1
|
Hsu SH, Yang HY, Chang CC, Tsai SK, Li C, Chang MY, Ko YC, Chou LF, Tsai CY, Tian YC, Yang CW. Blocking pathogenic Leptospira invasion with aptamer molecules targeting outer membrane LipL32 protein. Microbes Infect 2024; 26:105299. [PMID: 38224944 DOI: 10.1016/j.micinf.2024.105299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
This study aimed to develop aptamers targeting LipL32, a most abundant lipoprotein in pathogenic Leptospira, to hinder bacterial invasion. The objectives were to identify high-affinity aptamers through SELEX and evaluate their specificity and inhibitory effects. SELEX was employed to generate LipL32 aptamers (L32APs) over 15 rounds of selection. L32APs' binding affinity and specificity for pathogenic Leptospira were assessed. Their ability to inhibit LipL32-ECM interaction and Leptospira invasion was investigated. Animal studies were conducted to evaluate the impact of L32AP treatment on survival rates, Leptospira colonization, and kidney damage. Three L32APs with strong binding affinity were identified. They selectively detected pathogenic Leptospira, sparing non-pathogenic strains. L32APs inhibited LipL32-ECM interaction and Leptospira invasion. In animal studies, L32AP administration significantly improved survival rates, reduced Leptospira colonies, and mitigated kidney damage compared to infection alone. This pioneering research developed functional aptamers targeting pathogenic Leptospira. The identified L32APs exhibited high affinity, pathogen selectivity, and inhibition of invasion and ECM interaction. L32AP treatment showed promising results, enhancing survival rates and reducing Leptospira colonization and kidney damage. These findings demonstrate the potential of aptamers to impede pathogenic Leptospira invasion and aid in recovery from Leptospira-induced kidney injury (190 words).
Collapse
Affiliation(s)
- Shen-Hsing Hsu
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan.
| | - Huang-Yu Yang
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Chen Chang
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | | | - Chien Li
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ming-Yang Chang
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Ching Ko
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chung-Ying Tsai
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ya-Chung Tian
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
2
|
de Oliveira NR, Santos FDS, Dos Santos VAC, Maia MAC, Oliveira TL, Dellagostin OA. Challenges and Strategies for Developing Recombinant Vaccines against Leptospirosis: Role of Expression Platforms and Adjuvants in Achieving Protective Efficacy. Pathogens 2023; 12:787. [PMID: 37375478 DOI: 10.3390/pathogens12060787] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The first leptospiral recombinant vaccine was developed in the late 1990s. Since then, progress in the fields of reverse vaccinology (RV) and structural vaccinology (SV) has significantly improved the identification of novel surface-exposed and conserved vaccine targets. However, developing recombinant vaccines for leptospirosis faces various challenges, including selecting the ideal expression platform or delivery system, assessing immunogenicity, selecting adjuvants, establishing vaccine formulation, demonstrating protective efficacy against lethal disease in homologous challenge, achieving full renal clearance using experimental models, and reproducibility of protective efficacy against heterologous challenge. In this review, we highlight the role of the expression/delivery system employed in studies based on the well-known LipL32 and leptospiral immunoglobulin-like (Lig) proteins, as well as the choice of adjuvants, as key factors to achieving the best vaccine performance in terms of protective efficacy against lethal infection and induction of sterile immunity.
Collapse
Affiliation(s)
- Natasha Rodrigues de Oliveira
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| | - Francisco Denis Souza Santos
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| | | | - Mara Andrade Colares Maia
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| | - Thaís Larré Oliveira
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| | - Odir Antônio Dellagostin
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil
| |
Collapse
|
3
|
Govindan P, Manjusha P, Saravanan KM, Natesan V, Salmen SH, Alfarraj S, Wainwright M, Shakila H. RETRACTED ARTICLE: Expression and preliminary characterization of the potential vaccine candidate LipL32 of leptospirosis. APPLIED NANOSCIENCE 2023; 13:1801. [PMID: 34608427 PMCID: PMC8483425 DOI: 10.1007/s13204-021-02097-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Pothiaraj Govindan
- grid.10214.360000 0001 2186 7912Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai-21, Tamil Nadu India
| | - Packiyadass Manjusha
- grid.10214.360000 0001 2186 7912Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai-21, Tamil Nadu India
| | - Konda Mani Saravanan
- Scigen Research and Innovation Pvt Ltd, Periyar Technology Business Incubator, Thanjavur, Tamil Nadu 613403 India
| | - Vijayakumar Natesan
- grid.411408.80000 0001 2369 7742Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu 608002 India
| | - Saleh H. Salmen
- grid.56302.320000 0004 1773 5396Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451 Saudi Arabia
| | - Saleh Alfarraj
- grid.56302.320000 0004 1773 5396Zoology Department, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Milton Wainwright
- grid.11835.3e0000 0004 1936 9262Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN UK
| | - Harshavardhan Shakila
- grid.10214.360000 0001 2186 7912Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai-21, Tamil Nadu India
| |
Collapse
|
4
|
Araújo NM, Rubio IGS, Toneto NPA, Morale MG, Tamura RE. The use of adenoviral vectors in gene therapy and vaccine approaches. Genet Mol Biol 2022; 45:e20220079. [PMID: 36206378 PMCID: PMC9543183 DOI: 10.1590/1678-4685-gmb-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Adenovirus was first identified in the 1950s and since then this pathogenic group
of viruses has been explored and transformed into a genetic transfer vehicle.
Modification or deletion of few genes are necessary to transform it into a
conditionally or non-replicative vector, creating a versatile tool capable of
transducing different tissues and inducing high levels of transgene expression.
In the early years of vector development, the application in monogenic diseases
faced several hurdles, including short-term gene expression and even a fatality.
On the other hand, an adenoviral delivery strategy for treatment of cancer was
the first approved gene therapy product. There is an increasing interest in
expressing transgenes with therapeutic potential targeting the cancer hallmarks,
inhibiting metastasis, inducing cancer cell death or modulating the immune
system to attack the tumor cells. Replicative adenovirus as vaccines may be even
older and date to a few years of its discovery, application of non-replicative
adenovirus for vaccination against different microorganisms has been
investigated, but only recently, it demonstrated its full potential being one of
the leading vaccination tools for COVID-19. This is not a new vector nor a new
technology, but the result of decades of careful and intense work in this
field.
Collapse
Affiliation(s)
- Natália Meneses Araújo
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil.
| | - Ileana Gabriela Sanchez Rubio
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | | | - Mirian Galliote Morale
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | - Rodrigo Esaki Tamura
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil.
| |
Collapse
|
5
|
Chaurasia R, Salovey A, Guo X, Desir G, Vinetz JM. Vaccination With Leptospira interrogans PF07598 Gene Family-Encoded Virulence Modifying Proteins Protects Mice From Severe Leptospirosis and Reduces Bacterial Load in the Liver and Kidney. Front Cell Infect Microbiol 2022; 12:926994. [PMID: 35837473 PMCID: PMC9274288 DOI: 10.3389/fcimb.2022.926994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/24/2022] [Indexed: 12/29/2022] Open
Abstract
The molecular and cellular pathogenesis of leptospirosis remains poorly understood. Based on comparative bacterial genomics data, we recently identified the hypothetical PF07598 gene family as encoding secreted exotoxins (VM proteins) that mediate cytotoxicity in vitro. To address whether VM proteins mediate in vivo leptospirosis pathogenesis, we tested the hypothesis that VM protein immunization of mice would protect against lethal challenge infection and reduce bacterial load in key target organs. C3H/HeJ mice were immunized with recombinant E. coli-produced, endotoxin-free, leptospiral VM proteins (derived from L. interrogans serovar Lai) in combination with the human-compatible adjuvant, glucopyranoside lipid A/squalene oil-in-water. Mice receiving full length recombinant VM proteins were protected from lethal challenge infection by L. interrogans serovar Canicola and had a 3-4 log10 reduction in bacterial load in the liver and kidney. These experiments show that immunization with recombinant VM proteins prevents leptospirosis clinical pathogenesis and leads to markedly reduced key target organ infection in this animal model. These data support the role of leptospiral VM proteins as virulence factors and suggest the possibility that a VM protein-based, serovar-independent, pan-leptospirosis vaccine may be feasible.
Collapse
Affiliation(s)
- Reetika Chaurasia
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Aryeh Salovey
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Xiaojia Guo
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Gary Desir
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Joseph M. Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- *Correspondence: Joseph M. Vinetz,
| |
Collapse
|
6
|
Barazzone GC, Teixeira AF, Azevedo BOP, Damiano DK, Oliveira MP, Nascimento ALTO, Lopes APY. Revisiting the Development of Vaccines Against Pathogenic Leptospira: Innovative Approaches, Present Challenges, and Future Perspectives. Front Immunol 2022; 12:760291. [PMID: 35046936 PMCID: PMC8761801 DOI: 10.3389/fimmu.2021.760291] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Human vaccination against leptospirosis has been relatively unsuccessful in clinical applications despite an expressive amount of vaccine candidates has been tested over years of research. Pathogenic Leptospira encompass a great number of serovars, most of which do not cross-react, and there has been a lack of genetic tools for many years. These obstacles have hampered the understanding of the bacteria's biology and, consequently, the identification of an effective antigen. Thus far, many approaches have been used in an attempt to find a cost-effective and broad-spectrum protective antigen(s) against the disease. In this extensive review, we discuss several strategies that have been used to develop an effective vaccine against leptospirosis, starting with Leptospira-inactivated bacterin, proteins identified in the genome sequences of pathogenic Leptospira, including reverse vaccinology, plasmid DNA, live vaccines, chimeric multi-epitope, and toll- and nod-like receptors agonists. This overview should be able to guide scientists working in the field to select potential antigens and to choose the appropriate formulation to administer the candidates.
Collapse
Affiliation(s)
- Giovana C. Barazzone
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Aline F. Teixeira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Bruna O. P. Azevedo
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Deborah K. Damiano
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Marcos P. Oliveira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Ana L. T. O. Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Alexandre P. Y. Lopes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
7
|
Wafa EI, Wilson-Welder JH, Hornsby RL, Nally JE, Geary SM, Bowden NB, Salem AK. Poly(diaminosulfide) Microparticle-Based Vaccine for Delivery of Leptospiral Antigens. Biomacromolecules 2020; 21:534-544. [PMID: 31895553 DOI: 10.1021/acs.biomac.9b01257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Leptospirosis is a debilitating infectious disease that detrimentally affects both animals and humans; therefore, disease prevention has become a high priority to avoid high incidence rates of disease in the herd and break the transmission cycle to humans. Thus, there remains an important unmet need for a prophylactic vaccine that can provide long-term immunity against leptospirosis in cattle. Herein, a novel vaccine formulation was developed where poly(diaminosulfide) polymer was employed to fabricate microparticles encapsulating the antigen of Leptospira borgpetersenii serovar Hardjo strain HB15B203 (L203-PNSN). A prime-boost vaccination with a L203-PNSN microparticle formulation increased the population of L203-specific CD3+ T cells and CD21+ B cells to levels that were significantly higher than those of cattle vaccinated with L203-AlOH or the vehicle control (empty PNSN microparticles and blank AlOH). In addition, L203-PNSN was demonstrated to stimulate durable humoral immune responses as evidenced by the increases in the antibody serum titers following the vaccination. It was also found that cattle vaccinated with L203-PNSN produced higher macroscopic agglutinating titers than cattle in other groups. Thus, it can be concluded that L203-PNSN is a novel first-in-class microparticle-based Leptospira vaccine that represents a powerful platform with the potential to serve as a prophylactic vaccine against leptospiral infection in cattle.
Collapse
Affiliation(s)
| | - Jennifer H Wilson-Welder
- Infectious Bacterial Disease Research Unit, National Animal Disease Center, Agriculture Research Service , United States Department of Agriculture , Ames , Iowa 50010 , United States
| | - Richard L Hornsby
- Infectious Bacterial Disease Research Unit, National Animal Disease Center, Agriculture Research Service , United States Department of Agriculture , Ames , Iowa 50010 , United States
| | - Jarlath E Nally
- Infectious Bacterial Disease Research Unit, National Animal Disease Center, Agriculture Research Service , United States Department of Agriculture , Ames , Iowa 50010 , United States
| | | | | | | |
Collapse
|
8
|
Suphatpahirapol C, Nguyen TH, Tansiri Y, Yingchutrakul Y, Roytrakul S, Nitipan S, Wajjwalku W, Haltrich D, Prapong S, Keawsompong S. Expression of a leptospiral leucine-rich repeat protein using a food-grade vector in Lactobacillus plantarum, as a strategy for vaccine delivery. 3 Biotech 2019; 9:324. [PMID: 31406646 DOI: 10.1007/s13205-019-1856-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/01/2019] [Indexed: 01/05/2023] Open
Abstract
In this study, a first food-grade mucosal vaccine against leptospirosis was developed without the use of antibiotic resistance gene. This expression system is based on a food-grade host/vector system of Lactobacillus plantarum and a new vaccine candidate antigen, a leucine-rich repeat (LRR) protein of Leptospira borgpetersenii. The LRR of interest from serovar Sejroe is encoded by two overlapping genes and these genes were fused together by site-directed mutagenesis. The mutant gene thus obtained could be successfully expressed in this system as was shown by western blot analysis and liquid chromatography-mass spectrometry (LC-MS/MS) analysis. In addition, this analysis showed that the mutant LRR protein fused to a homologous signal peptide of L. plantarum could be exported to the cell surface as a result of the native LPXAG motif of the heterologous LRR protein, which presumably is responsible for anchoring the protein to the cell wall of L. plantarum. This new strategy could be an essential tool for further studies of leptospirosis mucosal vaccine delivery.
Collapse
Affiliation(s)
- Chattip Suphatpahirapol
- 1Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, Thailand
- 2Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Thu-Ha Nguyen
- 3Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Yada Tansiri
- 2Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- 4Center for Advanced Studies for Agriculture and Food (CASAF), Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Yodying Yingchutrakul
- 5National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- 1Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, Thailand
- 5National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Supachai Nitipan
- 6Department of Biology, Faculty of Sciences, Thaksin University, Phatthalung Campus, Phatthalung, Thailand
| | - Worawidh Wajjwalku
- 1Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Dietmar Haltrich
- 1Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, Thailand
- 3Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Siriwan Prapong
- 1Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, Thailand
- 2Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- 4Center for Advanced Studies for Agriculture and Food (CASAF), Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Suttipun Keawsompong
- 1Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, Thailand
- 4Center for Advanced Studies for Agriculture and Food (CASAF), Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
- 7Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
9
|
Teixeira AF, Fernandes LG, Cavenague MF, Takahashi MB, Santos JC, Passalia FJ, Daroz BB, Kochi LT, Vieira ML, Nascimento AL. Adjuvanted leptospiral vaccines: Challenges and future development of new leptospirosis vaccines. Vaccine 2019; 37:3961-3973. [DOI: 10.1016/j.vaccine.2019.05.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/16/2019] [Accepted: 05/21/2019] [Indexed: 12/26/2022]
|
10
|
Validi M, Karkhah A, Prajapati VK, Nouri HR. Immuno-informatics based approaches to design a novel multi epitope-based vaccine for immune response reinforcement against Leptospirosis. Mol Immunol 2018; 104:128-138. [PMID: 30448609 DOI: 10.1016/j.molimm.2018.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/04/2018] [Accepted: 11/08/2018] [Indexed: 01/03/2023]
Abstract
Leptospirosis is known as a zoonotic disease of global importance originated from infection with the spirochete bacterium Leptospira. Although several leptospirosis vaccines have been tested, the vaccination is relatively unsuccessful in clinical application despite decades of research. Therefore, this study was conducted to construct a novel multi-epitope based vaccine against leptospirosis by using Hap1, LigA, LAg42, SphH and HSP58 antigens. T cell and IFN gamma epitopes were predicted from these antigens. In addition, to induce strong CD4+ helper T lymphocytes (HTLs) responses, Pan HLA DR-binding epitope (PADRE) and helper epitopes selected from Tetanus toxin fragment C (TTFrC) were applied. Moreover, for boosting immune response, Heparin-Binding Hemagglutinin (HBHA), a novel TLR4 agonist was added to the construct as an adjuvant. Finally, selected epitopes were linked together using EAAAK, GPGPG, AAY and HEYGAEALERAG linkers. Based on the predicted epitopes, a multi-epitope vaccine was construct with 490 amino acids. Physico-chemical properties, secondary and tertiary structures, stability, intrinsic protein disorder, solubility, and allergenicity of this vaccine construct were assessed by applying immunoinformatics analyses. A soluble, and non-allergic protein with a molecular weight of 53.476 kDa was obtained. Further analyses validated the stability of the chimeric protein and the predicted epitopes in the chimeric vaccine indicated strong potential to induce B-cell and T-cell mediated immune response. Therefore, immunoinformatics analysis showed that the modeled multi-epitope vaccine can properly stimulate the both T and B cells immune responses and could potentially be used for prophylactic or therapeutic usages.
Collapse
Affiliation(s)
- Majid Validi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ahmad Karkhah
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
11
|
Abstract
Considerable progress has been made in the field of leptospiral vaccines development since its first use as a killed vaccine in guinea pigs. Despite the fact that the immunity conferred is restricted to serovars with closely related lipopolysaccharide antigen, certain vaccines have remained useful, especially in endemic regions, for the protection of high-risk individuals. Other conventional vaccines such as the live-attenuated vaccine and lipopolysaccharide (LPS) vaccine have not gained popularity due to the reactive response that follows their administration and the lack of understanding of the pathogenesis of leptospirosis. With the recent breakthrough and availability of complete genome sequences of Leptospira, development of novel vaccine including recombinant protein vaccine using reverse vaccinology approaches has yielded encouraging results. However, factors hindering the development of effective leptospiral vaccines include variation in serovar distribution from region to region, establishment of renal carrier status following vaccination and determination of the dose and endpoint titres acceptable as definitive indicators of protective immunity. In this review, advancements and progress made in LPS-based vaccines, killed- and live-attenuated vaccines, recombinant peptide vaccines and DNA vaccines against leptospirosis are highlighted.
Collapse
Affiliation(s)
- Garba Bashiru
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| | - Abdul Rani Bahaman
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| |
Collapse
|
12
|
Evaluation of Lsa46 and Lsa77 Leptospiral Proteins for Their Immunoprotective Activities in Hamster Model of Leptospirosis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1813745. [PMID: 29984227 PMCID: PMC6015724 DOI: 10.1155/2018/1813745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/13/2018] [Indexed: 11/18/2022]
Abstract
Leptospirosis is a neglected tropical disease caused by pathogenic Leptospira spp. The lack of an effective vaccine favors the increase of the disease. Currently, surface-exposed proteins are the main targets for the search of vaccine candidates. In this study, we examined whether the surface Lsa46 and Lsa77 proteins, previously identified as laminin and plasminogen binding proteins, have the capacity of inducing protection and sterilizing immunity against challenge with virulent Leptospira in hamster model. Animals were subcutaneously immunized with Lsa46, Lsa77, or a combination of both in Alum adjuvant and challenged intraperitoneally with L. interrogans serovar Kennewicki strain Pomona Fromm. Hamster immunization with Lsa46 or Lsa77 or both promoted a strong IgG response. Th2- and Th1-biased immune responses were observed when Lsa46 and Lsa77 were individually administered, respectively, as detected by the IgG1/IgG2/3 ratio. Immunized hamsters with the combined proteins induced a Th1-biased immune response. Although the immunization with Lsa46 and Lsa77 stimulated protective immunity with reduction of bacterial burden, when compared to animals individually immunized with the proteins, the data was not statistically significant. Thus, although promising, more studies are needed before the role of these proteins in stimulating sterilizing immunity in mammals is conclusively determined.
Collapse
|
13
|
In Silico B Cell and T Cell Epitopes Evaluation of lipL32 and OmpL1 Proteins for Designing a Recombinant Multi-Epitope Vaccine Against Leptospirosis. ACTA ACUST UNITED AC 2018. [DOI: 10.5812/iji.63255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Heterologous DNA prime-protein boost immunization with RecA and FliD offers cross-clade protection against leptospiral infection. Sci Rep 2018; 8:6447. [PMID: 29691454 PMCID: PMC5915591 DOI: 10.1038/s41598-018-24674-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/03/2018] [Indexed: 01/01/2023] Open
Abstract
The emergence of >300 serovars of Leptospira confounded the use of generalized bacterin, the whole cell lysate, as vaccines to control leptospirosis. Because of substantial genetic and geographic heterogeneity among circulating serovars, one vaccine strain per serovar cannot be efficacious against all the serovars. We have performed heterologous DNA prime-protein boost vaccination challenge studies in hamsters using in vivo expressed, leptospiral recombinase A (RecA) and flagellar hook associated protein (FliD). We prepared the monovalent recombinant protein, plasmid DNA, and DNA prime protein boost adjuvant vaccines. The whole cell bacterin served as a control. Our data show that (i) RecA and FliD have multiple immunogenic B and T-cell epitopes with highly conserved domains among most prevalent pathogenic Leptospira spp., (ii) humoral and cell mediated immune responses were induced remarkably, (iii) provides significant protection against homologous (Autumnalis strain N2) and cross-clade heterologous (Canicola strain PAI-1) challenge infection for the heterologous prime-protein boost (∼91–100%) and, the DNA vaccine (∼75–83%). Recombinant protein vaccine shows only partial protection (∼58–66%), (iv) RecA prime-protein boost vaccine shows sterilizing immunity, with heterologous protection. This RecA/FliD prime-protein boost strategy holds potential for vaccination against animal leptospirosis and for a better control of zoonotic transmission.
Collapse
|
15
|
Sritrakul T, Nitipan S, Wajjwalku W, La-Ard A, Suphatpahirapol C, Petkarnjanapong W, Ongphiphadhanakul B, Prapong S. Leptospira borgpetersenii hybrid leucine-rich repeat protein: Cloning and expression, immunogenic identification and molecular docking evaluation. J Microbiol Methods 2017; 142:52-62. [PMID: 28912108 DOI: 10.1016/j.mimet.2017.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 08/30/2017] [Accepted: 09/10/2017] [Indexed: 11/17/2022]
Abstract
Leptospirosis is an important zoonotic disease, and the major outbreak of this disease in Thailand in 1999 was due largely to the Leptospira borgpetersenii serovar Sejroe. Identification of the leucine-rich repeat (LRR) LBJ_2271 protein containing immunogenic epitopes and the discovery of the LBJ_2271 ortholog in Leptospira serovar Sejroe, KU_Sej_R21_2271, led to further studies of the antigenic immune properties of KU_Sej_LRR_2271. The recombinant hybrid (rh) protein was created and expressed from a hybrid PCR fragment of KU_Sej_R21_2271 fused with DNA encoding the LBJ_2271 signal sequence for targeting protein as a membrane-anchoring protein. The fusion DNA was cloned into pET160/GW/D-TOPO® to form the pET160_hKU_R21_2271 plasmid. The plasmid was used to express the rhKU_Sej_LRR_2271 protein in Escherichia coli BL21 Star™ (DE3). The expressed protein was immunologically detected by Western blotting and immunoreactivity detection with hyperimmune sera, T cell epitope prediction by HLA allele and epitope peptide binding affinity, and potential T cell reactivity analysis. The immunogenic epitopes of the protein were evaluated and verified by HLA allele and epitope peptide complex structure molecular docking. Among fourteen best allele epitopes of this protein, binding affinity values of 12 allele epitopes remained unchanged compared to LBJ_2271. Two epitopes for alleles HLA-A0202 and -A0301 had higher IC50 values, while T cell reactivity values of these peptides were better than values from LBJ_2271 epitopes. Eight of twelve epitope peptides had positive T-cell reactivity scores. Although the molecular docking of two epitopes, 3FPLLKEFLV11/47FPLLKEFLV55 and 50KLSTVPEGV58, into an HLA-A0202 model revealed a good fit in the docked structures, 50KLSTVPEGV58 and 94KLSTVPEEV102 are still considered as the proteins' best epitopes for allele HLA-A0202. The results of this study showed that rhKU_Sej_LRR_2271 protein contained natural immunological properties that should be further examined with respect to antigenic immune stimulation for vaccine development to prevent prevalent leptospiral serovar infection in Thailand.
Collapse
Affiliation(s)
- Tepyuda Sritrakul
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; The Interdisciplinary Graduate Program in Genetic Engineering, the Graduate School, Kasetsart University, Bangkok 10900, Thailand
| | - Supachai Nitipan
- Department of Biology, Faculty of Science, Thaksin University, Phattalung campus, Phattalung Province, Thailand
| | - Worawidh Wajjwalku
- Faculty of Veterinary Medicine, Kamphaengsaen campus, Kasetsart University, NakornPathom Province, Thailand
| | - Anchalee La-Ard
- Faculty of Veterinary Medicine, Kamphaengsaen campus, Kasetsart University, NakornPathom Province, Thailand
| | - Chattip Suphatpahirapol
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; The Interdisciplinary Graduate Program in Genetic Engineering, the Graduate School, Kasetsart University, Bangkok 10900, Thailand
| | - Wimol Petkarnjanapong
- The National Institute of Health of Thailand, Department of Medical Sciences, Ministry of Public Health, Nonthaburee Province, Thailand
| | - Boonsong Ongphiphadhanakul
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Siriwan Prapong
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; The Interdisciplinary Graduate Program in Genetic Engineering, the Graduate School, Kasetsart University, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University, Bangkok, Thailand.
| |
Collapse
|
16
|
Grassmann AA, Kremer FS, Dos Santos JC, Souza JD, Pinto LDS, McBride AJA. Discovery of Novel Leptospirosis Vaccine Candidates Using Reverse and Structural Vaccinology. Front Immunol 2017; 8:463. [PMID: 28496441 PMCID: PMC5406399 DOI: 10.3389/fimmu.2017.00463] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 04/04/2017] [Indexed: 12/03/2022] Open
Abstract
Leptospira spp. are diderm (two membranes) bacteria that infect mammals causing leptospirosis, a public health problem with global implications. Thousands of people die every year due to leptospirosis, especially in developing countries with tropical climates. Prophylaxis is difficult due to multiple factors, including the large number of asymptomatic hosts that transmit the bacteria, poor sanitation, increasing numbers of slum dwellers, and the lack of an effective vaccine. Several leptospiral recombinant antigens were evaluated as a replacement for the inactivated (bacterin) vaccine; however, success has been limited. A prospective vaccine candidate is likely to be a surface-related protein that can stimulate the host immune response to clear leptospires from blood and organs. In this study, a comprehensive bioinformatics approach based on reverse and structural vaccinology was applied toward the discovery of novel leptospiral vaccine candidates. The Leptospira interrogans serovar Copenhageni strain L1-130 genome was mined in silico for the enhanced identification of conserved β-barrel (βb) transmembrane proteins and outer membrane (OM) lipoproteins. Orthologs of the prospective vaccine candidates were screened in the genomes of 20 additional Leptospira spp. Three-dimensional structural models, with a high degree of confidence, were created for each of the surface-exposed proteins. Major histocompatibility complex II (MHC-II) epitopes were identified, and their locations were mapped on the structural models. A total of 18 βb transmembrane proteins and 8 OM lipoproteins were identified. These proteins were conserved among the pathogenic Leptospira spp. and were predicted to have epitopes for several variants of MHC-II receptors. A structural and functional analysis of the sequence of these surface proteins demonstrated that most βb transmembrane proteins seem to be TonB-dependent receptors associated with transportation. Other proteins identified included, e.g., TolC efflux pump proteins, a BamA-like OM component of the βb transmembrane protein assembly machinery, and the LptD-like LPS assembly protein. The structural mapping of the immunodominant epitopes identified the location of conserved, surface-exposed, immunogenic regions for each vaccine candidate. The proteins identified in this study are currently being evaluated for experimental evidence for their involvement in virulence, disease pathogenesis, and physiology, in addition to vaccine development.
Collapse
Affiliation(s)
- André Alex Grassmann
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Frederico Schmitt Kremer
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Júlia Cougo Dos Santos
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Jéssica Dias Souza
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Luciano da Silva Pinto
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Alan John Alexander McBride
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.,Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Ministry of Health, Salvador, Bahia, Brazil
| |
Collapse
|
17
|
LigB subunit vaccine confers sterile immunity against challenge in the hamster model of leptospirosis. PLoS Negl Trop Dis 2017; 11:e0005441. [PMID: 28301479 PMCID: PMC5370146 DOI: 10.1371/journal.pntd.0005441] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 03/28/2017] [Accepted: 02/27/2017] [Indexed: 11/29/2022] Open
Abstract
Neglected tropical diseases, including zoonoses such as leptospirosis, have a major impact on rural and poor urban communities, particularly in developing countries. This has led to major investment in antipoverty vaccines that focus on diseases that influence public health and thereby productivity. While the true, global, impact of leptospirosis is unknown due to the lack of adequate laboratory diagnosis, the WHO estimates that incidence has doubled over the last 15 years to over 1 million cases that require hospitalization every year. Leptospirosis is caused by pathogenic Leptospira spp. and is spread through direct contact with infected animals, their urine or contaminated water and soil. Inactivated leptospirosis vaccines, or bacterins, are approved in only a handful of countries due to the lack of heterologous protection (there are > 250 pathogenic Leptospira serovars) and the serious side-effects associated with vaccination. Currently, research has focused on recombinant vaccines, a possible solution to these problems. However, due to a lack of standardised animal models, rigorous statistical analysis and poor reproducibility, this approach has met with limited success. We evaluated a subunit vaccine preparation, based on a conserved region of the leptospiral immunoglobulin-like B protein (LigB(131–645)) and aluminium hydroxide (AH), in the hamster model of leptospirosis. The vaccine conferred significant protection (80.0–100%, P < 0.05) against mortality in vaccinated animals in seven independent experiments. The efficacy of the LigB(131–645)/AH vaccine ranged from 87.5–100% and we observed sterile immunity (87.5–100%) among the vaccinated survivors. Significant levels of IgM and IgG were induced among vaccinated animals, although they did not correlate with immunity. A mixed IgG1/IgG2 subclass profile was associated with the subunit vaccine, compared to the predominant IgG2 profile seen in bacterin vaccinated hamsters. These findings suggest that LigB(131–645) is a vaccine candidate against leptospirosis with potential ramifications to public and veterinary health. Leptospirosis, also known as Weil’s disease, is spread by contact with infected animals or with water and soil containing pathogenic spirochaetes belonging to the Leptospira genus. Leptospirosis is a serious public health problem that can cause kidney failure, pulmonary complications and can be fatal. Due to its similarity to other tropical fevers, leptospirosis is difficult to diagnose. It occurs mainly in developing countries with tropical climates and the WHO considers it one of the most widespread zoonotic diseases in the world. Existing vaccines, known as bacterins, are not recommended for general use and cause serious side-effects. Advances in the field of leptospirosis research have identified leptospiral proteins for use in a recombinant vaccine. However, evaluations using animal models reported mixed success and this has raised doubts as to their usefulness. The current study reports, for the first time, the evaluation of a subunit vaccine that reproducibly protected hamsters against leptospirosis and that induced sterile immunity among survivors. Significant antibody levels were induced in vaccinated animals and the antibody profile was characterised and found to be different to that induced by a bacterin vaccine. These observations suggest that we have identified a potential vaccine candidate for human an animal leptospirosis.
Collapse
|
18
|
Grassmann AA, Souza JD, McBride AJA. A Universal Vaccine against Leptospirosis: Are We Going in the Right Direction? Front Immunol 2017; 8:256. [PMID: 28337203 PMCID: PMC5343615 DOI: 10.3389/fimmu.2017.00256] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/21/2017] [Indexed: 12/22/2022] Open
Abstract
Leptospirosis is the most widespread zoonosis in the world and a neglected tropical disease estimated to cause severe infection in more than one million people worldwide every year that can be combated by effective immunization. However, no significant progress has been made on the leptospirosis vaccine since the advent of bacterins over 100 years. Although protective against lethal infection, particularly in animals, bacterin-induced immunity is considered short term, serovar restricted, and the vaccine can cause serious side effects. The urgent need for a new vaccine has motivated several research groups to evaluate the protective immune response induced by recombinant vaccines. Significant protection has been reported with several promising outer membrane proteins, including LipL32 and the leptospiral immunoglobulin-like proteins. However, efficacy was variable and failed to induce a cross-protective response or sterile immunity among vaccinated animals. As hundreds of draft genomes of all known Leptospira species are now available, this should aid novel target discovery through reverse vaccinology (RV) and pangenomic studies. The identification of surface-exposed vaccine candidates that are highly conserved among infectious Leptospira spp. is a requirement for the development of a cross-protective universal vaccine. However, the lack of immune correlates is a major drawback to the application of RV to Leptospira genomes. In addition, as the protective immune response against leptospirosis is not fully understood, the rational use of adjuvants tends to be a process of trial and error. In this perspective, we discuss current advances, the pitfalls, and possible solutions for the development of a universal leptospirosis vaccine.
Collapse
Affiliation(s)
- André Alex Grassmann
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas , Pelotas , Brazil
| | - Jéssica Dias Souza
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas , Pelotas , Brazil
| | - Alan John Alexander McBride
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Brazil; Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Ministry of Health, Salvador, Brazil
| |
Collapse
|
19
|
Silveira MM, Conceição FR, Mendonça M, Moreira GMSG, Da Cunha CEP, Conrad NL, Oliveira PDD, Hartwig DD, De Leon PMM, Moreira ÂN. Saccharomyces boulardii improves humoral immune response to DNA vaccines against leptospirosis. J Med Microbiol 2017; 66:184-190. [DOI: 10.1099/jmm.0.000414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Marcelle Moura Silveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Fabricio Rochedo Conceição
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Marcelo Mendonça
- Curso de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Garanhuns, Avenida Bom Pastor, S/N, Boa Vista, 55292-270 Garanhuns, PE, Brazil
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Gustavo Marçal Schmidt Garcia Moreira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Carlos Eduardo Pouey Da Cunha
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Neida Lucia Conrad
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Patrícia Diaz de Oliveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Daiane Drawanz Hartwig
- Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Priscila Marques Moura De Leon
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Ângela Nunes Moreira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
- Departamento de Nutrição, Faculdade de Nutrição, Universidade Federal de Pelotas, Campus Porto/Anglo, Rua Gomes Carneiro, 01 – Centro, Caixa Postal 354, 96010-610 Pelotas, RS, Brazil
| |
Collapse
|
20
|
Dellagostin OA, Grassmann AA, Rizzi C, Schuch RA, Jorge S, Oliveira TL, McBride AJA, Hartwig DD. Reverse Vaccinology: An Approach for Identifying Leptospiral Vaccine Candidates. Int J Mol Sci 2017; 18:ijms18010158. [PMID: 28098813 PMCID: PMC5297791 DOI: 10.3390/ijms18010158] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/01/2022] Open
Abstract
Leptospirosis is a major public health problem with an incidence of over one million human cases each year. It is a globally distributed, zoonotic disease and is associated with significant economic losses in farm animals. Leptospirosis is caused by pathogenic Leptospira spp. that can infect a wide range of domestic and wild animals. Given the inability to control the cycle of transmission among animals and humans, there is an urgent demand for a new vaccine. Inactivated whole-cell vaccines (bacterins) are routinely used in livestock and domestic animals, however, protection is serovar-restricted and short-term only. To overcome these limitations, efforts have focused on the development of recombinant vaccines, with partial success. Reverse vaccinology (RV) has been successfully applied to many infectious diseases. A growing number of leptospiral genome sequences are now available in public databases, providing an opportunity to search for prospective vaccine antigens using RV. Several promising leptospiral antigens were identified using this approach, although only a few have been characterized and evaluated in animal models. In this review, we summarize the use of RV for leptospirosis and discuss the need for potential improvements for the successful development of a new vaccine towards reducing the burden of human and animal leptospirosis.
Collapse
Affiliation(s)
- Odir A Dellagostin
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas RS 96100-000, Brazil.
| | - André A Grassmann
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas RS 96100-000, Brazil.
| | - Caroline Rizzi
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas RS 96100-000, Brazil.
| | - Rodrigo A Schuch
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas RS 96100-000, Brazil.
| | - Sérgio Jorge
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas RS 96100-000, Brazil.
| | - Thais L Oliveira
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas RS 96100-000, Brazil.
| | - Alan J A McBride
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas RS 96100-000, Brazil.
| | - Daiane D Hartwig
- Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas RS 96100-000, Brazil.
| |
Collapse
|
21
|
Vijayachari P, Vedhagiri K, Mallilankaraman K, Mathur PP, Sardesai NY, Weiner DB, Ugen KE, Muthumani K. Immunogenicity of a novel enhanced consensus DNA vaccine encoding the leptospiral protein LipL45. Hum Vaccin Immunother 2016; 11:1945-53. [PMID: 26020621 DOI: 10.1080/21645515.2015.1047117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Leptospirosis is a bacterial zoonotic disease caused by an infection with a spirochete belonging to the genus Leptospira. In animals, leptospirosis displays a wide range of pathologies, including fever, abortion, icterus, and uveitis. Conversely, infection in humans is associated with multi-organ injury, resulting in an increased rate of fatalities. Pathogenic leptospires are able to translocate through cell monolayers at a rate significantly greater than that of non-pathogenic leptospires. Thus, vaccine approaches have been focused on targeting bacterial motility, lipopolysaccharides (LPSs), lipoproteins, outer-membrane proteins (OMPs) and other potential virulence factors. Previous studies have indicated that leptospiral proteins elicit long-lasting immunological memory in infected humans. In the study reported here, the efficacy of a synthetic consensus DNA vaccine developed against the Leptospira membrane lipoprotein LipL45 was tested. After in vivo electroporation (EP) mediated intramuscular immunization with a synthetic LipL45 DNA vaccine (pLipL45) immunized mice developed a significant cellular response along with the development of anti-LipL45-specific antibodies. Specifically, the pLipL45 vaccine induced a significant Th1 type immune response, indicated by the higher production of IL-12 and IFN-γ cytokines. The results presented here are the first demonstration that a LipL45 based DNA immunogen has potential as a anti-Leptospira vaccine.
Collapse
Affiliation(s)
- P Vijayachari
- a Regional Medical Research Center; Indian Council of Medical Research ; Port Blair , Andaman & Nicobar Islands , India
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Fernandes LG, Siqueira GH, Teixeira ARF, Silva LP, Figueredo JM, Cosate MR, Vieira ML, Nascimento ALTO. Leptospira spp.: Novel insights into host-pathogen interactions. Vet Immunol Immunopathol 2015; 176:50-7. [PMID: 26727033 DOI: 10.1016/j.vetimm.2015.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 01/30/2023]
Abstract
Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira spp. It is an important infectious disease that affects humans and animals. The disease causes economic losses as it affects livestock, with decreased milk production and death. Our group is investigating the genome sequences of L. interrogans targeting surface-exposed proteins because, due to their location, these proteins are capable to interact with several host components that could allow establishment of the infection. These interactions may involve adhesion of the bacteria to extracellular matrix (ECM) components and, hence, help bacterial colonization. The bacteria could also react with the host fibrinolytic system and/or with the coagulation cascade components, such as, plasminogen (PLG) and fibrinogen (Fg), respectively. The binding with the first system generates plasmin (PLA), increasing the proteolytic power of the bacteria, while the second interferes with clotting in a thrombin-catalyzed reaction, which may promote hemorrhage foci and increase bacterial dissemination. Interaction with the complement system negative regulators may help bacteria to evade the host immune system, facilitating the invasion. This work compiles the main described leptospiral proteins that could act as adhesins, as PLG and fibrinogen receptors and as complement regulator binding proteins. We present models in which we suggest possible mechanisms of how leptospires might colonize and invade host tissues, causing the disease. Understanding leptospiral pathogenesis will help to identify antigen candidates that would contribute to the development of more effective vaccines and diagnostic tests.
Collapse
Affiliation(s)
- Luis G Fernandes
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Gabriela H Siqueira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Aline R F Teixeira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Lucas P Silva
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Jupciana M Figueredo
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Maria R Cosate
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Monica L Vieira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil.
| |
Collapse
|
23
|
'Spotted Nanoflowers': Gold-seeded Zinc Oxide Nanohybrid for Selective Bio-capture. Sci Rep 2015; 5:12231. [PMID: 26178973 PMCID: PMC4503952 DOI: 10.1038/srep12231] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/22/2015] [Indexed: 12/27/2022] Open
Abstract
Hybrid gold nanostructures seeded into nanotextured zinc oxide (ZnO) nanoflowers (NFs) were created for novel biosensing applications. The selected 'spotted NFs' had a 30-nm-thick gold nanoparticle (AuNP) layer, chosen from a range of AuNP thicknesses, sputtered onto the surface. The generated nanohybrids, characterized by morphological, physical and structural analyses, were uniformly AuNP-seeded onto the ZnO NFs with an average length of 2-3 μm. Selective capture of molecular probes onto the seeded AuNPs was evidence for the specific interaction with DNA from pathogenic Leptospirosis-causing strains via hybridization and mis-match analyses. The attained detection limit was 100 fM as determined via impedance spectroscopy. High levels of stability, reproducibility and regeneration of the sensor were obtained. Selective DNA immobilization and hybridization were confirmed by nitrogen and phosphorus peaks in an X-ray photoelectron spectroscopy analysis. The created nanostructure hybrids illuminate the mechanism of generating multiple-target, high-performance detection on a single NF platform, which opens a new avenue for array-based medical diagnostics.
Collapse
|
24
|
Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:965-73. [PMID: 26108285 DOI: 10.1128/cvi.00285-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022]
Abstract
Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigA(C)) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigA(C), either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigA(C) or LigA(C) coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen.
Collapse
|
25
|
Eric Klaasen HL, Adler B. Recent advances in canine leptospirosis: focus on vaccine development. VETERINARY MEDICINE-RESEARCH AND REPORTS 2015; 6:245-260. [PMID: 30101111 PMCID: PMC6067773 DOI: 10.2147/vmrr.s59521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Leptospirosis is a global infection of humans and animals caused by pathogenic Leptospira spp. Leptospirosis is a major zoonosis, with infection acquired from wild and domestic animals. It is also a significant cause of morbidity, mortality, and economic loss in production and companion animals. Leptospirosis in dogs is prevalent worldwide and as well as a cause of canine disease, it presents a zoonotic risk to human contacts. Canine leptospirosis does not differ greatly from the syndromes seen in other animal species, with hepatic, renal, and pulmonary involvement being the main manifestations. While the pathogenesis of disease is well documented at the whole animal level, the cellular and molecular basis remains obscure. Killed, whole-cell bacterin vaccines are licensed worldwide and have not changed greatly over the past several decades. Vaccine-induced immunity is restricted to serologically related serovars and is generally short-lived, necessitating annual revaccination. The appearance of new serovars as causes of canine leptospirosis requires constant epidemiological surveillance and tailoring of vaccines to cover emerging serovars. At the present time, there is no realistic prospect of alternative, non-bacterin vaccines in the foreseeable future.
Collapse
Affiliation(s)
- Henricus Lbm Eric Klaasen
- Global Companion Animals Research and Development, Merck Sharp and Dohme Animal Health, Boxmeer, the Netherlands,
| | - Ben Adler
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
26
|
Abstract
Vaccines against leptospirosis followed within a year of the first isolation of Leptospira, with the first use of a killed whole cell bacterin vaccine in guinea pigs published in 1916. Since then, bacterin vaccines have been used in humans, cattle, swine, and dogs and remain the only vaccines licensed at the present time. The immunity elicited is restricted to serovars with related lipopolysaccharide (LPS) antigen. Likewise, vaccines based on LPS antigens have clearly demonstrated protection in animal models, which is also at best serogroup specific. The advent of leptospiral genome sequences has allowed a reverse vaccinology approach for vaccine development. However, the use of inadequate challenge doses and inappropriate statistical analysis invalidates many of the claims of protection with recombinant proteins.
Collapse
Affiliation(s)
- Ben Adler
- Department of Microbiology, Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, VIC, 3800, Australia,
| |
Collapse
|
27
|
Song M, Xie J, Peng X, Li H. Identification of protective immunogens from extracellular secretome of Edwardsiella tarda. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1932-1936. [PMID: 24099803 DOI: 10.1016/j.fsi.2013.09.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/22/2013] [Accepted: 09/25/2013] [Indexed: 06/02/2023]
Abstract
Edwardsiella tarda is an opportunistic pathogen that causes a great loss in aquaculture. Identification of immune protective immunogens is a key step for development of subunit vaccines and control of the infectious diseases caused by the bacterium. This study aims to identify the protective antigens from extracellular secretory proteome of E. tarda. Out of 38 extracellular secretory proteins predicted by PSORTb, 20 genes were randomly cloned and their recombinant proteins were expressed in Escherichia coli BL21 and purified by either affinity chromatography or inclusion body washing. The purified recombinant proteins were used for investigation of immune protection in zebrafish model using active immunization approach. Half of them had significant immune protection compared with the control. Out of them, four, EseC, ETAE_2088, FlgD and ETAE_2130, showed approximately 60% relative percent survivals as a result of the highly protective antigens identified. Except for FlgD, the other three were first reported here. Moreover, the present study identified EseC and ETAE_2088 in bacterial extracellular fraction. These results indicate that secretory proteome is an interesting pool used for identification of immune protective antigens, and the four highly protective antigens identified provide useful candidates for development of subunit vaccines.
Collapse
Affiliation(s)
- Ming Song
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, MOE Key Lab Aquat Food Safety, Guangzhou 510275, People's Republic of China
| | | | | | | |
Collapse
|
28
|
Raja V, Natarajaseenivasan K. Pathogenic, diagnostic and vaccine potential of leptospiral outer membrane proteins (OMPs). Crit Rev Microbiol 2013; 41:1-17. [PMID: 23688248 DOI: 10.3109/1040841x.2013.787387] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pathogenic Leptospira species are important human and animal pathogen that causes leptospirosis, with more than half a million cases reported annually but little is known regarding the true incidence of leptospirosis due to the limitations in diagnosis. Proteins embedded in the outer membrane are found to be prime drug targets due to its key role as receptors for cellular communication and gatekeepers for iron and substrate transport across cell membranes. The major key issues to be addressed to overcome the disease burden of leptospirosis are: need to identify the genes that turn on in vivo; development of rapid diagnostic methods to facilitate the early diagnosis and to develop a universal vaccine. Recent whole genome sequencing of Leptospira species and development of in silico analysis tools have led to the identification of a large number of leptospiral virulence genes, metabolic pathways and surface protein secretion systems that represent potential new targets for the development of anti-leptospiral drug, vaccine and diagnostic strategies. This review surveys the different types of outer membrane proteins (OMPs) of Leptospira and combines all the novel features of OMPs reported till date and put forth some views for future research.
Collapse
Affiliation(s)
- Veerapandian Raja
- Medical Microbiology Laboratory, Department of Microbiology, Bharathidasan University , Tiruchirappalli , India
| | | |
Collapse
|
29
|
|
30
|
Identification of epitopes in Leptospira borgpetersenii leucine-rich repeat proteins. INFECTION GENETICS AND EVOLUTION 2013. [DOI: 10.1016/j.meegid.2012.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Subathra M, Senthilkumar TMA, Ramadass P. Recombinant OmpL1 Protein as a Diagnostic Antigen for the Detection of Canine Leptospirosis. Appl Biochem Biotechnol 2012; 169:431-7. [DOI: 10.1007/s12010-012-9973-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 11/06/2012] [Indexed: 11/28/2022]
|
32
|
Characterization of LIC11207, a novel leptospiral protein that is recognized by human convalescent sera and prevents apoptosis of polymorphonuclear leukocytes. Microb Pathog 2012; 56:21-8. [PMID: 23092690 DOI: 10.1016/j.micpath.2012.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/09/2012] [Accepted: 10/15/2012] [Indexed: 01/01/2023]
Abstract
We report the study of a predicted outer-membrane leptospiral protein encoded by the gene lic11207. This protein is conserved in several pathogenic leptospiral strains but is absent in the saprophyte Leptospira biflexa. This putative outer-membrane protein has a domain of unknown function (DUF) 1565 found in several phylogenetically diverse bacteria and in the archaeon Methanosarcina acetivorans. The gene was cloned and expressed in Escherichia coli BL21 (SI) strain using the expression vector pDEST17. The 34 kDa recombinant protein was tagged with N-terminal hexahistidine and purified by metal-charged chromatography. The purified protein was used to assess: reactivity with human convalescent sera; in vivo expression; ability to activate endothelial cells (EC); and ability to modulate the apoptosis of polymorphonuclear cells (PMNs). The LIC11207 coding sequence was identified in vivo in the hamster renal tubules during experimental infection with Leptospira interrogans. The rLIC11207 showed significant antigenicity against human convalescent sera when compared with sera from healthy donors. The recombinant protein did not alter the surface expression of E-selectin or intercellular adhesion molecule 1 (ICAM-1) in EC and failed to induce the release of von Willebrand factor (vWF). Interestingly, rLIC11207 delayed apoptosis of PMNs suggesting a possible role of this protein during the infection.
Collapse
|
33
|
Atzingen MV, Vieira ML, Oliveira R, Domingos RF, Mendes RS, Barros AT, Gonçales AP, de Morais ZM, Vasconcellos SA, Nascimento AL. Evaluation of immunoprotective activity of six leptospiral proteins in the hamster model of leptospirosis. Open Microbiol J 2012; 6:79-87. [PMID: 23173023 PMCID: PMC3502890 DOI: 10.2174/1874285801206010079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/23/2012] [Accepted: 07/18/2012] [Indexed: 01/26/2023] Open
Abstract
Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira. The whole-genome sequence of L. interrogans serovar Copenhageni together with bioinformatics tools represent a great opportunity to search for novel antigen candidates that could be used as subunit vaccine against leptospirosis. We focused on six genes encoding for conserved hypothetical proteins predicted to be exported to the outer membrane. The genes were amplified by PCR from Leptospira interrogans genomic DNA and were cloned and expressed in Escherichia coli. The recombinant proteins tagged with N-terminal hexahistidine were purified by metal-charged chromatography. The immunization of hamsters followed by challenge with lethal dose of virulent strain of Leptospira showed that the recombinant proteins Lsa21, Lsa66 and rLIC11030 elicited partial protection to animals. These proteins could be used combined or in a mixture with novel adjuvants in order to improve their effectiveness.
Collapse
Affiliation(s)
- Marina V Atzingen
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Verma AK, Kumar A, Dhama K, Deb R, Rahal A, Chakraborty S. Leptospirosis-persistence of a dilemma: an overview with particular emphasis on trends and recent advances in vaccines and vaccination strategies. Pak J Biol Sci 2012; 15:954-963. [PMID: 24199473 DOI: 10.3923/pjbs.2012.954.963] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Leptospirosis, caused by pathogenic spirochetes of the genus Leptospira, affects both humans and animals and is among the most common but neglected direct zoonotic disease in the world, particularly in untreated or undiagnosed animals as well as humans. Now, it has been considered as a re-emerging disease causing global health problem due to its increasing incidences in developing as well as developed nations. It is a multisystemic disease leading to death. Diagnostic tests of importance are Latex Agglutination Test (LAT), lateral flow and immunoglobulin M (IgM) based ELISA, PCR based assays, Multiple-microscopic Agglutination Test (MAT), Loop-mediated Isothermal Amplification (LAMP) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Molecular tools like PCR-RFLP, real-time PCR, multiplex PCR, qPCR and immunocapture PCR have all been found useful for rapid and confirmatory detection and differentiation of pathogenic and non-pathogenic leptospires. Inactivated/killed and attenuated vaccines are always attempted, since the beginning of vaccine and vaccination story, against all emerging pathogens with mixed success stories. The advanced tools and techniques like recombinant DNA technology, reverse genetics, DNA vaccination, molecular genetics and proteomics approaches are being explored for search of novel antigens, proteins and genes as potential candidates to discover safer, efficient and better vaccines for leptospirosis. The present review highlights the leptospirosis, susceptible population, disease transmission and epidemiology, treatment, trends and advances in diagnosis, vaccines and vaccination strategies in humans and animals with a view to combat this organism having public health significance.
Collapse
Affiliation(s)
- Amit Kumar Verma
- Department of Veterinary Epidemiology and Preventive Medicine, Uttar Pradesh Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishvidhyalaya Ewam Go-Anusandhan Sansthan (DUVASU), Mathura (U.P.), India
| | | | | | | | | | | |
Collapse
|
35
|
Sacquin A, Chaigneau T, Defaweux V, Adam M, Schneider B, Bruley Rosset M, Eloit M. Prolongation of prion disease-associated symptomatic phase relates to CD3+ T cell recruitment into the CNS in murine scrapie-infected mice. Brain Behav Immun 2012; 26:919-30. [PMID: 22522067 DOI: 10.1016/j.bbi.2012.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/05/2012] [Accepted: 04/09/2012] [Indexed: 02/04/2023] Open
Abstract
Prion diseases are caused by the transconformation of the host cellular prion protein PrP(c) into an infectious neurotoxic isoform called PrP(Sc). While vaccine-induced PrP-specific CD4(+) T cells and antibodies partially protect scrapie-infected mice from disease, the potential autoreactivity of CD8(+) cytotoxic T lymphocytes (CTLs) received little attention. Beneficial or pathogenic influence of PrP(c)-specific CTL was evaluated by stimulating a CD8(+) T-cell-only response against PrP in scrapie-infected C57BL/6 mice. To circumvent immune tolerance to PrP, five PrP-derived nonamer peptides identified using prediction algorithms were anchored-optimized to improve binding affinity for H-2D(b) and immunogenicity (NP-peptides). All of the NP-peptides elicited a significant number of IFNγ secreting CD8(+) T cells that better recognized the NP-peptides than the natives; three of them induced T cells that were lytic in vivo for NP-peptide-loaded target cells. Peptides 168 and 192 were naturally processed and presented by the 1C11 neuronal cell line. Minigenes encoding immunogenic NP-peptides inserted into adenovirus (rAds) vectors enhanced the specific CD8(+) T-cell responses. Immunization with rAd encoding 168NP before scrapie inoculation significantly prolonged the survival of infected mice. This effect was attributable to a significant lengthening of the symptomatic phase and was associated with enhanced CD3(+) T cell recruitment to the CNS. However, immunization with Ad168NP in scrapie-incubating mice induced IFNγ-secreting CD8(+) T cells that were not cytolytic in vivo and did not influence disease progression nor infiltrated the brain. In conclusion, the data suggest that vaccine-induced PrP-specific CD8(+) T cells interact with prions into the CNS during the clinical phase of the disease.
Collapse
Affiliation(s)
- Antoine Sacquin
- UMR-S 938, Hôpital St-Antoine, Bât. R. Kourilsky, 184 rue du Fg St-Antoine, 75012 Paris, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Protection against lethal leptospirosis after vaccination with LipL32 coupled or coadministered with the B subunit of Escherichia coli heat-labile enterotoxin. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:740-5. [PMID: 22379066 DOI: 10.1128/cvi.05720-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Leptospirosis, a worldwide zoonosis, lacks an effective, safe, and cross-protective vaccine. LipL32, the most abundant, immunogenic, and conserved surface lipoprotein present in all pathogenic species of Leptospira, is a promising antigen candidate for a recombinant vaccine. However, several studies have reported a lack of protection when this protein is used as a subunit vaccine. In an attempt to enhance the immune response, we used LipL32 coupled to or coadministered with the B subunit of the Escherichia coli heat-labile enterotoxin (LTB) in a hamster model of leptospirosis. After homologous challenge with 5× the 50% lethal dose (LD(50)) of Leptospira interrogans, animals vaccinated with LipL32 coadministered with LTB and LTB::LipL32 had significantly higher survival rates (P < 0.05) than animals from the control group. This is the first report of a protective immune response afforded by a subunit vaccine using LipL32 and represents an important contribution toward the development of improved leptospirosis vaccines.
Collapse
|
37
|
Hauk P, Barbosa AS, Ho PL, Farah CS. Calcium binding to leptospira outer membrane antigen LipL32 is not necessary for its interaction with plasma fibronectin, collagen type IV, and plasminogen. J Biol Chem 2012; 287:4826-34. [PMID: 22147698 PMCID: PMC3281616 DOI: 10.1074/jbc.m111.277210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 12/05/2011] [Indexed: 11/06/2022] Open
Abstract
LipL32 is the most abundant outer membrane protein from pathogenic Leptospira and has been shown to bind extracellular matrix (ECM) proteins as well as Ca(2+). Recent crystal structures have been obtained for the protein in the apo- and Ca(2+)-bound forms. In this work, we produced three LipL32 mutants (D163-168A, Q67A, and S247A) and evaluated their ability to interact with Ca(2+) and with ECM glycoproteins and human plasminogen. The D163-168A mutant modifies aspartate residues involved in Ca(2+) binding, whereas the other two modify residues in a cavity on the other side of the protein structure. Loss of calcium binding in the D163-D168A mutant was confirmed using intrinsic tryptophan fluorescence, circular dichroism, and thermal denaturation whereas the Q67A and S247A mutants presented the same Ca(2+) affinity as the wild-type protein. We then evaluated if Ca(2+) binding to LipL32 would be crucial for its interaction with collagen type IV and plasma proteins fibronectin and plasminogen. Surprisingly, the wild-type protein and all three mutants, including the D163-168A variant, bound to these ECM proteins with very similar affinities, both in the presence and absence of Ca(2+) ions. In conclusion, calcium binding to LipL32 may be important to stabilize the protein, but is not necessary to mediate interaction with host extracellular matrix proteins.
Collapse
Affiliation(s)
- Pricila Hauk
- From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05513-970, São Paulo
| | - Angela Silva Barbosa
- the Laboratório de Bacteriologia, Instituto Butantan, CEP 05503-900, São Paulo, and
| | - Paulo Lee Ho
- the Centro de Biotecnologia, Instituto Butantan, CEP 05503-900, São Paulo, Brazil
| | - Chuck Shaker Farah
- From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05513-970, São Paulo
| |
Collapse
|
38
|
Analysis of multiple Leptospira interrogans serovar Canicola vaccine proteomes and identification of LipL32 as a biomarker for potency. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:587-93. [PMID: 22323560 DOI: 10.1128/cvi.05622-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The current batch potency test for Leptospira interrogans serovar Canicola vaccines requires the use of a large number of hamsters and has severe effects (i.e., hepatic and renal failure resulting in death); while this vaccine is effective, a safer, cheaper, more ethical replacement is desired. The aim of this study was to analyze vaccine proteomes and identify target molecules common to all L. interrogans serovar Canicola vaccines which could be used to design an in vitro potency test. Initial analysis of L. interrogans serovar Canicola vaccines (A to E) from different manufacturers, using the Limulus amebocyte lysate assay and silver-stained sodium dodecyl sulfate polyacrylamide gels, indicated that lipopolysaccharide was not present in all vaccines, preventing it from being a suitable target molecule. The protein contents of vaccines A to E were therefore determined by two-dimensional liquid chromatography mass spectrometry ([2D-LC/MS] 221 ± 31, 9 ± 8, 34 ± 4, 21 ± 5, and 34 ± 17 proteins [mean ± 1 standard deviation] found, respectively). The outer membrane protein LipL32 was established to be common to all and to be present at a significantly higher (P ≤ 0.05) relative spectral abundance in a batch of vaccine which passed the in vivo potency test than in one which had failed. Further analysis using multiple reaction monitoring revealed that the concentration of the N terminus of LipL32 was significantly lower (P ≤ 0.01) in failed batches (n = 2) of vaccine than in passed batches (n = 2); the concentration of the C terminus between the two batches was approximately the same. An in vitro Leptospira vaccine potency test, based on N-terminal amino acid quantification of LipL32, was subsequently developed.
Collapse
|
39
|
Coutinho ML, Choy HA, Kelley MM, Matsunaga J, Babbitt JT, Lewis MS, Aleixo JAG, Haake DA. A LigA three-domain region protects hamsters from lethal infection by Leptospira interrogans. PLoS Negl Trop Dis 2011; 5:e1422. [PMID: 22180800 PMCID: PMC3236721 DOI: 10.1371/journal.pntd.0001422] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/23/2011] [Indexed: 11/19/2022] Open
Abstract
The leptospiral LigA protein consists of 13 bacterial immunoglobulin-like (Big) domains and is the only purified recombinant subunit vaccine that has been demonstrated to protect against lethal challenge by a clinical isolate of Leptospira interrogans in the hamster model of leptospirosis. We determined the minimum number and location of LigA domains required for immunoprotection. Immunization with domains 11 and 12 was found to be required but insufficient for protection. Inclusion of a third domain, either 10 or 13, was required for 100% survival after intraperitoneal challenge with Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130. As in previous studies, survivors had renal colonization; here, we quantitated the leptospiral burden by qPCR to be 1.2×10(3) to 8×10(5) copies of leptospiral DNA per microgram of kidney DNA. Although renal histopathology in survivors revealed tubulointerstitial changes indicating an inflammatory response to the infection, blood chemistry analysis indicated that renal function was normal. These studies define the Big domains of LigA that account for its vaccine efficacy and highlight the need for additional strategies to achieve sterilizing immunity to protect the mammalian host from leptospiral infection and its consequences.
Collapse
Affiliation(s)
- Mariana L. Coutinho
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Centro de Desenvolvimento Tecnologico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Henry A. Choy
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Melissa M. Kelley
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - James Matsunaga
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Jane T. Babbitt
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Michael S. Lewis
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | | | - David A. Haake
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, California, United States of America
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Dellagostin OA, Grassmann AA, Hartwig DD, Félix SR, da Silva ÉF, McBride AJA. Recombinant vaccines against leptospirosis. HUMAN VACCINES 2011; 7:1215-24. [PMID: 22048111 DOI: 10.4161/hv.7.11.17944] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leptospirosis is an important neglected infectious disease that occurs in urban environments, as well as in rural regions worldwide. Rodents, the principal reservoir hosts of pathogenic Leptospira spp., and other infected animals shed the bacteria in their urine. During occupational or even recreational activities, humans that come into direct contact with infected animals or with a contaminated environment, particularly water, are at risk of infection. Prevention of urban leptospirosis is largely dependent on sanitation measures that are often difficult to implement, especially in developing countries. Vaccination with inactivated whole-cell preparations (bacterins) has limited efficacy due to the wide antigenic variation of the pathogen. Intensive efforts towards developing improved recombinant vaccines are ongoing. During the last decade, many reports on the evaluation of recombinant vaccines have been published. Partial success has been obtained with some surface-exposed protein antigens. The combination of protective antigens and new adjuvants or delivery systems may result in the much-needed effective vaccine.
Collapse
Affiliation(s)
- Odir A Dellagostin
- Unidade de Biotecnologia, Centro de Desenvolvimento Tecnológico, Salvador, BA, Brazil.
| | | | | | | | | | | |
Collapse
|
41
|
Subunit approach to evaluation of the immune protective potential of leptospiral antigens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:2026-30. [PMID: 22030369 DOI: 10.1128/cvi.05297-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Leptospirosis is the most widespread zoonosis in the world. Current vaccines are based on whole-cell preparations that cause severe side effects and do not induce satisfactory immunity. In light of the leptospiral genome sequences recently made available, several studies aimed at identification of protective recombinant immunogens have been performed; however, few such immunogens have been identified. The aim of this study was to evaluate 27 recombinant antigens to determine their potential to induce an immune response protective against leptospirosis in the hamster model. Experiments were conducted with groups of female hamsters immunized with individual antigen preparations. Hamsters were then challenged with a lethal dose of Leptospira interrogans. Thirteen antigens induced protective immune responses; however, only recombinant proteins LIC10325 and LIC13059 induced significant protection against mortality. These results have important implications for the development of an efficacious recombinant subunit vaccine against leptospirosis.
Collapse
|
42
|
Recombinant LipL32 and LigA from Leptospira are unable to stimulate protective immunity against leptospirosis in the hamster model. Vaccine 2011; 29:3413-8. [DOI: 10.1016/j.vaccine.2011.02.084] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/28/2011] [Accepted: 02/24/2011] [Indexed: 11/17/2022]
|
43
|
Atzingen MV, Gonçales AP, de Morais ZM, Araújo ER, De Brito T, Vasconcellos SA, Nascimento ALTO. Characterization of leptospiral proteins that afford partial protection in hamsters against lethal challenge with Leptospira interrogans. J Med Microbiol 2010; 59:1005-1015. [DOI: 10.1099/jmm.0.021485-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira. The whole-genome sequence of Leptospira interrogans serovar Copenhageni together with bioinformatic tools allow us to search for novel antigen candidates suitable for improved vaccines against leptospirosis. This study focused on three genes encoding conserved hypothetical proteins predicted to be exported to the outer membrane. The genes were amplified by PCR from six predominant pathogenic serovars in Brazil. The genes were cloned and expressed in Escherichia coli strain BL21-SI using the expression vector pDEST17. The recombinant proteins tagged with N-terminal 6×His were purified by metal-charged chromatography. The proteins were recognized by antibodies present in sera from hamsters that were experimentally infected. Immunization of hamsters followed by challenge with a lethal dose of a virulent strain of Leptospira showed that the recombinant protein rLIC12730 afforded statistically significant protection to animals (44 %), followed by rLIC10494 (40 %) and rLIC12922 (30 %). Immunization with these proteins produced an increase in antibody titres during subsequent boosters, suggesting the involvement of a T-helper 2 response. Although more studies are needed, these data suggest that rLIC12730 and rLIC10494 are promising candidates for a multivalent vaccine for the prevention of leptospirosis.
Collapse
Affiliation(s)
- Marina V. Atzingen
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil
| | - Amane P. Gonçales
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr Orlando Marques de Paiva 87, 05508-270 São Paulo, SP, Brazil
| | - Zenaide M. de Morais
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr Orlando Marques de Paiva 87, 05508-270 São Paulo, SP, Brazil
| | - Eduardo R. Araújo
- Instituto de Medicina Tropical, Departamento de Patologia, Faculdade de Medicina, USP, Avenida Dr Enéas Carvalho de Aguiar 470, 05403-000 São Paulo, SP, Brazil
| | - Thales De Brito
- Instituto de Medicina Tropical, Departamento de Patologia, Faculdade de Medicina, USP, Avenida Dr Enéas Carvalho de Aguiar 470, 05403-000 São Paulo, SP, Brazil
| | - Silvio A. Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr Orlando Marques de Paiva 87, 05508-270 São Paulo, SP, Brazil
| | - Ana L. T. O. Nascimento
- Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes 1730, 05508-900 São Paulo, SP, Brazil
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil
| |
Collapse
|
44
|
Increased Immunogenicity to LipL32 of Leptospira interrogans when Expressed as a Fusion Protein with the Cholera Toxin B Subunit. Curr Microbiol 2010; 62:526-31. [DOI: 10.1007/s00284-010-9739-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
|
45
|
Vieira ML, Atzingen MV, Oliveira TR, Oliveira R, Andrade DM, Vasconcellos SA, Nascimento ALTO. In vitro identification of novel plasminogen-binding receptors of the pathogen Leptospira interrogans. PLoS One 2010; 5:e11259. [PMID: 20582320 PMCID: PMC2889836 DOI: 10.1371/journal.pone.0011259] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 05/31/2010] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Leptospirosis is a multisystem disease caused by pathogenic strains of the genus Leptospira. We have reported that Leptospira are able to bind plasminogen (PLG), to generate active plasmin in the presence of activator, and to degrade purified extracellular matrix fibronectin. METHODOLOGY/PRINCIPAL FINDINGS We have now cloned, expressed and purified 14 leptospiral recombinant proteins. The proteins were confirmed to be surface exposed by immunofluorescence microscopy and were evaluated for their ability to bind plasminogen (PLG). We identified eight as PLG-binding proteins, including the major outer membrane protein LipL32, the previously published rLIC12730, rLIC10494, Lp29, Lp49, LipL40 and MPL36, and one novel leptospiral protein, rLIC12238. Bound PLG could be converted to plasmin by the addition of urokinase-type PLG activator (uPA), showing specific proteolytic activity, as assessed by its reaction with the chromogenic plasmin substrate, D-Val-Leu-Lys 4-nitroanilide dihydrochloride. The addition of the lysine analog 6-aminocaproic acid (ACA) inhibited the protein-PLG interaction, thus strongly suggesting the involvement of lysine residues in plasminogen binding. The binding of leptospiral surface proteins to PLG was specific, dose-dependent and saturable. PLG and collagen type IV competed with LipL32 protein for the same binding site, whereas separate binding sites were observed for plasma fibronectin. CONCLUSIONS/SIGNIFICANCE PLG-binding/activation through the proteins/receptors on the surface of Leptospira could help the bacteria to specifically overcome tissue barriers, facilitating its spread throughout the host.
Collapse
Affiliation(s)
- Monica L. Vieira
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
- Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Marina V. Atzingen
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | - Rosane Oliveira
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
- Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Daniel M. Andrade
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Silvio A. Vasconcellos
- Laboratorio de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Ana L. T. O. Nascimento
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
- Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
46
|
Eslabão MR, Dellagostin OA, Cerqueira GM. LepBank: a Leptospira sequence repository and a portal for phylogenetic studies. INFECTION GENETICS AND EVOLUTION 2010; 10:586-90. [PMID: 20215003 DOI: 10.1016/j.meegid.2010.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/20/2010] [Accepted: 02/26/2010] [Indexed: 11/30/2022]
Abstract
Leptospirosis is a neglected infectious disease that constitutes a threat to both humans and animals. Comprehension about the epidemiological behavior and population dynamics of Leptospira may be helpful for the development of control measures. Thus, an effort was made to organize leptospiral sequences in a new and specific database. In addition, online bioinformatics tools were clustered in a web portal to facilitate sequences manipulation by scientists. LepBank (http://.lepbank.ufpel.edu.br) is a Leptospira sequences repository and a suite for systematics, which brings simplicity to leptospirosis research, integrating sophisticated online programs to a sequence database. We intend the database to be useful for the leptospirosis scientific community, providing standardized and high quality information and facilitating research into key aspects of the Leptospira taxonomy and phylogeny.
Collapse
Affiliation(s)
- Marcus R Eslabão
- Centro de Biotecnologia, Universidade Federal de Pelotas, 96010900 Pelotas, RS, Brazil
| | | | | |
Collapse
|
47
|
Ko AI, Goarant C, Picardeau M. Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat Rev Microbiol 2009; 7:736-47. [PMID: 19756012 PMCID: PMC3384523 DOI: 10.1038/nrmicro2208] [Citation(s) in RCA: 482] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leptospirosis is a zoonotic disease that has emerged as an important cause of morbidity and mortality among impoverished populations. One hundred years after the discovery of the causative spirochaetal agent, little is understood about Leptospira spp. pathogenesis, which in turn has hampered the development of new intervention strategies to address this neglected disease. However, the recent availability of complete genome sequences for Leptospira spp. and the discovery of genetic tools for their transformation have led to important insights into the biology of these pathogens and their pathogenesis. We discuss the life cycle of the bacterium, the recent advances in our understanding and the implications for the future prevention of leptospirosis.
Collapse
Affiliation(s)
- Albert I. Ko
- Division of Infectious Disease, Weill Medical College of Cornell University, New York, USA
- Gonçalo Moniz Research Centre, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil
| | - Cyrille Goarant
- Institut Pasteur de Nouvelle-Calédonie, Laboratoire de Recherche en Bactériologie, Nouméa, New-Caledonia
| | | |
Collapse
|
48
|
Hauk P, Guzzo CR, Ramos HR, Ho PL, Farah CS. Structure and Calcium-Binding Activity of LipL32, the Major Surface Antigen of Pathogenic Leptospira sp. J Mol Biol 2009; 390:722-36. [DOI: 10.1016/j.jmb.2009.05.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/14/2009] [Accepted: 05/15/2009] [Indexed: 10/20/2022]
|
49
|
Adler B, de la Peña Moctezuma A. Leptospira and leptospirosis. Vet Microbiol 2009; 140:287-96. [PMID: 19345023 DOI: 10.1016/j.vetmic.2009.03.012] [Citation(s) in RCA: 846] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/18/2008] [Accepted: 03/02/2009] [Indexed: 11/19/2022]
Abstract
Leptospirosis is the most wide spread zoonosis worldwide; it is present in all continents except Antarctica and evidence for the carriage of Leptospira has been found in virtually all mammalian species examined. Humans most commonly become infected through occupational, recreational, or domestic contact with the urine of carrier animals, either directly or via contaminated water or soil. Leptospires are thin, helical bacteria classified into at least 12 pathogenic and 4 saprophytic species, with more than 250 pathogenic serovars. Immunity following infection is generally, but not exclusively, mediated by antibody against leptospiral LPS and restricted to antigenically related serovars. Vaccines currently available consist of killed whole cell bacterins which are used widely in animals, but less so in humans. Current work with recombinant protein antigens shows promise for the development of vaccines based on defined protective antigens. The cellular and molecular basis for virulence remains poorly understood, but comparative genomics of pathogenic and saprophytic species suggests that Leptospira expresses unique virulence determinants. However, the recent development of defined mutagenesis systems for Leptospira heralds the potential for gaining a much improved understanding of pathogenesis in leptospirosis.
Collapse
Affiliation(s)
- Ben Adler
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Australia.
| | | |
Collapse
|
50
|
Hauk P, Guzzo CR, Ho PL, Farah CS. Crystallization and preliminary X-ray analysis of LipL32 from Leptospira interrogans serovar Copenhageni. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:307-9. [PMID: 19255491 PMCID: PMC2650462 DOI: 10.1107/s1744309109005533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 02/16/2009] [Indexed: 11/10/2022]
Abstract
LipL32 is a major surface protein that is expressed during infection by pathogenic Leptospira. Here, the crystallization of recombinant LipL32(21-272), which corresponds to the mature LipL32 protein minus its N-terminal lipid-anchored cysteine residue, is described. Selenomethionine-labelled LipL32(21-272) crystals diffracted to 2.25 A resolution at a synchrotron source. The space group was P3(1)21 or P3(2)21 and the unit-cell parameters were a = b = 126.7, c = 96.0 A.
Collapse
Affiliation(s)
- Pricila Hauk
- Centro de Biotecnologia, Instituto Butantan, 05503-900 São Paulo-SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia USP/IPT/Instituto Butantan, Instituto de Ciências Biomédicas da USP, 05508-900 São Paulo-SP, Brazil
| | - Cristiane R. Guzzo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo-SP, Brazil
| | - Paulo L. Ho
- Centro de Biotecnologia, Instituto Butantan, 05503-900 São Paulo-SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia USP/IPT/Instituto Butantan, Instituto de Ciências Biomédicas da USP, 05508-900 São Paulo-SP, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo-SP, Brazil
| | - Chuck S. Farah
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo-SP, Brazil
| |
Collapse
|