1
|
Kerkman PF, de Vor L, van der Vaart TW, ten Doesschate T, Muts RM, Depelteau JS, Scheepmaker L, Ruyken M, de Haas CJ, Aerts PC, Marijnissen R, Schuurman J, Beurskens FJ, Gorlani A, Bardoel B, Rooijakkers SH. Single-cell Sequencing of Circulating Human Plasmablasts during Staphylococcus aureus Bacteremia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024:ji2300858. [PMID: 39451041 PMCID: PMC7616744 DOI: 10.4049/jimmunol.2300858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Staphylococcus aureus is the major cause of healthcare-associated infections, including life-threatening conditions as bacteremia, endocarditis, and implant-associated infections. Despite adequate antibiotic treatment, the mortality of S. aureus bacteremia remains high. This calls for different strategies to treat this infection. In past years, sequencing of Ab repertoires from individuals previously exposed to a pathogen emerged as a successful method to discover novel therapeutic monoclonal Abs and understand circulating B cell diversity during infection. In this paper, we collected peripheral blood from 17 S. aureus bacteremia patients to study circulating plasmablast responses. Using single-cell transcriptome gene expression combined with sequencing of variable heavy and light Ig genes, we retrieved sequences from >400 plasmablasts revealing a high diversity with >300 unique variable heavy and light sequences. More than 200 variable sequences were synthesized to produce recombinant IgGs that were analyzed for binding to S. aureus whole bacterial cells. This revealed four novel monoclonal Abs that could specifically bind to the surface of S. aureus in the absence of Ig-binding surface SpA. Interestingly, three of four mAbs showed cross-reactivity with Staphylococcus epidermidis. Target identification revealed that the S. aureus-specific mAb BC153 targets wall teichoic acid, whereas cross-reactive mAbs BC019, BC020, and BC021 target lipoteichoic acid. All mAbs could induce Fc-dependent phagocytosis of staphylococci by human neutrophils. Altogether, we characterize the active B cell responses to S. aureus in infected patients and identify four functional mAbs against the S. aureus surface, of which three cross-react with S. epidermidis.
Collapse
Affiliation(s)
- Priscilla F. Kerkman
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lisanne de Vor
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Thomas W. van der Vaart
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Thijs ten Doesschate
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Internal Medicine, Jeroen Bosch Hospital, Den Bosch, The Netherlands
| | - Remy M. Muts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jamie S. Depelteau
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lisette Scheepmaker
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maartje Ruyken
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Carla J.C. de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Piet C. Aerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | | | | | | | - Bart Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Suzan H.M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
2
|
Liu Y, Mei L, Wang L, Tian P, Jin X, Guo M, Lu J, Chen W, Zhang H, Wang G. The Immunomodulatory Effects of Lipoteichoic Acid from Lactobacillus reuteri L1 on RAW264.7 Cells and Mice Vary with Dose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20930-20943. [PMID: 39279192 DOI: 10.1021/acs.jafc.4c03408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The probiotic properties of Lactobacillus reuteri (L. reuteri) and its impact on immune function are well-documented. Lipoteichoic acid (LTA) is a crucial immune molecule in Gram-positive bacteria. Despite extensive research on LTA's structural diversity, the immunomodulatory mechanisms of L. reuteri LTA remain largely unexplored. This study investigates the immunomodulatory effects of L. reuteri L1 LTA at various concentrations on RAW 264.7 cells and mice under normal and inflammatory conditions. We found that LTA does not significantly affect healthy subjects; however, low-concentration LTA can reduce inflammation induced by LPS in cells and mice, enhancing the abundance of dominant intestinal bacteria. In contrast, high-concentration LTA exacerbates intestinal damage and dysbiosis. Creatinine may play a role in this differential response. In summary, while LTA does not alter immune homeostasis in healthy organisms, low-concentration LTA may mitigate damage from immune imbalance, but high-concentration LTA can worsen it. This suggests a quantitative requirement for probiotic intake. Our study provides critical theoretical support for understanding the immunomodulatory effects of probiotics on the host and paves the way for future research into the immune mechanisms of probiotics.
Collapse
Affiliation(s)
- Yini Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liya Mei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Xing Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jingyu Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
3
|
Liu X, Jiang S, Zhang T, Xu Z, Liu L, Zhang Z, Pan S, Li Y. "Magnet" Based on Activated Silver Nanoparticles Adsorbed Bacteria to Predict Refractory Apical Periodontitis Via Surface-Enhanced Raman Scattering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8499-8508. [PMID: 38335515 DOI: 10.1021/acsami.3c16677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Refractory apical periodontitis (RAP) is an endodontic apical inflammatory disease caused by Enterococcus faecalis (E. faecalis). Bacterial detection using surface-enhanced Raman scattering (SERS) technology is a hot research topic, but the specific and direct detection of oral bacteria is a challenge, especially in real clinical samples. In this paper, we develop a novel SERS-based green platform for label-free detection of oral bacteria. The platform was built on silver nanoparticles with a two-step enhancement way using NaBH4 and sodium (Na+) to form "hot spots," which resulted in an enhanced SERS fingerprint of E. faecalis with fast, quantitative, lower-limit, reproducibility, and stability. In combination with machine learning, four different oral bacteria (E. faecalis, Porphyromonas gingivalis, Streptococcus mutans, and Escherichia coli) could be intelligently distinguished. The unlabeled detection method emphasized the specificity of E. faecalis in simulated saliva, serum, and even real samples from patients with clinical root periapical disease. In addition, the assay has been shown to be environmentally friendly and without secondary contamination through antimicrobial assays. The proposed label-free, rapid, safe, and green SERS detection strategy for oral bacteria provided an innovative solution for the early diagnosis and prevention of RAP and other perioral diseases.
Collapse
Affiliation(s)
- Xin Liu
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150001, P. R. China
- Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, Heilongjiang 150001, P. R. China
| | - Shen Jiang
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Ting Zhang
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Department of Inorganic Chemistry and Physical Chemistry, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, P. R. China
| | - Ziming Xu
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150001, P. R. China
- Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, Heilongjiang 150001, P. R. China
| | - Ling Liu
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Zhe Zhang
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- College of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Shuang Pan
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150001, P. R. China
- Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, Heilongjiang 150001, P. R. China
| | - Yang Li
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, 2125B, Aapistie 5A, Oulu 90220, Finland
| |
Collapse
|
4
|
Millership C, Gründling A. Type I Lipoteichoic Acid (LTA) Detection by Western Blot. Methods Mol Biol 2024; 2727:95-106. [PMID: 37815711 DOI: 10.1007/978-1-0716-3491-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Type I lipoteichoic acid (LTA) is a glycerol phosphate polymer found in the cell envelope of diverse Gram-positive bacteria including Staphylococcus aureus, Bacillus subtilis, and Listeria monocytogenes. The polymer is linked by a lipid anchor to the outer leaflet of the bacterial membrane and in some bacteria can also be shed and detected in the culture supernatant. Here, we describe a simple and rapid western blot method for the detection of Type I LTA in bacterial cell extracts and culture supernatant fractions using a polyglycerol phosphate specific monoclonal LTA antibody.
Collapse
Affiliation(s)
- Charlotte Millership
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Angelika Gründling
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology (CBRB), Imperial College London, London, UK.
| |
Collapse
|
5
|
Rismondo J, Gründling A. Type I Lipoteichoic Acid (LTA) Purification by Hydrophobic Interaction Chromatography and Structural Analysis by 2D Nuclear Magnetic Resonance (NMR) Spectroscopy. Methods Mol Biol 2024; 2727:107-124. [PMID: 37815712 DOI: 10.1007/978-1-0716-3491-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Type I lipoteichoic acid (LTA) is a glycerol phosphate polymer found in the cell envelope of diverse Gram-positive bacteria. The glycerol phosphate backbone is often further decorated with D-alanine and/or sugar residues. Here, we provide details of a 1-butanol extraction and purification method of type I LTA by hydrophobic interaction chromatography. The protocol has been adapted from methods originally described by Fischer et al. (Eur J Biochem 133:523-530, 1983) and further optimized by Morath et al. (J Exp Med 193:393-397, 2001). We also present information on a 2D nuclear magnetic resonance (NMR) analysis method to gain chemical and structural information of the purified LTA material.
Collapse
Affiliation(s)
- Jeanine Rismondo
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, GZMB, Göttingen, Germany.
| | - Angelika Gründling
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology (CBRB), Imperial College London, London, UK.
| |
Collapse
|
6
|
Brock KE, Elliott ER, Abul-Khoudoud MO, Cooper RL. The effects of Gram-positive and Gram-negative bacterial toxins (LTA & LPS) on cardiac function in Drosophila melanogaster larvae. JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104518. [PMID: 37119936 DOI: 10.1016/j.jinsphys.2023.104518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
The effects of Gram negative and positive bacterial sepsis depend on the type of toxins released, such as lipopolysaccharides (LPS) or lipoteichoic acid (LTA). Previous studies show LPS to rapidly hyperpolarize larval Drosophila skeletal muscle, followed by desensitization and return to baseline. In larvae, heart rate increased then decreased with exposure to LPS. However, responses to LTA, as well as the combination of LTA and LPS, on the larval Drosophila heart have not been previously examined. This study examined the effects of LTA and a cocktail of LTA and LPS on heart rate. The combined effects were examined by first treating with either LTA or LPS only, and then with the cocktail. The results showed a rapid increase in heart rate upon LTA application, followed by a gradual decline over time. When applying LTA followed by the cocktail, an increase in the rate occurred. However, if LPS was applied before the cocktail, the rate continued declining. These responses indicate the receptors or cellular cascades responsible for controlling heart rate within seconds and the rapid desensitization are affected by LTA or LPS and a combination of the two. The mechanisms for rapid changes which are not regulated by gene expression by exposure to LTA or LPS or associated bacterial peptidoglycans have yet to be identified in cardiac tissues of any organism.
Collapse
Affiliation(s)
- Kaitlyn E Brock
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | - Elizabeth R Elliott
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | | | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| |
Collapse
|
7
|
Park OJ, Ha YE, Sim JR, Lee D, Lee EH, Kim SY, Yun CH, Han SH. Butyrate potentiates Enterococcus faecalis lipoteichoic acid-induced inflammasome activation via histone deacetylase inhibition. Cell Death Discov 2023; 9:107. [PMID: 36977666 PMCID: PMC10050190 DOI: 10.1038/s41420-023-01404-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Enterococcus faecalis, a Gram-positive opportunistic pathogen having lipoteichoic acid (LTA) as a major virulence factor, is closely associated with refractory apical periodontitis. Short-chain fatty acids (SCFAs) are found in the apical lesion and may affect inflammatory responses induced by E. faecalis. In the current study, we investigated inflammasome activation by E. faecalis LTA (Ef.LTA) and SCFAs in THP-1 cells. Among SCFAs, butyrate in combination with Ef.LTA markedly enhanced caspase-1 activation and IL-1β secretion whereas these were not induced by Ef.LTA or butyrate alone. Notably, LTAs from Streptococcus gordonii, Staphylococcus aureus, and Bacillus subtilis also showed these effects. Activation of TLR2/GPCR, K+ efflux, and NF-κB were necessary for the IL-1β secretion induced by Ef.LTA/butyrate. The inflammasome complex comprising NLRP3, ASC, and caspase-1 was activated by Ef.LTA/butyrate. In addition, caspase-4 inhibitor diminished IL-1β cleavage and release, indicating that non-canonical activation of the inflammasome is also involved. Ef.LTA/butyrate induced Gasdermin D cleavage, but not the release of the pyroptosis marker, lactate dehydrogenase. This indicated that Ef.LTA/butyrate induces IL-1β production without cell death. Trichostatin A, a histone deacetylase (HDAC) inhibitor, enhanced Ef.LTA/butyrate-induced IL-1β production, indicating that HDAC is engaged in the inflammasome activation. Furthermore, Ef.LTA and butyrate synergistically induced the pulp necrosis that accompanies IL-1β expression in the rat apical periodontitis model. Taken all these results together, Ef.LTA in the presence of butyrate is suggested to facilitate both canonical- and non-canonical inflammasome activation in macrophages via HDAC inhibition. This potentially contributes to dental inflammatory diseases such as apical periodontitis, particularly associated with Gram-positive bacterial infection.
Collapse
Affiliation(s)
- Ok-Jin Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ye-Eun Ha
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju-Ri Sim
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dongwook Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Hye Lee
- Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Sun-Young Kim
- Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Institutes of Green Bio Science Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Dong W, Chen Y, Zhang Q, Zhao X, Liu P, He H, Lu T, He Y, Du X, Hu J, Zhao X, Zhang Y. Effects of lipoteichoic and arachidonic acids on the immune-regulatory mechanism of bovine mammary epithelial cells using multi-omics analysis. Front Vet Sci 2022; 9:984607. [PMID: 36090174 PMCID: PMC9450935 DOI: 10.3389/fvets.2022.984607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus is one of the most important pathogens causing mastitis in dairy cows. It mainly utilizes the properties of its pathogenic factor, lipoteichoic acid (LTA), to elicit a host-cell inflammatory response and evade the host-cell immune response. Arachidonic acid (AA) has a regulatory role in the inflammatory response, cell metabolism, and apoptosis. The study aimed to establish a cell model by determining the optimal concentration of LTA and AA for cell induction using the Cell Counting Kit−8 assay and the quantitative polymerase chain reaction of interleukin (IL)-1β, IL-2, and IL-6. MAC-T cells were planted in 36 10-cm2 culture dishes at a density of 1 × 107 cells per dish. They were treated with LTA for 24 h to constitute the LTA group and with AA for 12 h to constitute the AA group. The cells were pretreated with LTA for 24 h followed by treatment with AA for 12 h to constitute the LTA + AA group. Using proteomic, transcriptomic, and metabolomic analyses, this study determined that LTA can regulate the expression of Actin Related protein 2/3 complex (ARPC)3, ARPC4, Charged Multivesicular Body Protein 3, protein kinase cGMP-dependent, NF-κB Inhibitor Alpha,and other genes to affect cellular metabolism, immune regulation and promote apoptosis. In contrast, AA was observed to regulate the expression of genes such as ARPC3, ARPC4, Charged Multivesicular Body Protein 3, Laminin Gamma 1, Insulin Receptor, Filamin B, and Casein Kinase 1 Epsilon to inhibit cellular apoptosis and promote immune regulation, which provides a theoretical basis for future studies.
Collapse
Affiliation(s)
- Weitao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
| | - Yan Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
| | - Quanwei Zhang
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoxuan Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
| | - Peiwen Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
| | - Haijian He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
| | - Ting Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
| | - Yuxuan He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
| | - Xianghong Du
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, China
- *Correspondence: Yong Zhang
| |
Collapse
|
9
|
de Vor L, van Dijk B, van Kessel K, Kavanaugh JS, de Haas C, Aerts PC, Viveen MC, Boel EC, Fluit AC, Kwiecinski JM, Krijger GC, Ramakers RM, Beekman FJ, Dadachova E, Lam MGEH, Vogely HC, van der Wal BCH, van Strijp JAG, Horswill AR, Weinans H, Rooijakkers SHM. Human monoclonal antibodies against Staphylococcus aureus surface antigens recognize in vitro and in vivo biofilm. eLife 2022; 11:e67301. [PMID: 34989676 PMCID: PMC8751199 DOI: 10.7554/elife.67301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
Implant-associated Staphylococcus aureus infections are difficult to treat because of biofilm formation. Bacteria in a biofilm are often insensitive to antibiotics and host immunity. Monoclonal antibodies (mAbs) could provide an alternative approach to improve the diagnosis and potential treatment of biofilm-related infections. Here, we show that mAbs targeting common surface components of S. aureus can recognize clinically relevant biofilm types. The mAbs were also shown to bind a collection of clinical isolates derived from different biofilm-associated infections (endocarditis, prosthetic joint, catheter). We identify two groups of antibodies: one group that uniquely binds S. aureus in biofilm state and one that recognizes S. aureus in both biofilm and planktonic state. Furthermore, we show that a mAb recognizing wall teichoic acid (clone 4497) specifically localizes to a subcutaneously implanted pre-colonized catheter in mice. In conclusion, we demonstrate the capacity of several human mAbs to detect S. aureus biofilms in vitro and in vivo.
Collapse
Affiliation(s)
- Lisanne de Vor
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Bruce van Dijk
- Department of Orthopedics, University Medical Centre UtrechtUtrechtNetherlands
| | - Kok van Kessel
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Jeffrey S Kavanaugh
- Department of Immunology and Microbiology, University of Colorado School of MedicineAuroraUnited States
| | - Carla de Haas
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Piet C Aerts
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Marco C Viveen
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Edwin C Boel
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Ad C Fluit
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Jakub M Kwiecinski
- Department of Immunology and Microbiology, University of Colorado School of MedicineAuroraUnited States
| | - Gerard C Krijger
- Department of Radiology and Nuclear Medicine, University Medical Centre UtrechtUtrechtNetherlands
| | - Ruud M Ramakers
- MILabs B.VUtrechtNetherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical CenterUtrechtNetherlands
- Department of Radiation Science and Technology, Delft University of TechnologyDelftNetherlands
| | - Freek J Beekman
- MILabs B.VUtrechtNetherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical CenterUtrechtNetherlands
- Department of Radiation Science and Technology, Delft University of TechnologyDelftNetherlands
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of SaskatchewanSaskatoonCanada
| | - Marnix GEH Lam
- Department of Radiology and Nuclear Medicine, University Medical Centre UtrechtUtrechtNetherlands
| | - H Charles Vogely
- Department of Orthopedics, University Medical Centre UtrechtUtrechtNetherlands
| | - Bart CH van der Wal
- Department of Orthopedics, University Medical Centre UtrechtUtrechtNetherlands
| | - Jos AG van Strijp
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of MedicineAuroraUnited States
- Department of Veterans Affairs, Eastern Colorado Health Care SystemDenverUnited States
| | - Harrie Weinans
- Department of Orthopedics, University Medical Centre UtrechtUtrechtNetherlands
- Department of Biomechanical engineering, TU DelftDelftNetherlands
| | - Suzan HM Rooijakkers
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| |
Collapse
|
10
|
Berni F, Wang L, Kalfopoulou E, Nguyen DL, van der Es D, Huebner J, Overkleeft HS, Hokke CH, van der Marel GA, van Diepen A, Codée JDC. Generation of glucosylated sn-1-glycerolphosphate teichoic acids: glycerol stereochemistry affects synthesis and antibody interaction. RSC Chem Biol 2021; 2:187-191. [PMID: 34458781 PMCID: PMC8341164 DOI: 10.1039/d0cb00206b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/11/2020] [Indexed: 11/21/2022] Open
Abstract
Lipoteichoic acids (LTAs) have been addressed as possible antigen candidates for vaccine development against several opportunistic Gram-positive pathogens. The study of structure-immunogenicity relationship represents a challenge due to the heterogenicity of LTA extracted from native sources. LTAs are built up from glycerol phosphate (GroP) repeating units and they can be substituted at the C-2-OH with carbohydrate appendages or d-alanine residues. The substitution pattern, but also the absolute chirality of the GroP residues can impact the interaction with chiral biomolecules including antibodies and biosynthesis enzymes. We have generated a set of diastereomeric GroP hexamers bearing a glucosyl modification at one of the residues. The chirality of the glycerol building block had an important impact on the stereoselectivity of the glycosylation reaction between the glycosyl donor and the glycerol C-2-OH acceptor. The GroP C-2-chirality also played an important role in the interaction with TA recognizing antibodies. These findings have important implications for the design and synthesis of synthetic TA fragments for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Francesca Berni
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Liming Wang
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Ermioni Kalfopoulou
- Division of Pediatric Infectious Diseases, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich Germany
| | - D Linh Nguyen
- Department of Parasitology, Leiden University Medical Center Albinusdreef 2 2333 ZA Leiden The Netherlands
| | - Daan van der Es
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Johannes Huebner
- Division of Pediatric Infectious Diseases, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich Germany
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center Albinusdreef 2 2333 ZA Leiden The Netherlands
| | | | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center Albinusdreef 2 2333 ZA Leiden The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
11
|
Bharatiya B, Wang G, Rogers SE, Pedersen JS, Mann S, Briscoe WH. Mixed liposomes containing gram-positive bacteria lipids: Lipoteichoic acid (LTA) induced structural changes. Colloids Surf B Biointerfaces 2021; 199:111551. [PMID: 33387794 DOI: 10.1016/j.colsurfb.2020.111551] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/26/2022]
Abstract
Lipoteichoic acid (LTA), a surface associated polymer amphiphile tethered directly to the Gram-positive bacterial cytoplasmic membrane, is a key structural and functional membrane component. Its composition in the membrane is regulated by bacteria under different physiological conditions. How such LTA compositional variations modulate the membrane structural stability and integrity is poorly understood. Here, we have investigated structural changes in mixed liposomes mimicking the lipid composition of Gram-positive bacteria membranes, in which the concentration of Bacillus Subtilis LTA was varied between 0-15 mol%. Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) measurements indicated formation of mixed unilamellar vesicles, presumably stabilized by the negatively charged LTA polyphosphates. The vesicle size increased with the LTA molar concentration up to ∼6.5 mol%, accompanied by a broadened size distribution, and further increasing the LTA concentration led to a decrease in the vesicle size. At 80 °C, SANS analyses showed the formation of larger vesicles with thinner shells. Complementary Cryo-TEM imaging confirmed the vesicle formation and the size increase with LTA addition, as well as the presence of interconnected spherical aggregates of smaller size at higher LTA concentrations. The results are discussed in light of the steric and electrostatic interactions of the bulky LTA molecules with increased chain fluidity at the higher temperature, which affect the molecular packing and interactions, and thus depend on the LTA composition, in the membrane.
Collapse
Affiliation(s)
- Bhavesh Bharatiya
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Gang Wang
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Sarah E Rogers
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Building 1590-252, 8000, Aarhus C, Denmark
| | - Stephen Mann
- Max Planck Bristol Centre for Minimal Biology, Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
12
|
Rismondo J, Haddad TFM, Shen Y, Loessner MJ, Gründling A. GtcA is required for LTA glycosylation in Listeria monocytogenes serovar 1/2a and Bacillus subtilis. ACTA ACUST UNITED AC 2020; 6:100038. [PMID: 32743150 PMCID: PMC7389260 DOI: 10.1016/j.tcsw.2020.100038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/16/2020] [Accepted: 02/11/2020] [Indexed: 11/26/2022]
Abstract
The cell wall polymers wall teichoic acid (WTA) and lipoteichoic acid (LTA) are often modified with glycosyl and D-alanine residues. Recent studies have shown that a three-component glycosylation system is used for the modification of LTA in several Gram-positive bacteria including Bacillus subtilis and Listeria monocytogenes. In the L. monocytogenes 1/2a strain 10403S, the cytoplasmic glycosyltransferase GtlA is thought to use UDP-galactose to produce the C55-P-galactose lipid intermediate, which is transported across the membrane by an unknown flippase. Next, the galactose residue is transferred onto the LTA backbone on the outside of the cell by the glycosyltransferase GtlB. Here we show that GtcA is necessary for the glycosylation of LTA in L. monocytogenes 10403S and B. subtilis 168 and we hypothesize that these proteins act as C55-P-sugar flippases. With this we revealed that GtcA is involved in the glycosylation of both teichoic acid polymers in L. monocytogenes 10403S, namely WTA with N-acetylglucosamine and LTA with galactose residues. These findings indicate that the L. monocytogenes GtcA protein can act on different C55-P-sugar intermediates. Further characterization of GtcA in L. monocytogenes led to the identification of residues essential for its overall function as well as residues, which predominately impact WTA or LTA glycosylation.
Collapse
Affiliation(s)
- Jeanine Rismondo
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Talal F M Haddad
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Yang Shen
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Angelika Gründling
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
13
|
Primary versus post-treatment apical periodontitis: microbial composition, lipopolysaccharides and lipoteichoic acid levels, signs and symptoms. Clin Oral Investig 2020; 24:3169-3179. [PMID: 31933111 DOI: 10.1007/s00784-019-03191-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022]
|
14
|
Foo ACY, Thompson PM, Perera L, Arora S, DeRose EF, Williams J, Mueller GA. Hydrophobic ligands influence the structure, stability, and processing of the major cockroach allergen Bla g 1. Sci Rep 2019; 9:18294. [PMID: 31797892 PMCID: PMC6893020 DOI: 10.1038/s41598-019-54689-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 11/13/2019] [Indexed: 11/09/2022] Open
Abstract
The cockroach allergen Bla g 1 forms a novel fold consisting of 12 amphipathic alpha-helices enclosing an exceptionally large hydrophobic cavity which was previously demonstrated to bind a variety of lipids. Since lipid-dependent immunoactivity is observed in numerous allergens, understanding the structural basis of this interaction could yield insights into the molecular determinants of allergenicity. Here, we report atomic modelling of Bla g 1 bound to both fatty-acid and phospholipids ligands, with 8 acyl chains suggested to represent full stoichiometric binding. This unusually high occupancy was verified experimentally, though both modelling and circular dichroism indicate that the general alpha-helical structure is maintained regardless of cargo loading. Fatty-acid cargoes significantly enhanced thermostability while inhibiting cleavage by cathepsin S, an endosomal protease essential for antigen processing and presentation; the latter of which was found to correlate to a decreased production of known T-cell epitopes. Both effects were strongly dependent on acyl chain length, with 18-20 carbons providing the maximal increase in melting temperature (~20 °C) while completely abolishing proteolysis. Diacyl chain cargoes provided similar enhancements to thermostability, but yielded reduced levels of proteolytic resistance. This study describes how the biophysical properties of Bla g 1 ligand binding and digestion may relate to antigen processing, with potential downstream implications for immunogenicity.
Collapse
Affiliation(s)
- Alexander C Y Foo
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, HHS, Research Triangle Park, NC, 27709, North Carolina, USA
| | - Peter M Thompson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, HHS, Research Triangle Park, NC, 27709, North Carolina, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, HHS, Research Triangle Park, NC, 27709, North Carolina, USA
| | - Simrat Arora
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, HHS, Research Triangle Park, NC, 27709, North Carolina, USA
| | - Eugene F DeRose
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, HHS, Research Triangle Park, NC, 27709, North Carolina, USA
| | - Jason Williams
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, NIH, HHS, Research Triangle Park, NC, 27709, North Carolina, USA
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, HHS, Research Triangle Park, NC, 27709, North Carolina, USA.
| |
Collapse
|
15
|
Sumrall ET, Shen Y, Keller AP, Rismondo J, Pavlou M, Eugster MR, Boulos S, Disson O, Thouvenot P, Kilcher S, Wollscheid B, Cabanes D, Lecuit M, Gründling A, Loessner MJ. Phage resistance at the cost of virulence: Listeria monocytogenes serovar 4b requires galactosylated teichoic acids for InlB-mediated invasion. PLoS Pathog 2019; 15:e1008032. [PMID: 31589660 PMCID: PMC6779246 DOI: 10.1371/journal.ppat.1008032] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/15/2019] [Indexed: 01/13/2023] Open
Abstract
The intracellular pathogen Listeria monocytogenes is distinguished by its ability to invade and replicate within mammalian cells. Remarkably, of the 15 serovars within the genus, strains belonging to serovar 4b cause the majority of listeriosis clinical cases and outbreaks. The Listeria O-antigens are defined by subtle structural differences amongst the peptidoglycan-associated wall-teichoic acids (WTAs), and their specific glycosylation patterns. Here, we outline the genetic determinants required for WTA decoration in serovar 4b L. monocytogenes, and demonstrate the exact nature of the 4b-specific antigen. We show that challenge by bacteriophages selects for surviving clones that feature mutations in genes involved in teichoic acid glycosylation, leading to a loss of galactose from both wall teichoic acid and lipoteichoic acid molecules, and a switch from serovar 4b to 4d. Surprisingly, loss of this galactose decoration not only prevents phage adsorption, but leads to a complete loss of surface-associated Internalin B (InlB),the inability to form actin tails, and a virulence attenuation in vivo. We show that InlB specifically recognizes and attaches to galactosylated teichoic acid polymers, and is secreted upon loss of this modification, leading to a drastically reduced cellular invasiveness. Consequently, these phage-insensitive bacteria are unable to interact with cMet and gC1q-R host cell receptors, which normally trigger cellular uptake upon interaction with InlB. Collectively, we provide detailed mechanistic insight into the dual role of a surface antigen crucial for both phage adsorption and cellular invasiveness, demonstrating a trade-off between phage resistance and virulence in this opportunistic pathogen. L. monocytogenes is a Gram-positive, food-borne, intracellular pathogen that causes severe infection in susceptible individuals. Interestingly, almost all infections are caused by a subset of strains belonging to certain serovars featuring a complex glycosylation pattern on their cell surface. Using an engineered bacteriophage that specifically recognizes these modifications we selected for mutants that lost these sugars. We found that the resulting strains are severely deficient in invading host cells as we observed that a major virulence factor mediating host cell entry requires galactose decoration of the cell surface for its function. Without this galactose decoration, the strain represents a serovar not associated with disease. Altogether, we show a complex interplay between bacteriophages, bacteria, and the host, demonstrating that cellular invasiveness is dependent upon a serovar-defining structure, which also serves as a phage receptor.
Collapse
Affiliation(s)
- Eric T. Sumrall
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Yang Shen
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- * E-mail: (YS); (MJL)
| | - Anja P. Keller
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Jeanine Rismondo
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Maria Pavlou
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Marcel R. Eugster
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Samy Boulos
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Olivier Disson
- Biology of Infection Unit, Institut Pasteur, Paris, France
- Inserm U1117, Paris, France
| | - Pierre Thouvenot
- Biology of Infection Unit, Institut Pasteur, Paris, France
- Inserm U1117, Paris, France
| | - Samuel Kilcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Bernd Wollscheid
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Didier Cabanes
- i3S - Instituto de Investigação e Inovação em Saúde; Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal
| | - Marc Lecuit
- Biology of Infection Unit, Institut Pasteur, Paris, France
- Inserm U1117, Paris, France
- Paris Descartes University, Department of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, APHP, Institut Imagine, Paris, France
| | - Angelika Gründling
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- * E-mail: (YS); (MJL)
| |
Collapse
|
16
|
Golovynska I, Kalmukova O, Svitina HM, Kyryk VM, Shablii VA, Senchylo NV, Ostrovska GV, Dzerzhinskyi M, Stepanov YV, Golovynskyi S, Ohulchanskyy TY, Liu L, Garmanchuk LV, Qu J. Morpho-Functional Characteristics of Bone Marrow Multipotent Mesenchymal Stromal Cells after Activation or Inhibition of Epidermal Growth Factor and Toll-Like Receptors or Treatment with DNA Intercalator Cisplatin. Cytometry A 2018; 95:24-33. [PMID: 30240134 DOI: 10.1002/cyto.a.23593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022]
Abstract
This study is aimed to reveal morphological and functional changes in multipotent mesenchymal stromal cells (MSCs) isolated from the rat bone marrow after: (i) activation of Toll-like receptors (TLRs) with teichoic acid (TA), (ii) impact on epidermal growth factor (EGF) receptors with activator EGF or inhibitor Herceptin, and (iii) treatment with DNA intercalator Cisplatin. According to our results, TA and EGF cause an increase in the synthesis of glycosaminoglycans, c-Myc content, and protein in the MSC cytoplasm. It was observed that the cell population in G0 phase decreased and the cell population in G1 phase increased, when compared with control. At the same time, the cell population with a higher nuclear-cytoplasmic ratio (NCR) in S and G2 phases also increased. This indicates the manifestation of the MSC mesenchymal phenotype, exhibiting indirect metabolic signs of the regenerative potential increase. In other experiments, Herceptin was shown to suppress only the stemness signs of MSCs, while Cisplatin seriously affected cell viability in general, reducing synthetic and proliferative activities and causing cell morphology disturbances. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Iuliia Golovynska
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, People's Republic of China
| | - Olesia Kalmukova
- ESC Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, 01601, Kyiv, Ukraine.,State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, 04114, Kyiv, Ukraine
| | - Hanna M Svitina
- Pharmacen, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Vitaliy M Kyryk
- State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, 04114, Kyiv, Ukraine
| | | | - Nataliya V Senchylo
- ESC Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, 01601, Kyiv, Ukraine
| | - Galyna V Ostrovska
- ESC Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, 01601, Kyiv, Ukraine
| | - Mykola Dzerzhinskyi
- ESC Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, 01601, Kyiv, Ukraine
| | - Yurii V Stepanov
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, People's Republic of China
| | - Sergii Golovynskyi
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, People's Republic of China
| | - Tymish Y Ohulchanskyy
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, People's Republic of China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, People's Republic of China
| | - Liudmila V Garmanchuk
- ESC Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, 01601, Kyiv, Ukraine
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, People's Republic of China
| |
Collapse
|
17
|
Rismondo J, Percy MG, Gründling A. Discovery of genes required for lipoteichoic acid glycosylation predicts two distinct mechanisms for wall teichoic acid glycosylation. J Biol Chem 2018; 293:3293-3306. [PMID: 29343515 PMCID: PMC5836110 DOI: 10.1074/jbc.ra117.001614] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/13/2018] [Indexed: 12/20/2022] Open
Abstract
The bacterial cell wall is an important and highly complex structure that is essential for bacterial growth because it protects bacteria from cell lysis and environmental insults. A typical Gram-positive bacterial cell wall is composed of peptidoglycan and the secondary cell wall polymers, wall teichoic acid (WTA) and lipoteichoic acid (LTA). In many Gram-positive bacteria, LTA is a polyglycerol-phosphate chain that is decorated with d-alanine and sugar residues. However, the function of and proteins responsible for the glycosylation of LTA are either unknown or not well-characterized. Here, using bioinformatics, genetic, and NMR spectroscopy approaches, we found that the Bacillus subtilis csbB and yfhO genes are essential for LTA glycosylation. Interestingly, the Listeria monocytogenes gene lmo1079, which encodes a YfhO homolog, was not required for LTA glycosylation, but instead was essential for WTA glycosylation. LTA is polymerized on the outside of the cell and hence can only be glycosylated extracellularly. Based on the similarity of the genes coding for YfhO homologs that are required in B. subtilis for LTA glycosylation or in L. monocytogenes for WTA glycosylation, we hypothesize that WTA glycosylation might also occur extracellularly in Listeria species. Finally, we discovered that in L. monocytogenes, lmo0626 (gtlB) was required for LTA glycosylation, indicating that the encoded protein has a function similar to that of YfhO, although the proteins are not homologous. Together, our results enable us to propose an updated model for LTA glycosylation and also indicate that glycosylation of WTA might occur through two different mechanisms in Gram-positive bacteria.
Collapse
Affiliation(s)
- Jeanine Rismondo
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Matthew G Percy
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Angelika Gründling
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
18
|
Staphylococcal LTA antagonizes the B cell-mitogenic potential of LPS. Sci Rep 2018; 8:1496. [PMID: 29367683 PMCID: PMC5784022 DOI: 10.1038/s41598-018-19653-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 01/05/2018] [Indexed: 12/21/2022] Open
Abstract
Lipoteichoic acid (LTA) of Gram-positive bacteria is regarded as the counterpart biomolecule of lipopolysaccharide (LPS) of Gram-negative bacteria because of their structural and immunological similarities. Although LPS induces a strong polyclonal expansion of B cells, little is known about the effect of LTA on B cell proliferation. In the present study, we prepared LTAs from Gram-positive bacteria and examined their effect on splenic B cell proliferation. Unlike LPS, LTA did not induce B cell proliferation. Instead, Staphylococcus aureus LTA (Sa.LTA) appeared to inhibit LPS-induced B cell proliferation in vitro, ex vivo, and in vivo models. Such effect was observed neither in splenocytes from Toll-like receptor 2 (TLR2)-deficient mice nor in the purified splenic B cells. Furthermore, decreased ERK phosphorylation appeared to be responsible for this phenomenon. Collectively, our results support that Sa.LTA inhibited LPS-induced B cell proliferation through the decrease of ERK phosphorylation via TLR2 signaling pathway.
Collapse
|
19
|
van der Es D, Hogendorf WFJ, Overkleeft HS, van der Marel GA, Codée JDC. Teichoic acids: synthesis and applications. Chem Soc Rev 2017; 46:1464-1482. [DOI: 10.1039/c6cs00270f] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review describes synthetic strategies to assemble well-defined teichoic acids and their use in unraveling their biological mode of action.
Collapse
Affiliation(s)
- Daan van der Es
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- The Netherlands
| | | | | | | | - Jeroen D. C. Codée
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- The Netherlands
| |
Collapse
|
20
|
Møller ASW, Øvstebø R, Westvik ÅB, Joø GB, Haug KBF, Kierulf P. Effects of bacterial cell wall components (PAMPs) on the expression of monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α) and the chemokine receptor CCR2 by purified human blood monocytes. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519030090060801] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Regulation of chemokine production and the expression of chemokine receptors play an important role during inflammation and infectious diseases. The present study was designed to study the effects of five different bacterial cell wall components (PAMPs) on the production of MCP-1 and MIP-1α and the expression of CCR2 by highly purified human blood monocytes. All five PAMPs induced high expression of mRNA and protein synthesis of both chemokines. Generally, MCP-1 mRNA and protein levels were higher than MIP-1α levels. Expression of MCP-1 and MIP-1α differed both at the mRNA and at the protein levels, MIP-1α always showing a more rapid initial increase, attaining lower protein levels than MCP-1. Antibodies against CD14 significantly inhibited the inducing effects of all the PAMPs used. Antibody against TLR2 inhibited the chemokine production induced by LTA and AraLAM by more than 36% ( P < 0.05) while chemokine production induced by Escherichia coli-LPS, purified E. coli-LPS and Neisseria meningitidis-LPS was inhibited by more than 60% by antibody against TLR4 ( P < 0.05). The inducing effects of all five PAMPs could be inhibited by rIL-4, rIL-10 and rIL-13. rIL-4 was the most effective. Generally, IC50 of these anti-inflammatory cytokines were lower for the MIP-1α than for the MCP-1 production. The cell surface expression of CCR2 was significantly down-regulated by all five PAMPs in addition to a decrease in cytosolic free calcium and binding of rMCP-1. We conclude that MCP-1 and MIP-1α as well as the MCP-1 receptor CCR2 will be substantially regulated upon monocyte contact with various cell wall components (PAMPs) from Gram-negative and Gram-positive bacteria as well as from mycobacteria.
Collapse
Affiliation(s)
- Anne-Sophie W. Møller
- The Research and Development Group, Department of Clinical Chemistry, Ullevaal University Hospital, Oslo, Norway,
| | - Reidun Øvstebø
- The Research and Development Group, Department of Clinical Chemistry, Ullevaal University Hospital, Oslo, Norway
| | - Åse-Brit Westvik
- The Research and Development Group, Department of Clinical Chemistry, Ullevaal University Hospital, Oslo, Norway
| | - Gun Britt Joø
- The Research and Development Group, Department of Clinical Chemistry, Ullevaal University Hospital, Oslo, Norway
| | - Kari-Bente F. Haug
- The Research and Development Group, Department of Clinical Chemistry, Ullevaal University Hospital, Oslo, Norway
| | - Peter Kierulf
- The Research and Development Group, Department of Clinical Chemistry, Ullevaal University Hospital, Oslo, Norway
| |
Collapse
|
21
|
Abstract
The role of lipoteichoic acids (LTAs) from Gram-positive bacteria as immunostimulatory molecules was controversial for many years, as inadequate preparation methods as well as heterogeneous and endotoxin-contaminated commercial preparations led to conflicting results. An improved purification methodology for LTA now yields potent bioactive and chemically defined material, which is currently being characterized in various models. A synthetic analogue of Staphylococcus aureus LTA has proven the structure/function relationship. The key role of D-alanine esters for the immune response of LTA was confirmed by synthetic derivatives. The glycolipid anchor of LTA plays a central role analogous to the lipid A of LPS. Methodological aspects and criteria for quality assessment of LTA preparations are discussed.
Collapse
Affiliation(s)
- Siegfried Morath
- Department of Biochemical Pharmacology, University of Konstanz, Konstanz, Germany, European Center for the Validation of Alternative Methods (ECVAM), Joint Research Center, Ispra, Italy
| | - Sonja von Aulock
- Department of Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | - Thomas Hartung
- Department of Biochemical Pharmacology, University of Konstanz, Konstanz, Germany, , European Center for the Validation of Alternative Methods (ECVAM), Joint Research Center, Ispra, Italy
| |
Collapse
|
22
|
Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2. Arch Pharm Res 2016; 39:1519-1529. [PMID: 27498542 DOI: 10.1007/s12272-016-0804-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/28/2016] [Indexed: 12/29/2022]
Abstract
Lipoteichoic acid (LTA), a major cell wall component of Gram-positive bacteria, is associated with various inflammatory diseases ranging from minor skin diseases to severe sepsis. It is known that LTA is recognized by Toll-like receptor 2 (TLR2), leading to the initiation of innate immune responses and further development of adaptive immunity. However, excessive immune responses may result in the inflammatory sequelae that are involved in severe diseases such as sepsis. Although numerous studies have tried to identify the molecular basis for the pathophysiology of Gram-positive bacterial infection, the exact role of LTA during the infection has not been clearly elucidated. This review provides an overview of LTA structure and host recognition by TLR2 that leads to the activation of innate immune responses. Emphasis is placed on differential immunostimulating activities of LTAs of various Gram-positive bacteria at the molecular level.
Collapse
|
23
|
Identification of a Lipoteichoic Acid Glycosyltransferase Enzyme Reveals that GW-Domain-Containing Proteins Can Be Retained in the Cell Wall of Listeria monocytogenes in the Absence of Lipoteichoic Acid or Its Modifications. J Bacteriol 2016; 198:2029-42. [PMID: 27185829 PMCID: PMC4944223 DOI: 10.1128/jb.00116-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/10/2016] [Indexed: 12/04/2022] Open
Abstract
Listeria monocytogenes is a foodborne Gram-positive bacterial pathogen, and many of its virulence factors are either secreted proteins or proteins covalently or noncovalently attached to the cell wall. Previous work has indicated that noncovalently attached proteins with GW (glycine-tryptophan) domains are retained in the cell wall by binding to the cell wall polymer lipoteichoic acid (LTA). LTA is a glycerol phosphate polymer, which is modified in L. monocytogenes with galactose and d-alanine residues. We identified Lmo0933 as the cytoplasmic glycosyltransferase required for the LTA glycosylation process and renamed the protein GtlA, for glycosyltransferase LTA A. Using L. monocytogenes mutants lacking galactose or d-alanine modifications or the complete LTA polymer, we show that GW domain proteins are retained within the cell wall, indicating that other cell wall polymers are involved in the retention of GW domain proteins. Further experiments revealed peptidoglycan as the binding receptor as a purified GW domain fusion protein can bind to L. monocytogenes cells lacking wall teichoic acid (WTA) as well as purified peptidoglycan derived from a wild-type or WTA-negative strain. With this, we not only identify the first enzyme involved in the LTA glycosylation process, but we also provide new insight into the binding mechanism of noncovalently attached cell wall proteins.
IMPORTANCE Over the past 20 years, a large number of bacterial genome sequences have become available. Computational approaches are used for the genome annotation and identification of genes and encoded proteins. However, the function of many proteins is still unknown and often cannot be predicted bioinformatically. Here, we show that the previously uncharacterized Listeria monocytogenes gene lmo0933 likely codes for a glycosyltransferase required for the decoration of the cell wall polymer lipoteichoic acid (LTA) with galactose residues. Using L. monocytogenes mutants lacking LTA modifications or the complete polymer, we show that specific cell wall proteins, often associated with virulence, are retained within the cell wall, indicating that additional cell wall polymers are involved in their retention.
Collapse
|
24
|
Shiraishi T, Yokota S, Fukiya S, Yokota A. Structural diversity and biological significance of lipoteichoic acid in Gram-positive bacteria: focusing on beneficial probiotic lactic acid bacteria. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2016; 35:147-161. [PMID: 27867802 PMCID: PMC5107633 DOI: 10.12938/bmfh.2016-006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/12/2016] [Indexed: 02/02/2023]
Abstract
Bacterial cell surface molecules are at the forefront of host-bacterium interactions. Teichoic acids are observed only in Gram-positive bacteria, and they are
one of the main cell surface components. Teichoic acids play important physiological roles and contribute to the bacterial interaction with their host. In
particular, lipoteichoic acid (LTA) anchored to the cell membrane has attracted attention as a host immunomodulator. Chemical and biological characteristics of
LTA from various bacteria have been described. However, most of the information concerns pathogenic bacteria, and information on beneficial bacteria, including
probiotic lactic acid bacteria, is insufficient. LTA is structurally diverse. Strain-level structural diversity of LTA is suggested to underpin its
immunomodulatory activities. Thus, the structural information on LTA in probiotics, in particular strain-associated diversity, is important for understanding
its beneficial roles associated with the modulation of immune response. Continued accumulation of structural information is necessary to elucidate the detailed
physiological roles and significance of LTA. In this review article, we summarize the current state of knowledge on LTA structure, in particular the structure
of LTA from lactic acid bacteria. We also describe the significance of structural diversity and biological roles of LTA.
Collapse
Affiliation(s)
- Tsukasa Shiraishi
- Department of Microbiology, Sapporo Medical University School of Medicine, Minami 1 Nishi 17, Chuo-ku, Sapporo, Hokkaido 060-8556, Japan
| | - Shinichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Minami 1 Nishi 17, Chuo-ku, Sapporo, Hokkaido 060-8556, Japan
| | - Satoru Fukiya
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Atsushi Yokota
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
25
|
North SH, Taitt CR. Application of circular dichroism for structural analysis of surface-immobilized cecropin A interacting with lipoteichoic acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10791-10798. [PMID: 26362347 DOI: 10.1021/acs.langmuir.5b02600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The development of biomaterials integrating antimicrobial peptides (AMPs) for improved pathogen detection or use as therapeutic agents requires an understanding of how a peptide may behave once immobilized. Here, we use a combination of circular dichroism and capture assays to assess the structure-function relationship of the cationic amphipathic AMP, cecropin A (cecA), upon interaction with Gram-positive lipoteichoic acids (LTAs). In solution, cecA peptides underwent a change from a largely unstructured conformation in water to structures with significant α-helical content in the presence of both Bacillus subtilis and Staphylococcus aureus LTAs. After surface immobilization, cecA peptides attached by either C- or N-terminus were able to capture both LTAs as well as to undergo conformational changes in the presence of SDS similar to those observed in solution. However, in spite of demonstrated LTA binding activity and the ability to undergo conformational changes (i.e., with SDS), no structural changes were observed when cecA immobilized by its N-terminus was treated with either LTA preparation. On the other hand, cecA immobilized by its C-terminus underwent a conformational change in the presence of S. aureus, but not B. subtilis, LTA. These results indicate that after immobilization recognition of different targets by cationic AMPs may occur by mechanisms quite different from those in solution and that selectivity of these mechanisms is further dependent on the orientation of the immobilized peptide.
Collapse
Affiliation(s)
- Stella H North
- Center for Biomolecular Science & Engineering, Naval Research Laboratory , 4555 Overlook Avenue, SW, Washington, D.C. 20375, United States
| | - Chris R Taitt
- Center for Biomolecular Science & Engineering, Naval Research Laboratory , 4555 Overlook Avenue, SW, Washington, D.C. 20375, United States
| |
Collapse
|
26
|
Gimenes I, Caldeira C, Presgrave OAF, Moura WCD, Villas Boas MHS. Assessment of pyrogenic response of lipoteichoic acid by the monocyte activation test and the rabbit pyrogen test. Regul Toxicol Pharmacol 2015; 73:356-60. [DOI: 10.1016/j.yrtph.2015.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 06/30/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
|
27
|
Im J, Baik JE, Kim KW, Kang SS, Jeon JH, Park OJ, Kim HY, Kum KY, Yun CH, Han SH. Enterococcus faecalis lipoteichoic acid suppresses Aggregatibacter actinomycetemcomitans lipopolysaccharide-induced IL-8 expression in human periodontal ligament cells. Int Immunol 2015; 27:381-91. [PMID: 25840438 DOI: 10.1093/intimm/dxv016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/30/2015] [Indexed: 12/13/2022] Open
Abstract
Periodontitis is caused by multi-bacterial infection and Aggregatibacter actinomycetemcomitans and Enterococcus faecalis are closely associated with inflammatory periodontal diseases. Although lipopolysaccharide (LPS) of A. actinomycetemcomitans (Aa.LPS) and lipoteichoic acid of E. faecalis (Ef.LTA) are considered to be major virulence factors evoking inflammatory responses, their combinatorial effect on the induction of chemokines has not been investigated. In this study, we investigated the interaction between Aa.LPS and Ef.LTA on IL-8 expression in human periodontal ligament (PDL) cells. Aa.LPS, but not Ef.LTA, substantially induced IL-8 expression at the protein and mRNA levels. Interestingly, Ef.LTA suppressed Aa.LPS-induced IL-8 expression without affecting the binding of Aa.LPS to Toll-like receptor (TLR) 4. Ef.LTA reduced Aa.LPS-induced phosphorylation of mitogen-activated protein kinases, including ERK, JNK and p38 kinase. Furthermore, Ef.LTA inhibited the Aa.LPS-induced transcriptional activities of the activating protein 1, CCAAT/enhancer-binding protein and nuclear factor-kappa B transcription factors, all of which are known to regulate IL-8 gene expression. Ef.LTA augmented the expression of IL-1 receptor-associated kinase-M (IRAK-M), a negative regulator of TLR intracellular signaling pathways, in the presence of Aa.LPS at both the mRNA and protein levels. Small interfering RNA silencing IRAK-M reversed the attenuation of Aa.LPS-induced IL-8 expression by Ef.LTA. Collectively, these results suggest that Ef.LTA down-regulates Aa.LPS-induced IL-8 expression in human PDL cells through up-regulation of the negative regulator IRAK-M.
Collapse
Affiliation(s)
- Jintaek Im
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Jung Eun Baik
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Kyoung Whun Kim
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Seok-Seong Kang
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Jun Ho Jeon
- Division of High-risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Osong 363-951, Republic of Korea
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Hyun Young Kim
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Kee-Yeon Kum
- Department of Conservative Dentistry and DRI, School of Dentistry, Seoul National University, Seoul 110-768, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| |
Collapse
|
28
|
Hatano S, Hirose Y, Yamamoto Y, Murosaki S, Yoshikai Y. Scavenger receptor for lipoteichoic acid is involved in the potent ability of Lactobacillus plantarum strain L-137 to stimulate production of interleukin-12p40. Int Immunopharmacol 2015; 25:321-31. [PMID: 25698554 DOI: 10.1016/j.intimp.2015.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/07/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
Heat-killed Lactobacillus plantarum strain L-137 (HK L-137) is a more potent inducer of interleukin (IL)-12 than other heat-killed Lactobacillus strains. To elucidate the mechanism involved in this IL-12p40 induction, we compared HK L-137 with heat-killed L. plantarum strain JCM1149 (HK JCM1149) by nuclear magnetic resonance and mass spectrometry. Results showed that HK L-137 contained lipoteichoic acid (LTA) with a chemical structure similar to that of JCM1149, except for a lower degree of glucosyl substitution in the poly(glycerol phosphate) backbone. Lysozyme sensitivity and electrophoretic moiety analysis revealed that HK L-137 exposed more LTA on its cell surface than HK JCM1149. Phagocytosis of HK L-137 by splenic adherent cells was significantly greater than that of HK JCM1149. Anti-LTA antibody and anti-scavenger receptor-A (SR-A) antibody selectively inhibited phagocytosis of HK L-137, as well as IL-12p40 production, by splenic adherent cells. Thus, a higher efficiency of phagocytosis of HK L-137 via SR-A for LTA is responsible for the potent IL-12p40 induction.
Collapse
Affiliation(s)
- Shinya Hatano
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshitaka Hirose
- Research and Development Institute, House Wellness Foods Corporation, 3-20 Imoji, Itami, Hyogo 664-0011, Japan
| | - Yoshihiro Yamamoto
- Research and Development Institute, House Wellness Foods Corporation, 3-20 Imoji, Itami, Hyogo 664-0011, Japan
| | - Shinji Murosaki
- Research and Development Institute, House Wellness Foods Corporation, 3-20 Imoji, Itami, Hyogo 664-0011, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
29
|
Skovbakke SL, Larsen CJ, Heegaard PMH, Moesby L, Franzyk H. Lipidated α-peptide/β-peptoid hybrids with potent anti-inflammatory activity. J Med Chem 2014; 58:801-13. [PMID: 25489798 DOI: 10.1021/jm501341h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study, we investigated, optimized, and characterized a novel subclass of host defense peptide (HDP) mimics based on α-peptide/β-peptoid hybrid oligomers with an alternating cationic/hydrophobic design with respect to their ability to modulate the pro-inflammatory response by human primary leukocytes upon exposure to bacterial components. Structure-activity studies revealed that certain lipidated α-peptide/β-peptoid hybrid oligomers possess anti-inflammatory activities in the submicromolar range with low cytotoxicity, and that the anti-inflammatory activity of the HDP mimics is dependent on the length and position of the lipid element(s). The resulting lead compound, Pam-(Lys-βNSpe)6-NH2, blocks LPS-induced cytokine secretion with a potency comparable to that of polymyxin B. The mode of action of this HDP mimic appears not to involve direct LPS interaction since it, in contrast to polymyxin B, displayed only minor activity in the Limulus amebocyte lysate assay. Flow cytometry data showed specific interaction of a fluorophore-labeled lipidated α-peptide/β-peptoid hybrid with monocytes and granulocytes indicating a cellular target expressed by these leukocyte subsets.
Collapse
Affiliation(s)
- Sarah L Skovbakke
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
30
|
Triantafilou M, Mouratis MA, Lepper PM, Haston RM, Baldwin F, Lowes S, Ahmed MAE, Schumann C, Boyd O, Triantafilou K. Serum proteins modulate lipopolysaccharide and lipoteichoic acid-induced activation and contribute to the clinical outcome of sepsis. Virulence 2014; 3:136-45. [DOI: 10.4161/viru.19077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
31
|
Villéger R, Saad N, Grenier K, Falourd X, Foucat L, Urdaci MC, Bressollier P, Ouk TS. Characterization of lipoteichoic acid structures from three probiotic Bacillus strains: involvement of D-alanine in their biological activity. Antonie van Leeuwenhoek 2014; 106:693-706. [PMID: 25090957 PMCID: PMC4158176 DOI: 10.1007/s10482-014-0239-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/17/2014] [Indexed: 02/02/2023]
Abstract
Probiotics represent a potential strategy to influence the host’s immune system thereby modulating immune response. Lipoteichoic Acid (LTA) is a major immune-stimulating component of Gram-positive cell envelopes. This amphiphilic polymer, anchored in the cytoplasmic membrane by means of its glycolipid component, typically consists of a poly (glycerol-phosphate) chain with d-alanine and/or glycosyl substitutions. LTA is known to stimulate macrophages in vitro, leading to secretion of inflammatory mediators such as Nitric Oxide (NO). This study investigates the structure–activity relationship of purified LTA from three probiotic Bacillus strains (Bacillus cereus CH, Bacillus subtilis CU1 and Bacillus clausii O/C). LTAs were extracted from bacterial cultures and purified. Chemical modification by means of hydrolysis at pH 8.5 was performed to remove d-alanine. The molecular structure of native and modified LTAs was determined by 1H NMR and GC–MS, and their inflammatory potential investigated by measuring NO production by RAW 264.7 macrophages. Structural analysis revealed several differences between the newly characterized LTAs, mainly relating to their d-alanylation rates and poly (glycerol-phosphate) chain length. We observed induction of NO production by LTAs from B. subtilis and B. clausii, whereas weaker NO production was observed with B. cereus. LTA dealanylation abrogated NO production independently of the glycolipid component, suggesting that immunomodulatory potential depends on d-alanine substitutions. d-alanine may control the spatial configuration of LTAs and their recognition by cell receptors. Knowledge of molecular mechanisms behind the immunomodulatory abilities of probiotics is essential to optimize their use.
Collapse
Affiliation(s)
- Romain Villéger
- Laboratoire de Chimie des Substances Naturelles, EA 1069, Antenne IUT, Département Génie Biologique, Allée André Maurois, 87065, Limoges, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Gutiérrez-Venegas G, Ventura-Arroyo JA, Arreguín-Cano JA, Ostoa-Pérez MF. Flavonoids inhibit iNOS production via mitogen activated proteins in lipoteichoic acid stimulated cardiomyoblasts. Int Immunopharmacol 2014; 21:320-7. [PMID: 24768712 DOI: 10.1016/j.intimp.2014.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/25/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
Abstract
Infective endocarditis is caused by oral commensal bacteria which are important etiologic agents in this disease and can induce release of nitric oxide (NO), promoting an inflammatory response in the endocardium. In this study, we investigated the properties of kaempherol, epigallocatechin, apigenin, and naringin in embryonic mouse heart cells (H9c2) treated with lipoteichoic acid (LTA) obtained from Streptococcus sanguinis. NO production was measured with the Griess method. Expression of inducible nitric oxide synthase (iNOS) was detected by reverse transcriptase polymerase chain reaction (RT-PCR). In addition, western blot assays and immunofluorescence staining were used to assess translocation of nuclear factor kappa beta (NF-κB), degradation of IκB, and activity of the mitogen activated protein (MAP) kinases extracellular signal-regulated kinase (ERK 1/2), p38, and c-Jun N-terminal kinase (JNK). And the effects of these flavonoids on cell viability were also assessed. Our results showed that flavonoids blocked activation of ERK, JNK, and p38 in cardiomyocytes treated with LTA. Moreover, the flavonoids showed no cytotoxic effects and blocked NF-κB translocation and IκB degradation and inhibited LTA-induced NF-κB promoter activity, iNOS expression and NO production. In conclusion these effects are consistent with some of the observed anti-inflammatory properties of other flavonoids.
Collapse
Affiliation(s)
- Gloria Gutiérrez-Venegas
- Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D.F., Mexico.
| | - Jairo Agustín Ventura-Arroyo
- Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D.F., Mexico
| | - Juan Antonio Arreguín-Cano
- Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D.F., Mexico
| | - María Fernanda Ostoa-Pérez
- Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D.F., Mexico
| |
Collapse
|
33
|
Ahn KB, Jeon JH, Baik JE, Park OJ, Kang SS, Yun CH, Park JH, Han SH. Muramyl dipeptide potentiates staphylococcal lipoteichoic acid induction of cyclooxygenase-2 expression in macrophages. Microbes Infect 2014; 16:153-60. [DOI: 10.1016/j.micinf.2013.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 10/01/2013] [Accepted: 10/25/2013] [Indexed: 01/01/2023]
|
34
|
Lipoteichoic acids, phosphate-containing polymers in the envelope of gram-positive bacteria. J Bacteriol 2014; 196:1133-42. [PMID: 24415723 DOI: 10.1128/jb.01155-13] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lipoteichoic acids (LTA) are polymers of alternating units of a polyhydroxy alkane, including glycerol and ribitol, and phosphoric acid, joined to form phosphodiester units that are found in the envelope of Gram-positive bacteria. Here we review four different types of LTA that can be distinguished on the basis of their chemical structure and describe recent advances in the biosynthesis pathway for type I LTA, d-alanylated polyglycerol-phosphate linked to di-glucosyl-diacylglycerol. The physiological functions of type I LTA are discussed in the context of inhibitors that block their synthesis and of mutants with discrete synthesis defects. Research on LTA structure and function represents a large frontier that has been investigated in only few Gram-positive bacteria.
Collapse
|
35
|
Hong SW, Baik JE, Kang SS, Yun CH, Seo DG, Han SH. Lipoteichoic acid of Streptococcus mutans interacts with Toll-like receptor 2 through the lipid moiety for induction of inflammatory mediators in murine macrophages. Mol Immunol 2013; 57:284-91. [PMID: 24216318 DOI: 10.1016/j.molimm.2013.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 11/26/2022]
Abstract
Streptococcus mutans is a pathogenic Gram-positive bacterium that is closely associated with dental caries and subsequent pulpal inflammation. Although lipoteichoic acid (LTA) is considered a major virulence factor of Gram-positive bacteria, little is known about the innate immunity to S. mutans LTA. In this study, we purified LTA from S. mutans (Sm.LTA) through n-butanol extraction, hydrophobic interaction column chromatography, and ion-exchange column chromatography to investigate its immunological properties using murine macrophages. The Sm.LTA preparation had no detectable contamination with endotoxins, proteins, or nucleic acids. Upon exposure to Sm.LTA, the murine macrophage cell-line RAW 264.7 cells produced TNF-α and nitric oxide (NO) in a dose-dependent manner. Sm.LTA preferentially bound to and activated CHO/CD14/TLR2 cells rather than CHO/CD14/TLR4 cells, which are stable transfectants expressing CD14 and TLR2 or CD14 and TLR4, respectively. Sm.LTA could not induce TNF-α or NO production in macrophages derived from TLR2-deficient mice whereas it dose-dependently induced those inflammatory mediators in wild-type macrophages. TLR2-dependent induction of NO by Sm.LTA was also confirmed in RAW 264.7 cells using specific antibodies blocking TLR2. Furthermore, Sm.LTA deacylated by alkaline hydrolysis neither stimulated TLR2 nor induced TNF-α or NO production, suggesting that Sm.LTA lipid moieties are crucial for the immuno-stimulatory activity of Sm.LTA. Unlike Staphylococcus aureus LTA, which has potent immuno-stimulating activity, Sm.LTA showed a modest induction of NO production comparable to LTAs of other oral bacteria Enterococcus faecalis and Lactobacillus plantarum. In conclusion, our results suggest that the Sm.LTA interacts with TLR2 through the lipid moiety for the induction of inflammatory mediators in macrophages.
Collapse
Affiliation(s)
- Sun Woong Hong
- Department of Oral Microbiology and Immunology, DRI, and BK21 Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | | | | | | | | | | |
Collapse
|
36
|
Park OJ, Han JY, Baik JE, Jeon JH, Kang SS, Yun CH, Oh JW, Seo HS, Han SH. Lipoteichoic acid of Enterococcus faecalis induces the expression of chemokines via TLR2 and PAFR signaling pathways. J Leukoc Biol 2013; 94:1275-84. [PMID: 23964117 DOI: 10.1189/jlb.1012522] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Enterococcus faecalis is one of the most common opportunistic pathogens responsible for nosocomial infections, and its LTA is known as an important virulence factor causing inflammatory responses. As chemokines play a key role in inflammatory diseases by triggering leukocyte infiltration into the infection site, we purified EfLTA and investigated its effect on the expression of chemokines, IP-10, MIP-1α, and MCP-1, in murine macrophages. EfLTA induced the expression of these chemokines at the mRNA and protein levels. TLR2, CD14, and MyD88 were involved in the EfLTA-induced chemokine expression, as the expression was reduced remarkably in macrophages derived from TLR2-, CD14-, or MyD88-deficient mice. EfLTA induced phosphorylation of MAPKs and enhanced the DNA-binding activity of NF-κB, AP-1, and NF-IL6 transcription factors. The induction of IP-10 required ERK, JNK, p38 MAPK, PKC, PTK, PI3K, and ROS. We noticed that all of these signaling molecules, except p38 MAPK and ROS, were indispensable for the induction of MCP-1 and MIP-1α. Interestingly, the EfLTA-induced chemokine expression was mediated through PAFR/JAK/STAT1 signaling pathways without IFN-β involvement, which is different from LPS-induced chemokine expression requiring IFN-β/JAK/STAT1 signaling pathways. Furthermore, the culture supernatant of EfLTA-treated RAW 264.7 cells promoted the platelet aggregation, and exogenous PAF induced the chemokine expression in macrophages derived from WT and TLR2-deficient mice. These results suggest that EfLTA induces the expression of chemokines via signaling pathways requiring TLR2 and PAFR, which is distinct from that of LPS-induced chemokine expression.
Collapse
Affiliation(s)
- Ok-Jin Park
- 1.DRI, and BK21 Program, School of Dentistry, Seoul National University, 28 Yongon-Dong, Chongno-Gu, Seoul 110-749, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schirbel A, Kessler S, Rieder F, West G, Rebert N, Asosingh K, McDonald C, Fiocchi C. Pro-angiogenic activity of TLRs and NLRs: a novel link between gut microbiota and intestinal angiogenesis. Gastroenterology 2013; 144:613-623.e9. [PMID: 23149220 PMCID: PMC3578104 DOI: 10.1053/j.gastro.2012.11.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 10/12/2012] [Accepted: 11/07/2012] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS In intestinal inflammation the gut microbiota induces an innate immune response by activating epithelial and immune cells that initiate or maintain inflammation. We investigated whether the microbiota also can activate local microvascular cells and induce angiogenesis. METHODS Human intestinal microvascular endothelial cells (HIMEC) and human intestinal fibroblasts (HIF) were exposed to bacterial ligands specific for Toll-like receptor (TLR)2/6 and 4, and NOD1 and NOD2, and cell proliferation, migration, transmigration, tube formation, and production of pro-angiogenic factors were measured. The ability of the ligands to induce ex vivo vessel sprouting in an aortic ring assay and in vivo angiogenesis using a collagen gel assay also were assessed. RESULTS Bacterial ligands induced proliferation, migration, transmigration, tube formation of HIMEC, vessel sprouting, and in vivo angiogenesis; they also stimulated production of angiogenic factors from HIMEC and HIF, and HIF-derived angiogenic factors promoted HIMEC proliferation. To various degrees, all ligands induced angiogenic responses, but these were ligand- and cell type-dependent. Responses were mediated through receptor interacting protein-2 (RIP2)- and tumor necrosis factor receptor-associated factor 6 (TRAF6)-dependent signaling, involved the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways and the up-regulation of vascular endothelial growth factor receptor 2 (VEGF-R2) and focal adhesion kinase (FAK). Knockdown of RIP2 and TRAF6 by RNA interference and neutralization of interleukin-8, basic fibroblast growth factor, and vascular endothelial growth factor inhibited TLR-/NOD-like receptor-induced HIMEC angiogenesis. CONCLUSIONS The gut microbiota can selectively activate mucosal endothelial and mesenchymal cells to promote specific angiogenic responses in a TLR- and NOD-like receptor-dependent fashion. This innate immunity-mediated response may expand the mucosal microvascular network, foster immune cell recruitment, and contribute to chronic intestinal inflammation.
Collapse
Affiliation(s)
- Anja Schirbel
- Department of Pathobiology, Lerner Research Institute Cleveland Clinic Foundation, Cleveland, USA,Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charité -Universitätsmedizin, Berlin, Germany
| | - Sean Kessler
- Department of Pathobiology, Lerner Research Institute Cleveland Clinic Foundation, Cleveland, USA
| | - Florian Rieder
- Department of Pathobiology, Lerner Research Institute Cleveland Clinic Foundation, Cleveland, USA,Department of Gastroenterology, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, USA
| | - Gail West
- Department of Pathobiology, Lerner Research Institute Cleveland Clinic Foundation, Cleveland, USA
| | - Nancy Rebert
- Department of Pathobiology, Lerner Research Institute Cleveland Clinic Foundation, Cleveland, USA
| | - Kewal Asosingh
- Department of Pathobiology, Lerner Research Institute Cleveland Clinic Foundation, Cleveland, USA
| | - Christine McDonald
- Department of Pathobiology, Lerner Research Institute Cleveland Clinic Foundation, Cleveland, USA
| | - Claudio Fiocchi
- Department of Pathobiology, Lerner Research Institute Cleveland Clinic Foundation, Cleveland, USA,Department of Gastroenterology, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, USA
| |
Collapse
|
38
|
Bacterial cell wall macroamphiphiles: Pathogen-/microbe-associated molecular patterns detected by mammalian innate immune system. Biochimie 2013; 95:33-42. [DOI: 10.1016/j.biochi.2012.06.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/06/2012] [Indexed: 02/02/2023]
|
39
|
Claes IJJ, Segers ME, Verhoeven TLA, Dusselier M, Sels BF, De Keersmaecker SCJ, Vanderleyden J, Lebeer S. Lipoteichoic acid is an important microbe-associated molecular pattern of Lactobacillus rhamnosus GG. Microb Cell Fact 2012; 11:161. [PMID: 23241240 PMCID: PMC3537616 DOI: 10.1186/1475-2859-11-161] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/05/2012] [Indexed: 01/01/2023] Open
Abstract
Background Probiotic bacteria are increasingly used as immunomodulatory agents. Yet detailed molecular knowledge on the immunomodulatory molecules of these bacteria is lagging behind. Lipoteichoic acid (LTA) is considered a major microbe-associated molecular pattern (MAMP) of Gram-positive bacteria. However, many details and quantitative data on its immune signalling capacity are still unknown, especially in beneficial bacteria. Recently, we have demonstrated that a dltD mutant of the model probiotic Lactobacillus rhamnosus GG (LGG), having modified LTA molecules, has an enhanced probiotic efficacy in a DSS-induced colitis model as compared to wild-type. Results In this study, the importance of D-alanylated and acylated LTA for the pro-inflammatory activity of LGG was studied in vitro. Purified native LTA of LGG wild-type exhibited a concentration-dependent activation of NF-κB signalling in HEK293T cells after interaction with TLR2/6, but not with TLR2 alone. Chemical deacylation of LTA interfered with the TLR2/6 interaction, while a moderate effect was observed with chemical dealanylation. Similarly, the dltD mutant of LGG exhibited a significantly reduced capacity to activate TLR2/6-dependent NF-κB signalling in a HEK293T reporter cell line compared to wild-type. In addition, the dltD mutant of LGG showed a reduced induction of mRNA of the chemokine IL-8 in the Caco-2 epithelial cell line compared to wild-type. Experiments with highly purified LTA of LGG confirmed that LTA is a crucial factor for IL-8 mRNA induction in Caco-2 epithelial cells. Chemical dealanylation and deacylation reduced IL-8 mRNA expression. Conclusions Taken together, our results indicate that LTA of LGG is a crucial MAMP with pro-inflammatory activities such as IL-8 induction in intestinal epithelial cells and NF-κB induction in HEK293T cells via TLR2/6 interaction. The lipid chains of LGG LTA are needed for these activities, while also the D-alanine substituents are important, especially for IL-8 induction in Caco-2 cells.
Collapse
Affiliation(s)
- Ingmar J J Claes
- Centre of Microbial and Plant Genetics, K U Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sigel S, Bunk S, Meergans T, Doninger B, Stich K, Stulnig T, Derfler K, Hoffmann J, Deininger S, von Aulock S, Knapp S. Apolipoprotein B100 is a suppressor of Staphylococcus aureus-induced innate immune responses in humans and mice. Eur J Immunol 2012; 42:2983-9. [PMID: 22806614 DOI: 10.1002/eji.201242564] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/13/2012] [Accepted: 07/11/2012] [Indexed: 11/05/2022]
Abstract
Plasma lipoproteins such as LDL (low-density lipoprotein) are important therapeutic targets as they play a crucial role in macrophage biology and metabolic disorders. The impact of lipoprotein profiles on host defense pathways against Gram-positive bacteria is poorly understood. In this report, we discovered that human serum lipoproteins bind to lipoteichoic acid (LTA) from Staphylococcus aureus and thereby alter the immune response to these bacteria. Size-exclusion chromatography and solid-phase-binding analysis of serum revealed the direct interaction of LTA with apolipoproteins (Apo) B100, ApoA1, and ApoA2. Only ApoB100 and the corresponding LDL exerted biological effects as this binding significantly inhibited LTA-induced cytokine releases from human and murine immune cells. Serum from hypercholesterolemic mice or humans significantly diminished cytokine induction in response to S. aureus or its LTA. Sera taken from the patients with familial hypercholesterolemia before and after ApoB100-directed immuno-apheresis confirmed that ApoB100 inhibited LTA-induced inflammation in humans. In addition, mice in which LDL secretion was pharmacologically inhibited, displayed significantly increased serum cytokine levels upon infection with S. aureus in vivo. The present study identifies ApoB100 as an important suppressor of innate immune activation in response to S. aureus and its LTA.
Collapse
Affiliation(s)
- Stefanie Sigel
- Research Center for Molecular Medicine of Austrian Academy of Sciences, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hogendorf W, Kropec A, Filippov D, Overkleeft H, Huebner J, van der Marel G, Codée J. Light fluorous synthesis of glucosylated glycerol teichoic acids. Carbohydr Res 2012; 356:142-51. [DOI: 10.1016/j.carres.2012.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/24/2012] [Indexed: 01/08/2023]
|
42
|
Rockel C, Hartung T. Systematic review of membrane components of gram-positive bacteria responsible as pyrogens for inducing human monocyte/macrophage cytokine release. Front Pharmacol 2012; 3:56. [PMID: 22529809 PMCID: PMC3328207 DOI: 10.3389/fphar.2012.00056] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/17/2012] [Indexed: 01/01/2023] Open
Abstract
Fifty years after the elucidation of lipopolysaccharides (LPS, endotoxin) as the principal structure of Gram-negative bacteria activating the human immune system, its Gram-positive counterpart is still under debate. Pyrogen tests based on the human monocyte activation have been validated for LPS detection as an alternative to the rabbit test and, increasingly, the limulus amebocyte lysate test. For full replacement, international validations with non-endotoxin pyrogens are in preparation. Following evidence-based medicine approaches, a systematic review of existing evidence as to the structural nature of the Gram-positive pyrogen was undertaken. For the three major constituents suggested, i.e., peptidoglycan, lipoteichoic acids (LTA), and bacterial lipoproteins (LP), the questions to be answered and a search strategy for relevant literature was developed, starting in MedLine. The evaluation was based on the Koch–Dale criteria for a mediator of an effect. A total of 380 articles for peptidoglycan, 391 for LP, and 285 for LTA were retrieved of which 12, 8, and 24, respectively, fulfilled inclusion criteria. The compiled data suggest that for peptidoglycan two Koch–Dale criteria are fulfilled, four for LTA, and two for bacterial LP. In conclusion, based on the best currently available evidence, LTA is the only substance that fulfills all criteria. LTA has been isolated from a large number of bacteria, results in cytokine release patterns inducible also with synthetic LTA. Reduction in bacterial cytokine induction with an inhibitor for LTA was shown. However, this systematic review cannot exclude the possibility that other stimulatory compounds complement or substitute for LTA in being the counterpart to LPS in some Gram-positive bacteria.
Collapse
Affiliation(s)
- Christoph Rockel
- Biochemical Pharmacology, University of Konstanz Konstanz, Germany
| | | |
Collapse
|
43
|
The innate immune response of the bovine mammary gland to bacterial infection. Vet J 2012; 192:148-52. [PMID: 22498784 DOI: 10.1016/j.tvjl.2011.09.013] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 09/16/2011] [Accepted: 09/21/2011] [Indexed: 01/18/2023]
Abstract
Intra-mammary (IM) bacterial infection in cattle can result in clinical outcomes that range from being acute and life-threatening to those that are chronic and sub-clinical. The typical bacteria involved in IM bacterial infections activate the mammary immune system in different ways which can influence the severity of the outcome. A clear understanding of the mechanisms that activate and regulate this response is central to the development of effective preventative and treatment regimes. This review focuses on the different immune responses of the bovine mammary gland to common mastitis-causing pathogens. There is special emphasis on comparing the responses to Escherichia coli and Staphylococcus aureus infections, as these are typically associated, respectively, with acute/severe and chronic/sub-clinical forms of the disease.
Collapse
|
44
|
Park HY, Song JW, Hong SP, In SM, Kim HJ. Lipoteichoic acid from Staphylococcus aureus induced expression of MMP-9 in human middle ear epithelial cells. Int J Pediatr Otorhinolaryngol 2012; 76:475-9. [PMID: 22305687 DOI: 10.1016/j.ijporl.2011.12.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 12/28/2011] [Accepted: 12/28/2011] [Indexed: 10/14/2022]
Abstract
OBJECTIVE Change in matrix metalloproteinases (MMPs) and regulation of their tissue inhibitors of metalloproteinases (TIMPs) could play certain role in the pathogenesis of otitis media. This study was designed to evaluate the modulation of MMPs and TIMPs in middle ear epithelium by lipoteichoic acid (LTA) isolated from Staphylococcus aureus. METHODS Human middle ear epithelial (HMEE) cells were treated with LTA. MMP activities were examined by PCR, ELISA and zymography, and levels of TIMPs were measured by PCR and ELISA. RESULTS LTA isolated from S. aureus increased MMP-9 mRNA expression and secretion in HMEE cells, whereas no effect on the expressions of MMP-1, -2, -3, -7 and TIMP-1, -2 was observed. CONCLUSIONS LTA increased the activity of MMP-9, not TIMPs in middle ear epithelia, suggesting that disturbed balance between MMP-9 and TIMPs could play an active role in LTA-induced otitis media.
Collapse
Affiliation(s)
- Hun Yi Park
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | | | | | | | | |
Collapse
|
45
|
Reid CW, Vinogradov E, Li J, Jarrell HC, Logan SM, Brisson JR. Structural characterization of surface glycans from Clostridium difficile. Carbohydr Res 2012; 354:65-73. [PMID: 22560631 DOI: 10.1016/j.carres.2012.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/23/2012] [Accepted: 02/09/2012] [Indexed: 12/11/2022]
Abstract
Whole-cell high-resolution magic angle spinning (HR-MAS) NMR was employed to survey the surface polysaccharides of a group of clinical and environmental isolates of Clostridium difficile. Results indicated that a highly conserved surface polysaccharide profile among all strains studied. Multiple additional peaks in the anomeric region were also observed which prompted further investigation. Structural characterization of the isolated surface polysaccharides from two strains confirmed the presence of the conserved water soluble polysaccharide originally described by Ganeshapillai et al. which was composed of a hexaglycosyl phosphate repeat consisting of [→6)-β-D-Glcp-(1-3)-β-D-GalpNAc-(1-4)-α-D-Glcp-(1-4)-[β-D-Glcp(1-3]-β-D-GalpNAc-(1-3)-α-D-Manp-(1-P→]. In addition, analysis of phenol soluble polysaccharides revealed a similarly conserved lipoteichoic acid (LTA) which could be detected on whole cells by HR-MAS NMR. Conventional NMR and mass spectrometry analysis indicated that the structure of this LTA consisted of the repeat unit [→6)-α-D-GlcpNAc-(1-3)-[→P-6]-α-D-GlcpNAc-(1-2)-D-GroA] where GroA is glyceric acid. The repeating units were linked by a phosphodiester bridge between C-6 of the two GlcNAc residues (6-P-6). A minor component consisted of GlcpN-(1-3) instead of GlcpNAc-(1-3) in the repeat unit. Through a 6-6 phosphodiester bridge this polymer was linked to →6)-β-D-Glcp-(1-6)-β-D-Glcp-(1-6)-β-D-Glcp-(1-1)-Gro, with glycerol (Gro) substituted by fatty acids. This is the first report of the utility of HR-MAS NMR in the examination of surface carbohydrates of Gram positive bacteria and identification of a novel LTA structure from Clostridium difficile.
Collapse
Affiliation(s)
- Christopher W Reid
- National Research Council-Institute for Biological Sciences, 100 Sussex Drive, Ottawa, ON, Canada K1A 0R6
| | | | | | | | | | | |
Collapse
|
46
|
Jang KS, Baik JE, Kang SS, Jeon JH, Choi S, Yang YH, Kim BG, Yun CH, Han SH. Identification of staphylococcal lipoteichoic acid-binding proteins in human serum by high-resolution LTQ-Orbitrap mass spectrometry. Mol Immunol 2011; 50:177-83. [PMID: 22189407 DOI: 10.1016/j.molimm.2011.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 10/31/2011] [Accepted: 11/25/2011] [Indexed: 12/19/2022]
Abstract
Lipoteichoic acid (LTA), a major virulence factor of Gram-positive bacteria, is associated with bacterial adherence to host cells, biofilm formation, and inflammation. LTA-binding proteins (LTA-BPs) play an important role in the host immune response by initially recognizing and responding to LTA during infections. In this study, we screened for LTA-BPs in human serum using LTA-immobilized beads and high-throughput mass spectrometry. Highly pure and structurally intact LTA was prepared from Staphylococcus aureus and immobilized onto N-hydroxysuccinimide-activated Sepharose(®) 4 Fast Flow beads. The immobilization process does not seem to affect the biological activity of LTA since LTA-immobilized beads could stimulate macrophages and activate Toll-like receptor 2. Then, the LTA-immobilized beads were incubated with the human serum to capture LTA-BPs and their molecular identities were determined using high-resolution LTQ-Orbitrap hybrid Fourier transform mass spectrometry. LTA-BPs captured at high frequencies were neutrophil-activating peptide 2, prohibitin-2, alpha-1-anti-trypsin, histidine-rich glycoprotein, apolipoproteins, complements, and coagulation factor, most of which are known to be related with the host immune responses against infections. As high-throughput, efficient, accurate and sensitive, this screening method could be widely applicable to the identification of novel binding proteins to microbial virulence factors with glycolipid structures.
Collapse
Affiliation(s)
- Kyoung-Soon Jang
- Institute of Molecular Biology and Genetics, Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
A subclass of acylated anti-inflammatory mediators usurp Toll-like receptor 2 to inhibit neutrophil recruitment through peroxisome proliferator-activated receptor gamma. Proc Natl Acad Sci U S A 2011; 108:16357-62. [PMID: 21930915 DOI: 10.1073/pnas.1100702108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Toll-like receptors are host sentinel receptors that signal the presence of infectious nonself and initiate protective immunity. One of the primary immune defense mechanisms is the recruitment of neutrophils from the bloodstream into the infected tissue. Although neutrophils are important in host defense, they can also be responsible for damaging pathologies associated with excessive inflammation. Here, we report that the di-acylated TLR2 ligand lipoteichoic acid can directly inhibit neutrophil recruitment in vivo. This discovery allowed us to test the concept that conventional proinflammatory TLR2 ligands can be made to act as inhibitors through specific structural modifications. Indeed, lipopeptide TLR2 ligands, when modified at their acyl chains to contain linoleate, lose their capacity to induce inflammation and yield ligands that can directly inhibit the in vivo neutrophil recruitment initiated by a wide range of proinflammatory stimuli. The inhibitory capacity of LTA and these modified ligands requires the expression of TLR2, but is independent of the TLR2 signaling adaptor, MyD88. Instead, this inhibitory effect requires functional activity of the fatty acid and nuclear hormone receptor peroxisome proliferator-activated receptor γ (PPARγ). Therefore, these data support a model in TLR2 biology where structural modifications of these ligands can profoundly influence host-microbial interactions. These inhibitory TLR2 ligands also have broader implications with respect to their potential use in various inflammatory disease settings.
Collapse
|
48
|
Kang SS, Ryu YH, Baik JE, Yun CH, Lee K, Chung DK, Han SH. Lipoteichoic acid from Lactobacillus plantarum induces nitric oxide production in the presence of interferon-γ in murine macrophages. Mol Immunol 2011; 48:2170-7. [PMID: 21835472 DOI: 10.1016/j.molimm.2011.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/13/2011] [Accepted: 07/18/2011] [Indexed: 01/09/2023]
Abstract
Lipoteichoic acid (LTA) is a major immuno-stimulating component of Gram-positive bacteria. LTA from the beneficial bacterium Lactobacillus plantarum induces weak nitric oxide (NO) production in murine macrophages. Currently, it is not clear if LTA from L. plantarum is able to stimulate the innate immune response, even in the presence of inflammation. In the present study, we prepared highly pure and structurally intact LTA from L. plantarum and investigated its ability to induce NO in the presence of interferon (IFN)-γ in the RAW 264.7 murine macrophage cell line and bone marrow-derived macrophages (BMMs) from mice. L. plantarum LTA alone was unable to induce NO production, even at 30μg/ml. However, LTA in the presence of IFN-γ significantly induced NO production in RAW 264.7 cells. The observed NO production was inhibited by a NO synthase (NOS) inhibitor l-NAME and an inducible NOS (iNOS) inhibitor l-NIL, suggesting that iNOS is specifically required for this action. Western blot analysis and reverse transcription and polymerase chain reaction further confirmed that L. plantarum LTA increased protein and mRNA levels of iNOS, respectively. However, such induction was substantially inhibited in BMMs from Toll-like receptor 2 (TLR2)-deficient mice and the macrophages treated with an inhibitor blocking platelet-activating factor receptor. In addition, L. plantarum LTA plus IFN-γ induced IFN-β expression and STAT1 phosphorylation, which are key pathways for inducing iNOS expression. Electrophoretic mobility shift assay demonstrated that L. plantarum LTA in the presence of IFN-γ remarkably increased the DNA-binding activity of NF-κB transcription factor, which is known to be involved in the iNOS gene expression. Collectively, these results suggest that LTA from L. plantarum alone has no inflammatory potential but does induce NO production under conditions of inflammation, such as the presence of IFN-γ.
Collapse
Affiliation(s)
- Seok-Seong Kang
- Department of Oral Microbiology and Immunology, Dental Research Institute, and BK21 Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Endogenous MCP-1 promotes lung inflammation induced by LPS and LTA. Mol Immunol 2011; 48:1468-76. [DOI: 10.1016/j.molimm.2011.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/28/2011] [Accepted: 04/01/2011] [Indexed: 02/07/2023]
|
50
|
Schmidt RR, Pedersen CM, Qiao Y, Zähringer U. Chemical synthesis of bacterial lipoteichoic acids: an insight on its biological significance. Org Biomol Chem 2011; 9:2040-52. [PMID: 21327200 DOI: 10.1039/c0ob00794c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During infections caused by Gram-negative bacteria, lipopolysaccharide (LPS, endotoxin) has a dominant role leading to fulminant pro-inflammatory reactions in the host. As there is no LPS in Gram-positive bacteria, other microbial cell wall components have been identified to be the causative agent for the pro-inflammatory activity since also Gram-positive bacterial infections lead to comparable clinical symptoms and reactions. On search for the "Gram-positive endotoxin" a widely accepted hypothesis has been raised in that the lipoteichoic acids (LTAs) serve as pathogen-associated molecular patterns (PAMPs) during Gram-positive sepsis, although the amount necessary for a pro-inflammatory in vitro response is several orders of magnitude higher than that for LPS. Therefore, LTA cannot be considered to be "the (endo)toxin of Gram-positive bacteria". Although LPS and LTA show structural relatedness (amphiphilic, negatively charged glycophospholipids), they are structurally quite different from each other and one might expect that they are also recognized by different receptors of the innate immune system, the so called toll-like receptors 4 and 2 (TLR4 and TLR2), respectively. Based on their chemical structure, the LTAs were classified into four types (type I-IV) of which we have carefully investigated the LTA of Staphylococcus aureus (type I), Lactococcus garvieae (type II) and Streptococcus pneumoniae (type IV). Hence, these LTAs have been synthesized in our group and biologically evaluated with respect to their potency to activate cytokines in transiently TLR2/CD14-transfected human endothelial kidney cells (HEK 293) or human macrophages and whole blood cells. Although LTA of type I and IV are structurally quite different, especially in their hydrophilic moiety, they originally were believed to interact with the same receptor (TLR2). Hence, the chemical syntheses leading to structurally defined, non-contaminated stimuli have a major impact on the outcome and interpretation of these biological studies of the innate immune system. With this material, it became evident that synthetic LTA from S. aureus and S. pneumoniae are not recognized by TLR2. Instead, another receptor of the innate immune system, the lectin pathway of the complement, known since many years to interact with LTA in quite a specific way, has gained increasing attractivity. With the help of synthetic LTA we obtained first evidences that this receptor is indeed the pathogen recognition receptor (PRR) for LTA.
Collapse
Affiliation(s)
- Richard R Schmidt
- Universität Konstanz, Fachbereich Chemie, Fach 725, D-78457, Konstanz, Germany.
| | | | | | | |
Collapse
|