1
|
Schulze C, Hädrich M, Borger J, Rühmann B, Döring M, Sieber V, Thoma F, Blombach B. Investigation of exopolysaccharide formation and its impact on anaerobic succinate production with Vibrio natriegens. Microb Biotechnol 2024; 17:e14277. [PMID: 37256270 PMCID: PMC10832516 DOI: 10.1111/1751-7915.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
Vibrio natriegens is an emerging host for biotechnology due to its high growth and substrate consumption rates. In industrial processes typically fed-batch processes are applied to obtain high space-time yields. In this study, we established an aerobic glucose-limited fed-batch fermentation with the wild type (wt) of V. natriegens which yielded biomass concentrations of up to 28.4 gX L-1 . However, we observed that the viscosity of the culture broth increased by a factor of 800 at the end of the cultivation due to the formation of 157 ± 20 mg exopolysaccharides (EPS) L-1 . Analysis of the genomic repertoire revealed several genes and gene clusters associated with EPS formation. Deletion of the transcriptional regulator cpsR in V. natriegens wt did not reduce EPS formation, however, it resulted in a constantly low viscosity of the culture broth and altered the carbohydrate content of the EPS. A mutant lacking the cps cluster secreted two-fold less EPS compared to the wt accompanied by an overall low viscosity and a changed EPS composition. When we cultivated the succinate producer V. natriegens Δlldh Δdldh Δpfl Δald Δdns::pycCg (Succ1) under anaerobic conditions on glucose, we also observed an increased viscosity at the end of the cultivation. Deletion of cpsR and the cps cluster in V. natriegens Succ1 reduced the viscosity five- to six-fold which remained at the same level observed at the start of the cultivation. V. natriegens Succ1 ΔcpsR and V. natriegens Succ1 Δcps achieved final succinate concentrations of 51 and 46 g L-1 with a volumetric productivity of 8.5 and 7.7 gSuc L-1 h-1 , respectively. Both strains showed a product yield of about 1.4 molSuc molGlc -1 , which is 27% higher compared with that of V. natriegens Succ1 and corresponds to 81% of the theoretical maximum.
Collapse
Affiliation(s)
- Clarissa Schulze
- Microbial Biotechnology, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
| | - Maurice Hädrich
- Microbial Biotechnology, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
| | - Jennifer Borger
- Microbial Biotechnology, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
| | - Broder Rühmann
- Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
| | - Manuel Döring
- Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
| | - Volker Sieber
- Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
- SynBiofoundry@TUMTechnical University of MunichStraubingGermany
| | - Felix Thoma
- Microbial Biotechnology, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
- SynBiofoundry@TUMTechnical University of MunichStraubingGermany
| | - Bastian Blombach
- Microbial Biotechnology, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
- SynBiofoundry@TUMTechnical University of MunichStraubingGermany
| |
Collapse
|
2
|
Das S, Datta PP. Effect of a single amino acid substitution G98D in a ribosome-associated essential GTPase, CgtA, on the growth and morphology of Vibrio cholerae. Arch Microbiol 2022; 204:617. [PMID: 36097213 DOI: 10.1007/s00203-022-03233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 11/02/2022]
Abstract
CgtA, a highly conserved 50S ribosome-associated essential GTPase, acts as a repressor of the stringent stress response under nutrient-rich growth conditions to suppress basal levels of the alarmone ppGpp in V. cholerae. To further explore the in vivo functionality of CgtA, we introduced an amino acid substitution, i.e., Gly98Asp, in a conserved glycine residue in the N-terminal domain. The constructed V. cholerae mutant was designated CgtA(G98D). Comparison of cell sizes of the CgtA(G98D)mutant with its isogenic wild-type (Wt) strain N16961 under different phases of growth by Transmission Electron Microscopy (TEM) and statistical analysis suggests that CgtA may control the cell size of V. cholerae. The cell length is significantly reduced, corresponding to the delayed growth in the mid-logarithmic phase. The differences in the cell length of CgtA(G98D) and Wt are indistinguishable in the late logarithmic phase. During the stationary phase, marked by higher OD600, a sub-population of CgtA(G98D) cells outnumbered the Wt cells lengthwise. CgtA(G98D) cells appeared slenderer than Wt cells with significantly reduced cell width. However, the centerline curvature is preserved in CgtA(G98D) cells. We propose that in addition to its multitude of intracellular roles, CgtA may influence the cell size of V. cholerae.
Collapse
Affiliation(s)
- Sagarika Das
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohanpur, Nadia, Kolkata, 741246, West Bengal, India
| | - Partha Pratim Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohanpur, Nadia, Kolkata, 741246, West Bengal, India.
| |
Collapse
|
3
|
Asitok A, Ekpenyong M, Takon I, Antai S, Ogarekpe N, Antigha R, Edet P, Ben U, Akpan A, Antai A, Essien J. Overproduction of a thermo-stable halo-alkaline protease on agro-waste-based optimized medium through alternate combinatorial random mutagenesis of Stenotrophomonas acidaminiphila. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 35:e00746. [PMID: 35707314 PMCID: PMC9189783 DOI: 10.1016/j.btre.2022.e00746] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 11/22/2022]
Abstract
Alternate combinatorial random mutagenesis selected a protease high-yielding mutant. Medium optimization led to 25.55-fold raise in specific protease yield in bioreactor. 20% PEG-1500/Na+ 15% citrate recovered 74% activity yield with 52.55 purity. Activity was retained at elevated physicochemical levels but inhibited by PMSF. Keratinolytic and blood-stain removal activities confer industrial potential on protease.
A strain of Stenotrophomonas acidaminiphila, isolated from fermenting bean-processing wastewater, produced alkaline protease in pretreated cassava waste-stream, but with low yield. Strain improvement by alternate combinatorial random mutagenesis and bioprocess optimization using comparative statistical and neural network methods enhanced yield by 17.8-fold in mutant kGy-04-UV-25. Kinetics of production by selected mutant modeled by logistic and modified Gompertz functions revealed higher specific growth rate in mutant than in the parent strain, likewise volumetric and specific productivities. Purification by PEG/Na+ citrate aqueous two-phase system recovered 73.87% yield and 52.55-fold of protease. Its activity was stable at 5–35% NaCl, 45–75°C, and was significantly enhanced by 1–15 mM sodium dodecyl sulfate (SDS). The protease was inhibited by low concentrations of phenyl-methyl-sulfonyl fluoride but was activated by 1–5 mM Mn2+ suggesting a manganese-dependent serine‑protease. The 45.7 kDa thermo-halo-stable alkaline protease demonstrated keratinolytic and blood-stain removal potentials showing prospects in textile and detergent industries, respectively.
Collapse
Affiliation(s)
- Atim Asitok
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), Department of Microbiology, University of Calabar, Nigeria
| | - Maurice Ekpenyong
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), Department of Microbiology, University of Calabar, Nigeria
- Corresponding author.
| | - Iquo Takon
- Industrial Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Nigeria
| | - Sylvester Antai
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), Department of Microbiology, University of Calabar, Nigeria
| | - Nkpa Ogarekpe
- Environmental Engineering Unit, Department of Civil Engineering, Faculty of Engineering, Cross River University of Technology, Nigeria
| | - Richard Antigha
- Environmental Engineering Unit, Department of Civil Engineering, Faculty of Engineering, Cross River University of Technology, Nigeria
| | - Philomena Edet
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Nigeria
| | - Ubong Ben
- Department of Physics, Faculty of Physical Sciences, University of Calabar, Nigeria
| | - Anthony Akpan
- Department of Physics, Faculty of Physical Sciences, University of Calabar, Nigeria
| | - Agnes Antai
- Department of Economics, Faculty of Social Sciences, University of Calabar, Nigeria
| | - Joseph Essien
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Sciences, University of Uyo, Nigeria
| |
Collapse
|
4
|
Xia Y, Jayathilake PG, Li B, Zuliani P, Deehan D, Longyear J, Stoodley P, Chen J. Coupled CFD-DEM modelling to predict how EPS affects bacterial biofilm deformation, recovery and detachment under flow conditions. Biotechnol Bioeng 2022; 119:2551-2563. [PMID: 35610631 PMCID: PMC9544383 DOI: 10.1002/bit.28146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/07/2022] [Accepted: 05/14/2022] [Indexed: 11/21/2022]
Abstract
The deformation and detachment of bacterial biofilm are related to the structural and mechanical properties of the biofilm itself. Extracellular polymeric substances (EPS) play an important role on keeping the mechanical stability of biofilms. The understanding of biofilm mechanics and detachment can help to reveal biofilm survival mechanisms under fluid shear and provide insight about what flows might be needed to remove biofilm in a cleaning cycle or for a ship to remove biofilms. However, how the EPS may affect biofilm mechanics and its deformation in flow conditions remains elusive. To address this, a coupled computational fluid dynamic– discrete element method (CFD‐DEM) model was developed. The mechanisms of biofilm detachment, such as erosion and sloughing have been revealed by imposing hydrodynamic fluid flow at different velocities and loading rates. The model, which also allows adjustment of the proportion of different functional groups of microorganisms in the biofilm, enables the study of the contribution of EPS toward biofilm resistance to fluid shear stress. Furthermore, the stress–strain curves during biofilm deformation have been captured by loading and unloading fluid shear stress to study the viscoelastic properties of the biofilm. Our predicted emergent viscoelastic properties of biofilms were consistent with relevant experimental measurements.
Collapse
Affiliation(s)
- Yuqing Xia
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | | | - Bowen Li
- School of Computing, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Paolo Zuliani
- School of Computing, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - David Deehan
- The Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K.,Freeman Hospital, Newcastle upon Tyne, NE7 7DN, U.K
| | - Jennifer Longyear
- Marin, Protective, and Yacht Coatings, AkzoNobel, Gateshead, NE10 0JY, U.K
| | - Paul Stoodley
- Department of Microbial Infection and Immunity and the Department of Orthopaedics, The Ohio State University, Columbus, OH, 43210, USA.,National Centre for Advanced Tribology at Southampton (nCATS), National Biofilm Innovation Centre (NBIC), Mechanical Engineering, University of Southampton, Southampton, S017 1BJ, U.K
| | - Jinju Chen
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| |
Collapse
|
5
|
Wang W, Liu J, Guo S, Liu L, Yuan Q, Guo L, Pan S. Identification of Vibrio parahaemolyticus and Vibrio spp. Specific Outer Membrane Proteins by Reverse Vaccinology and Surface Proteome. Front Microbiol 2021; 11:625315. [PMID: 33633699 PMCID: PMC7901925 DOI: 10.3389/fmicb.2020.625315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
The discovery of outer membrane proteins (OMPs) with desirable specificity and surface availability is a fundamental challenge to develop accurate immunodiagnostic assay and multivalent vaccine of pathogenic Vibrio species in food and aquaculture. Herein 101 OMPs were systemically screened from 4,831 non-redundant proteins of Vibrio parahaemolyticus by bioinformatical predication of signaling peptides, transmembrane (TM) α-helix, and subcellular location. The sequence homology analysis with 32 species of Vibrio spp. and all the non-Vibrio strains revealed that 15 OMPs were conserved in at least 23 Vibrio species, including BamA (VP2310), GspD (VP0133), Tolc (VP0425), OmpK (VP2362), OmpW (VPA0096), LptD (VP0339), Pal (VP1061), flagellar L-ring protein (VP0782), flagellar protein MotY (VP2111), hypothetical protein (VP1713), fimbrial assembly protein (VP2746), VacJ lipoprotein (VP2214), agglutination protein (VP1634), and lipoprotein (VP1267), Chitobiase (VP0755); high adhesion probability of flgH, LptD, OmpK, and OmpW indicated they were potential multivalent Vibrio vaccine candidates. V. parahaemolyticus OMPs were found to share high homology with at least one or two Vibrio species, 19 OMPs including OmpA like protein (VPA073), CsuD (VPA1504), and MtrC (VP1220) were found relatively specific to V. parahaemolyticus. The surface proteomic study by enzymatical shaving the cells showed the capsular polysaccharides most likely limited the protease action, while the glycosidases improved the availability of OMPs to trypsin. The OmpA (VPA1186, VPA0248, VP0764), Omp (VPA0166), OmpU (VP2467), BamA (VP2310), TolC (VP0425), GspD (VP0133), OmpK (VP2362), lpp (VPA1469), Pal (VP1061), agglutination protein (VP1634), and putative iron (III) compound receptor (VPA1435) have better availability on the cell surface.
Collapse
Affiliation(s)
- Wenbin Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Jianxin Liu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shanshan Guo
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Lei Liu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Qianyun Yuan
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Lei Guo
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Saikun Pan
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
6
|
Mauritzen JJ, Castillo D, Tan D, Svenningsen SL, Middelboe M. Beyond Cholera: Characterization of zot-Encoding Filamentous Phages in the Marine Fish Pathogen Vibrio anguillarum. Viruses 2020; 12:v12070730. [PMID: 32640584 PMCID: PMC7412436 DOI: 10.3390/v12070730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Zonula occludens toxin (Zot) is a conserved protein in filamentous vibriophages and has been reported as a putative toxin in Vibrio cholerae. Recently, widespread distribution of zot-encoding prophages was found among marine Vibrio species, including environmental isolates. However, little is known about the dynamics of these prophages beyond V. cholerae. In this study, we characterized and quantified the zot-encoding filamentous phage VAIϕ, spontaneously induced from the fish pathogen V. anguillarum. VAIϕ contained 6117 bp encoding 11 ORFs, including ORF8pVAI, exhibiting 27%–73% amino acid identity to Inovirus Zot-like proteins. A qPCR method revealed an average of four VAIϕ genomes per host genome during host exponential growth phase, and PCR demonstrated dissemination of induced VAIϕ to other V. anguillarum strains through re-integration in non-lysogens. VAIϕ integrated into both chromosomes of V. anguillarum by recombination, causing changes in a putative ORF in the phage genome. Phylogenetic analysis of the V. anguillarumInoviridae elements revealed mosaic genome structures related to mainly V. cholerae. Altogether, this study contributes to the understanding of Inovirus infection dynamics and mobilization of zot-like genes beyond human pathogenic vibrios, and discusses their potential role in the evolution of the fish pathogen V. anguillarum.
Collapse
Affiliation(s)
- Jesper Juel Mauritzen
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (J.J.M.); (D.C.)
| | - Daniel Castillo
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (J.J.M.); (D.C.)
| | - Demeng Tan
- Section for Biomolecular Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N, Denmark; (D.T.); (S.L.S.)
| | - Sine Lo Svenningsen
- Section for Biomolecular Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N, Denmark; (D.T.); (S.L.S.)
| | - Mathias Middelboe
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (J.J.M.); (D.C.)
- Correspondence: ; Tel.: +45-35-32-19-91
| |
Collapse
|
7
|
Sinha-Ray S, Alam MT, Bag S, Morris JG, Ali A. Conversion of a recA-Mediated Non-toxigenic Vibrio cholerae O1 Strain to a Toxigenic Strain Using Chitin-Induced Transformation. Front Microbiol 2019; 10:2562. [PMID: 31787954 PMCID: PMC6854035 DOI: 10.3389/fmicb.2019.02562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023] Open
Abstract
Toxigenic Vibrio cholerae strains, including strains in serogroups O1 and O139 associated with the clinical disease cholera, are ubiquitous in aquatic reservoirs, including fresh, estuarine, and marine environments. Humans acquire cholera by consuming water and/or food contaminated with the microorganism. The genome of toxigenic V. cholerae harbors a cholera-toxin producing prophage (CT-prophage) encoding genes that promote expression of cholera toxin. The CT-prophage in V. cholerae is flanked by two satellite prophages, RS1 and TLC. Using cell surface appendages (TCP and/or MSHA pili), V. cholerae can sequentially acquire TLC, RS1, and CTX phages by transduction; the genome of each of these phages ultimately integrates into V. cholerae's genome in a site-specific manner. Here, we showed that a non-toxigenic V. cholerae O1 biotype El Tor strain, lacking the entire RS1-CTX-TLC prophage complex (designated as RCT: R for RS1, C for CTX and T for TLC prophage, respectively), was able to acquire RCT from donor genomic DNA (gDNA) of a wild-type V. cholerae strain (E7946) via chitin-induced transformation. Moreover, we demonstrated that a chitin-induced transformant (designated as AAS111) harboring RCT was capable of producing cholera toxin. We also showed that recA, rather than xerC and xerD recombinases, promoted the acquisition of RCT from donor gDNA by the recipient non-toxigenic V. cholerae strain. Our data document the existence of an alternative pathway by which a non-toxigenic V. cholerae O1 strain can transform to a toxigenic strain by using chitin induction. As chitin is an abundant natural carbon source in aquatic reservoirs where V. cholerae is present, chitin-induced transformation may be an important driver in the emergence of new toxigenic V. cholerae strains.
Collapse
Affiliation(s)
- Shrestha Sinha-Ray
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL, United States
| | - Meer T Alam
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Satyabrata Bag
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - J Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Medicine, School of Medicine, University of Florida, Gainesville, FL, United States
| | - Afsar Ali
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Water-soluble cranberry extract inhibits Vibrio cholerae biofilm formation possibly through modulating the second messenger 3', 5' - Cyclic diguanylate level. PLoS One 2018; 13:e0207056. [PMID: 30403745 PMCID: PMC6221352 DOI: 10.1371/journal.pone.0207056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/24/2018] [Indexed: 01/28/2023] Open
Abstract
Quorum sensing (QS) and nucleotide-based second messengers are vital signaling systems that regulate bacterial physiology in response to changing environments. Disrupting bacterial signal transduction is a promising direction to combat infectious diseases, and QS and the second messengers are undoubtedly potential targets. In Vibrio cholerae, both QS and the second messenger 3’, 5’—cyclic diguanylate (c-di-GMP) play a central role in controlling motility, motile-to-sessile life transition, and virulence. In this study, we found that water-soluble extract from the North American cranberry could significantly inhibit V. cholerae biofilm formation during the development/maturation stage by reducing the biofilm matrix production and secretion. The anti-biofilm effect by water-soluble cranberry extract was possibly through modulating the intracellular c-di-GMP level and was independent of QS and the QS master regulator HapR. Our results suggest an opportunity to explore more functional foods to fight stubborn infections through interference with the bacterial signaling systems.
Collapse
|
9
|
Sinha-Ray S, Ali A. Mutation in flrA and mshA Genes of Vibrio cholerae Inversely Involved in vps-Independent Biofilm Driving Bacterium Toward Nutrients in Lake Water. Front Microbiol 2017; 8:1770. [PMID: 28959249 PMCID: PMC5604084 DOI: 10.3389/fmicb.2017.01770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/31/2017] [Indexed: 12/25/2022] Open
Abstract
Many bacterial pathogens promote biofilms that confer resistance against stressful survival conditions. Likewise Vibrio cholerae O1, the causative agent of cholera, and ubiquitous in aquatic environments, produces vps-dependent biofilm conferring resistance to environmental stressors and predators. Here we show that a 49-bp deletion mutation in the flrA gene of V. cholerae N16961S strain resulted in promotion of vps-independent biofilm in filter sterilized lake water (FSLW), but not in nutrient-rich L-broth. Complementation of flrA mutant with the wild-type flrA gene inhibited vps-independent biofilm formation. Our data demonstrate that mutation in the flrA gene positively contributed to vps-independent biofilm production in FSLW. Furthermore, inactivation of mshA gene, encoding the main pilin of mannose sensitive hemagglutinin (MSHA pilus) in the background of a ΔflrA mutant, inhibited vps-independent biofilm formation. Complementation of ΔflrAΔmshA double mutant with wild-type mshA gene restored biofilm formation, suggesting that mshA mutation inhibited ΔflrA-driven biofilm. Taken together, our data suggest that V. cholerae flrA and mshA act inversely in promoting vps-independent biofilm formation in FSLW. Using a standard chemotactic assay, we demonstrated that vps-independent biofilm of V. cholerae, in contrast to vps-dependent biofilm, promoted bacterial movement toward chitin and phosphate in FSLW. A ΔflrAΔmshA double mutant inhibited the bacterium from moving toward nutrients; this phenomenon was reversed with reverted mutants (complemented with wild-type mshA gene). Movement to nutrients was blocked by mutation in a key chemotaxis gene, cheY-3, although, cheY-3 had no effect on vps-independent biofilm. We propose that in fresh water reservoirs, V. cholerae, on repression of flagella, enhances vps-independent biofilm that aids the bacterium in acquiring nutrients, including chitin and phosphate; by doing so, the microorganism enhances its ability to persist under nutrient-limited conditions.
Collapse
Affiliation(s)
- Shrestha Sinha-Ray
- Emerging Pathogens Institute, University of Florida, GainesvilleFL, United States.,Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, GainesvilleFL, United States
| | - Afsar Ali
- Emerging Pathogens Institute, University of Florida, GainesvilleFL, United States.,Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, GainesvilleFL, United States
| |
Collapse
|
10
|
Deng Y, Chen C, Zhao Z, Zhao J, Jacq A, Huang X, Yang Y. The RNA Chaperone Hfq Is Involved in Colony Morphology, Nutrient Utilization and Oxidative and Envelope Stress Response in Vibrio alginolyticus. PLoS One 2016; 11:e0163689. [PMID: 27685640 PMCID: PMC5042437 DOI: 10.1371/journal.pone.0163689] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/13/2016] [Indexed: 12/26/2022] Open
Abstract
Hfq is a global regulator that is involved in environmental adaptation of bacteria and in pathogenicity. To gain insight into the role of Hfq in Vibrio alginolyticus, an hfq deletion mutant was constructed in V. alginolyticus ZJ-T strain and phenotypically characterized. Deletion of hfq led to an alteration of colony morphology and reduced extracellular polysaccharide production, a general impairment of growth in both rich medium and minimal media with different carbon sources or amino acids, enhanced sensitivity to oxidative stress and to several antibiotics. Furthermore, a differential transcriptomic analysis showed significant changes of transcript abundance for 306 protein coding genes, with 179 genes being up regulated and 127 down-regulated. Several of these changes could be related to the observed phenotypes of the mutant. Transcriptomic data also provided evidence for the induction of the extracytoplasmic stress response in absence of Hfq. Altogether, these findings point to broad regulatory functions for Hfq in V. alginolyticus cells, likely to underlie an important role in pathogenicity.
Collapse
Affiliation(s)
- Yiqin Deng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chang Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Xisha/Nansha Ocean observation and research station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- * E-mail:
| | - Zhe Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jingjing Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Annick Jacq
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Xiaochun Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiying Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Chau RMW, Ursell T, Wang S, Huang KC, Bhaya D. Maintenance of motility bias during cyanobacterial phototaxis. Biophys J 2016; 108:1623-1632. [PMID: 25863054 DOI: 10.1016/j.bpj.2015.01.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/23/2014] [Accepted: 01/02/2015] [Indexed: 11/20/2022] Open
Abstract
Signal transduction in bacteria is complex, ranging across scales from molecular signal detectors and effectors to cellular and community responses to stimuli. The unicellular, photosynthetic cyanobacterium Synechocystis sp. PCC6803 transduces a light stimulus into directional movement known as phototaxis. This response occurs via a biased random walk toward or away from a directional light source, which is sensed by intracellular photoreceptors and mediated by Type IV pili. It is unknown how quickly cells can respond to changes in the presence or directionality of light, or how photoreceptors affect single-cell motility behavior. In this study, we use time-lapse microscopy coupled with quantitative single-cell tracking to investigate the timescale of the cellular response to various light conditions and to characterize the contribution of the photoreceptor TaxD1 (PixJ1) to phototaxis. We first demonstrate that a community of cells exhibits both spatial and population heterogeneity in its phototactic response. We then show that individual cells respond within minutes to changes in light conditions, and that movement directionality is conferred only by the current light directionality, rather than by a long-term memory of previous conditions. Our measurements indicate that motility bias likely results from the polarization of pilus activity, yielding variable levels of movement in different directions. Experiments with a photoreceptor (taxD1) mutant suggest a supplementary role of TaxD1 in enhancing movement directionality, in addition to its previously identified role in promoting positive phototaxis. Motivated by the behavior of the taxD1 mutant, we demonstrate using a reaction-diffusion model that diffusion anisotropy is sufficient to produce the observed changes in the pattern of collective motility. Taken together, our results establish that single-cell tracking can be used to determine the factors that affect motility bias, which can then be coupled with biophysical simulations to connect changes in motility behaviors at the cellular scale with group dynamics.
Collapse
Affiliation(s)
| | - Tristan Ursell
- Department of Bioengineering, Stanford University, Stanford, California
| | - Shuo Wang
- Department of Bioengineering, Stanford University, Stanford, California
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, California; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California.
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California.
| |
Collapse
|
12
|
Xu H, Zhao Y, Qian G, Liu F. XocR, a LuxR solo required for virulence in Xanthomonas oryzae pv. oryzicola. Front Cell Infect Microbiol 2015; 5:37. [PMID: 25932456 PMCID: PMC4399327 DOI: 10.3389/fcimb.2015.00037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/31/2015] [Indexed: 01/15/2023] Open
Abstract
Xanthomonas oryzae pv. oryzicola (Xoc) causes bacterial leaf streak (BLS) in rice, a serious bacterial disease of rice in Asia and parts of Africa. The virulence mechanisms of Xoc are not entirely clear and control measures for BLS are poorly developed. The solo LuxR proteins are widespread and shown to be involved in virulence in some plant associated bacteria (PAB). Here, we have cloned and characterized a PAB LuxR solo from Xoc, named as XocR. Mutation of xocR almost completely impaired the virulence ability of Xoc on host rice, but did not alter the ability to trigger HR (hypersensitive response, a programmed cell death) on non-host (plant) tobacco, suggesting the diversity of function of xocR in host and non-host plants. We also provide evidence to show that xocR is involved in the regulation of growth-independent cell motility in response to a yet-to-be-identified rice signal, as mutation of xocR impaired cell swimming motility of wild-type Rs105 in the presence but not absence of rice macerate. We further found that xocR regulated the transcription of two characterized virulence-associated genes (recN and trpE) in the presence of rice macerate. The promoter regions of recN and trpE possessed a potential binding motif (an imperfect pip box-like element) of XocR, raising the possibility that XocR might directly bind the promoter regions of these two genes to regulate their transcriptional activity. Our studies add a new member of PAB LuxR solos and also provide new insights into the role of PAB LuxR solo in the virulence of Xanthomonas species.
Collapse
Affiliation(s)
- Huiyong Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural ScienceNanjing, China
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing, China
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural ScienceNanjing, China
| | - Guoliang Qian
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural ScienceNanjing, China
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing, China
| |
Collapse
|
13
|
High-frequency rugose exopolysaccharide production by Vibrio cholerae strains isolated in Haiti. PLoS One 2014; 9:e112853. [PMID: 25390633 PMCID: PMC4229229 DOI: 10.1371/journal.pone.0112853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/15/2014] [Indexed: 11/19/2022] Open
Abstract
In October, 2010, epidemic cholera was reported for the first time in Haiti in over 100 years. Establishment of cholera endemicity in Haiti will be dependent in large part on the continued presence of toxigenic V. cholerae O1 in aquatic reservoirs. The rugose phenotype of V. cholerae, characterized by exopolysaccharide production that confers resistance to environmental stress, is a potential contributor to environmental persistence. Using a microbiologic medium promoting high-frequency conversion of smooth to rugose (S-R) phenotype, 80 (46.5%) of 172 V. cholerae strains isolated from clinical and environmental sources in Haiti were able to convert to a rugose phenotype. Toxigenic V. cholerae O1 strains isolated at the beginning of the epidemic (2010) were significantly less likely to shift to a rugose phenotype than clinical strains isolated in 2012/2013, or environmental strains. Frequency of rugose conversion was influenced by incubation temperature and time. Appearance of the biofilm produced by a Haitian clinical rugose strain (altered biotype El Tor HC16R) differed from that of a typical El Tor rugose strain (N16961R) by confocal microscopy. On whole-genome SNP analysis, there was no phylogenetic clustering of strains showing an ability to shift to a rugose phenotype. Our data confirm the ability of Haitian clinical (and environmental) strains to shift to a protective rugose phenotype, and suggest that factors such as temperature influence the frequency of transition to this phenotype.
Collapse
|
14
|
The Type II secretion system delivers matrix proteins for biofilm formation by Vibrio cholerae. J Bacteriol 2014; 196:4245-52. [PMID: 25266381 DOI: 10.1128/jb.01944-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gram-negative bacteria have evolved several highly dedicated pathways for extracellular protein secretion, including the type II secretion (T2S) system. Since substrates secreted via the T2S system include both virulence factors and degradative enzymes, this secretion system is considered a major survival mechanism for pathogenic and environmental species. Previous analyses revealed that the T2S system mediates the export of ≥ 20 proteins in Vibrio cholerae, a human pathogen that is indigenous to the marine environment. Here we demonstrate a new role in biofilm formation for the V. cholerae T2S system, since wild-type V. cholerae was found to secrete the biofilm matrix proteins RbmC, RbmA, and Bap1 into the culture supernatant, while an isogenic T2S mutant could not. In agreement with this finding, the level of biofilm formation in a static microtiter assay was diminished in T2S mutants. Moreover, inactivation of the T2S system in a rugose V. cholerae strain prevented the development of colony corrugation and pellicle formation at the air-liquid interface. In contrast, extracellular secretion of the exopolysaccharide VPS, an essential component of the biofilm matrix, remained unaffected in the T2S mutants. Our results indicate that the T2S system provides a mechanism for the delivery of extracellular matrix proteins known to be important for biofilm formation by V. cholerae. Because the T2S system contributes to the pathogenicity of V. cholerae by secreting proteins such as cholera toxin and biofilm matrix proteins, elucidation of the molecular mechanism of T2S has the potential to lead to the development of novel preventions and therapies.
Collapse
|
15
|
Moebius N, Üzüm Z, Dijksterhuis J, Lackner G, Hertweck C. Active invasion of bacteria into living fungal cells. eLife 2014; 3:e03007. [PMID: 25182414 PMCID: PMC4166002 DOI: 10.7554/elife.03007] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/29/2014] [Indexed: 12/12/2022] Open
Abstract
The rice seedling blight fungus Rhizopus microsporus and its endosymbiont Burkholderia rhizoxinica form an unusual, highly specific alliance to produce the highly potent antimitotic phytotoxin rhizoxin. Yet, it has remained a riddle how bacteria invade the fungal cells. Genome mining for potential symbiosis factors and functional analyses revealed that a type 2 secretion system (T2SS) of the bacterial endosymbiont is required for the formation of the endosymbiosis. Comparative proteome analyses show that the T2SS releases chitinolytic enzymes (chitinase, chitosanase) and chitin-binding proteins. The genes responsible for chitinolytic proteins and T2SS components are highly expressed during infection. Through targeted gene knock-outs, sporulation assays and microscopic investigations we found that chitinase is essential for bacteria to enter hyphae. Unprecedented snapshots of the traceless bacterial intrusion were obtained using cryo-electron microscopy. Beyond unveiling the pivotal role of chitinolytic enzymes in the active invasion of a fungus by bacteria, these findings grant unprecedented insight into the fungal cell wall penetration and symbiosis formation.
Collapse
Affiliation(s)
- Nadine Moebius
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Zerrin Üzüm
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | | | - Gerald Lackner
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| |
Collapse
|
16
|
Jubair M, Atanasova KR, Rahman M, Klose KE, Yasmin M, Yilmaz Ö, Morris JG, Ali A. Vibrio cholerae persisted in microcosm for 700 days inhibits motility but promotes biofilm formation in nutrient-poor lake water microcosms. PLoS One 2014; 9:e92883. [PMID: 24667909 PMCID: PMC3965490 DOI: 10.1371/journal.pone.0092883] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/26/2014] [Indexed: 11/26/2022] Open
Abstract
Toxigenic Vibrio cholerae, ubiquitous in aquatic environments, is responsible for cholera; humans can become infected after consuming food and/or water contaminated with the bacterium. The underlying basis of persistence of V. cholerae in the aquatic environment remains poorly understood despite decades of research. We recently described a “persister” phenotype of V. cholerae that survived in nutrient-poor “filter sterilized” lake water (FSLW) in excess of 700-days. Previous reports suggest that microorganisms can assume a growth advantage in stationary phase (GASP) phenotype in response to long-term survival during stationary phase of growth. Here we report a V. cholerae GASP phenotype (GASP-700D) that appeared to result from 700 day-old persister cells stored in glycerol broth at −80°C. The GASP-700D, compared to its wild-type N16961, was defective in motility, produced increased biofilm that was independent of vps (p<0.005) and resistant to oxidative stress when grown specifically in FSLW (p<0.005). We propose that V. cholerae GASP-700D represents cell populations that may better fit and adapt to stressful survival conditions while serving as a critical link in the cycle of cholera transmission.
Collapse
Affiliation(s)
- Mohammad Jubair
- Department of Environmental and Global Health, School of Public Health and Health Professions, University of Florida at Gainesville, Gainesville, Florida, United States of America
| | - Kalina R. Atanasova
- Department of Periodontology, University of Florida at Gainesville, Gainesville, Florida, United States of America
| | - Mustafizur Rahman
- Department of Environmental and Global Health, School of Public Health and Health Professions, University of Florida at Gainesville, Gainesville, Florida, United States of America
| | - Karl E. Klose
- Department of Biology, The University of Texas at San Antonio, Texas, United States of America
| | - Mahmuda Yasmin
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Özlem Yilmaz
- Department of Periodontology, University of Florida at Gainesville, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida at Gainesville, Gainesville, Florida, United States of America
| | - J. Glenn Morris
- Emerging Pathogens Institute, University of Florida at Gainesville, Gainesville, Florida, United States of America
| | - Afsar Ali
- Department of Environmental and Global Health, School of Public Health and Health Professions, University of Florida at Gainesville, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida at Gainesville, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
17
|
Extracellular stress and lipopolysaccharide modulate Acinetobacter baumannii surface-associated motility. J Microbiol 2012; 50:434-43. [PMID: 22752907 DOI: 10.1007/s12275-012-1555-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
Abstract
Acinetobacter baumannii is a nosocomial bacterial pathogen, and infections attributed to this species are further complicated by a remarkable ability to acquire antimicrobial resistance genes and to survive in a desiccated state. While the antibiotic resistance and biofilm formation of A. baumannii is well-documented, less is known about the virulence attributes of this organism. Recent studies reported A. baumannii strains display a motility phenotype, which appears to be partially dependent upon Type IV pili, autoinducer molecules, and the response to blue light. In this study, we wanted to determine the prevalence of this trait in genetically diverse clinical isolates, and any additional required factors, and environmental cues that regulate motility. When strains are subjected to a wide array of stress conditions, A. baumannii motility is significantly reduced. In contrast, when extracellular iron is provided or salinity is reduced, motility is significantly enhanced. We further investigated whether the genes required for the production of lipopolysaccharide (lpsB) and K1 capsule (epsA/ptk) are required for motility as demonstrated in other Gram-negative bacteria. Transposon mutagenesis resulted in reduced motility by the insertion derivatives of each of these genes. The presence of the parental allele provided in trans, in the insertion mutant background, could only restore motility in the lpsB mutant. The production of core LPS directly contributes to the motility phenotype, while capsular polysaccharide may have an indirect effect. Further, the data suggest motility is regulated by extracellular conditions, indicating that A. baumannii is actively sensing the environment and responding accordingly.
Collapse
|
18
|
Jung J, Noh J, Park W. Physiological and metabolic responses for hexadecane degradation in Acinetobacter oleivorans DR1. J Microbiol 2011; 49:208-15. [PMID: 21538240 DOI: 10.1007/s12275-011-0395-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 12/10/2010] [Indexed: 11/30/2022]
Abstract
The hexadecane degradation of Acinetobacter oleivorans DR1 was evaluated with changes in temperature and ionic salt contents. Hexadecane degradation of strain DR1 was reduced markedly by the presence of sodium chloride (but not potassium chloride). High temperature (37°C) was also shown to inhibit the motility, biofilm formation, and hexadecane biodegradation. The biofilm formation of strain DR1 on the oil-water interface might prove to be a critical physiological feature for the degradation of hexadecane. The positive relationship between biofilm formation and hexadecane degradation could be observed at 30° C, but not at low temperatures (25°C). Alterations in cell hydrophobicity and EPS production by temperature and salts were not correlated with biofilm formation and hexadecane degradation. Our proteomic analyses have demonstrated that metabolic changes through the glyoxylate pathway are important for efficient degradation of hexadecane. Proteins involved in fatty acid metabolism, gluconeogenesis, and oxidative stress defense proteins appear to be highly expressed during biodegradation of hexadecane. These results suggested that biofilm formation and oxidative stress defense are important physiological responses for hexadecane degradation along with metabolic switch to glyoxylate pathway in strain DR1.
Collapse
Affiliation(s)
- Jaejoon Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | | | | |
Collapse
|
19
|
The novel genes emmABC are associated with exopolysaccharide production, motility, stress adaptation, and symbiosis in Sinorhizobium meliloti. J Bacteriol 2009; 191:5890-900. [PMID: 19633078 DOI: 10.1128/jb.00760-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The nitrogen-fixing symbiont Sinorhizobium meliloti senses and responds to constantly changing environmental conditions as it makes its way through the soil in search of its leguminous plant host, Medicago sativa (alfalfa). As a result, this bacterium regulates various aspects of its physiology in order to respond appropriately to stress, starvation, and competition. For example, exopolysaccharide production, which has been shown to play an important role in the ability of S. meliloti to successfully invade its host, also helps the bacterium withstand osmotic changes and other environmental stresses. In an effort to further elucidate the intricate regulation of this important cell component, we set out to identify genetic factors that may affect its production. Here we characterize novel genes that encode a small protein (EmmA) and a putative two-component system (EmmB-EmmC). A mutation in any of these genes leads to increased production of the symbiotically important exopolysaccharide succinoglycan. In addition, emm mutants display membrane-associated defects, are nonmotile, and are unable to form an optimal symbiosis with alfalfa, suggesting that these novel genes may play a greater role in the overall fitness of S. meliloti both during the free-living stage and in its association with its host.
Collapse
|
20
|
Zhang L, Zhu Z, Jing H, Zhang J, Xiong Y, Yan M, Gao S, Wu LF, Xu J, Kan B. Pleiotropic effects of the twin-arginine translocation system on biofilm formation, colonization, and virulence in Vibrio cholerae. BMC Microbiol 2009; 9:114. [PMID: 19480715 PMCID: PMC2698830 DOI: 10.1186/1471-2180-9-114] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Accepted: 05/31/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Twin-arginine translocation (Tat) system serves to translocate folded proteins, including periplasmic enzymes that bind redox cofactors in bacteria. The Tat system is also a determinant of virulence in some pathogenic bacteria, related to pleiotropic effects including growth, motility, and the secretion of some virulent factors. The contribution of the Tat pathway to Vibrio cholerae has not been explored. Here we investigated the functionality of the Tat system in V. cholerae, the etiologic agent of cholera. RESULTS In V. cholerae, the tatABC genes function in the translocation of TMAO reductase. Deletion of the tatABC genes led to a significant decrease in biofilm formation, the ability to attach to HT-29 cells, and the ability to colonize suckling mouse intestines. In addition, we observed a reduction in the output of cholera toxin, which may be due to the decreased transcription level of the toxin gene in tatABC mutants, suggesting an indirect effect of the mutation on toxin production. No obvious differences in flagellum biosynthesis and motility were found between the tatABC mutant and the parental strain, showing a variable effect of Tat in different bacteria. CONCLUSION The Tat system contributes to the survival of V. cholerae in the environment and in vivo, and it may be associated with its virulence.
Collapse
Affiliation(s)
- Lijuan Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, Chinese Center for Disease Control and Prevention, Beijing, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bahlawane C, McIntosh M, Krol E, Becker A. Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1498-1509. [PMID: 18842098 DOI: 10.1094/mpmi-21-11-1498] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In order to enter symbiosis with its legume partner, Sinorhizobium meliloti requires regulatory systems for the appropriate responses to its environment. For example, motility is required for the chemotactic movement of bacteria toward the compounds released by its host, and exopolysaccharides (EPS) are required for bacterial attachment to the root or for invasion of the infection thread. Previous research has shown that ExoR/ExoS/ChvI as well as the ExpR/Sin quorum-sensing system inversely regulate both motility and EPS production, although the regulation mechanisms were unknown. We were able to attribute the ExpR-mediated regulation of motility to the ability of ExpR to bind a DNA sequence upstream of visN when activated by N-acyl-homoserine lactone. Furthermore, MucR, previously characterized as a regulator of EPS production, also affected motility. MucR inhibited expression of rem encoding an activator of motility gene expression and, consequently, the expression of Rem-regulated genes such as flaF and flgG. Binding of MucR to the rem promoter region was demonstrated and a sequence motif similar to the previously identified MucR binding consensus was identified within this region. The swarming ability of S. meliloti Rm2011 was shown to depend on a functional ExpR/Sin quorum-sensing system and the production of both flagella and EPS. Finally, we propose a model for the coordination of motility and EPS synthesis in S. meliloti.
Collapse
Affiliation(s)
- Christelle Bahlawane
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany
| | | | | | | |
Collapse
|
22
|
Construction of a Vibrio cholerae prototype vaccine strain O395-N1-E1 which accumulates cell-associated cholera toxin B subunit. Vaccine 2008; 26:5443-8. [PMID: 18582519 DOI: 10.1016/j.vaccine.2008.05.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 05/21/2008] [Accepted: 05/28/2008] [Indexed: 11/24/2022]
Abstract
Because of its production and use in Vietnam, the most widely used oral cholera vaccine consists of heat- or formalin-killed Vibrio cholerae whole cells (WC). An earlier version of this type of vaccine called whole cell-recombinant B subunit vaccine (BS-WC) produced in Sweden also contained the B subunit of cholera toxin (CTB). Both WC and BS-WC vaccines produced moderate levels of protection in field trials designed to evaluate their cholera efficacy. V. cholerae cells in these vaccines induce antibacterial immunity, and CTB contributes to the vaccine's efficacy presumably by stimulating production of anti-toxin neutralizing antibody. Although more effective than the WC vaccine, the BS-WC vaccine has not been adopted for manufacture by developing world countries primarily because the CTB component is difficult to manufacture and include in the vaccine in the doses needed to induce significant immune responses. We reasoned this was a technical problem that might be solved by engineering strains of V. cholerae that express cell-associated CTB that would co-purify with the bacterial cell fraction during the manufacture of WC vaccine. Here we report that construction of a V. cholerae O1 classical strain, O395-N1-E1, that has been engineered to accumulate CTB in the periplasmic fraction by disrupting the epsE gene of type II secretion pathway. O395-N1-E1 induces anti-CTB IgG and vibriocidal antibodies in mice immunized with two doses of formalin killed whole cells. Intraperitoneal immunization of mice with O395-N1-E1 induced a significantly higher anti-CTB antibody response compared to that of the parental strain, O395-N1. Our results suggest that this prototype cholera vaccine candidate strain may assist in preparing improved and inexpensive oral BS-WC cholera vaccine without the need to purify CTB separately.
Collapse
|
23
|
Lima A, Zunino P, D'Alessandro B, Piccini C. An iron-regulated outer-membrane protein of Proteus mirabilis is a haem receptor that plays an important role in urinary tract infection and in in vivo growth. J Med Microbiol 2008; 56:1600-1607. [PMID: 18033826 DOI: 10.1099/jmm.0.47320-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteus mirabilis, a common cause of urinary tract infections, expresses iron-regulated outer-membrane proteins (OMPs) in response to iron restriction. It has been suggested that a 64 kDa OMP is involved in haemoprotein uptake and that this might have a role in pathogenesis. In order to confirm this hypothesis, this study generated a P. mirabilis mutant strain (P7) that did not express the 64 kDa OMP, by insertion of the TnphoA transposon. The nucleotide sequence of the interrupted gene revealed that it corresponded to a haemin receptor precursor. Moreover, in vitro growth assays showed that the mutant was unable to grow using haemoglobin and haemin as unique iron sources. The authors also carried out in vivo growth and infectivity assays and demonstrated that P7 was not able to survive in an in vivo model and was less efficient than wild-type strain Pr 6515 in colonizing the urinary tract. These results confirmed that the P. mirabilis 64 kDa iron-regulated OMP is a haem receptor that has an important role for survival and multiplication of these bacteria in the mammalian host and in the development of urinary tract infection.
Collapse
Affiliation(s)
- Analía Lima
- Laboratorio de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, CP 11600, Montevideo, Uruguay
| | - Pablo Zunino
- Laboratorio de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, CP 11600, Montevideo, Uruguay
| | - Bruno D'Alessandro
- Laboratorio de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, CP 11600, Montevideo, Uruguay
| | - Claudia Piccini
- Laboratorio de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, CP 11600, Montevideo, Uruguay
| |
Collapse
|
24
|
Lim B, Beyhan S, Yildiz FH. Regulation of Vibrio polysaccharide synthesis and virulence factor production by CdgC, a GGDEF-EAL domain protein, in Vibrio cholerae. J Bacteriol 2006; 189:717-29. [PMID: 17122338 PMCID: PMC1797307 DOI: 10.1128/jb.00834-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In Vibrio cholerae, the second messenger 3',5'-cyclic diguanylic acid (c-di-GMP) regulates several cellular processes, such as formation of corrugated colony morphology, biofilm formation, motility, and virulence factor production. Both synthesis and degradation of c-di-GMP in the cell are modulated by proteins containing GGDEF and/or EAL domains, which function as a diguanylate cyclase and a phosphodiesterase, respectively. The expression of two genes, cdgC and mbaA, which encode proteins harboring both GGDEF and EAL domains is higher in the rugose phase variant of V. cholerae than in the smooth variant. In this study, we carried out gene expression analysis to determine the genes regulated by CdgC in the rugose and smooth phase variants of V. cholerae. We determined that CdgC regulates expression of genes required for V. cholerae polysaccharide synthesis and of the transcriptional regulator genes vpsR, vpsT, and hapR. CdgC also regulates expression of genes involved in extracellular protein secretion, flagellar biosynthesis, and virulence factor production. We then compared the genes regulated by CdgC and by MbaA, during both exponential and stationary phases of growth, to elucidate processes regulated by them. Identification of the regulons of CdgC and MbaA revealed that the regulons overlap, but the timing of regulation exerted by CdgC and MbaA is different, suggesting the interplay and complexity of the c-di-GMP signal transduction pathways operating in V. cholerae.
Collapse
Affiliation(s)
- Bentley Lim
- Department of Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | |
Collapse
|
25
|
Beyhan S, Bilecen K, Salama SR, Casper-Lindley C, Yildiz FH. Regulation of rugosity and biofilm formation in Vibrio cholerae: comparison of VpsT and VpsR regulons and epistasis analysis of vpsT, vpsR, and hapR. J Bacteriol 2006; 189:388-402. [PMID: 17071756 PMCID: PMC1797413 DOI: 10.1128/jb.00981-06] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Vibrio cholerae undergoes phenotypic variation that generates two morphologically different variants, termed smooth and rugose. The transcriptional profiles of the two variants differ greatly, and many of the differentially regulated genes are controlled by a complex regulatory circuitry that includes the transcriptional regulators VpsR, VpsT, and HapR. In this study, we identified the VpsT regulon and compared the VpsT and VpsR regulons to elucidate the contribution of each positive regulator to the rugose variant transcriptional profile and associated phenotypes. We have found that although the VpsT and VpsR regulons are very similar, the magnitude of the gene regulation accomplished by each regulator is different. We also determined that cdgA, which encodes a GGDEF domain protein, is partially responsible for the altered vps gene expression between the vpsT and vpsR mutants. Analysis of epistatic relationships among hapR, vpsT, and vpsR with respect to a whole-genome expression profile, colony morphology, and biofilm formation revealed that vpsR is epistatic to hapR and vpsT. Expression of virulence genes was increased in a vpsR hapR double mutant relative to a hapR mutant, suggesting that VpsR negatively regulates virulence gene expression in the hapR mutant. These results show that a complex regulatory interplay among VpsT, VpsR, HapR, and GGDEF/EAL family proteins controls transcription of the genes required for Vibrio polysaccharide and virulence factor production in V. cholerae.
Collapse
Affiliation(s)
- Sinem Beyhan
- Department of Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA
| | | | | | | | | |
Collapse
|
26
|
Tart AH, Blanks MJ, Wozniak DJ. The AlgT-dependent transcriptional regulator AmrZ (AlgZ) inhibits flagellum biosynthesis in mucoid, nonmotile Pseudomonas aeruginosa cystic fibrosis isolates. J Bacteriol 2006; 188:6483-9. [PMID: 16952938 PMCID: PMC1595476 DOI: 10.1128/jb.00636-06] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a microorganism associated with the disease cystic fibrosis. While environmental P. aeruginosa strains are generally nonmucoid and motile, isolates recovered from the cystic fibrosis lung frequently display a mucoid, nonmotile phenotype. This phenotypic conversion is mediated by the alternative sigma factor AlgT. Previous work has shown that repression of fleQ by AlgT accounts for the loss of flagellum biosynthesis in these strains. Here, we elucidate the mechanism involved in the AlgT-mediated control of fleQ. Electrophoretic mobility shift assays using purified AlgT and extracts derived from isogenic AlgT(+) and AlgT(-) strains revealed that AlgT inhibits fleQ indirectly. We observed that the AlgT-dependent transcriptional regulator AmrZ interacts directly with the fleQ promoter. To determine whether AmrZ functions as a repressor of fleQ, we mutated amrZ in the mucoid, nonmotile P. aeruginosa strain FRD1. Unlike the parental strain, the amrZ mutant was nonmucoid and motile. Complementation of the mutant with amrZ restored the mucoid, nonmotile phenotype. Thus, our data show that AlgT inhibits flagellum biosynthesis in mucoid, nonmotile P. aeruginosa cystic fibrosis isolates by promoting expression of AmrZ, which subsequently represses fleQ. Since fleQ directly or indirectly controls the expression of almost all flagellar genes, its repression ultimately leads to the loss of flagellum biosynthesis.
Collapse
Affiliation(s)
- Anne H Tart
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1064, USA
| | | | | |
Collapse
|
27
|
Moreira CG, Palmer K, Whiteley M, Sircili MP, Trabulsi LR, Castro AFP, Sperandio V. Bundle-forming pili and EspA are involved in biofilm formation by enteropathogenic Escherichia coli. J Bacteriol 2006; 188:3952-61. [PMID: 16707687 PMCID: PMC1482920 DOI: 10.1128/jb.00177-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Microcolony formation is one of the initial steps in biofilm development, and in enteropathogenic Escherichia coli (EPEC) it is mediated by several adhesins, including the bundle-forming pilus (BFP) and the EspA filament. Here we report that EPEC forms biofilms on plastic under static conditions and a flowthrough continuous culture system. The abilities of several EPEC isogenic mutants to form biofilms were assessed. Adhesins such as BFP and EspA, important in microcolony formation on epithelial cells, are also involved in bacterial aggregation during biofilm formation on abiotic surfaces. Mutants that do not express BFP or EspA form more-diffuse biofilms than does the wild type. We also determined, using gfp transcriptional fusions, that, consistent with the role of these adhesins in biofilms, the genes encoding BFP and EspA are expressed during biofilm formation. Finally, expression of espA is controlled by a quorum-sensing (QS) regulatory mechanism, and the EPEC qseA QS mutant also forms altered biofilms, suggesting that this signaling mechanism plays an important role in EPEC biofilm development. Taken together, these studies allowed us to propose a model of EPEC biofilm formation.
Collapse
Affiliation(s)
- Cristiano G Moreira
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9048, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Beyhan S, Tischler AD, Camilli A, Yildiz FH. Transcriptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level. J Bacteriol 2006; 188:3600-13. [PMID: 16672614 PMCID: PMC1482859 DOI: 10.1128/jb.188.10.3600-3613.2006] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae, the causative agent of cholera, is a facultative human pathogen with intestinal and aquatic life cycles. The capacity of V. cholerae to recognize and respond to fluctuating parameters in its environment is critical to its survival. In many microorganisms, the second messenger, 3',5'-cyclic diguanylic acid (c-di-GMP), is believed to be important for integrating environmental stimuli that affect cell physiology. Sequence analysis of the V. cholerae genome has revealed an abundance of genes encoding proteins with either GGDEF domains, EAL domains, or both, which are predicted to modulate cellular c-di-GMP concentrations. To elucidate the cellular processes controlled by c-di-GMP, whole-genome transcriptome responses of the El Tor and classical V. cholerae biotypes to increased c-di-GMP concentrations were determined. The results suggest that V. cholerae responds to an elevated level of c-di-GMP by increasing the transcription of the vps, eps, and msh genes and decreasing that of flagellar genes. The functions of other c-di-GMP-regulated genes in V. cholerae are yet to be identified.
Collapse
Affiliation(s)
- Sinem Beyhan
- Department of Environmental Toxicology, University of California, Santa Cruz, 95064, USA
| | | | | | | |
Collapse
|
29
|
Fong JCN, Karplus K, Schoolnik GK, Yildiz FH. Identification and characterization of RbmA, a novel protein required for the development of rugose colony morphology and biofilm structure in Vibrio cholerae. J Bacteriol 2006; 188:1049-59. [PMID: 16428409 PMCID: PMC1347326 DOI: 10.1128/jb.188.3.1049-1059.2006] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phase variation between smooth and rugose colony variants of Vibrio cholerae is predicted to be important for the pathogen's survival in its natural aquatic ecosystems. The rugose variant forms corrugated colonies, exhibits increased levels of resistance to osmotic, acid, and oxidative stresses, and has an enhanced capacity to form biofilms. Many of these phenotypes are mediated in part by increased production of an exopolysaccharide termed VPS. In this study, we compared total protein profiles of the smooth and rugose variants using two-dimensional gel electrophoresis and identified one protein that is present at a higher level in the rugose variant. A mutation in the gene encoding this protein, which does not have any known homologs in the protein databases, causes cells to form biofilms that are more fragile and sensitive to sodium dodecyl sulfate than wild-type biofilms. The results indicate that the gene, termed rbmA (rugosity and biofilm structure modulator A), is required for rugose colony formation and biofilm structure integrity in V. cholerae. Transcription of rbmA is positively regulated by the response regulator VpsR but not VpsT.
Collapse
Affiliation(s)
- Jiunn C N Fong
- Department of Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
30
|
de Rezende CE, Anriany Y, Carr LE, Joseph SW, Weiner RM. Capsular polysaccharide surrounds smooth and rugose types of Salmonella enterica serovar Typhimurium DT104. Appl Environ Microbiol 2005; 71:7345-51. [PMID: 16269777 PMCID: PMC1287654 DOI: 10.1128/aem.71.11.7345-7351.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biofilms and rugose colony morphology of Salmonella enterica serovar Typhimurium strains are usually associated with at least two different exopolymeric substances (EPS), curli and cellulose. In this study, another EPS, a capsular polysaccharide (CP) synthesized constitutively in S. enterica serovar Typhimurium strain DT104 at 25 and 37 degrees C, has been recognized as a biofilm matrix component as well. Fluorophore-assisted carbohydrate electrophoresis (FACE) analysis indicated that the CP is comprised principally of glucose and mannose, with galactose as a minor constituent. The composition differs from that of known colanic acid-containing CP that is isolated from cells of Escherichia coli and other enteric bacteria grown at 37 degrees C. The reactivity of carbohydrate-specific lectins conjugated to fluorescein isothiocyanate or gold particles with cellular carbohydrates demonstrated the cell surface localization of CP. Further, lectin binding also correlated with the FACE analysis of CP. Immunoelectron microscopy, using specific antibodies against CP, confirmed that CP surrounds the cells. Confocal microscopy of antibody-labeled cells showed greater biofilm formation at 25 degrees C than at 37 degrees C. Since the CP was shown to be produced at both 37 degrees C and 25 degrees C, it does not appear to be significantly involved in attachment during the early formation of the biofilm matrix. Although the attachment of S. enterica serovar Typhimurium DT104 does not appear to be mediated by its CP, the capsule does contribute to the biofilm matrix and may have a role in other features of this organism, such as virulence, as has been shown previously for the capsules of other gram-negative and gram-positive bacteria.
Collapse
Affiliation(s)
- C Eriksson de Rezende
- Department of Cell Biology and Molecular Genetics, Microbiology Building, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
31
|
Cianciotto NP. Type II secretion: a protein secretion system for all seasons. Trends Microbiol 2005; 13:581-8. [PMID: 16216510 DOI: 10.1016/j.tim.2005.09.005] [Citation(s) in RCA: 258] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 09/06/2005] [Accepted: 09/22/2005] [Indexed: 01/20/2023]
Abstract
In Gram-negative bacteria, type II secretion (T2S) is one of five protein secretion systems that permit the export of proteins from within the bacterial cell to the extracellular milieu and/or into target host cells. An analysis of numerous sequenced genomes now reveals that T2S genes are common, but by no means universal, in Gram-negative bacteria. Recent functional studies indicate that T2S can promote the virulence of human, animal and plant pathogens, as well as the physiology of various environmental bacteria. Thus, it is an opportune time to highlight the new and different ways in which T2S serves bacterial function.
Collapse
Affiliation(s)
- Nicholas P Cianciotto
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, IL 60611, USA.
| |
Collapse
|
32
|
Sun J, Gunzer F, Westendorf AM, Buer J, Scharfe M, Jarek M, Gössling F, Blöcker H, Zeng AP. Genomic peculiarity of coding sequences and metabolic potential of probiotic Escherichia coli strain Nissle 1917 inferred from raw genome data. J Biotechnol 2005; 117:147-61. [PMID: 15823404 DOI: 10.1016/j.jbiotec.2005.01.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 12/16/2004] [Accepted: 01/07/2005] [Indexed: 10/25/2022]
Abstract
Probiotic Escherichia coli strain Nissle 1917 (O6:K5:H1) is a commensal E. coli isolate that has a long tradition in medicine for the treatment of various intestinal disorders in humans. To elucidate the molecular basis of its probiotic nature, we started sequencing the genome of this organism with a whole-genome shotgun approach. A 7.8-fold coverage of the genomic sequence has been generated and is now in the finishing stage. To exploit the genome data as early as possible and to generate hypotheses for functional studies, the unfinished sequencing data were analyzed in this work using a new method [Sun, J., Zeng, A.P., 2004. IdentiCS--identification of coding sequence and in silico reconstruction of the metabolic network directly from unannotated low-coverage bacterial genome sequence. BMC Bioinformatics 5, 112] which is particularly suitable for the prediction of coding sequences (CDSs) from unannotated genome sequence. The CDSs predicted for E. coli Nissle 1917 were compared with those of all five other sequenced E. coli strains (E. coli K-12 MG1655, E. coli K-12 W3110, E. coli CFT073, EHEC O157:H7 EDL933 and EHEC O157:H7 Sakai) published to date. Five thousand one hundred and ninety-two CDSs were predicted for E. coli Nissle 1917, of which 1065 were assigned with enzyme EC numbers. The comparison of all predicted CDSs of E. coli Nissle 1917 to the other E. coli strains revealed 108 CDSs specific for this isolate. They are organized as four big genome islands and many other smaller gene clusters. Based on CDSs with EC numbers for enzymes, the potential metabolic network of Nissle 1917 was reconstructed and compared to those of the other five E. coli strains. Overall, the comparative genomic analysis sheds light on the genomic peculiarity of the probiotic E. coli strain Nissle 1917 and is helpful for designing further functional studies long before the sequencing project is completely finished.
Collapse
Affiliation(s)
- Jibin Sun
- GBF - German Research Centre for Biotechnology, Experimental Bioinformatics, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Yildiz FH, Liu XS, Heydorn A, Schoolnik GK. Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol 2005; 53:497-515. [PMID: 15228530 DOI: 10.1111/j.1365-2958.2004.04154.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reversible phase variation between the rugose and smooth colony variants is predicted to be important for the survival of Vibrio cholerae in natural aquatic habitats. Microarray expression profiling studies of the rugose and smooth variants of the same strain led to the identification of 124 differentially regulated genes. Further expression profiling experiments showed how these genes are regulated by the VpsR and HapR transcription factors, which, respectively, positively and negatively regulate production of VPS(El Tor), a rugose-associated extracellular polysaccharide. The study of mutants of rpoN and rpoS demonstrated the effects of these alternative sigma factors on phase variation-specific gene expression. Bioinformatics analysis of these expression data shows that 'rugosity' and 'smoothness' are determined by a complex hierarchy of positive and negative regulators, which also affect the biofilm, surface hydrophobicity and motility phenotypes of the organism.
Collapse
Affiliation(s)
- Fitnat H Yildiz
- Department of Environmental Toxicology, University of California, Santa Cruz, 269 Jack Baskin Engineering Bldg, Santa Cruz, CA 95064, USA.
| | | | | | | |
Collapse
|
35
|
Yao SY, Luo L, Har KJ, Becker A, Rüberg S, Yu GQ, Zhu JB, Cheng HP. Sinorhizobium meliloti ExoR and ExoS proteins regulate both succinoglycan and flagellum production. J Bacteriol 2004; 186:6042-9. [PMID: 15342573 PMCID: PMC515170 DOI: 10.1128/jb.186.18.6042-6049.2004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The production of the Sinorhizobium meliloti exopolysaccharide, succinoglycan, is required for the formation of infection threads inside root hairs, a critical step during the nodulation of alfalfa (Medicago sativa) by S. meliloti. Two bacterial mutations, exoR95::Tn5 and exoS96::Tn5, resulted in the overproduction of succinoglycan and a reduction in symbiosis. Systematic analyses of the symbiotic phenotypes of the two mutants demonstrated their reduced efficiency of root hair colonization. In addition, both the exoR95 and exoS96 mutations caused a marked reduction in the biosynthesis of flagella and consequent loss of ability of the cells to swarm and swim. Succinoglycan overproduction did not appear to be the cause of the suppression of flagellum biosynthesis. Further analysis indicated that both the exoR95 and exoS96 mutations affected the expression of the flagellum biosynthesis genes. These findings suggest that both the ExoR protein and the ExoS/ChvI two-component regulatory system are involved in the regulation of both succinoglycan and flagellum biosynthesis. These findings provide new avenues of understanding of the physiological changes S. meliloti cells go through during the early stages of symbiosis and of the signal transduction pathways that mediate such changes.
Collapse
Affiliation(s)
- Shi-Yi Yao
- Biological Sciences Department, Lehman College, The City University of New York, 250 Bedford Park Blvd., West, Bronx, NY 10468, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Rashid MH, Rajanna C, Zhang D, Pasquale V, Magder LS, Ali A, Dumontet S, Karaolis DKR. Role of exopolysaccharide, the rugose phenotype and VpsR in the pathogenesis of epidemic Vibrio cholerae. FEMS Microbiol Lett 2004; 230:105-13. [PMID: 14734172 DOI: 10.1016/s0378-1097(03)00879-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vibrio cholerae, the causative agent of cholera can produce an exopolysaccharide (EPS). Some strains can also phenotypically switch from a smooth to a 'rugose' phenotype characterized by small wrinkled colonies, overproduction of EPS, increased biofilm formation in vitro and increased resistance to various stressful conditions. High frequency switching to the rugose phenotype is more common in epidemic strains than in non-pathogenic strains, suggesting EPS production and the rugose phenotype are important in cholera epidemiology. VpsR up-regulates Vibrio polysaccharide (VPS) genes and the synthesis of extracellular EPS (VPS). However, the function of VPS, the rugose phenotype and VpsR in pathogenesis is not well understood. We report that rugose strains of both classical and El Tor biotypes of epidemic V. cholerae are defective in the in vitro production of extracellular collagenase activity. In vivo studies in rabbit ileal loops suggest that VpsR mutants are attenuated in reactogenicity. Intestinal colonization studies in infant mice suggest that VPS production, the rugose phenotype and VpsR have a role in pathogenesis. Our results indicate that regulated VPS production is important for promoting in vivo biofilm formation and pathogenesis. Additionally, VpsR might regulate genes with roles in virulence. Rugose strains appear to be a subpopulation of cells that might act as a 'helper' phenotype promoting the pathogenesis of certain strains. Our studies provide new insight into the potential role of VPS, the rugose phenotype and VpsR in the pathogenesis of epidemic V. cholerae.
Collapse
Affiliation(s)
- Mohammed H Rashid
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Rashid MH, Rajanna C, Ali A, Karaolis DKR. Identification of genes involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae. FEMS Microbiol Lett 2004; 227:113-9. [PMID: 14568156 DOI: 10.1016/s0378-1097(03)00657-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae can switch to a 'rugose' phenotype characterized by an exopolysaccharide (EPS) matrix, wrinkled colony morphology, increased biofilm formation and increased survival under specific conditions. The vps gene cluster responsible for the biosynthesis of the rugose EPS (rEPS) is positively regulated by VpsR. We recently identified media (APW#3) promoting EPS production and the rugose phenotype and found epidemic strains switch at a higher frequency than non-pathogenic strains, suggesting this switch and the rugose phenotype are important in cholera epidemiology. In this study, transposon mutagenesis on a smooth V. cholerae strain was used to identify mutants that were unable to shift to the rugose phenotype under inducing conditions to better understand the molecular basis of the switch. We identified vpsR, galE and vps previously associated with the rugose phenotype, and also identified genes not previously associated with the phenotype, including rfbD and rfbE having roles in LPS (lipopolysaccharide) synthesis and aroB and aroK with roles in aromatic amino acid synthesis. Additionally, a mutation in amiB encoding N-acetylmuramoyl-L-alanine amidase caused defects in the switch, motility and cell morphology. We also found that a gene encoding a novel regulatory protein we termed RocS (regulation of cell signaling) containing a GGDEF and EAL domains and associated with c-di-GMP levels is important for the rugose phenotype, EPS, biofilm formation and motility. We propose that modulation of cyclic dinucleotide (e.g. c-di-GMP) levels might have application in regulating various phenotypes of prokaryotes. Our study shows the molecular complexity of the switch between the smooth and rugose phenotypes of V. cholerae and may be relevant to similar phenotypes in other species.
Collapse
Affiliation(s)
- Mohammed H Rashid
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
38
|
Abstract
Multiple quorum-sensing circuits function in parallel to control virulence and biofilm formation in Vibrio cholerae. In contrast to other bacterial pathogens that induce virulence factor production and/or biofilm formation at high cell density in the presence of quorum-sensing autoinducers, V. cholerae represses these behaviours at high cell density. Consistent with this, we show here that V. cholerae strains 'locked' in the regulatory state mimicking low cell density are enhanced for biofilm production whereas mutants 'locked' in the regulatory state mimicking high cell density are incapable of producing biofilms. The quorum-sensing cascade we have identified in V. cholerae regulates the transcription of genes involved in exopolysaccharide production (EPS), and variants that produce EPS and form biofilms arise at high frequency from non-EPS, non-biofilm producing strains. Our data show that spontaneous mutation of the transcriptional regulator hapR is responsible for this effect. Several toxigenic strains of V. cholerae possess a naturally occurring frameshift mutation in hapR. Thus, the distinct environments occupied by this aquatic pathogen presumably include niches where cell-cell communication is crucial, as well as ones where loss of quorum sensing via hapR mutation confers a selective advantage. Bacterial biofilms could represent a complex habitat where such differentiation occurs.
Collapse
Affiliation(s)
- Brian K Hammer
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | |
Collapse
|
39
|
Srinivasa Rao PS, Lim TM, Leung KY. Functional genomics approach to the identification of virulence genes involved in Edwardsiella tarda pathogenesis. Infect Immun 2003; 71:1343-51. [PMID: 12595451 PMCID: PMC148833 DOI: 10.1128/iai.71.3.1343-1351.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Edwardsiella tarda is an important cause of hemorrhagic septicemia in fish and also of gastro- and extraintestinal infections in humans. Here, we report the identification of 14 virulence genes of pathogenic E. tarda that are essential for disseminated infection, via a genome-wide analysis. We screened 490 alkaline phosphatase fusion mutants from a library of 450,000 TnphoA transconjugants derived from strain PPD130/91, using fish as an infection model. Compared to the wild type, 15 mutants showed significant decreases in virulence. Six mutants had insertions in the known virulence-related genes, namely, fimA, gadB, katB, pstS, pstC, and ssrB. Some mutants corresponded to known genes (astA, isor, and ompS2) that had not been previously shown to be involved in pathogenesis, and three had insertions in two novel genes. In vivo infection kinetics experiments confirmed the inability of these attenuated mutants to proliferate and cause fatal infection in fish. Screening for the presence of the above-described virulence genes in six virulent and seven avirulent strains of E. tarda indicated that seven of the genes were specific to pathogenic E. tarda. The genes identified here may be used to develop vaccines and diagnostic kits as well as for further studying the pathogenesis of E. tarda and other pathogenic bacteria.
Collapse
Affiliation(s)
- Putanae S. Srinivasa Rao
- Department of Biological Sciences, Faculty of Science, Tropical Marine Science Institute, National University of Singapore, Singapore 117543, Singapore
| | - Tit Meng Lim
- Department of Biological Sciences, Faculty of Science, Tropical Marine Science Institute, National University of Singapore, Singapore 117543, Singapore
| | - Ka Yin Leung
- Department of Biological Sciences, Faculty of Science, Tropical Marine Science Institute, National University of Singapore, Singapore 117543, Singapore
- Corresponding author. Mailing address: Department of Biological Sciences, Faculty of Science, National University of Singapore. Science Dr. 4, Singapore 117543, Singapore. Phone: (65) 6874 7835. Fax: (65) 6779 2486. E-mail:
| |
Collapse
|
40
|
Hoffman LM, Jendrisak JJ. Transposomes: a system for identifying genes involved in bacterial pathogenesis. Methods Enzymol 2003; 358:128-40. [PMID: 12474383 DOI: 10.1016/s0076-6879(02)58085-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Les M Hoffman
- Epicentre Technologies, Madison, Wisconsin 53713, USA
| | | |
Collapse
|
41
|
Ali A, Rashid MH, Karaolis DKR. High-frequency rugose exopolysaccharide production by Vibrio cholerae. Appl Environ Microbiol 2002; 68:5773-8. [PMID: 12406780 PMCID: PMC129946 DOI: 10.1128/aem.68.11.5773-5778.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae can shift to a "rugose" phenotype, thereby producing copious exopolysaccharide (EPS), which promotes its environmental survival and persistence. We report conditions that promote high-frequency rugose EPS production (HFRP), whereby cells switch at high frequency (up to 80%) to rugose EPS production. HFRP appeared to be more common in clinical strains, as HFRP was found in 6 of 19 clinical strains (32%) (including classical, El Tor, and non-O1 strains) but in only 1 of 16 environmental strains (6%). Differences were found between strains in rugose colony morphology, conditions promoting HFRP, the frequency of rugose-to-smooth (R-S) cell reversion, and biofilm formation. We propose that rugose EPS and HFRP provide an evolutionary and adaptive advantage to specific epidemic V. cholerae strains for increased persistence in the environment.
Collapse
Affiliation(s)
- Afsar Ali
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
42
|
Tauschek M, Gorrell RJ, Strugnell RA, Robins-Browne RM. Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proc Natl Acad Sci U S A 2002; 99:7066-71. [PMID: 12011463 PMCID: PMC124529 DOI: 10.1073/pnas.092152899] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2001] [Accepted: 03/14/2002] [Indexed: 11/18/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an enteric pathogen that causes cholera-like diarrhea in humans and animals. ETEC secretes a heat-labile enterotoxin (LT), which resembles cholera toxin, but the actual mechanism of LT secretion is presently unknown. We have identified a previously unrecognized type II protein secretion pathway in the prototypic human ETEC strain, H10407 (serotype O78:H11). The genes for this pathway are absent from E. coli K-12, although examination of the K-12 genome suggests that it probably once possessed them. The secretory pathway bears significant homology at the amino acid level to the type II protein secretory pathway required by Vibrio cholerae for the secretion of cholera toxin. With this in mind, we determined whether the homologous pathway of E. coli H10407 played a role in the secretion of LT. To this end, we inactivated the pathway by inserting a kanamycin-resistance gene into one of the genes (gspD) of the type II secretion pathway by homologous recombination. LT secretion by E. coli H10407 and the gspD mutant was assayed by enzyme immunoassay, and its biological activity was assessed by using Y-1 adrenal cells. This investigation showed that the protein secretory pathway is functional and necessary for the secretion of LT by ETEC. Our findings have revealed the mechanism for the secretion of LT by ETEC, which previously was unknown, and provide further evidence of close biological similarities of the LT and cholera toxin.
Collapse
Affiliation(s)
- Marija Tauschek
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
43
|
Millikan DS, Ruby EG. Alterations in Vibrio fischeri motility correlate with a delay in symbiosis initiation and are associated with additional symbiotic colonization defects. Appl Environ Microbiol 2002; 68:2519-28. [PMID: 11976129 PMCID: PMC127559 DOI: 10.1128/aem.68.5.2519-2528.2002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2001] [Accepted: 12/19/2001] [Indexed: 11/20/2022] Open
Abstract
Motility is required for Vibrio fischeri cells to interact with and specifically colonize the light-emitting organ of their host, the squid Euprymna scolopes. To investigate the influence of motility on the expression of the symbiotic phenotype, we isolated mutants of the squid symbiont V. fischeri ES114 that had altered migration abilities. Spontaneous hyperswimmer (HS) mutants, which migrated more rapidly in soft agar and were hyperflagellated relative to the wild type, were isolated and grouped into three phenotypic classes. All of the HS strains tested, regardless of class, were delayed in symbiosis initiation. This result suggested that the hypermotile phenotype alone contributes to an inability to colonize squid normally. Class III HS strains showed the greatest colonization defect: they colonized squid to a level that was only 0.1 to 10% that achieved by ES114. In addition, class III strains were defective in two capabilities, hemagglutination and luminescence, that have been previously described as colonization factors in V. fischeri. Class II and III mutants also share a mucoid colony morphology; however, class II mutants can colonize E. scolopes to a level that was 40% of that achieved by ES114. Thus, the mucoid phenotype alone does not contribute to the greater defect exhibited by class III strains. When squid were exposed to ES114 and any one of the HS mutant strains as a coinoculation, the parent strain dominated the resulting symbiotic light-organ population. To further investigate the colonization defects of the HS strains, we used confocal laser-scanning microscopy to visualize V. fischeri cells in their initial interaction with E. scolopes tissue. Compared to ES114, HS strains from all three classes were delayed in two behaviors involved in colonization: (i) aggregation on host-derived mucus structures and (ii) migration to the crypts. These results suggest that, while motility is required to initiate colonization, the presence of multiple flagella may actually interfere with normal aggregation and attachment behavior. Furthermore, the pleiotropic nature of class III HS strains provides evidence that motility is coregulated with other symbiotic determinants in V. fischeri.
Collapse
Affiliation(s)
- Deborah S Millikan
- Pacific Biomedical Research Center, University of Hawaii, Honolulu, Hawaii 96813, USA
| | | |
Collapse
|
44
|
Folster JP, Connell TD. The extracellular transport signal of the Vibrio cholerae endochitinase (ChiA) is a structural motif located between amino acids 75 and 555. J Bacteriol 2002; 184:2225-34. [PMID: 11914354 PMCID: PMC134948 DOI: 10.1128/jb.184.8.2225-2234.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ChiA, an 88-kDa endochitinase encoded by the chiA gene of the gram-negative enteropathogen Vibrio cholerae, is secreted via the eps-encoded main terminal branch of the general secretory pathway (GSP), a mechanism which also transports cholera toxin. To localize the extracellular transport signal of ChiA that initiates transport of the protein through the GSP, a chimera comprised of ChiA fused at the N terminus with the maltose-binding protein (MalE) of Escherichia coli and fused at the C terminus with a 13-amino-acid epitope tag (E-tag) was expressed in strain 569B(chiA::Kan(r)), a chiA-deficient but secretion-competent mutant of V. cholerae. Fractionation studies revealed that blockage of the natural N terminus and C terminus of ChiA did not prevent secretion of the MalE-ChiA-E-tag chimera. To locate the amino acid sequences which encoded the transport signal, a series of truncations of ChiA were engineered. Secretion of the mutant polypeptides was curtailed only when ChiA was deleted from the N terminus beyond amino acid position 75 or from the C terminus beyond amino acid 555. A mutant ChiA comprised of only those amino acids was secreted by wild-type V. cholerae but not by an epsD mutant, establishing that amino acids 75 to 555 independently harbored sufficient structural information to promote secretion by the GSP of V. cholerae. Cys77 and Cys537, two cysteines located just within the termini of ChiA(75-555), were not required for secretion, indicating that those residues were not essential for maintaining the functional activity of the ChiA extracellular transport signal.
Collapse
Affiliation(s)
- Jason P Folster
- The Witebsky Center for Microbial Pathogenesis and Immunology and Department of Microbiology, School of Medicine and Biomedical Sciences, The University of Buffalo, State University of New York, Buffalo, New York 14214, USA
| | | |
Collapse
|
45
|
Anriany YA, Weiner RM, Johnson JA, De Rezende CE, Joseph SW. Salmonella enterica serovar Typhimurium DT104 displays a rugose phenotype. Appl Environ Microbiol 2001; 67:4048-56. [PMID: 11526004 PMCID: PMC93128 DOI: 10.1128/aem.67.9.4048-4056.2001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rugose phenotypes, such as those observed in Vibrio cholerae, have increased resistance to chlorine, oxidative stress, and complement-mediated killing. In this study we identified and defined a rugose phenotype in Salmonella enterica serovar Typhimurium DT104 and showed induction only on certain media at 25 degrees C after 3 days of incubation. Incubation at 37 degrees C resulted in the appearance of the smooth phenotype. Observation of the ultrastructure of the rugose form and a stable smooth variant (Stv), which was isolated following a series of passages of the rugose cells, revealed extracellular substances only in cells from the rugose colony. Observation of the extracellular substance by scanning electron microscopy (SEM) was correlated with the appearance of corrugation during development of rugose colony morphology over a 4-day incubation period at 25 degrees C. In addition, the cells also formed a pellicle in liquid broth, which was associated with the appearance of interlacing slime and fibrillar structures, as observed by SEM. The pellicle-forming cells were completely surrounded by capsular material, which bound cationic ferritin, thus indicating the presence of an extracellular anionic component. The rugose cells, in contrast to Stv, showed resistance to low pH and hydrogen peroxide and an ability to form biofilms. Based on these results and analogy to the rugose phenotype in V. cholerae, we propose a possible role for the rugose phenotype in the survival of S. enterica serovar Typhimurium DT104.
Collapse
Affiliation(s)
- Y A Anriany
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | |
Collapse
|
46
|
Provenzano D, Lauriano CM, Klose KE. Characterization of the role of the ToxR-modulated outer membrane porins OmpU and OmpT in Vibrio cholerae virulence. J Bacteriol 2001; 183:3652-62. [PMID: 11371530 PMCID: PMC95243 DOI: 10.1128/jb.183.12.3652-3662.2001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ToxR, the transmembrane regulatory protein required for expression of virulence factors in the human diarrheal pathogen Vibrio cholerae, directly activates and represses the transcription of two outer membrane porins, OmpU and OmpT, respectively. In an attempt to dissect the role of the OmpU and OmpT porins in viability and virulence factor expression, in-frame chromosomal deletions were constructed in the coding sequences of ompU and ompT of V. cholerae. Two separate deletions were introduced into ompU; the first (small) deletion, Delta ompU1, removed the coding sequence for 84 internal amino acids (aa), while the second (large) deletion, Delta ompU2, removed the coding sequence for the entire amino-terminal 274 aa. The Delta ompU1 strain had a growth defect that could not be complemented by episomal expression of full-length ompU. In contrast, a strain with Delta ompU2 displayed wild-type growth kinetics in rich media, suggesting that this is the true phenotype of a strain lacking OmpU and that the truncated OmpU protein, rather than the absence of OmpU, may be the cause for the Delta ompU1 phenotype. A large deletion removing the coding sequence for the entire N-terminal 273 aa of OmpT (Delta ompT) was also constructed in wild-type as well as Delta toxR and Delta ompU2 strains, and these strains displayed wild-type growth kinetics in rich media. However, the Delta ompU2 strain was deficient for growth in deoxycholate compared to wild-type, Delta ompT, and Delta ompU2 Delta ompT strains, reinforcing a positive role for the OmpU porin and a negative role for the OmpT porin in V. cholerae resistance to anionic detergents. The Delta ompU2, Delta ompT, and Delta ompU2 Delta ompT strains exhibited wild-type levels of in vitro virulence factor expression and resistance to polymyxin B and serum and in vivo colonization levels similar to a wild-type strain in the infant mouse intestine. Our results demonstrate that (i) OmpU and OmpT are not essential proteins, as was previously thought; (ii) these porins contribute to V. cholerae resistance to anionic detergents; and (iii) OmpU and OmpT are not essential for virulence factor expression in vitro or intestinal colonization in vivo.
Collapse
Affiliation(s)
- D Provenzano
- Department of Microbiology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | |
Collapse
|
47
|
Affiliation(s)
- M Sandkvist
- Jerome H. Holland Laboratory, Department of Biochemistry, American Red Cross, Rockville, Maryland 20855, USA.
| |
Collapse
|
48
|
Rossier O, Cianciotto NP. Type II protein secretion is a subset of the PilD-dependent processes that facilitate intracellular infection by Legionella pneumophila. Infect Immun 2001; 69:2092-8. [PMID: 11254562 PMCID: PMC98134 DOI: 10.1128/iai.69.4.2092-2098.2001] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we had demonstrated that a Legionella pneumophila prepilin peptidase (pilD) mutant does not produce type IV pili and shows reduced secretion of enzymatic activities. Moreover, it displays a distinct colony morphology and a dramatic reduction in intracellular growth within amoebae and macrophages, two phenotypes that are not exhibited by a pilin (pilE(L)) mutant. To determine whether these pilD-dependent defects were linked to type II secretion, we have constructed two new mutants of L. pneumophila strain 130b. Mutations were introduced into either lspDE, which encodes the type II outer membrane secretin and ATPase, or lspFGHIJK, which encodes the pseudopilins. Unlike the wild-type and pilE(L) strains, both lspDE and lspG mutants showed reduced secretion of six pilD-dependent enzymatic activities; i.e., protease, acid phosphatase, p-nitrophenol phosphorylcholine hydrolase, lipase, phospholipase A, and lysophospholipase A. However, they exhibited a colony morphology different from that of the pilD mutant, suggesting that their surfaces are distinct. The pilD, lspDE, and lspG mutants were similarly and greatly impaired for growth within Hartmannella vermiformis, indicating that the intracellular defect of the peptidase mutant in amoebae is explained by the loss of type II secretion. When assessed for infection of U937 macrophages, both lsp mutants exhibited a 10-fold reduction in intracellular multiplication and a diminished cytopathic effect. Interestingly, the pilD mutant was clearly 100-fold more defective than the type II secretion mutants in U937 cells. These results suggest the existence of a novel pilD-dependent mechanism for promoting L. pneumophila intracellular infection of human cells.
Collapse
Affiliation(s)
- O Rossier
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|
49
|
Watnick PI, Lauriano CM, Klose KE, Croal L, Kolter R. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol Microbiol 2001; 39:223-35. [PMID: 11136445 PMCID: PMC2860545 DOI: 10.1046/j.1365-2958.2001.02195.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Throughout most of history, epidemic and pandemic cholera was caused by Vibrio cholerae of the serogroup O1. In 1992, however, a V. cholerae strain of the serogroup O139 emerged as a new agent of epidemic cholera. Interestingly, V. cholerae O139 forms biofilms on abiotic surfaces more rapidly than V. cholerae O1 biotype El Tor, perhaps because regulation of exopolysaccharide synthesis in V. cholerae O139 differs from that in O1 El Tor. Here, we show that all flagellar mutants of V. cholerae O139 have a rugose colony morphology that is dependent on the vps genes. This suggests that the absence of the flagellar structure constitutes a signal to increase exopolysaccharide synthesis. Furthermore, although exopolysaccharide production is required for the development of a three-dimensional biofilm, inappropriate exopolysaccharide production leads to inefficient colonization of the infant mouse intestinal epithelium by flagellar mutants. Thus, precise regulation of exopolysaccharide synthesis is an important factor in the survival of V. cholerae O139 in both aquatic environments and the mammalian intestine.
Collapse
Affiliation(s)
- Paula I. Watnick
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Crystal M. Lauriano
- Department of Microbiology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Karl E. Klose
- Department of Microbiology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Laura Croal
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02111, USA
| | - Roberto Kolter
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02111, USA
| |
Collapse
|
50
|
Francetic O, Belin D, Badaut C, Pugsley AP. Expression of the endogenous type II secretion pathway in Escherichia coli leads to chitinase secretion. EMBO J 2000; 19:6697-703. [PMID: 11118204 PMCID: PMC305903 DOI: 10.1093/emboj/19.24.6697] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli K-12, the most widely used laboratory bacterium, does not secrete proteins into the extracellular medium under standard growth conditions, despite possessing chromosomal genes encoding a putative type II secretion machinery (secreton). We show that in wild-type E.coli K-12, divergent transcription of the two operons in the main chromosomal gsp locus, encoding the majority of the secreton components, is silenced by the nucleoid-structuring protein H-NS. In mutants lacking H-NS, the secreton genes cloned on a moderate-copy-number plasmid are expressed and promote efficient secretion of the endogenous, co-regulated endochitinase ChiA. This is the first time that secretion of an endogenous extracellular protein has been demonstrated in E.coli K-12.
Collapse
Affiliation(s)
- O Francetic
- Unité de Génétique moléculaire and Unité de Physicochimie de Macromolécules biologiques, Centre National de la Recherche scientifique URA1773, Institut Pasteur, 25 rue du Dr Roux, 75734 Paris, Cedex 15, France
| | | | | | | |
Collapse
|