1
|
Reglinski M, Sriskandan S. The contribution of group A streptococcal virulence determinants to the pathogenesis of sepsis. Virulence 2013; 5:127-36. [PMID: 24157731 PMCID: PMC3916366 DOI: 10.4161/viru.26400] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Streptococcus pyogenes (group A streptococcus, GAS) is responsible for a wide range of pathologies ranging from mild pharyngitis and impetigo to severe invasive soft tissue infections. Despite the continuing susceptibility of the bacterium to β-lactam antibiotics there has been an unexplained resurgence in the prevalence of invasive GAS infection over the past 30 years. Of particular importance was the emergence of a GAS-associated sepsis syndrome that is analogous to the systemic toxicosis associated with TSST-1 producing strains of Staphylococcus aureus. Despite being recognized for over 20 years, the etiology of GAS associated sepsis and the streptococcal toxic shock syndrome remains poorly understood. Here we review the virulence factors that contribute to the etiology of GAS associated sepsis with a particular focus on coagulation system interactions and the role of the superantigens in the development of streptococcal toxic shock syndrome.
Collapse
Affiliation(s)
- Mark Reglinski
- Department of Infectious Disease and Immunity; Imperial College London; London, UK
| | - Shiranee Sriskandan
- Department of Infectious Disease and Immunity; Imperial College London; London, UK
| |
Collapse
|
2
|
Turner CE, Sommerlad M, McGregor K, Davies FJ, Pichon B, Chong DLW, Farzaneh L, Holden MTG, Spratt BG, Efstratiou A, Sriskandan S. Superantigenic activity of emm3 Streptococcus pyogenes is abrogated by a conserved, naturally occurring smeZ mutation. PLoS One 2012; 7:e46376. [PMID: 23049698 PMCID: PMC3462185 DOI: 10.1371/journal.pone.0046376] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 08/29/2012] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pyogenes M/emm3 strains have been epidemiologically linked with enhanced infection severity and risk of streptococcal toxic shock syndrome (STSS), a syndrome triggered by superantigenic stimulation of T cells. Comparison of S. pyogenes strains causing STSS demonstrated that emm3 strains were surprisingly less mitogenic than other emm-types (emm1, emm12, emm18, emm28, emm87, emm89) both in vitro and in vivo, indicating poor superantigenic activity. We identified a 13 bp deletion in the superantigen smeZ gene of all emm3 strains tested. The deletion led to a premature stop codon in smeZ, and was not present in other major emm-types tested. Expression of a functional non-M3-smeZ gene successfully enhanced mitogenic activity in emm3 S. pyogenes and also restored mitogenic activity to emm1 and emm89 S. pyogenes strains where the smeZ gene had been disrupted. In contrast, the M3-smeZ gene with the 13 bp deletion could not enhance or restore mitogenicity in any of these S. pyogenes strains, confirming that M3-smeZ is non-functional regardless of strain background. The mutation in M3-smeZ reduced the potential for M3 S. pyogenes to induce cytokines in human tonsil, but not during invasive infection of superantigen-sensitive mice. Notwithstanding epidemiological associations with STSS and disease severity, emm3 strains have inherently poor superantigenicity that is explained by a conserved mutation in smeZ.
Collapse
Affiliation(s)
- Claire E. Turner
- Department of Infectious Diseases & Immunity, Imperial College London, London, United Kingdom
| | - Mary Sommerlad
- Department of Infectious Diseases & Immunity, Imperial College London, London, United Kingdom
| | - Karen McGregor
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Frances J. Davies
- Department of Infectious Diseases & Immunity, Imperial College London, London, United Kingdom
| | - Bruno Pichon
- Respiratory and Systemic Infection Laboratory, The Health Protection Agency Centre for Infections, London, United Kingdom
| | - Deborah L. W. Chong
- Department of Infectious Diseases & Immunity, Imperial College London, London, United Kingdom
| | - Leili Farzaneh
- Department of Infectious Diseases & Immunity, Imperial College London, London, United Kingdom
| | - Matthew T. G. Holden
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Brian G. Spratt
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Androulla Efstratiou
- Respiratory and Systemic Infection Laboratory, The Health Protection Agency Centre for Infections, London, United Kingdom
| | - Shiranee Sriskandan
- Department of Infectious Diseases & Immunity, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Li Z, Bryant AE, Hamilton SM, Bayer CR, Ma Y, Stevens DL. Do cardiomyocytes mount an immune response to Group A Streptococcus? Cytokine 2011; 54:258-65. [PMID: 21377378 DOI: 10.1016/j.cyto.2011.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 12/02/2010] [Accepted: 02/03/2011] [Indexed: 12/30/2022]
Abstract
Some patients with Group A Streptococcal toxic shock syndrome (StrepTSS) develop a unique form of cardiomyopathy characterized by global hypokinesia and reduced cardiac index. Here we investigated the immune responses of cardiomyocytes to Group A Streptococcus both in vivo and in vitro. Our data demonstrate that cardiomyocyte-derived cytokines are produced following both direct GAS stimulation and after exposure to GAS-activated inflammatory cells. These locally produced, cardiomyocyte-derived cytokines may mediate cardiac contractile dysfunction observed in patients with StrepTSS-associated cardiomyopathy and may hold the key to our ability to attenuate this severe complication.
Collapse
Affiliation(s)
- Zhi Li
- Infectious Diseases Section, Veterans Affairs Medical Center, Boise, ID 83702, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Wang B, Li J, Li Q, Zhang H, Li N. Isolation of adhesive strains and evaluation of the colonization and immune response by Lactobacillus plantarum L2 in the rat gastrointestinal tract. Int J Food Microbiol 2009; 132:59-66. [PMID: 19386375 DOI: 10.1016/j.ijfoodmicro.2009.03.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 01/30/2009] [Accepted: 03/23/2009] [Indexed: 11/19/2022]
Abstract
Five Lactobacillus strains were tested for their ability to adhere to Caco-2 and IEC-6 cell lines as in vitro models and to induce of the secretion of pro- and anti-inflammatory cytokines by human peripheral blood mononuclear cells (PBMCs). Among the tested strains, Lactobacillus plantarum L2 was the most adhesive strain, approximately 595+/-125 or 704+/-273 of the added bacteria adhered to Caco-2 or IEC-6 cell cultures, respectively. Furthermore, L. plantarum L2 was also found to induce a considerable level of IL-10 from PBMCs, but low levels of all three pro-inflammatory cytokines TNF-alpha, IFN-gamma and IL-12. From these results, one promising strain, L. plantarum L2, was selected for in vivo studies. For 28 days F344 rats were fed a daily dose of 2 x 10(9)L. plantarum L2; for the next 14 days the rats were not fed any Lactobacillus. Intestinal mucosal samples and feces were taken at days 0, 28 and 42 to determine the colonizing ability of the lactobacilli. Recovered Lactobacillus isolates were initially identified by API 50CHL and strain-specific PCR. Intestinal specimen was analyzed using fluorescence in situ hybridization with a strain-specific molecular probe, and immune cell populations were determined by immunostaining for evidence of immune responses at the colonized sites. After intake of L. plantarum L2 for 28 days, a significant increase in live L. plantarum was found in the rats' feces, small intestine and colon. The bacterial levels remained high even after the L. plantarum L2 administration had been stopped for two weeks. Strain-specific PCR and FISH provided clear and direct evidence of colonization of the rat gastrointestinal tract by L. plantarum L2. Additionally, a significant increase in CD19-positive cells in the ileum was observed after intake of L. plantarum L2. In conclusion, dietary supplementation with L. plantarum L2 induced significant colonization of the gastrointestinal tract of rats, and this was associated with significant alteration of the immune response in the gastrointestinal mucosa.
Collapse
Affiliation(s)
- Bin Wang
- Research Institute of General Surgery, Jin Ling Hospital, Nanjing, Jiangsu, China
| | | | | | | | | |
Collapse
|
5
|
Cunningham MW. Pathogenesis of Group A Streptococcal Infections and Their Sequelae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 609:29-42. [PMID: 18193655 DOI: 10.1007/978-0-387-73960-1_3] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Madeleine W Cunningham
- University of Oklahoma Health Sciences Center, Biomedical Research Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
6
|
Liu D, Yumoto H, Hirota K, Murakami K, Takahashi K, Hirao K, Matsuo T, Ohkura K, Nagamune H, Miyake Y. Histone-like DNA binding protein of Streptococcus intermedius induces the expression of pro-inflammatory cytokines in human monocytes via activation of ERK1/2 and JNK pathways. Cell Microbiol 2007; 10:262-76. [PMID: 17883418 DOI: 10.1111/j.1462-5822.2007.01040.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptococcus intermedius is a commensal associated with serious, deep-seated purulent infections in major organs, such as the brain and liver. Histone-like DNA binding protein (HLP) is an accessory architectural protein in a variety of bacterial cellular processes. In this study, we investigated the mechanisms of pro-inflammatory cytokine inductions in THP-1 cells by stimulation with recombinant HLP of S. intermedius (rSi-HLP). rSi-HLP stimulation-induced production of pro-inflammatory cytokines (IL-8, IL-1 beta and TNF-alpha) occurred in a time- and dose-dependent manner. In contrast with the heat-stable activity of DNA binding, the induction activity of rSi-HLP was heat-unstable. In subsequent studies, rSi-HLP acted cooperatively with lipoteichoic acid, the synthetic Toll-like receptor 2 agonist, Pam3CSK4, and the cytosolic nucleotide binding oligomerization domain 2 receptor agonist, muramyldipeptide. Furthermore, Western blot and blocking assays with specific inhibitors showed that rSi-HLP stimulation induced the activation of cell signal transduction pathways, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). In addition to its physiological role in bacterial growth through DNA binding, these results indicate that Si-HLP can trigger a cascade of events that induce pro-inflammatory responses via ERK1/2 and JNK signal pathways, and suggest that bacterial HLP may contribute to the activation of host innate immunity during bacterial infection.
Collapse
Affiliation(s)
- Dali Liu
- Department of Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima 770-8504, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yang L, Thomas M, Woodhouse A, Martin D, Fraser JD, Proft T. Involvement of streptococcal mitogenic exotoxin Z in streptococcal toxic shock syndrome. J Clin Microbiol 2005; 43:3570-3. [PMID: 16000510 PMCID: PMC1169092 DOI: 10.1128/jcm.43.7.3570-3573.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report a nonfatal case of streptococcal toxic shock syndrome (STSS) caused by a Streptococcus pyogenes emm118 strain encoding a novel variant of streptococcal mitogenic exotoxin Z (SMEZ-34). This variant was responsible for the major mitogenic activity in the cell culture supernatant. Patient sera showed seroconversion toward SMEZ, implying a role for this toxin in STSS.
Collapse
Affiliation(s)
- Lily Yang
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
8
|
Grangette C, Nutten S, Palumbo E, Morath S, Hermann C, Dewulf J, Pot B, Hartung T, Hols P, Mercenier A. Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc Natl Acad Sci U S A 2005; 102:10321-6. [PMID: 15985548 PMCID: PMC1177390 DOI: 10.1073/pnas.0504084102] [Citation(s) in RCA: 325] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Teichoic acids (TAs), and especially lipoteichoic acids (LTAs), are one of the main immunostimulatory components of pathogenic Gram-positive bacteria. Their contribution to the immunomodulatory properties of commensal bacteria and especially of lactic acid bacteria has not yet been investigated in detail. To evaluate the role of TAs in the interaction between lactic acid bacteria and the immune system, we analyzed the antiinflammatory properties of a mutant of Lactobacillus plantarum NCIMB8826 affected in the TA biosynthesis pathway both in vitro (mononuclear cells stimulation) and in vivo (murine model of colitis). This Dlt- mutant was found to incorporate much less D-Ala in its TAs than the WT strain. This defect significantly impacted the immunomodulation reactions induced by the bacterium, as shown by a dramatically reduced secretion of proinflammatory cytokines by peripheral blood mononuclear cells and monocytes stimulated by the Dlt- mutant as compared with the parental strain. Concomitantly, a significant increase in IL-10 production was stimulated by the Dlt- mutant in comparison with the WT strain. Moreover, the proinflammatory capacity of L. plantarum-purified LTA was found to be Toll-like receptor 2-dependent. Consistent with the in vitro results, the Dlt- mutant was significantly more protective in a murine colitis model than its WT counterpart. The results indicated that composition of LTA within the whole-cell context of L. plantarum can modulate proinflammatory or antiinflammatory immune responses.
Collapse
Affiliation(s)
- Corinne Grangette
- Laboratoire de Bactériologie des Ecosytèmes, Institut Pasteur de Lille-Institut de Biologie de Lille, 59019 Lille Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Virtaneva K, Porcella SF, Graham MR, Ireland RM, Johnson CA, Ricklefs SM, Babar I, Parkins LD, Romero RA, Corn GJ, Gardner DJ, Bailey JR, Parnell MJ, Musser JM. Longitudinal analysis of the group A Streptococcus transcriptome in experimental pharyngitis in cynomolgus macaques. Proc Natl Acad Sci U S A 2005; 102:9014-9. [PMID: 15956184 PMCID: PMC1150296 DOI: 10.1073/pnas.0503671102] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Indexed: 11/18/2022] Open
Abstract
Identification of the genetic events that contribute to host-pathogen interactions is important for understanding the natural history of infectious diseases and developing therapeutics. Transcriptome studies conducted on pathogens have been central to this goal in recent years. However, most of these investigations have focused on specific end points or disease phases, rather than analysis of the entire time course of infection. To gain a more complete understanding of how bacterial gene expression changes over time in a primate host, the transcriptome of group A Streptococcus (GAS) was analyzed during an 86-day infection protocol in 20 cynomolgus macaques with experimental pharyngitis. The study used 260 custom Affymetrix (Santa Clara, CA) chips, and data were confirmed by TaqMan analysis. Colonization, acute, and asymptomatic phases of disease were identified. Successful colonization and severe inflammation were significantly correlated with an early onset of superantigen gene expression. The differential expression of two-component regulators covR and spy0680 (M1_spy0874) was significantly associated with GAS colony-forming units, inflammation, and phases of disease. Prophage virulence gene expression and prophage induction occurred predominantly during high pathogen cell densities and acute inflammation. We discovered that temporal changes in the GAS transcriptome were integrally linked to the phase of clinical disease and host-defense response. Knowledge of the gene expression patterns characterizing each phase of pathogen-host interaction provides avenues for targeted investigation of proven and putative virulence factors and genes of unknown function and will assist vaccine research.
Collapse
Affiliation(s)
- Kimmo Virtaneva
- Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Vargas MH. Ecological association between scarlet fever and asthma. Respir Med 2005; 100:363-6. [PMID: 15946835 DOI: 10.1016/j.rmed.2005.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
One plausible explanation for the worldwide epidemic increase of asthma prevalence is the hygiene hypothesis, which suggests that better control of infections shifts the immune response toward an allergic phenotype. However, studies demonstrating an inverse association between asthma and infectious diseases are scarce and possess conflicting results. To explore the relationship between asthma and scarlet fever, an ecological analysis of their national trends was carried out. Association of both diseases in their annual (1996-2003), seasonal (by month) and geographic (by state) trends was evaluated using the Spearman's correlation coefficient (r(S)). Results showed a strong inverse association between asthma and scarlet fever in all settings. Thus, annual incidence rates of both diseases showed an r(S)=-0.93 (P=0.0009). Seasonal patterns showed a higher proportion of new asthma cases from September to January, while the number of scarlet fever cases increased from March to June (r(S)=-0.84, P=0.0006, 1-month lag). Among the 32 Mexican states, the higher the incidence of scarlet fever the lower the incidence of asthma (r(S)=-0.47, P=0.007). These results suggest that Streptococcus pyogenes, the causative agent of scarlet fever, might be one of the major protagonists of the hygiene hypothesis, a possibility deserving of further investigation.
Collapse
Affiliation(s)
- Mario H Vargas
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Avenida Cuauhtémoc 330, CP 06720, México DF, México.
| |
Collapse
|
11
|
Alouf JE, Müller-Alouf H. Staphylococcal and streptococcal superantigens: molecular, biological and clinical aspects. Int J Med Microbiol 2003; 292:429-40. [PMID: 12635926 DOI: 10.1078/1438-4221-00232] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Superantigens (SAgs) include a class of certain bacterial and viral proteins exhibiting highly potent lymphocyte-transforming (mitogenic) activity towards human and or other mammalian T lymphocytes. Unlike conventional antigens, SAgs bind to certain regions of major histocompatibility complex (MHC) class II molecules of antigen-presenting cells (APCs) outside the classical antigen-binding groove and concomitantly bind in their native form to T cells at specific motifs of the variable region of the beta chain (Vbeta) of the T cell receptor (TcR). This interaction triggers the activation (proliferation) of the targeted T lymphocytes and leads to the in vivo or in vitro release of high amounts of various cytokines and other effectors by immune cells. Each SAg interacts specifically with a characteristic set of Vbeta motifs. The review summarizes our current knowledge on S. aureus and S. pyogenes superantigen proteins. The repertoire of the staphylococcal and streptococcal SAgs comprises 24 and 8 proteins, respectively. The staphylococcal SAgs include (i) the classical enterotoxins A, B, C (and antigenic variants), D, E, and the recently discovered enterotoxins G to Q, (ii) toxic shock syndrome toxin-1, (iii) exfoliatins A and B. The streptococcal SAgs include the classical pyrogenic exotoxins A and C and the newly identified pyrogenic toxins, G, H, I, J, SMEZ, and SSA. The structural and genomic aspects of these toxins and their molecular relatedness are described as well as the available 3-D crystal structure of some of them and that of certain of their complexes with MHC class II molecules and the TcR, respectively. The pathophysiological properties and clinical disorders related to these SAgs are reviewed.
Collapse
|
12
|
Abstract
Sepsis is a condition that results from a harmful or damaging host response to infection. Many of the components of the innate immune response that are normally concerned with host defences against infection can, under some circumstances, cause cell and tissue damage and hence multiple organ failure, the clinical hallmark of sepsis. Because of the high mortality of sepsis in the face of standard treatment, many efforts have been made to improve understanding of the dysregulation of the host response in sepsis. As a result, much has been learnt of the basic principles governing bacterial-host interactions, and new opportunities for therapeutic intervention have been revealed.
Collapse
Affiliation(s)
- Jonathan Cohen
- Brighton & Sussex Medical School, Westlain House, Falmer, UK.
| |
Collapse
|
13
|
Unnikrishnan M, Altmann DM, Proft T, Wahid F, Cohen J, Fraser JD, Sriskandan S. The bacterial superantigen streptococcal mitogenic exotoxin Z is the major immunoactive agent of Streptococcus pyogenes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2561-9. [PMID: 12193726 DOI: 10.4049/jimmunol.169.5.2561] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The gene encoding streptococcal mitogenic exotoxin Z (SMEZ) was disrupted in Streptococcus pyogenes. Despite the presence of other superantigen genes, mitogenic responses in human and murine HLA-DQ transgenic cells were abrogated when cells were stimulated with supernatant from the smez(-) mutant compared with the parent strain. Remarkably, disruption of smez led to a complete inability to elicit cytokine production (TNF-alpha, lymphotoxin-alpha, IFN-gamma, IL-1 and -8) from human cells, when cocultured with streptococcal supernatants. The potent effects of SMEZ were apparent even though transcription and expression of SMEZ were barely detectable. Human Vbeta8(+) T cell proliferation in response to S. pyogenes was SMEZ-dependent. Cells from HLA-DQ8 transgenic mice were 3 logs more sensitive to SMEZ-13 than cells from HLA-DR1 transgenic or wild-type mice. In the mouse, SMEZ targeted the human Vbeta8(+) TCR homologue, murine Vbeta11, at the expense of other TCR T cell subsets. Expression of SMEZ did not affect bacterial clearance or survival from peritoneal streptococcal infection in HLA-DQ8 mice, though effects of SMEZ on pharyngeal infection are unknown. Infection did lead to a rise in Vbeta11(+) T cells in the spleen which was partly reversed by disruption of the smez gene. Most strikingly, a clear rise in murine Vbeta4(+) cells was seen in mice infected with the smez(-) mutant S. pyogenes strain, indicating a potential role for SMEZ as a repressor of cognate anti-streptococcal responses.
Collapse
MESH Headings
- Acute Disease
- Animals
- Antigens, Bacterial/biosynthesis
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Toxins/biosynthesis
- Bacterial Toxins/genetics
- Bacterial Toxins/immunology
- Blotting, Southern
- Cell Division/immunology
- Cell Line
- Cells, Cultured
- Cytokines/biosynthesis
- Cytokines/metabolism
- Exotoxins/biosynthesis
- Exotoxins/genetics
- Exotoxins/immunology
- Exotoxins/metabolism
- Gene Expression Regulation/immunology
- Genotype
- HLA-DQ Antigens/biosynthesis
- HLA-DQ Antigens/genetics
- HLA-DR1 Antigen/biosynthesis
- HLA-DR1 Antigen/genetics
- Humans
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Activation/immunology
- Lymphocyte Count
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mitogens/biosynthesis
- Mitogens/genetics
- Mitogens/immunology
- Mitogens/metabolism
- Peritonitis/immunology
- Peritonitis/microbiology
- Polymerase Chain Reaction/methods
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Spleen/cytology
- Spleen/immunology
- Spleen/microbiology
- Streptococcal Infections/immunology
- Streptococcal Infections/microbiology
- Streptococcus pyogenes/genetics
- Streptococcus pyogenes/growth & development
- Streptococcus pyogenes/immunology
- Streptococcus pyogenes/metabolism
- Superantigens/genetics
- Superantigens/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- Transcription, Genetic/immunology
Collapse
Affiliation(s)
- Meera Unnikrishnan
- Department of Infectious Diseases, Faculty of Medicine, Imperial College School of Science, Technology, and Medicine, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|