackay RM, Whitwell HJ, Timms JF, Madsen J, Selkirk ME, Brombacher F, Clark HW, Horsnell WGC. Surfactant Protein-D Is Essential for Immunity to Helminth Infection. PLoS Pathog 2016; 12:e1005461. [PMID: 26900854 PMCID: PMC4763345 DOI: 10.1371/journal.ppat.1005461] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/28/2016] [Indexed: 11/26/2022] Open
Abstract
Pulmonary epithelial cell responses can enhance type 2 immunity and contribute to control of nematode infections. An important epithelial product is the collectin Surfactant Protein D (SP-D). We found that SP-D concentrations increased in the lung following Nippostrongylus brasiliensis infection; this increase was dependent on key components of the type 2 immune response. We carried out loss and gain of function studies of SP-D to establish if SP-D was required for optimal immunity to the parasite. N. brasiliensis infection of SP-D-/- mice resulted in profound impairment of host innate immunity and ability to resolve infection. Raising pulmonary SP-D levels prior to infection enhanced parasite expulsion and type 2 immune responses, including increased numbers of IL-13 producing type 2 innate lymphoid cells (ILC2), elevated expression of markers of alternative activation by alveolar macrophages (alvM) and increased production of the type 2 cytokines IL-4 and IL-13. Adoptive transfer of alvM from SP-D-treated parasite infected mice into naïve recipients enhanced immunity to N. brasiliensis. Protection was associated with selective binding by the SP-D carbohydrate recognition domain (CRD) to L4 parasites to enhance their killing by alvM. These findings are the first demonstration that the collectin SP-D is an essential component of host innate immunity to helminths. Infections by parasitic worms are very common, and controlling them is a major medical and veterinary challenge. Very few drugs exist to treat them, and the parasites can develop resistance to these. In order to find new ways to control worm infections, understanding how our immune system responds to them is essential. Many important parasitic worm infections move through the host lung. In this study we show that a major secreted protein in the lung, Surfactant Protein D (SP-D), is essential for immunity to a parasitic worm infection. We found that this protein binds to worm larvae in the lung to help the immune system kill them. Infecting mice that do not express SP-D with worms demonstrates SP-D is important in this immune response. These mice are unable to launch an effective anti-worm immune response and have many more worms in their intestine compared to mice that do express SP-D. We also show that if we increase SP-D levels in the lung the mouse has better immunity to worms. Together this shows for the first time that SP-D is very important for immunity to worm infections.
Collapse
Affiliation(s)
- Sumaiyya Thawer
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Jennifer Auret
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Corinna Schnoeller
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Alisha Chetty
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Katherine Smith
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
- Institute of Infection and Immunity, University of Cardiff, Cardiff, United Kingdom
| | - Matthew Darby
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Luke Roberts
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Rosie-Marie Mackay
- Clinical & Experimental Sciences Academic Unit, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Harry J. Whitwell
- Cancer Proteomics, Institute for Women’s Health, University College London, London, United Kingdom
| | - John F. Timms
- Cancer Proteomics, Institute for Women’s Health, University College London, London, United Kingdom
| | - Jens Madsen
- Clinical & Experimental Sciences Academic Unit, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Murray E. Selkirk
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Frank Brombacher
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Howard William Clark
- Clinical & Experimental Sciences Academic Unit, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- * E-mail: (HWC); (WGCH)
| | - William G. C. Horsnell
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
- * E-mail: (HWC); (WGCH)
| |
Collapse
|
11
|
Hurdayal R, Brombacher F. The role of IL-4 and IL-13 in cutaneous Leishmaniasis. Immunol Lett 2014; 161:179-83. [DOI: 10.1016/j.imlet.2013.12.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 12/28/2013] [Indexed: 10/25/2022]
|
12
|
You D, Marr N, Saravia J, Shrestha B, Lee GI, Turvey SE, Brombacher F, Herbert DR, Cormier SA. IL-4Rα on CD4+ T cells plays a pathogenic role in respiratory syncytial virus reinfection in mice infected initially as neonates. J Leukoc Biol 2013; 93:933-42. [PMID: 23543769 DOI: 10.1189/jlb.1012498] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RSV is the major cause of severe bronchiolitis in infants, and severe bronchiolitis as a result of RSV is associated with subsequent asthma development. A biased Th2 immune response is thought to be responsible for neonatal RSV pathogenesis; however, molecular mechanisms remain elusive. Our data demonstrate, for the first time, that IL-4Rα is up-regulated in vitro on human CD4(+) T cells from cord blood following RSV stimulation and in vivo on mouse pulmonary CD4(+) T cells upon reinfection of mice, initially infected as neonates. Th cell-specific deletion of Il4ra attenuated Th2 responses and abolished the immunopathophysiology upon reinfection, including airway hyper-reactivity, eosinophilia, and mucus hyperproduction in mice infected initially as neonates. These findings support a pathogenic role for IL-4Rα on Th cells following RSV reinfection of mice initially infected as neonates; more importantly, our data from human cells suggest that the same mechanism occurs in humans.
Collapse
Affiliation(s)
- Dahui You
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lack of IL-4 receptor expression on T helper cells reduces T helper 2 cell polyfunctionality and confers resistance in allergic bronchopulmonary mycosis. Mucosal Immunol 2012; 5:299-310. [PMID: 22333910 DOI: 10.1038/mi.2012.9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
T helper (Th)1 and Th2 cells play decisive roles in the regulation of resistance vs. susceptibility to pulmonary cryptococcosis. To study the function of interleukin (IL)-4 receptor (IL-4R) on Th cells in pulmonary cryptococcosis, we infected mice specifically lacking IL-4Rα on CD4(+) T cells (Lck(Cre)IL-4Rα(-/lox) mice) and IL-4Rα(-/lox) controls. Lck(Cre)IL-4Rα(-/lox) mice developed enhanced resistance accompanied by reduced pulmonary allergic inflammation and diminished production of the Th2 cytokines IL-4, IL-5, and IL-13 as compared with IL-4Rα(-/lox) mice. Polyfunctional antigen-specific Th2 cells producing simultaneously two or three Th2 cytokines were reduced in infected Lck(Cre)IL-4Rα(-/lox) mice, pointing to a critical role of polyfunctional Th2 cells for disease progression. Reduced Th2 polyfunctionality was associated with fewer pulmonary alternatively activated macrophages. This work is the first direct evidence for a critical contribution of the IL-4R on Th cells to Th2-dependent susceptibility during allergic bronchopulmonary mycosis. Moreover, the data demonstrate that the quality of the Th2 response has an impact on type 2 inflammation. The analysis of polyfunctional Th2 cells may be useful for monitoring the course of the disease.
Collapse
|
14
|
Alexander J, Brombacher F. T helper1/t helper2 cells and resistance/susceptibility to leishmania infection: is this paradigm still relevant? Front Immunol 2012; 3:80. [PMID: 22566961 PMCID: PMC3342373 DOI: 10.3389/fimmu.2012.00080] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 03/28/2012] [Indexed: 11/13/2022] Open
Abstract
Work in large part on Leishmania major in the 1980s identified two distinct apparently counter-regulatory CD4+ T cell populations, T helper (h)1 and Th2, that controlled resistance/susceptibility to infection respectively. However, the generation of IL-4−/− mice in the 1990s questioned the paramount role of this Th2 archetypal cytokine in the non-healing response to Leishmania infection. The more recent characterization of CD4+ T cell regulatory populations and further effector CD4+ T helper populations, Th17, Th9, and T follicular (f)h cells as well as the acknowledged plasticity in T helper cell function has further added to the complexity of host pathogen interactions. These interactions are complicated by the multiplicity of cells that respond to CD4+ T cell subset signatory cytokines, as well as the diversity of Leishmania species that are often subject to significantly different immune-regulatory controls. In this article we review current knowledge with regard to the role of CD4+ T cells and their products during Leishmania infection. In particular we update on our studies using conditional IL-4Rα gene-deficient mice that have allowed dissection of the cell interplay dictating the disease outcomes of the major Leishmania species infecting humans.
Collapse
Affiliation(s)
- James Alexander
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde Glasgow, UK
| | | |
Collapse
|
15
|
Hoving JC, Kirstein F, Nieuwenhuizen NE, Fick LCE, Hobeika E, Reth M, Brombacher F. B cells that produce immunoglobulin E mediate colitis in BALB/c mice. Gastroenterology 2012; 142:96-108. [PMID: 21983080 DOI: 10.1053/j.gastro.2011.09.044] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 09/16/2011] [Accepted: 09/28/2011] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Induction of colitis in mice by administration of oxazolone is mediated by T-helper (Th) 2 cells and has features of human ulcerative colitis. We investigated whether activation of interleukin (IL)-4Rα on T and B cells determines their effector functions and mediates oxazolone-induced colitis. METHODS We studied induction of colitis with oxazolone in wild-type mice and those with CD4(+) T cells that did not express IL-4Rα (Lck(cre)IL-4Rα(-/lox)). We also generated mice with B cells that did not express IL-4Rα (mb1(cre)IL-4Rα(-/lox)) and studied induction of colitis. RESULTS Lck(cre)IL-4Rα(-/lox) mice did not develop colitis in response to oxazolone, and their levels of IL-4, IL-13, and immunoglobulin (Ig) E were reduced. Adoptive transfer of naïve, wild-type CD4(+) Th cells depleted of natural killer T cells to Lck(cre)IL-4Rα(-/lox) mice restored their susceptibility to colitis. In contrast, Lck(cre)IL-4Rα(-/lox) mice maintained their protection against colitis when IL-13-deficient CD4(+) T cells were transferred. These findings indicate that development of colitis involves not only natural killer T-cell functions, but also requires IL-13 production by CD4(+) T helper cells. Mb1(cre)IL-4Rα(-/lox) mice, which cannot produce IgE, were also protected against oxazolone-induced colitis. Blocking IgE binding significantly reduced mast cell numbers in colons and protected wild-type BALB/c mice from the onset of colitis. CONCLUSIONS IL-4 appears to induce CD4(+) Th2 cells to produce IL-13 and B cells to produce IgE, which together mediate oxazolone-induced colitis in mice.
Collapse
Affiliation(s)
- Jennifer C Hoving
- International Centre for Genetic Engineering and Biotechnology and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | | | | |
Collapse
|
16
|
Whyte CS, Bishop ET, Rückerl D, Gaspar-Pereira S, Barker RN, Allen JE, Rees AJ, Wilson HM. Suppressor of cytokine signaling (SOCS)1 is a key determinant of differential macrophage activation and function. J Leukoc Biol 2011; 90:845-54. [PMID: 21628332 DOI: 10.1189/jlb.1110644] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Macrophages become activated by their environment and develop polarized functions: classically activated (M1) macrophages eliminate pathogens but can cause tissue injury, whereas alternatively activated (M2) macrophages promote healing and repair. Mechanisms directing polarized activation, especially in vivo, are not understood completely, and here, we examined the role of SOCS proteins. M2 macrophages activated in vitro or elicited by implanting mice i.p. with the parasitic nematode Brugia malayi display a selective and IL-4-dependent up-regulation of SOCS1 but not SOCS3. Using siRNA-targeted knockdown in BMDM, we reveal that the enhanced SOCS1 is crucial for IL-4-induced M2 characteristics, including a high arginase I:iNOS activity ratio, suppression of T cell proliferation, attenuated responses to IFN-γ/LPS, and curtailed SOCS3 expression. Importantly, SOCS1 was essential in sustaining the enhanced PI3K activity that drives M2 activation, defining a new regulatory mechanism by which SOCS1 controls M2 polarization. By contrast, for M1 macrophages, SOCS1 was not only an important regulator of proinflammatory mediators (IL-6, IL-12, MHC class II, NO), but critically, for M1, we show that SOCS1 also restricted IL-10 secretion and arginase I activity, which otherwise would limit the efficiency of M1 macrophage proinflammatory responses. Together, our results uncover SOCS1, not only as a feedback inhibitor of inflammation but also as a critical molecular switch that tunes key signaling pathways to effectively program different sides of the macrophage balance.
Collapse
Affiliation(s)
- Claire S Whyte
- Division of Applied Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Vaccine candidates for leishmaniasis: A review. Int Immunopharmacol 2011; 11:1464-88. [DOI: 10.1016/j.intimp.2011.05.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 04/13/2011] [Accepted: 05/09/2011] [Indexed: 01/08/2023]
|
18
|
Patakas A, Platt AM, Butcher JP, Maffia P, McInnes IB, Brewer JM, Garside P, Benson RA. Putative existence of reciprocal dialogue between Tfh and B cells and its impact on infectious and autoimmune disease. Immunol Lett 2011; 138:38-46. [DOI: 10.1016/j.imlet.2011.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 12/13/2022]
|
19
|
Interleukin-13 reduces hyperalgesia and the level of interleukin-1β in BALB/c mice infected with Leishmania major with an up-regulation of interleukin-6. J Neuroimmunol 2011; 234:49-54. [PMID: 21402416 DOI: 10.1016/j.jneuroim.2011.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 01/10/2011] [Accepted: 02/06/2011] [Indexed: 12/22/2022]
Abstract
The anti-inflammatory cytokines interleukin-10 (IL-10) and interleukin-13 (IL-13) were shown to reduce hyperalgesia in some models such as rats exposed to UV rays. In addition, IL-10 was also shown to reduce hyperalgesia in high dose of Leishmania major-induced inflammation in BALB/c mice accompanied by a significant decrease in the levels of interleukin-1β (IL-1β) in the paws of infected mice, while no effect on the levels of IL-6 was observed. In this study, we injected BALB/c mice with a high dose of L. major and treated them with IL-13 (15 ng/animal) for twelve days (excluding the weekends) and hyperalgesia was assessed using thermal pain tests. Furthermore, the levels of IL-1β and IL-6 were also assessed at different post-infection days. Our results show that IL-6 and more importantly IL-1β don't play a direct role in the L. major-induced hyperalgesia and that IL-13 induces this hyperalgesia through the down-regulation of IL-1β and another proinflammatory cytokine (most probably TNF-α). Furthermore, our data show that IL-13 leads to the upregulation of the level IL-6 which initially seems to have no direct role in the induced hyperalgesia. Therefore, we suggest that the L. major-induced hyperalgesia is mainly mediated by the cytokine cascade leading to the production of sympathetic amines.
Collapse
|
20
|
Shi M, Wang A, Prescott D, Waterhouse CCM, Zhang S, McDougall JJ, Sharkey KA, McKay DM. Infection with an intestinal helminth parasite reduces Freund's complete adjuvant-induced monoarthritis in mice. ACTA ACUST UNITED AC 2011; 63:434-44. [PMID: 20967852 DOI: 10.1002/art.30098] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Assessment of infection with helminth parasites in murine models of disease could identify antiinflammatory mechanisms that translate into treatments for arthritic disease. The aim of this study was to test the ability of infection with the tapeworm Hymenolepis diminuta to ameliorate Freund's complete adjuvant (CFA)-induced monoarthritis in mice. METHODS Mice received CFA with or without H diminuta, and knee swelling, pain, and measures of inflammation were assessed. RESULTS Injection of CFA resulted in rapid (within 24 hours) and sustained (lasting 20 days) knee swelling, a decreased pain threshold, increased blood flow to the knee, and increased production of tumor necrosis factor α and interleukin-12p40 (IL-12p40). In mice that were infected with H diminuta 8 days prior to receiving CFA, the severity of arthritis was reduced as assessed by these indices of inflammation and infection 2 days after CFA injection and resulted in more rapid resolution of knee swelling. This antiarthritic effect required a viable infection and was dependent on adaptive immunity, because infection with H diminuta did not protect mice lacking T cells and B cells or the IL-4 receptor α chain from CFA-induced inflammation. Interleukin-10 was of prime importance in the antiarthritic effect, because IL-10-knockout mice were not protected by infection, the antiarthritic effect was ablated by use of neutralizing IL-10 antibodies, and transfer of CD4+ cells from infected wild-type mice but not IL-10-knockout mice significantly reduced CFA-induced knee swelling. CONCLUSION In mice, the adaptive immune response to infection with H diminuta involves mobilization of IL-10, which has the concomitant advantage of dampening the innate immune responses that drive CFA-induced joint inflammation.
Collapse
|
21
|
Horsnell WGC, Vira A, Kirstein F, Mearns H, Hoving JC, Cutler AJ, Dewals B, Myburgh E, Kimberg M, Arendse B, White N, Lopata A, Burger PE, Brombacher F. IL-4Rα-responsive smooth muscle cells contribute to initiation of TH2 immunity and pulmonary pathology in Nippostrongylus brasiliensis infections. Mucosal Immunol 2011; 4:83-92. [PMID: 20737001 DOI: 10.1038/mi.2010.46] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nippostrongylus brasiliensis infections generate pulmonary pathologies that can be associated with strong T(H)2 polarization of the host's immune response. We present data demonstrating N. brasiliensis-driven airway mucus production to be dependent on smooth muscle cell interleukin 4 receptor-α (IL-4Rα) responsiveness. At days 7 and 10 post infection (PI), significant airway mucus production was found in IL-4Rα(-/lox) control mice, whereas global knockout (IL-4Rα(-/-)) and smooth muscle-specific IL-4Rα-deficient mice (SM-MHC(Cre) IL-4Rα(-/lox)) showed reduced airway mucus responses. Furthermore, interleukin (IL)-13 and IL-5 cytokine production in SM-MHC(Cre) IL-4Rα(-/lox) mice was impaired along with a transient reduction in T-cell numbers in the lung. In vitro treatment of smooth muscle cells with secreted N. brasiliensis excretory-secretory antigen (NES) induced IL-6 production. Decreased protein kinase C (PKC)-dependent smooth muscle cell proliferation associated with cell cycle arrest was found in cells stimulated with NES. Together, these data demonstrate that both IL-4Rα and NES-driven responses by smooth muscle cells make important contributions in initiating T(H)2 responses against N. brasiliensis infections.
Collapse
Affiliation(s)
- W G C Horsnell
- Division of Immunology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Castilho TM, Goldsmith-Pestana K, Lozano C, Valderrama L, Saravia NG, McMahon-Pratt D. Murine model of chronic L. (Viannia) panamensis infection: role of IL-13 in disease. Eur J Immunol 2010; 40:2816-29. [PMID: 20827674 DOI: 10.1002/eji.201040384] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Leishmania (Viannia) organisms are the most prevalent etiologic agents of human cutaneous leishmaniasis in the Americas. Nevertheless, our knowledge of the immunological mechanisms exploited by L. (Viannia) organisms remains limited and the mechanisms underlying disease are not well understood. Here, we report the development of a BALB/c mouse model of L. (V.) panamensis infection that is able to reproduce chronic disease, with persistent infection and clinically evident lesions for over 1 year. The immune response of the mouse resembles that found for L. (V.) panamensis-infected patients with chronic and recurrent lesions, presenting a mixed Th1/Th2 response with the presence of TNF-α, IFN-γ, IL-10 and IL-13. Using immunodeficient mice, the critical role for IL-13 and/or IL-4Rα in determining susceptibility to chronic infection was evident. With the induction of healing in the immunodeficient mice, increases in IFN-γ and IL-17 were found, concomitant with parasite control and elimination. Specifically, increases in CD4(+) (but not CD8(+)) T cells producing IFN-γ were observed. These results suggest that IL-13 represents an important target for disease control of L. (V.) panamensis infection. This murine model should be useful to further understand the pathology associated with chronic disease and to develop methods for the treatment and prevention of leishmaniasis caused by L. (Viannia) parasites.
Collapse
Affiliation(s)
- Tiago M Castilho
- Yale University School of Public Health, New Haven, CT 06520-8034, USA
| | | | | | | | | | | |
Collapse
|
23
|
Coêlho ZCB, Teixeira MJ, Mota EF, Frutuoso MS, da Silva JS, Barral A, Barral-Netto M, Pompeu MML. In vitro initial immune response against Leishmania amazonensis infection is characterized by an increased production of IL-10 and IL-13. Braz J Infect Dis 2010. [DOI: 10.1016/s1413-8670(10)70096-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
24
|
Muleme HM, Reguera RM, Berard A, Azinwi R, Jia P, Okwor IB, Beverley S, Uzonna JE. Infection with arginase-deficient Leishmania major reveals a parasite number-dependent and cytokine-independent regulation of host cellular arginase activity and disease pathogenesis. THE JOURNAL OF IMMUNOLOGY 2010; 183:8068-76. [PMID: 19923451 DOI: 10.4049/jimmunol.0803979] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The balance between the products of L-arginine metabolism in macrophages regulates the outcome of Leishmania major infection. L-arginine can be oxidized by host inducible NO synthase to produce NO, which contributes to parasite killing. In contrast, L-arginine hydrolysis by host arginase blocks NO generation and provides polyamines, which can support parasite proliferation. Additionally, Leishmania encode their own arginase which has considerable potential to modulate infectivity and disease pathogenesis. In this study, we compared the infectivity and impact on host cellular immune response in vitro and in vivo of wild-type (WT) L. major with that of a parasite arginase null mutant (arg(-)) L. major. We found that arg(-) L. major are impaired in their macrophage infectivity in vitro independent of host inducible NO synthase activities. As with in vitro results, the proliferation of arg(-) L. major in animal infections was also significantly impaired in vivo, resulting in delayed onset of lesion development, attenuated pathology, and low parasite burden. Despite this attenuated pathology, the production of cytokines by cells from the draining lymph node of mice infected with WT and arg(-) L. major was similar at all times tested. Interestingly, in vitro and in vivo arginase levels were significantly lower in arg(-) than in WT-infected cases and were directly correlated with parasite numbers inside infected cells. These results suggest that Leishmania-encoded arginase enhances disease pathogenesis by augmenting host cellular arginase activities and that contrary to previous in vitro studies, the host cytokine response does not influence host arginase activity.
Collapse
Affiliation(s)
- Helen M Muleme
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Okamoto M, Matsuda H, Joetham A, Lucas JJ, Domenico J, Yasutomo K, Takeda K, Gelfand EW. Jagged1 on Dendritic Cells and Notch on CD4+ T Cells Initiate Lung Allergic Responsiveness by Inducing IL-4 Production. THE JOURNAL OF IMMUNOLOGY 2009; 183:2995-3003. [DOI: 10.4049/jimmunol.0900692] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Dewals B, Hoving JC, Leeto M, Marillier RG, Govender U, Cutler AJ, Horsnell WGC, Brombacher F. IL-4Ralpha responsiveness of non-CD4 T cells contributes to resistance in schistosoma mansoni infection in pan-T cell-specific IL-4Ralpha-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:706-16. [PMID: 19628763 PMCID: PMC2716945 DOI: 10.2353/ajpath.2009.090137] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/07/2009] [Indexed: 12/19/2022]
Abstract
Interleukin (IL)-4 and IL-13 are T helper 2 cytokines whose biological functions are induced through a common IL-4 receptor alpha chain (IL-4Ralpha). CD4(+) T cell-specific IL-4Ralpha-mediated signaling drives susceptibility to Leishmania major infection, but is not essential to host survival following Schistosoma mansoni infection. Here we generated a novel mouse model lacking IL-4Ralpha expression specifically on all T cells (iLck(cre)Il4ra(-/lox)), which was compared with CD4(+) T cell-specific IL-4Ralpha-deficient mice (Lck(cre)Il4ra(-/lox)), to investigate the possible roles of IL-4Ralpha responsive non-CD4(+) T cells during either L. major or S. mansoni infection. Our results demonstrate a successful generation of transgene-bearing hemizygous iLck(cre)Il4ra(-/lox) BALB/c mice that have effective deletion of IL-4Ralpha on all T-cell populations. We show that iLck(cre)Il4ra(-/lox) mice infected with L. major developed a healing disease phenotype as previously observed in Lck(cre)Il4ra(-/lox) mice, demonstrating that absence of IL-4Ralpha-responsive non-CD4(+) in addition to CD4(+) T cells does not further affect transformation of BALB/c to a healer phenotype. In acute schistosomiasis, however, iLck(cre)Il4ra(-/lox) mice showed enhanced mortality compared with Il4ra(-/lox) and Lck(cre)Il4ra(-/lox) mice. iLck(cre)Il4ra(-/lox) mice died with similar kinetics to highly susceptible Il4ra(-/-) mice, despite controlling gut inflammation. In addition, iLck(cre)Il4ra(-/lox) mice presented increased liver granuloma sizes, as compared with Lck(cre)Il4ra(-/lox) mice, with similar eosinophils, fibrosis, and liver damage. In conclusion, IL-4Ralpha-responsive non-CD4(+) T cells prolong survival to acute schistosomiasis and contribute to the better control of hepatic granulomatous inflammation.
Collapse
Affiliation(s)
- Benjamin Dewals
- International Centre for Genetic Engineering and Biotechnology (ICGEB) University Campus, Room S1.27; Werner Beith South Wing, Observatory 7925, Cape Town, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
27
|
King IL, Mohrs M. IL-4-producing CD4+ T cells in reactive lymph nodes during helminth infection are T follicular helper cells. ACTA ACUST UNITED AC 2009; 206:1001-7. [PMID: 19380638 PMCID: PMC2715031 DOI: 10.1084/jem.20090313] [Citation(s) in RCA: 294] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interleukin (IL)-4 is the quintessential T helper type 2 (Th2) cytokine produced by CD4+ T cells in response to helminth infection. IL-4 not only promotes the differentiation of Th2 cells but is also critical for immunoglobulin (Ig) G1 and IgE isotype-switched antibody responses. Despite the IL-4–mediated link between Th2 cells and B lymphocytes, the location of IL-4–producing T cells in the lymph nodes is currently unclear. Using IL-4 dual reporter mice, we examined the Th2 response and IL-4 production in the draining mesenteric lymph nodes during infection with the enteric nematode Heligmosomoides polygyrus. We show that although IL-4–competent Th2 cells are found throughout the B and T cell areas, IL-4–producing Th2 cells are restricted to the B cell follicles and associate with germinal centers. Consistent with their localization, IL-4 producers express high levels of CXCR5, ICOS, PD-1, IL-21, and BCL-6, a phenotype characteristic of T follicular helper (Tfh) cells. Although IL-4 was dispensable for the generation of Th2 and Tfh cells, its deletion resulted in defective B cell expansion and maturation. Our report reveals the compartmentalization of Th2 priming and IL-4 production in the lymph nodes during infection, and identifies Tfh cells as the dominant source of IL-4 in vivo.
Collapse
Affiliation(s)
- Irah L King
- Trudeau Institute, Saranac Lake, NY 12983, USA
| | | |
Collapse
|
28
|
Snider H, Lezama-Davila C, Alexander J, Satoskar AR. Sex hormones and modulation of immunity against leishmaniasis. Neuroimmunomodulation 2009; 16:106-13. [PMID: 19212130 PMCID: PMC2760305 DOI: 10.1159/000180265] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sex-associated hormones such as estradiol, testosterone and progesterone have all been shown to modulate immune responses, which can result in differential disease outcomes between males and females, as well as between pregnant and nonpregnant females. Most parasitic diseases, including leishmaniasis, usually result in more severe disease in males compared with females. This review highlights our current knowledge concerning the role of sex hormones in modulating leishmaniasis in both clinical settings and experimental disease models.
Collapse
Affiliation(s)
- Heidi Snider
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
29
|
Barbi J, Brombacher F, Satoskar AR. T cells from Leishmania major-susceptible BALB/c mice have a defect in efficiently up-regulating CXCR3 upon activation. THE JOURNAL OF IMMUNOLOGY 2008; 181:4613-20. [PMID: 18802063 DOI: 10.4049/jimmunol.181.7.4613] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Genetic background influences the outcome of Leishmania major infection. C57BL/6 mice mount a Th1 response and resolve infection. In contrast, BALB/c mice mount a Th2 response and develop chronic lesions. This susceptible phenotype is seen even though BALB/c mice generate IFN-gamma-producing T cells at proportions similar to C57BL/6 mice in their lymph nodes (LN) early after infection. We had previously shown that chemokine receptor CXCR3 mediates immunity against L. major by recruiting IFN-gamma-producing T cells to the lesions of C57BL/6 mice. Therefore, we hypothesized that IFN-gamma-secreting T cells in BALB/c mice are unable to confer protection because they may be defective in up-regulating CXCR3. To test this hypothesis, we analyzed kinetics of CXCR3-expressing T cells in the LN and lesions of BALB/c and C57BL/6 mice during L. major infection. Additionally, we compared the ability of T cells from BALB/c and C57BL/6 mice to up-regulate CXCR3 upon activation. We found that resolution of L. major infection in C57BL/6 mice was associated with an increase in the proportion of CXCR3(+) T cells in regional LN and lesions, whereas disease progression in BALB/c mice was associated with a decrease in these populations. Anti-CD3/CD28-activated T cells from naive BALB/c but not C57BL/6 mice were defective in up-regulating CXCR3. Impaired induction of CXCR3 on BALB/c T cells was not due to lack of IFN-gamma and was mediated partially by IL-10 but not IL-4 or IL-13. We propose that defective CXCR3 up-regulation on T cells in BALB/c mice may contribute to L. major susceptibility.
Collapse
Affiliation(s)
- Joseph Barbi
- Department of Microbiology, The Ohio State University, Columbus, OH 43221, USA
| | | | | |
Collapse
|
30
|
Interleukin-4-promoted T helper 2 responses enhance Nippostrongylus brasiliensis-induced pulmonary pathology. Infect Immun 2008; 76:5535-42. [PMID: 18809669 DOI: 10.1128/iai.00210-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of CD4(+) T-cell interleukin-4 (IL-4) receptor alpha (IL-4Ralpha) expression in T helper 2 (TH2) immune responses has not been defined. To examine this role, we infected CD4(+) T-cell IL-4Ralpha knockout (KO) mice with the parasitic nematode Nippostrongylus brasiliensis, which induces strong host TH2 responses. Although N. brasiliensis expulsion was not affected in CD4(+) T-cell IL-4Ralpha KO mice, the associated lung pathology was reduced. Infected CD4(+) T-cell IL-4Ralpha KO mice showed abrogation of airway mucus production. Furthermore, CD4(+) T-cell IL-4Ralpha KO mouse lungs contained reduced numbers of lymphocytes and eosinophils. Restimulation of pulmonary region-associated T-cell populations showed that TH2 cytokine responses were disrupted. Secretion of IL-4, but not secretion of IL-13 or IL-5, from mediastinal lymph node CD4(+) T cells was reduced in infected CD4(+) T-cell IL-4Ralpha KO mice. Restimulation of tissue-derived CD4(+) T cells resulted in equivalent levels of IL-4 and IL-13 on day 7 postinfection (p.i.) in control and CD4(+) T-cell IL-4Ralpha KO mice. By day 10 p.i. the TH2 cytokine levels had significantly declined in CD4(+) T-cell IL-4Ralpha KO mice. Restimulation with N. brasiliensis antigen of total lung cell populations and populations with CD4(+) T cells depleted showed that CD4(+) T cells were a key TH2 cytokine source. These data demonstrated that CD4(+) T-cell IL-4 responsiveness facilitates eosinophil and lymphocyte recruitment, lymphocyte localization, and TH2 cytokine production in the allergic pathology associated with N. brasiliensis infections.
Collapse
|
31
|
Alexander J, McFarlane E. Can type-1 responses against intracellular pathogens be T helper 2 cytokine dependent? Microbes Infect 2008; 10:953-9. [PMID: 18762265 DOI: 10.1016/j.micinf.2008.07.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While control of intracellular pathogens, such as the protozoan Leishmania, is dependent on the generation of type-1 immune responses, the role of T helper 2 cytokines in the disease process is more controversial. Traditionally these cytokines were perceived as counter-regulating type-1 responses and promoting disease exacerbation. Nevertheless a substantial body of evidence now exists suggesting that the development of effective type-1 immunity can involve the significant involvement of the Th2 cytokines IL-4 and IL-13. This article reviews, using Leishmania species in particular, the circumstances under which these cytokines can promote protective type-1 immunity.
Collapse
Affiliation(s)
- James Alexander
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 ONR, UK.
| | | |
Collapse
|
32
|
Ko CWS, Cuthbert RJ, Orsi NM, Brooke DA, Perry SL, Markham AF, Coletta PL, Hull MA. Lack of interleukin-4 receptor alpha chain-dependent signalling promotes azoxymethane-induced colorectal aberrant crypt focus formation in Balb/c mice. J Pathol 2008; 214:603-9. [PMID: 18220315 DOI: 10.1002/path.2316] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Interleukin (IL)-4 receptor (IL-4R) alpha chain-dependent signalling by IL-4 and IL-13 promotes tumour growth and metastasis in mouse models of colorectal cancer. However, the role of IL-4R alpha-dependent signalling during the early, pre-malignant stages of colorectal carcinogenesis has not been investigated. Therefore, we investigated the effect of deletion of the IL-4R alpha gene on azoxymethane-induced colorectal aberrant crypt focus (ACF) multiplicity and size in Balb/c mice. IL-4R alpha(-/-) mice developed significantly more ACFs [median 8, inter-quartile range (IQR) 4-11.5; n = 9] than wild-type (WT) animals (median 4, IQR 1-6; n = 9; p = 0.04, Mann-Whitney U-test). There were significantly higher levels of IL-4 in serum from azoxymethane- and sham-treated IL-4R alpha(-/-) mice than WT animals, but no difference in serum IL-13 levels. In the absence of functional IL-4Rs, IL-13 can also signal via the IL-13R alpha2 receptor, leading to induction of transforming growth factor (TGF) beta, which has pro-tumourigenic activity at early stages of intestinal tumourigenesis. We found that mucosal TGFbeta mRNA levels and intestinal epithelial cell TGFbeta immunoreactivity were significantly higher in IL-4R alpha(-/-) mice than in WT animals. In summary, IL-4R alpha-dependent signalling has a protective, anti-neoplastic role during the post-initiation phase of azoxymethane-induced colorectal carcinogenesis in Balb/c mice. Our data should prompt thorough investigation of the role of IL-4R alpha-dependent signalling during human colorectal carcinogenesis, particularly as antagonism of IL-4R signalling represents a therapeutic strategy for asthma and other allergic diseases.
Collapse
Affiliation(s)
- C W S Ko
- Section of Molecular Gastroenterology, Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Trust Brenner Building, St James's University Hospital, Leeds LS9 7TF, UK.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Nieuwenhuizen N, Herbert DR, Lopata AL, Brombacher F. CD4+ T cell-specific deletion of IL-4 receptor alpha prevents ovalbumin-induced anaphylaxis by an IFN-gamma-dependent mechanism. THE JOURNAL OF IMMUNOLOGY 2007; 179:2758-65. [PMID: 17709489 DOI: 10.4049/jimmunol.179.5.2758] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-4Ralpha-mediated STAT6 activation serves an essential role in various animal models of allergy and asthma at both the sensitization and effector phases. IL-4 and IL-13 signaling via the IL-4Ralpha chain exacerbates murine anaphylaxis, but the cell-specific requirements for IL-4Ralpha expression are unclear. The purpose of this study was to elucidate the mechanisms of systemic anaphylaxis to OVA in gene-targeted mice with a deletion of the IL-4Ralpha chain in the macrophage/neutrophil or CD4+ T lymphocyte population. Results demonstrated that anaphylaxis in this model was entirely dependent upon the FcgammaRII/III and was associated with mast cell degranulation. Expression of the IL-4Ralpha on CD4+ T cells, but not macrophages or neutrophils, was critical for severe anaphylaxis, characterized by diarrhea, hypothermia, and death. Ab depletion experiments demonstrated that IFN-gamma protected against mortality and severe intestinal pathology despite the presence of Ag and specific Ab. This protection was associated with reduced levels of mast cell protease, a marker of mast cell degranulation, suggesting that IFN-gamma may inhibit mast cell degranulation in vivo. These data suggest that it may be possible to limit the severity of anaphylaxis using rational therapies designed to increase numbers of IFN-gamma-producing cells by targeting IL-4Ralpha signaling in CD4+ T lymphocytes.
Collapse
Affiliation(s)
- Natalie Nieuwenhuizen
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Health Science Faculty, University of Cape Town, Cape Town, South Africa
| | | | | | | |
Collapse
|
34
|
Nagase H, Jones KM, Anderson CF, Noben-Trauth N. Despite increased CD4+Foxp3+ cells within the infection site, BALB/c IL-4 receptor-deficient mice reveal CD4+Foxp3-negative T cells as a source of IL-10 in Leishmania major susceptibility. THE JOURNAL OF IMMUNOLOGY 2007; 179:2435-44. [PMID: 17675505 DOI: 10.4049/jimmunol.179.4.2435] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BALB/c IL-4Ralpha(-/-) mice, despite the absence of IL-4/IL-13 signaling and potent Th2 responses, remain highly susceptible to Leishmania major substain LV39 due exclusively to residual levels of IL-10. To address the contribution of CD4(+)CD25(+) T regulatory (Treg) cells to IL-10-mediated susceptibility, we depleted CD4(+)CD25(+) cells in vivo and reconstituted IL-4Ralpha x RAG2 recipients with purified CD4(+)CD25(-) T cells. Although anti-CD25 mAb treatment significantly decreased parasite numbers in IL-4Ralpha(-/-) mice, treatment with anti-IL-10R mAb virtually eliminated L. major parasites in both footpad and dermal infection sites. In addition, IL-4Ralpha x RAG2 mice reconstituted with CD4(+) cells depleted of CD25(+) Treg cells remained highly susceptible to infection. Analysis of L. major-infected BALB/c and IL-4Ralpha(-/-) inflammatory sites revealed that the majority of IL-10 was secreted by the CD4(+)Foxp3(-) population, with a fraction of IL-10 coming from CD4(+)Foxp3(+) Treg cells. All T cell IFN-gamma production was also derived from the CD4(+)Foxp3(-) population. Nevertheless, the IL-4Ralpha(-/-)-infected ear dermis, but not draining lymph nodes, consistently displayed 1.5- to 2-fold greater percentages of CD4(+)CD25(+) and CD4(+)Foxp3(+) Treg cells compared with the BALB/c-infected dermis. Thus, CD4(+)Foxp3(-) T cells are a major source of IL-10 that disrupts IFN-gamma activity in L. major-susceptible BALB/c mice. However, the increase in CD4(+)Foxp3(+) T cells within the IL-4Ralpha(-/-) dermis implies a possible IL-10-independent role for Treg cells within the infection site, and may indicate a novel immune escape mechanism used by L. major parasites in the absence of IL-4/IL-13 signaling.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Dermis/immunology
- Dermis/parasitology
- Dermis/pathology
- Ear/parasitology
- Ear/pathology
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Genetic Predisposition to Disease/genetics
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/parasitology
- Inflammation/pathology
- Interferon-gamma/immunology
- Interleukin-10/antagonists & inhibitors
- Interleukin-10/immunology
- Interleukin-13/immunology
- Leishmania major/immunology
- Leishmaniasis, Cutaneous/genetics
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/pathology
- Lymph Nodes/immunology
- Lymph Nodes/parasitology
- Lymph Nodes/pathology
- Lymphocyte Depletion
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/immunology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Th2 Cells/immunology
Collapse
Affiliation(s)
- Hisashi Nagase
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University Medical Center, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
35
|
Radwanska M, Cutler AJ, Hoving JC, Magez S, Holscher C, Bohms A, Arendse B, Kirsch R, Hunig T, Alexander J, Kaye P, Brombacher F. Deletion of IL-4Ralpha on CD4 T cells renders BALB/c mice resistant to Leishmania major infection. PLoS Pathog 2007; 3:e68. [PMID: 17500591 PMCID: PMC1867380 DOI: 10.1371/journal.ppat.0030068] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 03/27/2007] [Indexed: 11/18/2022] Open
Abstract
Effector responses induced by polarized CD4+ T helper 2 (Th2) cells drive nonhealing responses in BALB/c mice infected with Leishmania major. Th2 cytokines IL-4 and IL-13 are known susceptibility factors for L. major infection in BALB/c mice and induce their biological functions through a common receptor, the IL-4 receptor α chain (IL-4Rα). IL-4Rα–deficient BALB/c mice, however, remain susceptible to L. major infection, indicating that IL-4/IL-13 may induce protective responses. Therefore, the roles of polarized Th2 CD4+ T cells and IL-4/IL-13 responsiveness of non-CD4+ T cells in inducing nonhealer or healer responses have yet to be elucidated. CD4+ T cell–specific IL-4Rα (LckcreIL-4Rα−/lox) deficient BALB/c mice were generated and characterized to elucidate the importance of IL-4Rα signaling during cutaneous leishmaniasis in the absence of IL-4–responsive CD4+ T cells. Efficient deletion was confirmed by loss of IL-4Rα expression on CD4+ T cells and impaired IL-4–induced CD4+ T cell proliferation and Th2 differentiation. CD8+, γδ+, and NK–T cells expressed residual IL-4Rα, and representative non–T cell populations maintained IL-4/IL-13 responsiveness. In contrast to IL-4Rα−/lox BALB/c mice, which developed ulcerating lesions following infection with L. major, LckcreIL-4Rα−/lox mice were resistant and showed protection to rechallenge, similar to healer C57BL/6 mice. Resistance to L. major in LckcreIL-4Rα−/lox mice correlated with reduced numbers of IL-10–secreting cells and early IL-12p35 mRNA induction, leading to increased delayed type hypersensitivity responses, interferon-γ production, and elevated ratios of inducible nitric oxide synthase mRNA/parasite, similar to C57BL/6 mice. These data demonstrate that abrogation of IL-4 signaling in CD4+ T cells is required to transform nonhealer BALB/c mice to a healer phenotype. Furthermore, a beneficial role for IL-4Rα signaling in L. major infection is revealed in which IL-4/IL-13–responsive non-CD4+ T cells induce protective responses. Leishmaniasis is a disease induced by a protozoan parasite and transmitted by the sandfly. Several forms of infection are identified, and the different diseases have wide-ranging symptoms from localized cutaneous sores to visceral disease affecting many internal organs. Animal models of human cutaneous leishmaniasis have been established in which disease is induced by infecting mice subcutaneously with Leishmania major. Different strains of inbred mice have been found to be susceptible or resistant to L. major infection. “Healer” C57BL/6 mice control infection with transient lesion development. The protective response to infection in this strain is dominated by type 1 cytokines inducing parasite killing by nitric oxide. Conversely, “nonhealer” BALB/c mice are unable to control infection and develop nonhealing lesions associated with a dominant type 2 immune response driven by cytokines IL-4 and IL-13. However, mice deficient in IL-4/IL-13 signaling are not protected against development of cutaneous leishmaniasis. Here we describe a BALB/c mouse where the ability to polarize to a dominant type 2 response is removed by cell-specific deletion of the receptor for IL-4/IL-13 on CD4+ T cells. These mice are resistant to L. major infection similar to C57BL/6 mice, which highlights the role of T helper 2 cells in driving susceptibility and the protective role of IL-4/IL-13 signaling in non-CD4+ T cells in BALB/c mice.
Collapse
Affiliation(s)
- Magdalena Radwanska
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Antony J Cutler
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - J. Claire Hoving
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Stefan Magez
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- VIB, Vrije Universiteit Brussel, Brussels, Belgium
| | - Christoph Holscher
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Andreas Bohms
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Berenice Arendse
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Richard Kirsch
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Thomas Hunig
- Institute for Virology and Immunobiology, University of Wurzburg, Wurzburg, Germany
| | - James Alexander
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Paul Kaye
- Immunology and Infection Unit, Department of Biology, University of York, York, United Kingdom
| | - Frank Brombacher
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Misson P, Brombacher F, Delos M, Lison D, Huaux F. Type 2 immune response associated with silicosis is not instrumental in the development of the disease. Am J Physiol Lung Cell Mol Physiol 2007; 292:L107-13. [PMID: 16997884 DOI: 10.1152/ajplung.00503.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been proposed that the development of lung fibrosis is associated with a T helper type 2 response, mainly characterized by IL-4 and IL-13 production. We investigated the potential role of type 2 immune polarization in the silicotic process and examined the pulmonary response to silica particles in mice genetically deficient for IL-4. We found that IL-4−/− mice were not protected against the development of silicosis, suggesting that IL-4 is not essential for the development of this fibrotic disease. By evaluating the intensity of silica-induced lung fibrosis in mice deficient for IL-4 receptor α (IL-4Rα), we showed that the establishment of pulmonary fibrosis was independent of both IL-4 and IL-13. Strong impairment of the type 2 immune response (IgG1) in the lungs of IL-4−/− and IL-4Rα−/− mice did not affect the development of the disease. Measurement of IL-13α2 receptor expression and IgG2a, IL-12p70, and IFN-γ levels in silica-treated IL-4−/− and IL-4Rα−/− animals showed that the development of silicosis was not related to an IL-13 signaling pathway or a switch to a type 1 response in deficient animals. Our data clearly indicate that the type 2 immune response associated with silicosis in mice is not required for the development of this inflammatory and fibrotic disease.
Collapse
Affiliation(s)
- Pierre Misson
- Unit of Industrial Toxicology and Occupational Medicine, Université Catholique de Louvain, 53.02 Ave. E. Mounier, 1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
37
|
Abstract
Leishmania are digenetic protozoan parasites that are inoculated into the skin by vector sand flies, are taken up by macrophages, and produce a spectrum of chronic diseases in their natural reservoir and susceptible human hosts. During the early establishment of infection in the skin and lymphoid organs, Leishmania produce multiple effects on macrophage and dendritic cell functions that inhibit their innate anti-microbial defenses and impair their capacity to initiate T-helper 1 cell immunity. In addition, the skin is a site preconditioned for early parasite survival by virtue of a high frequency of steady-state, natural CD25+Foxp3+ regulatory T cells (Tregs) that function to suppress the generation of unneeded immune responses to infectious and non-infectious antigens to which the skin is regularly exposed. In murine models of infection, antigen-induced CD25+/-Foxp3-interleukin (IL)-10+ Treg cells act during the effector phase of the immune response to control immunopathology and may also delay or prevent healing. Finally, following resolution of infection in healed mice, CD25+Foxp3+ Tregs function in an IL-10-dependent manner to prevent sterile cure and establish a long-term state of functional immune privilege in the skin.
Collapse
Affiliation(s)
- Nathan Peters
- Laboratory of Parasitic Diseases, NIAID, Bethesda, MD 20892-0425, USA
| | | |
Collapse
|
38
|
Leeto M, Herbert DR, Marillier R, Schwegmann A, Fick L, Brombacher F. TH1-dominant granulomatous pathology does not inhibit fibrosis or cause lethality during murine schistosomiasis. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1701-12. [PMID: 17071593 PMCID: PMC1780204 DOI: 10.2353/ajpath.2006.060346] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Schistosoma mansoni egg-induced inflammation is accompanied by TH2 cell polarization and development of fibrotic granulomas in host tissue. The interleukin (IL)-4 receptor alpha (IL-4Ralpha), which mediates IL-4 and IL-13 signaling, is essential for granulomatous pathology through a putative CD4+ T-cell-dependent mechanism. In this study, we asked whether CD4+ T-cell-specific IL-4Ralpha-deficient mice (Lck(Cre)IL-4Ralpha(-/lox)) developed granulomas and egg-driven collagen production. Although eosinophilia and goblet cell hyperplasia were impaired in Lck(Cre)IL-4Ralpha(-/lox) mice, there was no reduction in size or collagen content of lung and liver granulomas. The lack of CD4+ T-cell IL-4Ralpha expression caused significant increases in interferon-gamma-producing cells, inducible nitric-oxide synthetase production, and hepatic damage, compared with similarly infected wild-type mice. Interestingly, this TH1-associated liver injury did not lead to premature mortality in this strain. Instead, lower levels of serum endotoxin in Lck(Cre)IL-4Ralpha(-/lox) mice suggest that intestinal barrier function may be the dominant factor for survival during natural infection.
Collapse
Affiliation(s)
- Mosiuoa Leeto
- Division of Infectious Immunology, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | | |
Collapse
|
39
|
Michels C, Goyal P, Nieuwenhuizen N, Brombacher F. Infection with Syphacia obvelata (pinworm) induces protective Th2 immune responses and influences ovalbumin-induced allergic reactions. Infect Immun 2006; 74:5926-32. [PMID: 16988272 PMCID: PMC1594938 DOI: 10.1128/iai.00207-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections with pinworms are common in rodent animal facilities. In this study, we show the consequence of an outbreak in a transgenic barrier facility of infection by Syphacia obvelata, a murine pinworm gastrointestinal nematode. Immune responses were defined in experimental infection studies with BALB/c mice. Infection with S. obvelata induced a transient Th2-type immune response with elevated interleukin 4 (IL-4), IL-5, and IL-13 cytokine production and parasite-specific immunoglobulin G1 (IgG1). In contrast, BALB/c mice deficient in IL-13, IL-4/13, or the IL-4 receptor alpha chain showed chronic disease, with a >100-fold higher parasite burden, increased gamma interferon production, parasite-specific IgG2b, and a default Th2 response. Interestingly, infected IL-4-/- BALB/c mice showed only slightly elevated parasite burdens compared to the control mice, suggesting that IL-13 plays the dominant role in the control of S. obvelata. The influence that pinworm infection has on the allergic response to a dietary antigen was found to be important. Helminth-infected mice immunized against ovalbumin (Ova) elicited more severe anaphylactic shock with reduced Ova-specific IL-4 and IL-5 than did noninfected controls, demonstrating that S. obvelata infection is able to influence nonrelated laboratory experiments. The latter outcome highlights the importance of maintaining mice for use as experimental models under pinworm-free conditions.
Collapse
Affiliation(s)
- Chesney Michels
- Health Science Faculty, Institute of Infectious Disease and Molecular Medicine (IIDMM), University of Cape Town, Cape Town, South Africa
| | | | | | | |
Collapse
|
40
|
Abstract
Helper T cells coordinate immune responses through the production of cytokines. Th2 cells express the closely linked Il4, Il13, and Il5 cytokine genes, whereas these same genes are silenced in the Th1 lineage. The Th1/Th2 lineage choice has become a textbook example for the regulation of cell differentiation, and recent discoveries have further refined and expanded our understanding of how Th2 differentiation is initiated and reinforced by signals from antigen-presenting cells and cytokine-driven feedback loops. Epigenetic changes that stabilize the active or silent state of the Il4 locus in differentiating helper T cells have been a major focus of recent research. Overall, the field is progressing toward an integrated model of the signaling and transcription factor networks, cis-regulatory elements, epigenetic modifications, and RNA interference mechanisms that converge to determine the lineage fate and gene expression patterns of differentiating helper T cells.
Collapse
Affiliation(s)
- K Mark Ansel
- Harvard Medical School, CBR Institute for Biomedical Research, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
41
|
Nieuwenhuizen N, Lopata AL, Jeebhay MF, Herbert DR, Robins TG, Brombacher F. Exposure to the fish parasite Anisakis causes allergic airway hyperreactivity and dermatitis. J Allergy Clin Immunol 2006; 117:1098-105. [PMID: 16675338 DOI: 10.1016/j.jaci.2005.12.1357] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 12/28/2005] [Accepted: 12/30/2005] [Indexed: 01/13/2023]
Abstract
BACKGROUND Several case reports show allergy and anaphylactic reactions to the fish parasite Anisakis in the domestic and occupational setting. Further research is needed on the prevalence and mechanisms of disease. OBJECTIVE To determine the prevalence of Anisakis sensitization and related symptoms among workers in 2 fish-processing factories, and to use gene-deficient mice to determine the working mechanisms of Anisakis allergy. METHODS A modified version of the European Community Respiratory Health Survey was used to interview 578 South African fish-processing workers. Sensitization to Anisakis, seafood, and common aeroallergens was determined by skin prick test. Lung function was measured by spirometry and methacholine challenge. Serum eicosapentaenoic acid levels were used as an index of seafood consumption. Sensitized wild-type, IL-4, or IL-4 receptor alpha-deficient mice were challenged orally with Anisakis extract. Allergic reactions, lung pathology, antibodies, cytokines, mast cell proteases, and histamine were evaluated. RESULTS The prevalence of sensitization to Anisakis was higher than the prevalence of sensitization to fish (8% vs 6%). Anisakis-specific IgE reactivity was associated with bronchial hyperreactivity and dermatitis, and significantly increased with fish consumption. In mice, Anisakis infective larvae (L3) induced a striking T(H)2/type 2 response. Food-allergic-type reactions induced by oral challenge with Anisakis extract were absent in IL-4 receptor alpha knockout mice. CONCLUSION Anisakis sensitization in fish-processing workers is associated with allergic symptoms and correlates with high levels of fish consumption. Anisakis proteins induce allergic reactions in sensitized mice by IL-4/IL-13-mediated mechanisms. CLINICAL IMPLICATIONS Anisakis allergy should be considered in fish-processing workers with allergic symptoms.
Collapse
Affiliation(s)
- Natalie Nieuwenhuizen
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, National Health Laboratory Service, University of Cape Town, South Africa
| | | | | | | | | | | |
Collapse
|
42
|
Hölscher C, Arendse B, Schwegmann A, Myburgh E, Brombacher F. Impairment of alternative macrophage activation delays cutaneous leishmaniasis in nonhealing BALB/c mice. THE JOURNAL OF IMMUNOLOGY 2006; 176:1115-21. [PMID: 16394000 DOI: 10.4049/jimmunol.176.2.1115] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expressed on various cell types, the IL-4Ralpha is a component of both receptors for IL-4 and IL-13. Susceptibility of BALB/c mice to Leishmania major is believed to be dependent on the development of IL-4- and IL-13-producing Th2 cells, while IFN-gamma secretion by Th1 cells is related to resistance. Despite a sustained development of Th2 cells, IL-4Ralpha-deficient BALB/c mice are able to control acute cutaneous leishmaniasis, suggesting that IL-4Ralpha-bearing cells other than Th2 cells contribute to susceptibility. To analyze the contribution of the IL-4Ralpha on macrophages, recently generated macrophage/neutrophil-specific IL-4Ralpha-deficient mice on a susceptible BALB/c genetic background were infected with L. major. Strikingly, macrophage/neutrophil-specific IL-4Ralpha-deficient mice showed a significantly delayed disease progression with normal Th2 and type 2 Ab responses but improved macrophage leishmanicidal effector functions and reduced arginase activity. Together, these results suggest that alternative macrophage activation contributes to susceptibility in cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Christoph Hölscher
- Institute for Infectious Diseases and Molecular Medicine and Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
| | | | | | | | | |
Collapse
|
43
|
Abstract
Atopic dermatitis (AD) is a complex disease that manifests immunologic abnormalities in the skin. The immunologic changes of AD are characterized by a T helper cell type 2 (Th2)-dominated immune response in its acute phase and a Th1/Th2 mixed immune response in its chronic phase. Although the clinical presentation and pathologic changes are initially in the skin, AD may be, in part, a systemic disorder. In fact, AD is often considered to be the initial manifestation of the "atopic march" that progresses from AD to allergic rhinitis and asthma. In the past several years, a number of murine models of AD have been developed or discovered, and studies on these models have contributed greatly to our understanding of the immunopathogenesis of this disease. This review is focused on these recent, illuminating advances in animal models of AD.
Collapse
Affiliation(s)
- Tao Zheng
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle 1A.27, Baltimore, MD 21224, USA.
| | | |
Collapse
|
44
|
Arendse B, Van Snick J, Brombacher F. IL-9 Is a Susceptibility Factor inLeishmania majorInfection by Promoting Detrimental Th2/Type 2 Responses. THE JOURNAL OF IMMUNOLOGY 2005; 174:2205-11. [PMID: 15699153 DOI: 10.4049/jimmunol.174.4.2205] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-9 is a cytokine produced by Th2 cells, induced during Leishmania major infection. Because the role of IL-9 in leishmaniasis is currently unknown, IL-9-deficient mice were generated by immunization with mouse IL-9 coupled to OVA. This produced strong and long-lasting neutralizing anti-IL-9 Abs in vivo. Anti-IL-9 vaccination showed protective effects, because it enabled L. major-infected nonhealer BALB/c mice to better resist to leishmaniasis with doubling the time span until pathological disease progression occurred. Increased resistance was also demonstrated by moderate footpad swelling and histopathology due to reduced parasite burden compared with sham-immunized BALB/c mice. Mechanistically, IL-9 neutralization in BALB/c mice resulted in a reduction of detrimental Th2/type 2 responses with an observed shift toward protective Th1 immune responses. This led to an alteration from alternative to classical macrophage activation with subsequent enhanced killing effector functions, as demonstrated by increased NO production but reduced arginase 1-mediated macrophage responses. Conclusively, the data show that IL-9 is a susceptible factor in leishmaniasis. They further suggest that IL-9 is able to influence Th dichotomy in leishmaniasis by promoting detrimental Th2/type 2 responses in BALB/c mice. The results extend efforts made to generate autoantibodies capable of regulating biological processes, with IL-9 a potential drug target against leishmaniasis.
Collapse
MESH Headings
- Animals
- Autoantibodies/biosynthesis
- DNA-Binding Proteins/physiology
- Disease Susceptibility/immunology
- Immune Sera/administration & dosage
- Immune Sera/immunology
- Immunity, Innate/immunology
- Interleukin-9/antagonists & inhibitors
- Interleukin-9/deficiency
- Interleukin-9/immunology
- Interleukin-9/physiology
- Leishmania major/growth & development
- Leishmania major/immunology
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/parasitology
- Leishmaniasis, Cutaneous/prevention & control
- Macrophage Activation/immunology
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide/biosynthesis
- Nitric Oxide/toxicity
- Protozoan Vaccines/administration & dosage
- Protozoan Vaccines/immunology
- Signal Transduction/immunology
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th2 Cells/immunology
- Th2 Cells/metabolism
- Trans-Activators/physiology
Collapse
Affiliation(s)
- Berenice Arendse
- University of Cape Town, Health Science Faculty, Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa
| | | | | |
Collapse
|
45
|
Abstract
Leishmania are digenetic protozoa which inhabit two highly specific hosts, the sandfly where they grow as motile, flagellated promastigotes in the gut, and the mammalian macrophage where they grow intracellularly as non-flagellated amastigotes. Leishmaniasis is the outcome of an evolutionary 'arms race' between the host's immune system and the parasite's evasion mechanisms which ensure survival and transmission in the population. The spectrum of disease manifestations and severity reflects the interaction between the genome of the host and that of the parasite, and the pathology is caused by a combination of host and parasite molecules. This chapter examines the genetic basis of host susceptibility to disease in humans and animal models. It describes the genetic tools used to map and identify susceptibility genes, and the lessons learned from murine and human cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Emanuela Handman
- The Walter and Eliza Hall Institute of Medical Research, Post Office, Royal Melbourne Hospital, Victoria 3050, Australia
| | | | | |
Collapse
|
46
|
Sacks D, Anderson C. Re-examination of the immunosuppressive mechanisms mediating non-cure of Leishmania infection in mice. Immunol Rev 2004; 201:225-38. [PMID: 15361244 DOI: 10.1111/j.0105-2896.2004.00185.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interleukin (IL)-4 driven, polarized T-helper 2 cell (Th2) response that controls non-healing infection with Leishmania major in BALB/c mice has long been embraced as the underlying principle with which to consider the pathogenesis of non-healing and systemic forms of leishmaniasis in humans. The inability, however, to reveal a Th2 polarity associated with non-curing clinical disease has suggested that alternative cells and cytokines are involved in susceptibility. In this review, various mouse models of non-curing infection with L. major and other Leishmania species are re-examined in the context of the suppression mediated by IL-10 and regulatory T (Treg) cells. These activities are revealed in L. major-infected BALB/c IL-4 knockout (KO) and IL-4Ralpha KO mice and especially in non-cure resistant mice that do not default to a Th2 pathway as a result of inherent defects in Th1 differentiation. In contrast to the extreme BALB/c susceptibility arising from an aberrant Th2 response, non-cure in resistant mice arises from an imbalance in Treg cells that are activated in the context of an ongoing Th1 response and whose primary function may be to suppress the immunopathology associated with persistent antiparasite responses in infected tissues.
Collapse
Affiliation(s)
- David Sacks
- Laboratory of Parasitic Diseases, NIAID, Bethesda, MD, USA.
| | | |
Collapse
|
47
|
McMahon-Pratt D, Alexander J. Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? Immunol Rev 2004; 201:206-24. [PMID: 15361243 DOI: 10.1111/j.0105-2896.2004.00190.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Parasitic protozoa of the genus Leishmania have provided a useful perspective for immunologists in terms of host defense mechanisms critical for the resolution of infection caused by intracellular pathogens. These organisms, which normally reside in a late endosomal, major histocompatibility complex (MHC) class II(+) compartment within host macrophages cells, require CD4(+) T-cell responses for the control of disease. The paradigm for the CD4(+) T-helper 1 (Th1)/Th2 dichotomy is largely based on the curing/non-curing responses, respectively, to Leishmania major infection. However, this genus of parasitic protozoa is evolutionarily diverse, with the cutaneous disease-causing organisms of the Old World (L. major) and New World (Leishmania mexicana/ Leishmania amazonensis) having diverged 40-80 million years ago. Further adaptations to survive within the visceral organs (for Leishmania donovani, Leishmania chagasi, and Leishmania infantum) must have been required. Consequently, significant differences in host-parasite interactions have evolved. Different virulence factors have been identified for distinct Leishmania species, and there are profound differences in the immune mechanisms that mediate susceptibility/resistance to infection and in the pathology associated with disease. These variations not only point to interesting features of the host-pathogen interaction and immunobiology of this genus of parasitic protozoa, but also have important implications for immunotherapy and vaccine development.
Collapse
Affiliation(s)
- Diane McMahon-Pratt
- Department of Epidemiology & Public Health, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
48
|
Cameron P, McGachy A, Anderson M, Paul A, Coombs GH, Mottram JC, Alexander J, Plevin R. Inhibition of lipopolysaccharide-induced macrophage IL-12 production by Leishmania mexicana amastigotes: the role of cysteine peptidases and the NF-kappaB signaling pathway. THE JOURNAL OF IMMUNOLOGY 2004; 173:3297-304. [PMID: 15322192 DOI: 10.4049/jimmunol.173.5.3297] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Infection with lesion-derived Leishmania mexicana amastigotes inhibited LPS-induced IL-12 production by mouse bone marrow-derived macrophages. This effect was associated with expression of cysteine peptidase B (CPB) because amastigotes of CPB deletion mutants had limited ability to inhibit IL-12 production, whereas preincubation of cells with a CPB inhibitor, cathepsin inhibitor IV, was able to suppress the effect of wild-type amastigotes. Infection with wild-type amastigotes resulted in a time-dependent proteolytic degradation of IkappaBalpha and IkappaBbeta and the related protein NF-kappaB. This effect did not occur with amastigotes of CPB deletion mutants or wild-type promastigotes, which do not express detectable CPB. NF-kappaB DNA binding was also inhibited by amastigote infection, although nuclear translocation of cleaved fragments of p65 NF-kappaB was still observed. Cysteine peptidase inhibitors prevented IkappaBalpha, IkappaBbeta, and NF-kappaB degradation induced by amastigotes, and recombinant CPB2.8, an amastigote-specific isoenzyme of CPB, was shown to degrade GST-IkappaBalpha in vitro. LPS-mediated IkappaBalpha and IkappaBbeta degradation was not affected by these inhibitors, confirming that the site of degradation of IkappaBalpha, IkappaBbeta, and NF-kappaB by the amastigotes was not receptor-driven, proteosomal-mediated cleavage. Infection of bone marrow macrophages with amastigotes resulted in cleavage of JNK and ERK, but not p38 MAPK, whereas preincubation with a cysteine peptidase inhibitor prevented degradation of these proteins, but did not result in enhanced protein kinase activation. Collectively, our results suggest that the amastigote-specific cysteine peptidases of L. mexicana are central to the ability of the parasite to modulate signaling via NF-kappaB and consequently inhibit IL-12 production.
Collapse
Affiliation(s)
- Pamela Cameron
- Department of Immunology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Herbert DR, Hölscher C, Mohrs M, Arendse B, Schwegmann A, Radwanska M, Leeto M, Kirsch R, Hall P, Mossmann H, Claussen B, Förster I, Brombacher F. Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. Immunity 2004; 20:623-35. [PMID: 15142530 DOI: 10.1016/s1074-7613(04)00107-4] [Citation(s) in RCA: 585] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2003] [Revised: 03/10/2004] [Accepted: 03/17/2004] [Indexed: 12/28/2022]
Abstract
Macrophage/neutrophil-specific IL-4 receptor alpha-deficient mice (LysM(Cre)IL-4Ralpha(-/flox)) were generated to understand the role of IL-4/IL-13 responsive myeloid cells during Type 2 immune responses. LysM(Cre)IL-4Ralpha(-/flox) mice developed protective immunity against Nippostrongylus brasiliensis accompanied by T(H)2 development and goblet cell hyperplasia. In contrast, LysM(Cre)IL-4Ralpha(-/flox) mice were extremely susceptible to Schistosoma mansoni infection with 100% mortality during acute infection. Mortality was not dependent on neutrophils and occurred in the presence of T(H)2/Type 2 responses, granuloma formation, and egg-induced fibrosis. Death was associated with increased T(H)1 cytokines, hepatic and intestinal histopathology, increased NOS-2 activity, impaired egg expulsion, and sepsis. IL-10 was not able to compensate for the absence of IL-4/IL-13-activated alternative macrophages. Together, this shows that alternative macrophages are essential during schistosomiasis for protection against organ injury through downregulation of egg-induced inflammation.
Collapse
Affiliation(s)
- De'Broski R Herbert
- University of Cape Town, Health Sciences Faculty, 7925 Cape Town, South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cunningham AF, Serre K, Toellner KM, Khan M, Alexander J, Brombacher F, MacLennan ICM. Pinpointing IL-4-independent acquisition and IL-4-influenced maintenance of Th2 activity by CD4 T cells. Eur J Immunol 2004; 34:686-694. [PMID: 14991598 DOI: 10.1002/eji.200324510] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Naive CD4 T cells develop Th2 activity early in primary responses to alum-precipitated proteins by producing IL-4 mRNA and inducing B cells to produce gamma1 and epsilon switch transcripts. Both IL-4-dependent and IL-4-independent pathways for IL-4 induction are recognized, but their relative contribution to the different phases of primary Th2 responses in vivo is uncertain. We show the primary induction of IL-4 synthesis in lymph nodes responding to alum-precipitated protein is overwhelmingly in antigen-specific CD4 T cells and is unimpaired in IL-4Ralpha(-/-) mice, which can produce but do not respond to IL-4 and IL-13. Ig class-switching in extra-follicular responses, reflecting Th2 activity, is also unimpaired in these mice. By contrast, 7 days after immunization--when T cells are selecting B cells in germinal centers and T cell priming has occurred--non-responsiveness to IL-4 is associated with smaller germinal centers, increased levels of T-bet and gamma2a switch transcripts and reduced gamma1 and epsilon transcripts. These data indicate that Th2 characteristics acquired during T cell priming and the initial CD4 T cell interaction with B cells are largely IL-4-independent, whereas IL-4 production induced during priming has a significant role in maintaining the Th2 phenotype as T cells select B cells in germinal centers.
Collapse
Affiliation(s)
- Adam F Cunningham
- The Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham, GB
| | - Karine Serre
- The Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham, GB
| | - Kai-Michael Toellner
- The Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham, GB
| | - Mahmood Khan
- The Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham, GB
| | - James Alexander
- Department of Immunology, University of Strathclyde, Glasgow, GB
| | - Frank Brombacher
- Medical Research Council Unit Immunology in Infectious Diseases, Division of Immunology, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Ian C M MacLennan
- The Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham, GB
| |
Collapse
|