1
|
Schäffer C, Andrukhov O. The intriguing strategies of Tannerella forsythia's host interaction. FRONTIERS IN ORAL HEALTH 2024; 5:1434217. [PMID: 38872984 PMCID: PMC11169705 DOI: 10.3389/froh.2024.1434217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Tannerella forsythia, a member of the "red complex" bacteria implicated in severe periodontitis, employs various survival strategies and virulence factors to interact with the host. It thrives as a late colonizer in the oral biofilm, relying on its unique adaptation mechanisms for persistence. Essential to its survival are the type 9 protein secretion system and O-glycosylation of proteins, crucial for host interaction and immune evasion. Virulence factors of T. forsythia, including sialidase and proteases, facilitate its pathogenicity by degrading host glycoproteins and proteins, respectively. Moreover, cell surface glycoproteins like the S-layer and BspA modulate host responses and bacterial adherence, influencing colonization and tissue invasion. Outer membrane vesicles and lipopolysaccharides further induce inflammatory responses, contributing to periodontal tissue destruction. Interactions with specific host cell types, including epithelial cells, polymorphonuclear leukocytes macrophages, and mesenchymal stromal cells, highlight the multifaceted nature of T. forsythia's pathogenicity. Notably, it can invade epithelial cells and impair PMN function, promoting dysregulated inflammation and bacterial survival. Comparative studies with periodontitis-associated Porphyromonas gingivalis reveal differences in protease activity and immune modulation, suggesting distinct roles in disease progression. T. forsythia's potential to influence oral antimicrobial defense through protease-mediated degradation and interactions with other bacteria underscores its significance in periodontal disease pathogenesis. However, understanding T. forsythia's precise role in host-microbiome interactions and its classification as a keystone pathogen requires further investigation. Challenges in translating research data stem from the complexity of the oral microbiome and biofilm dynamics, necessitating comprehensive studies to elucidate its clinical relevance and therapeutic implications in periodontitis management.
Collapse
Affiliation(s)
- Christina Schäffer
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Puzhankara L, Rajagopal A, Kedlaya MN, Karmakar S, Nayak N, Shanmugasundaram S. Cell Junctions in Periodontal Health and Disease: An Insight. Eur J Dent 2024; 18:448-457. [PMID: 38049123 PMCID: PMC11132765 DOI: 10.1055/s-0043-1775726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
Cells are the building blocks of all living organisms. The presence of cell junctions such as tight junctions, gap junctions, and anchoring junctions between cells play a role in cell-to-cell communication in periodontal health and disease. A literature search was done in Scopus, PubMed, and Web of Science to gather information about the effect of cell junctions on periodontal health and disease. The presence of tight junction in the oral cavity helps in cell-to-cell adhesiveness and assists in the barrier function. The gap junctions help in controlling growth and development and in the cell signaling process. The presence of desmosomes and hemidesmosomes as anchoring junctions aid in mechanical strength and tissue integrity. Periodontitis is a biofilm-induced disease leading to the destruction of the supporting structures of the tooth. The structures of the periodontium possess multiple cell junctions that play a significant role in periodontal health and disease as well as periodontal tissue healing. This review article provides an insight into the role of cell junctions in periodontal disease and health, and offers concepts for development of therapeutic strategies through manipulation of cell junctions.
Collapse
Affiliation(s)
- Lakshmi Puzhankara
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anjale Rajagopal
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Madhurya N. Kedlaya
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Namratha Nayak
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shashikiran Shanmugasundaram
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
3
|
Catunda RQ, Ho KKY, Patel S, Roy CB, Alexiou M, Levin L, Ulrich BJ, Kaplan MH, Febbraio M. Loricrin and Cytokeratin Disorganisation in Severe Forms of Periodontitis. Int Dent J 2023; 73:862-872. [PMID: 37316411 PMCID: PMC10658443 DOI: 10.1016/j.identj.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023] Open
Abstract
OBJECTIVE The aim of this research was to investigate the role of the cornified epithelium, the outermost layer of the oral mucosa, engineered to prevent water loss and microorganism invasion, in severe forms of periodontitis (stage III or IV, grade C). METHODS Porphyromonas gingivalis, a major periodontal disease pathogen, can affect cornified epithelial protein expression through chronic activation of signal transducer and activator of transcription 6 (Stat6). We used a mouse model, Stat6VT, that mimics this to determine the effects of barrier defect on P gingivalis-induced inflammation, bone loss, and cornified epithelial protein expression, and compared histologic and immunohistologic findings with tissues obtained from human controls and patients with stage III and IV, grade C disease. Alveolar bone loss in mice was assessed using micro-computerised tomography, and soft tissue morphology was qualitatively and semi-quantitatively assessed by histologic examination for several proteins, including loricrin, filaggrin, cytokeratin 1, cytokeratin 14, a proliferation marker, a pan-leukocyte marker, as well as morphologic signs of inflammation. Relative cytokine levels were measured in mouse plasma by cytokine array. RESULTS In the tissues from patients with periodontal disease, there were greater signs of inflammation (rete pegs, clear cells, inflammatory infiltrates) and a decrease and broadening of expression of loricrin and cytokeratin 1. Cytokeratin 14 expression was also broader and decreased in stage IV. P gingivalis-infected Stat6VT mice showed greater alveolar bone loss in 9 out of 16 examined sites, and similar patterns of disruption to human patients in expression of loricrin and cytokeratins 1 and 14. There were also increased numbers of leukocytes, decreased proliferation, and greater signs of inflammation compared with P gingivalis-infected control mice. CONCLUSIONS Our study provides evidence that changes in epithelial organisation can exacerbate the effects of P gingivalis infection, with similarities to the most severe forms of human periodontitis.
Collapse
Affiliation(s)
- Raisa Queiroz Catunda
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Ka-Yan Ho
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Srushti Patel
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher Bryant Roy
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Maria Alexiou
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Liran Levin
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Mark H Kaplan
- Department of Microbiology & Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Maria Febbraio
- Department of Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Güney Z, Kurgan Ş, Önder C, Serdar MA, Günhan Ö, Günhan M. Expression of tight junction proteins in smokers and non-smokers with generalized Stage III periodontitis. J Periodontal Res 2023; 58:1281-1289. [PMID: 37697913 DOI: 10.1111/jre.13184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE This study aims to evaluate the gingival crevicular fluid (GCF) levels of tumor necrosis factor-α (TNF-α), zonula occludens-1 (ZO-1), occludin (Occ), and tricellulin (Tric) in periodontitis, as well as their alterations due to smoking. BACKGROUND Tight junctions (TJ), which consist of transmembrane and cytoplasmic scaffolding proteins, connect the epithelial cells of the periodontium. Occ, claudins, junctional adhesion molecules, and Tric are transmembrane TJ proteins found at the cell membrane. The transmembrane TJ proteins and the intracellular cytoskeleton are directly linked by cytoplasmic scaffolding proteins such as ZO-1. Although the functions and locations of these molecules have been defined, their behavior in periodontal inflammation is unknown. METHODS The study included four groups: individuals with periodontal health without smoking (C; n = 31), individuals with generalized Stage III periodontitis without smoking (P; n = 28), individuals with periodontal health while smoking (CS; n = 22), and individuals with generalized Stage III periodontitis while smoking (PS; n = 18). Clinical periodontal parameters were recorded, and enzyme-linked immunosorbent assay (ELISA) was used to examine ZO-1, Occ, Tric, and TNF-α levels in GCF. RESULTS In the periodontitis groups, clinical parameters were significantly higher (p < .001). The site-specific levels of TNF-α, ZO-1, Tric, and Occ in the P group were statistically higher than those in the other groups (p < .05). TNF-α, probing pocket depth (PPD), and bleeding on probing (BOP) exhibited positive correlations with all TJ proteins (p < .005). CONCLUSIONS Smoking could potentially affect the levels of epithelial TJ proteins in the GCF, thereby potentially playing a significant role in the pathogenesis of the periodontal disease.
Collapse
Affiliation(s)
- Zeliha Güney
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
- Department of Periodontology, Faculty of Dentistry, Ankara Medipol University, Ankara, Turkey
| | - Şivge Kurgan
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Canan Önder
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Muhittin A Serdar
- Department of Medical Biochemistry, School of Medicine, Acibadem University, İstanbul, Turkey
| | - Ömer Günhan
- Department of Pathology, School of Medicine, TOBB ETÜ University, Ankara, Turkey
| | - Meral Günhan
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| |
Collapse
|
5
|
Tan L, Chan W, Zhang J, Wang J, Wang Z, Liu J, Li J, Liu X, Wang M, Hao L, Yue Y. Regulation of RIP1-Mediated necroptosis via necrostatin-1 in periodontitis. J Periodontal Res 2023; 58:919-931. [PMID: 37334934 DOI: 10.1111/jre.13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVE To explore the mechanism of receptor-interacting protein 1 (RIP1)-mediated necroptosis during periodontitis progression. BACKGROUND RIP3 and mixed lineage kinase domain-like protein (MLKL) have been detected to be upregulated in periodontitis models. Because RIP1 is involved in necroptosis, it might also play a role in the progression of periodontitis. METHODS An experimental periodontitis model in BALB/c mice was established by inducing oral bacterial infection. Western blotting and immunofluorescence analyses were used to detect RIP1 expression in the periodontal ligament. Porphyromonas gingivalis was used to stimulate L929 and MC3T3-E1. RIP1 was inhibited using small-interfering RNA. Western blotting, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA) analyses were used to detect the effect of necroptosis inhibition on the expression of damage-associated molecular patterns and inflammatory cytokines. Necrostatin-1 (Nec-1) was intraperitoneally injected to inhibit RIP1 expression in mice. Necroptosis activation and inflammatory cytokine expression in periodontal tissue were verified. Tartrate-resistant acid phosphatase staining was applied to observe osteoclasts in the bone tissues of different groups. RESULTS RIP1-mediated necroptosis was activated in mice with periodontitis. P. gingivalis induced RIP1-mediated necroptosis in L929 and MC3T3-E1 cells. After RIP1 inhibition, the expression levels of high mobility group protein B1 (HMGB1) and inflammatory cytokines were downregulated. After inhibiting RIP1 with Nec-1 in vivo, necroptosis was also inhibited, the expression levels of HMGB1 and inflammatory cytokines were downregulated, and osteoclast counts in the periodontal tissue decreased. CONCLUSION RIP1-mediated necroptosis plays a role in the pathological process of periodontitis in mice. Nec-1 inhibited necroptosis, alleviated inflammation in periodontal tissue, and reduced bone resorption in periodontitis.
Collapse
Affiliation(s)
- Liangyu Tan
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Weicheng Chan
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zhang
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zizheng Wang
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Liu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Clinical Research Center for Oral Diseases of Zhejiang Province, School of Stomatology, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Zhejiang, Hangzhou, China
| | - Jiaxin Li
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinran Liu
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Min Wang
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Hao
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Yue
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Lamont RJ, Miller DP, Bagaitkar J. Illuminating the oral microbiome: cellular microbiology. FEMS Microbiol Rev 2023; 47:fuad045. [PMID: 37533213 PMCID: PMC10657920 DOI: 10.1093/femsre/fuad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Epithelial cells line mucosal surfaces such as in the gingival crevice and provide a barrier to the ingress of colonizing microorganisms. However, epithelial cells are more than a passive barrier to microbial intrusion, and rather constitute an interactive interface with colonizing organisms which senses the composition of the microbiome and communicates this information to the underlying cells of the innate immune system. Microorganisms, for their part, have devised means to manipulate host cell signal transduction pathways to favor their colonization and survival. Study of this field, which has become known as cellular microbiology, has revealed much about epithelial cell physiology, bacterial colonization and pathogenic strategies, and innate host responses.
Collapse
Affiliation(s)
- Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, KY40202, United States
| | - Daniel P Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, VA23298, United States
| | - Juhi Bagaitkar
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, OH43205, United States
- Department of Pediatrics, The Ohio State College of Medicine, Columbus, OH, OH43210, United States
| |
Collapse
|
7
|
Ruan Q, Guan P, Qi W, Li J, Xi M, Xiao L, Zhong S, Ma D, Ni J. Porphyromonas gingivalis regulates atherosclerosis through an immune pathway. Front Immunol 2023; 14:1103592. [PMID: 36999040 PMCID: PMC10043234 DOI: 10.3389/fimmu.2023.1103592] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, involving a pathological process of endothelial dysfunction, lipid deposition, plaque rupture, and arterial occlusion, and is one of the leading causes of death in the world population. The progression of AS is closely associated with several inflammatory diseases, among which periodontitis has been shown to increase the risk of AS. Porphyromonas gingivalis (P. gingivalis), presenting in large numbers in subgingival plaque biofilms, is the “dominant flora” in periodontitis, and its multiple virulence factors are important in stimulating host immunity. Therefore, it is significant to elucidate the potential mechanism and association between P. gingivalis and AS to prevent and treat AS. By summarizing the existing studies, we found that P. gingivalis promotes the progression of AS through multiple immune pathways. P. gingivalis can escape host immune clearance and, in various forms, circulate with blood and lymph and colonize arterial vessel walls, directly inducing local inflammation in blood vessels. It also induces the production of systemic inflammatory mediators and autoimmune antibodies, disrupts the serum lipid profile, and thus promotes the progression of AS. In this paper, we summarize the recent evidence (including clinical studies and animal studies) on the correlation between P. gingivalis and AS, and describe the specific immune mechanisms by which P. gingivalis promotes AS progression from three aspects (immune escape, blood circulation, and lymphatic circulation), providing new insights into the prevention and treatment of AS by suppressing periodontal pathogenic bacteria.
Collapse
Affiliation(s)
- Qijun Ruan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Peng Guan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weijuan Qi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jiatong Li
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mengying Xi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Limin Xiao
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Sulan Zhong
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| |
Collapse
|
8
|
Chen WA, Dou Y, Fletcher HM, Boskovic DS. Local and Systemic Effects of Porphyromonas gingivalis Infection. Microorganisms 2023; 11:470. [PMID: 36838435 PMCID: PMC9963840 DOI: 10.3390/microorganisms11020470] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Porphyromonas gingivalis, a gram-negative anaerobe, is a leading etiological agent in periodontitis. This infectious pathogen can induce a dysbiotic, proinflammatory state within the oral cavity by disrupting commensal interactions between the host and oral microbiota. It is advantageous for P. gingivalis to avoid complete host immunosuppression, as inflammation-induced tissue damage provides essential nutrients necessary for robust bacterial proliferation. In this context, P. gingivalis can gain access to the systemic circulation, where it can promote a prothrombotic state. P. gingivalis expresses a number of virulence factors, which aid this pathogen toward infection of a variety of host cells, evasion of detection by the host immune system, subversion of the host immune responses, and activation of several humoral and cellular hemostatic factors.
Collapse
Affiliation(s)
- William A. Chen
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yuetan Dou
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Hansel M. Fletcher
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Danilo S. Boskovic
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
9
|
Ma Y, Su C, Yang H, Xu HH, Bai Y, Xu Y, Che X, Zhang N. Influence of resin modified glass ionomer cement incorporating protein-repellent and antimicrobial agents on supragingival microbiome around brackets: an in-vivo split-mouth 3-month study. PeerJ 2023; 11:e14820. [PMID: 36778151 PMCID: PMC9910189 DOI: 10.7717/peerj.14820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/06/2023] [Indexed: 02/08/2023] Open
Abstract
Objective To explore the influence of resin modified glass ionomer cement (RMGIC) adhesives containing protein-repellent and quaternary ammonium salt agents on supragingival microbiome, enamel and gingival health around brackets. Materials and Methods Ten patients (21.4 ± 3.5 years) about to receive fixed orthodontics were enrolled in this study. Unilateral upper teeth bonded with RMGIC incorporating 2-Methacryloyloxyethyl phosphorylcholine (MPC) and Dimethylaminohexadecyl methacrylate (DMAHDM) were regarded as experimental group (RMD), while contralateral upper teeth bonded with RMGIC were control group (RMGIC), using a split-mouth design. Supragingival plaque was collected from both groups before treatment (T0), and at 1 month (T1) and 3 months (T2) of treatment. High-throughput sequencing was performed targeting v3-v4 of 16S rRNA gene. Streptococcus mutans and Fusobacterium nucleatum quantification was done by qPCR analysis. Bracket failures, enamel decalcification index (EDI), DIAGNODent scores (Dd), plaque index (PI) and gingival index (GI) were monitored at indicated time points. Results Within 3 months, alpha and beta diversity of supragingival plaque had no difference between RMGIC and RMD groups. From T0 to T2, the relative abundance of Streptococcus depleted in RMD but remained steady in RMGIC group. Streptococcus, Prevotella, and Fusobacterium became depleted in RMD, Haemophilus and Capnocytophaga became depleted in RMGIC group but Prevotella enriched. Quantification of Fusbacterium nucleatum and Streptococcus mutans showed significant difference between RMGIC and RMD groups at T2. Teeth bonded with RMD had significant lower plaque index (PI) and DIAGNODent (Dd) score at T2, compared with teeth bonded with RMGIC (p < 0.05). No difference in bracket failure rate was examined between both groups (p > 0.05). Conclusion By incorporating MPC and DMAHDM into RMGIC, the material could affect the supragingival microbial composition, inhibit the progress of plaque accumulation as well as the key pathogens S. mutans and F. nucleatum in the early stage of orthodontic treatment.
Collapse
Affiliation(s)
- Yansong Ma
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Chengjun Su
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Hao Yang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Hockin H.K. Xu
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Yan Xu
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Xiaoxia Che
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Yamawaki Y, So H, Oue K, Asano S, Furusho H, Miyauchi M, Tanimoto K, Kanematsu T. Imipramine prevents Porphyromonas gingivalis lipopolysaccharide-induced microglial neurotoxicity. Biochem Biophys Res Commun 2022; 634:92-99. [DOI: 10.1016/j.bbrc.2022.09.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022]
|
11
|
Huang Y, Liu L, Liu Q, Huo F, Hu X, Guo S, Tian W. Dental follicle cells derived small extracellular vesicles inhibit pathogenicity of Porphyromonas gingivalis. Oral Dis 2022. [PMID: 35509129 DOI: 10.1111/odi.14239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/10/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE It aims to explore the effect of dental follicle cells derived small extracellular vesicles (D-sEV) with or without lipopolysaccharides (LPS) pretreating on the pathogenicity of Porphyromonas gingivalis (P. gingivalis). METHODS The antibacterial effects of D-sEV were evaluated by measuring the growth, biofilm formation, gingipains and type IX secretion system (T9SS) expression of P. gingivalis. And the influence of D-sEV on P. gingivalis adhesion, invasion, cytotoxicity, and host immune response was examined in gingival epithelial cells (GECs). Then P. gingivalis treated with D-sEV was applied to investigate the pathogenicity in experimental periodontitis of mice. RESULTS It showed that both D-sEV and P. gingivalis LPS pretreated D-sEV (L-D-sEV) could target P. gingivalis, inhibit their growth and biofilm formation, and hinder the attachment and invasion in GECs, therefore remarkably decreasing P. gingivalis cytotoxicity and the expression of IL-1β and IL-6 in GECs. In addition, they significantly reduced the expression of P. gingivalis virulence factors (gingipains and T9SS). In vivo, it showed that the bacteria in the gingiva were significantly decreased after sEV treatment. Meanwhile, less bone loss and fewer inflammatory cells infiltration and osteoclast formation in D-sEV and L-D-sEV groups. CONCLUSION Both D-sEV and L-D-sEV were proven to inhibit the pathogenicity of P.gingivalis and thus prevented the development of periodontitis.
Collapse
Affiliation(s)
- Yanli Huang
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Li Liu
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qian Liu
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Fangjun Huo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China
| | - Xingyu Hu
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shujuan Guo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
12
|
Proteolytic Activity-Independent Activation of the Immune Response by Gingipains from Porphyromonas gingivalis. mBio 2022; 13:e0378721. [PMID: 35491845 PMCID: PMC9239244 DOI: 10.1128/mbio.03787-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Porphyromonas gingivalis, a keystone pathogen in periodontitis (PD), produces cysteine proteases named gingipains (RgpA, RgpB, and Kgp), which strongly affect the host immune system. The range of action of gingipains is extended by their release as components of outer membrane vesicles, which efficiently diffuse into surrounding gingival tissues. However, away from the anaerobic environment of periodontal pockets, increased oxygen levels lead to oxidation of the catalytic cysteine residues of gingipains, inactivating their proteolytic activity. In this context, the influence of catalytically inactive gingipains on periodontal tissues is of significant interest. Here, we show that proteolytically inactive RgpA induced a proinflammatory response in both gingival keratinocytes and dendritic cells. Inactive RgpA is bound to the cell surface of gingival keratinocytes in the region of lipid rafts, and using affinity chromatography, we identified RgpA-interacting proteins, including epidermal growth factor receptor (EGFR). Next, we showed that EGFR interaction with inactive RgpA stimulated the expression of inflammatory cytokines. The response was mediated via the EGFR–phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway, which when activated in the gingival tissue rich in dendritic cells in the proximity of the alveolar bone, may significantly contribute to bone resorption and the progress of PD. Taken together, these findings broaden our understanding of the biological role of gingipains, which in acting as proinflammatory factors in the gingival tissue, create a favorable milieu for the growth of inflammophilic pathobionts.
Collapse
|
13
|
黄 培, 贾 小, 赵 蕾, 周 学, 徐 欣. [Research Updates: Relationship between Gingival Epithelial Intercellular Junctions and Periodontal Pathogenic Bacteria]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:214-219. [PMID: 35332720 PMCID: PMC10409357 DOI: 10.12182/20220360201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 06/14/2023]
Abstract
Gingival epithelial barrier is the first line of defense of periodontal tissues against the invasion of pathogenic bacteria. The destruction of gingival epithelial barrier is closely related to the development of periodontal disease. Studies have shown that periodontal pathogenic bacteria and their inflammatory microenvironment can inhibit the expression of gingival epithelial junctional proteins via molecular mechanisms such as the downregulation of the expression of grainyhead-like protein family and the upregulation of the methylation level of gene promoter of epithelial connexin, and thus cause damage to the gingival epithelial barrier and the development of periodontitis. We herein reviewed the effects of bacteria and inflammatory factors induced by bacterial infection on gingival epithelial intercellular junctions and related mechanisms, and summarized the research progress on the relationship between gingival epithelial intercellular junctions and periodontal pathogenic bacteria in recent years. Most recent studies were focused on i n vitro cytological experiments and animal models of infections caused by a single kind of bacterium. We have suggested that building gingival epithelial organoid model and combining multi-omics approaches with high resolution three-dimensional electron microscopy are expected to help pinpoint the key microorganisms and their most important virulence factors that trigger periodontal microecologcal imbalance and cause functional damage to the gingival epithelial barrier, to reveal the key molecular mechanisms involved in the maintenance and destruction of gingival epithelial barrier function, and to provide new perspectives on the pathogenesis and the clinical prevention and treatment of periodontitis.
Collapse
Affiliation(s)
- 培勍 黄
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 小玥 贾
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 蕾 赵
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 学东 周
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 欣 徐
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Thouvenot K, Turpin T, Taïlé J, Clément K, Meilhac O, Gonthier MP. Links between Insulin Resistance and Periodontal Bacteria: Insights on Molecular Players and Therapeutic Potential of Polyphenols. Biomolecules 2022; 12:biom12030378. [PMID: 35327570 PMCID: PMC8945445 DOI: 10.3390/biom12030378] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes is a metabolic disease mainly associated with insulin resistance during obesity and constitutes a major public health problem worldwide. A strong link has been established between type 2 diabetes and periodontitis, an infectious dental disease characterized by chronic inflammation and destruction of the tooth-supporting tissue or periodontium. However, the molecular mechanisms linking periodontal bacteria and insulin resistance remain poorly elucidated. This study aims to summarize the mechanisms possibly involved based on in vivo and in vitro studies and targets them for innovative therapies. Indeed, during periodontitis, inflammatory lesions of the periodontal tissue may allow periodontal bacteria to disseminate into the bloodstream and reach tissues, including adipose tissue and skeletal muscles that store glucose in response to insulin. Locally, periodontal bacteria and their components, such as lipopolysaccharides and gingipains, may deregulate inflammatory pathways, altering the production of pro-inflammatory cytokines/chemokines. Moreover, periodontal bacteria may promote ROS overproduction via downregulation of the enzymatic antioxidant defense system, leading to oxidative stress. Crosstalk between players of inflammation and oxidative stress contributes to disruption of the insulin signaling pathway and promotes insulin resistance. In parallel, periodontal bacteria alter glucose and lipid metabolism in the liver and deregulate insulin production by pancreatic β-cells, contributing to hyperglycemia. Interestingly, therapeutic management of periodontitis reduces systemic inflammation markers and ameliorates insulin sensitivity in type 2 diabetic patients. Of note, plant polyphenols exert anti-inflammatory and antioxidant activities as well as insulin-sensitizing and anti-bacterial actions. Thus, polyphenol-based therapies are of high interest for helping to counteract the deleterious effects of periodontal bacteria and improve insulin resistance.
Collapse
Affiliation(s)
- Katy Thouvenot
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
| | - Teva Turpin
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
| | - Janice Taïlé
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
| | - Karine Clément
- Nutrition and Obesity, Systemic Approaches (NutriOmics), INSERM, Sorbonne Université, 75013 Paris, France
| | - Olivier Meilhac
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
| | - Marie-Paule Gonthier
- Université de La Réunion, Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France; (K.T.); (T.T.); (J.T.); (O.M.)
- Correspondence: ; Tel.: +33-262-693-92-08-55
| |
Collapse
|
15
|
Lithgow KV, Buchholz VCH, Ku E, Konschuh S, D'Aubeterre A, Sycuro LK. Protease activities of vaginal Porphyromonas species disrupt coagulation and extracellular matrix in the cervicovaginal niche. NPJ Biofilms Microbiomes 2022; 8:8. [PMID: 35190575 PMCID: PMC8861167 DOI: 10.1038/s41522-022-00270-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
Porphyromonas asaccharolytica and Porphyromonas uenonis are common inhabitants of the vaginal microbiome, but their presence has been linked to adverse health outcomes for women, including bacterial vaginosis and preterm birth. However, little is known about the pathogenesis mechanisms of these bacteria. The related oral opportunistic pathogen, Porphyromonas gingivalis, is comparatively well-studied and known to secrete numerous extracellular matrix-targeting proteases. Among these are the gingipain family of cysteine proteases that drive periodontal disease progression and hematogenic transmission to the placenta. In this study, we demonstrate that vaginal Porphyromonas species secrete broad-acting proteases capable of freely diffusing within the cervicovaginal niche. These proteases degrade collagens that are enriched within the cervix (type I) and chorioamniotic membranes (type IV), as well as fibrinogen, which inhibits clot formation. Bioinformatic queries confirmed the absence of gingipain orthologs and identified five serine, cysteine, and metalloprotease candidates in each species. Inhibition assays revealed that each species' proteolytic activity can be partially attributed to a secreted metalloprotease with broad substrate specificity that is distantly related to the P. gingivalis endopeptidase PepO. This characterization of virulence activities in vaginal Porphyromonas species highlights their potential to alter the homeostasis of reproductive tissues and harm human pregnancy through clotting disruption, fetal membrane weakening, and premature cervical remodeling.
Collapse
Affiliation(s)
- Karen V Lithgow
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Vienna C H Buchholz
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Emily Ku
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Shaelen Konschuh
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Ana D'Aubeterre
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Laura K Sycuro
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
- International Microbiome Centre, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
16
|
Yuan S, Fang C, Leng WD, Wu L, Li BH, Wang XH, Hu H, Zeng XT. Oral microbiota in the oral-genitourinary axis: identifying periodontitis as a potential risk of genitourinary cancers. Mil Med Res 2021; 8:54. [PMID: 34588004 PMCID: PMC8480014 DOI: 10.1186/s40779-021-00344-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Periodontitis has been proposed as a novel risk factor of genitourinary cancers: although periodontitis and genitourinary cancers are two totally distinct types of disorders, epidemiological and clinical studies, have established associations between them. Dysbiosis of oral microbiota has already been established as a major factor contributing to periodontitis. Recent emerging epidemiological evidence and the detection of oral microbiota in genitourinary organs indicate the presence of an oral-genitourinary axis and oral microbiota may be involved in the pathogenesis of genitourinary cancers. Therefore, oral microbiota provides the bridge between periodontitis and genitourinary cancers. We have carried out this narrative review which summarizes epidemiological studies exploring the association between periodontitis and genitourinary cancers. We have also highlighted the current evidence demonstrating the capacity of oral microbiota to regulate almost all hallmarks of cancer, and proposed the potential mechanisms of oral microbiota in the development of genitourinary cancers.
Collapse
Affiliation(s)
- Shuai Yuan
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Cheng Fang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Wei-Dong Leng
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000 Hubei China
| | - Lan Wu
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Bing-Hui Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Xing-Huan Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Hailiang Hu
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710 USA
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| |
Collapse
|
17
|
Ali Mohammed MM, Pettersen VK, Nerland AH, Wiker HG, Bakken V. Label-free quantitative proteomic analysis of the oral bacteria Fusobacterium nucleatum and Porphyromonas gingivalis to identify protein features relevant in biofilm formation. Anaerobe 2021; 72:102449. [PMID: 34543761 DOI: 10.1016/j.anaerobe.2021.102449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/24/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The opportunistic pathogens Fusobacterium nucleatum and Porphyromonas gingivalis are Gram-negative bacteria associated with oral biofilm and periodontal disease. This study investigated interactions between F. nucleatum and P. gingivalis proteomes with the objective to identify proteins relevant in biofilm formation. METHODS We applied liquid chromatography-tandem mass spectrometry to determine the expressed proteome of F. nucleatum and P. gingivalis cells grown in biofilm or planktonic culture, and as mono- and dual-species models. The detected proteins were classified into functional categories and their label-free quantitative (LFQ) intensities statistically compared. RESULTS The proteomic analyses detected 1,322 F. nucleatum and 966 P. gingivalis proteins, including abundant virulence factors. Using univariate statistics, we identified significant changes between biofilm and planktonic culture (p-value ≤0.05) in 0,4% F. nucleatum, 7% P. gingivalis, and 14% of all proteins in the dual-species model. For both species, proteins involved in vitamin B2 (riboflavin) metabolism had significantly increased levels in biofilm. In both mono- and dual-species biofilms, P. gingivalis increased the production of proteins for translation, oxidation-reduction, and amino acid metabolism compared to planktonic cultures. However, when we compared LFQ intensities between mono- and dual-species, over 90% of the significantly changed P. gingivalis proteins had their levels reduced in biofilm and planktonic settings of the dual-species model. CONCLUSIONS The findings suggest that P. gingivalis reduces the production of multiple proteins because of the F. nucleatum presence. The results highlight the complex interactions of bacteria contributing to oral biofilms, which need to be considered in the design of prevention strategies.
Collapse
Affiliation(s)
| | | | - Audun H Nerland
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Harald G Wiker
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Vidar Bakken
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
18
|
Zheng S, Yu S, Fan X, Zhang Y, Sun Y, Lin L, Wang H, Pan Y, Li C. Porphyromonas gingivalis survival skills: Immune evasion. J Periodontal Res 2021; 56:1007-1018. [PMID: 34254681 DOI: 10.1111/jre.12915] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/27/2021] [Accepted: 06/30/2021] [Indexed: 01/06/2023]
Abstract
Periodontitis is a chronic inflammatory condition that destroys the tooth-supporting tissues and eventually leads to tooth loss. As one of the most prevalent oral conditions, periodontitis endangers the oral health of 70% of people throughout the world. Periodontitis is also related to various systemic diseases, such as diabetes mellitus, atherosclerosis, and rheumatoid arthritis, which not only has a great impact on population health status and the quality of life but also increases the social burden. Porphyromonas gingivalis (P. gingivalis) is a gram-negative oral anaerobic bacterium that plays a key role in the pathogenesis of periodontitis. Porphyromonas gingivalis can express various of virulence factors to overturn innate and adaptive immunities, which makes P. gingivalis survive and propagate in the host, destroy periodontal tissues, and have connection to systemic diseases. Porphyromonas gingivalis can invade into and survive in host tissues by destructing the gingival epithelial barrier, internalizing into the epithelial cells, and enhancing autophagy in epithelial cells. Deregulation of complement system, degradation of antibacterial peptides, and destruction of phagocyte functions facilitate the evasion of P. gingivalis. Porphyromonas gingivalis can also suppress adaptive immunity, which allows P. gingivalis to exist in the host tissues and cause the inflammatory response persistently. Here, we review studies devoted to understanding the strategies utilized by P. gingivalis to escape host immunity. Methods for impairing P. gingivalis immune evasion are also mentioned.
Collapse
Affiliation(s)
- Shaowen Zheng
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Shiwen Yu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xiaomiao Fan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yonghuan Zhang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yangyang Sun
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Li Lin
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hongyan Wang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Yaping Pan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chen Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
19
|
Dieterle MP, Husari A, Steinberg T, Wang X, Ramminger I, Tomakidi P. From the Matrix to the Nucleus and Back: Mechanobiology in the Light of Health, Pathologies, and Regeneration of Oral Periodontal Tissues. Biomolecules 2021; 11:824. [PMID: 34073044 PMCID: PMC8228498 DOI: 10.3390/biom11060824] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Among oral tissues, the periodontium is permanently subjected to mechanical forces resulting from chewing, mastication, or orthodontic appliances. Molecularly, these movements induce a series of subsequent signaling processes, which are embedded in the biological concept of cellular mechanotransduction (MT). Cell and tissue structures, ranging from the extracellular matrix (ECM) to the plasma membrane, the cytosol and the nucleus, are involved in MT. Dysregulation of the diverse, fine-tuned interaction of molecular players responsible for transmitting biophysical environmental information into the cell's inner milieu can lead to and promote serious diseases, such as periodontitis or oral squamous cell carcinoma (OSCC). Therefore, periodontal integrity and regeneration is highly dependent on the proper integration and regulation of mechanobiological signals in the context of cell behavior. Recent experimental findings have increased the understanding of classical cellular mechanosensing mechanisms by both integrating exogenic factors such as bacterial gingipain proteases and newly discovered cell-inherent functions of mechanoresponsive co-transcriptional regulators such as the Yes-associated protein 1 (YAP1) or the nuclear cytoskeleton. Regarding periodontal MT research, this review offers insights into the current trends and open aspects. Concerning oral regenerative medicine or weakening of periodontal tissue diseases, perspectives on future applications of mechanobiological principles are discussed.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Ayman Husari
- Center for Dental Medicine, Department of Orthodontics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany;
- Faculty of Engineering, University of Freiburg, Georges-Köhler-Allee 101, 79110 Freiburg, Germany
| | - Thorsten Steinberg
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Xiaoling Wang
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Imke Ramminger
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Pascal Tomakidi
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| |
Collapse
|
20
|
Urmi AS, Inaba H, Nomura R, Yoshida S, Ohara N, Asai F, Nakano K, Matsumoto-Nakano M. Roles of Porphyromonas gulae proteases in bacterial and host cell biology. Cell Microbiol 2021; 23:e13312. [PMID: 33486854 DOI: 10.1111/cmi.13312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/19/2023]
Abstract
Porphyromonas gulae, an animal-derived periodontal pathogen, expresses several virulence factors, including fimbria, lipopolysaccharide (LPS) and proteases. We previously reported that its invasive efficiency was dependent on fimbriae types. In addition, P. gulae LPS increased inflammatory responses via toll-like receptors. The present study was conducted to investigate the involvement of P. gulae proteases in bacterial and host cell biology. Porphyromonas gulae strains showed an ability to agglutinate mouse erythrocytes and also demonstrated co-aggregation with Actinomyces viscosus, while the protease inhibitors antipain, PMSF, TLCK and leupeptin diminished P. gulae proteolytic activity, resulting in inhibition of haemagglutination and co-aggregation with A. viscosus. In addition, specific proteinase inhibitors were found to reduce bacterial cell growth. Porphyromonas gulae inhibited Ca9-22 cell proliferation in a multiplicity of infection- and time-dependent manner. Additionally, P. gulae-induced decreases in cell contact and adhesion-related proteins were accompanied by a marked change in cell morphology from well spread to rounded. In contrast, inhibition of protease activity prevented degradation of proteins, such as E-cadherin, β-catenin and focal adhesion kinase, and also blocked inhibition of cell proliferation. Together, these results indicate suppression of the amount of human proteins, such as γ-globulin, fibrinogen and fibronectin, by P. gulae proteases, suggesting that a novel protease complex contributes to bacterial virulence.
Collapse
Affiliation(s)
- Alam Saki Urmi
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroaki Inaba
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Sho Yoshida
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Naoya Ohara
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and the Advanced Research Center for Oral and Craniofacial Sciences, Dental School, Okayama University, Okayama, Japan
| | - Fumitoshi Asai
- Department of Pharmacology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
21
|
Dash S, Duraivelan K, Samanta D. Cadherin-mediated host-pathogen interactions. Cell Microbiol 2021; 23:e13316. [PMID: 33543826 DOI: 10.1111/cmi.13316] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/04/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Cell adhesion molecules mediate cell-to-cell and cell-to-matrix adhesions and play an immense role in a myriad of physiological processes during the growth and development of a multicellular organism. Cadherins belong to a major group of membrane-bound cell surface proteins that, in coordination with nectins, drive the formation and maintenance of adherens junctions for mediating cell to cell adhesion, cellular communication and signalling. Alongside adhesive function, the involvement of cadherins in mediating host-pathogen interactions has been extensively explored in recent years. In this review, we provide an in-depth understanding of microbial pathogens and their virulence factors that exploit cadherins for their strategical invasion into the host cell. Furthermore, macromolecular interactions involving cadherins and various microbial factors such as secretory toxins and adhesins lead to the disintegration of host cell junctions followed by the entry of the pathogen or triggering downstream signalling pathways responsible for successful invasion of the pathogenic microbes are discussed. Besides providing a comprehensive insight into some of the structural complexes involving cadherins and microbial factors to offer the mechanistic details of host-pathogen interactions, the current review also highlights novel constituents of various cell signalling events such as endocytosis machinery elicited upon microbial infections.
Collapse
Affiliation(s)
- Sagarika Dash
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
22
|
Pierce JV, Fellows JD, Anderson DE, Bernstein HD. A clostripain-like protease plays a major role in generating the secretome of enterotoxigenic Bacteroides fragilis. Mol Microbiol 2020; 115:290-304. [PMID: 32996200 DOI: 10.1111/mmi.14616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 11/27/2022]
Abstract
Bacteroides fragilis toxin (BFT) is a protein secreted by enterotoxigenic (ETBF) strains of B. fragilis. BFT is synthesized as a proprotein (proBFT) that is predicted to be a lipoprotein and that is cleaved into two discrete fragments by a clostripain-like protease called fragipain (Fpn). In this study, we obtained evidence that Fpn cleaves proBFT following its transport across the outer membrane. Remarkably, we also found that the disruption of the fpn gene led to a strong reduction in the level of >100 other proteins, many of which are predicted to be lipoproteins, in the culture medium of an ETBF strain. Experiments performed with purified Fpn provided direct evidence that the protease releases at least some of these proteins from the cell surface. The observation that wild-type cells outcompeted an fpn- strain in co-cultivation assays also supported the notion that Fpn plays an important role in cell physiology and is not simply dedicated to toxin biogenesis. Finally, we found that purified Fpn altered the adhesive properties of HT29 intestinal epithelial cells. Our results suggest that Fpn is a broad-spectrum protease that not only catalyzes the protein secretion on a wide scale but that also potentially cleaves host cell proteins during colonization.
Collapse
Affiliation(s)
- Jessica V Pierce
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin D Fellows
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - D Eric Anderson
- Advanced Mass Spectrometry Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Kalimuthu S, Cheung BP, Yau JY, Shanmugam K, Solomon AP, Neelakantan P. A Novel Small Molecule, 1,3-di-m-tolyl-urea, Inhibits and Disrupts Multispecies Oral Biofilms. Microorganisms 2020; 8:E1261. [PMID: 32825310 PMCID: PMC7570320 DOI: 10.3390/microorganisms8091261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
An imbalance of homeostasis between the microbial communities and the host system leads to dysbiosis in oral micro flora. DMTU (1,3-di-m-tolyl-urea) is a biocompatible compound that was shown to inhibit Streptococcus mutans biofilm by inhibiting its communication system (quorum sensing). Here, we hypothesized that DMTU is able to inhibit multispecies biofilms. We developed a multispecies oral biofilm model, comprising an early colonizer Streptococcus gordonii, a bridge colonizer Fusobacterium nucleatum, and late colonizers Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. We performed comprehensive investigations to demonstrate the effect of DMTU on planktonic cells and biofilms. Our findings showed that DMTU inhibits and disrupts multispecies biofilms without bactericidal effects. Mechanistic studies revealed a significant down regulation of biofilm and virulence-related genes in P. gingivalis. Taken together, our study highlights the potential of DMTU to inhibit polymicrobial biofilm communities and their virulence.
Collapse
Affiliation(s)
- Shanthini Kalimuthu
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong; (S.K.); (B.P.K.C.); (J.Y.Y.Y.)
- Quorum Sensing Laboratory, Center of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India;
| | - Becky P.K. Cheung
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong; (S.K.); (B.P.K.C.); (J.Y.Y.Y.)
| | - Joyce Y.Y. Yau
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong; (S.K.); (B.P.K.C.); (J.Y.Y.Y.)
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Center of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India;
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Center of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India;
| | - Prasanna Neelakantan
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong; (S.K.); (B.P.K.C.); (J.Y.Y.Y.)
| |
Collapse
|
24
|
Muñoz-Atienza E, Flak MB, Sirr J, Paramonov NA, Aduse-Opoku J, Pitzalis C, Curtis MA. The P. gingivalis Autocitrullinome Is Not a Target for ACPA in Early Rheumatoid Arthritis. J Dent Res 2020; 99:456-462. [PMID: 31905316 PMCID: PMC7088229 DOI: 10.1177/0022034519898144] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA), a chronic inflammatory disease affecting primarily the joints, is frequently characterized by the presence of autoimmune anticitrullinated protein antibodies (ACPA) during preclinical stages of disease and accumulation of hypercitrullinated proteins in arthritic joints. A strong association has been reported between RA and periodontal disease, and Porphyromonas gingivalis, a known driver of periodontitis, has been proposed as the microbial link underlying this association. We recently demonstrated P. gingivalis-mediated gut barrier breakdown and exacerbation of joint inflammation during inflammatory arthritis. In the present study, we investigated another potential role for P. gingivalis in RA etiopathogenesis, based on the generation of ACPA through the activity of a unique P. gingivalis peptidylarginine deiminase (PPAD) produced by this bacterium, which is capable of protein citrullination. Using a novel P. gingivalis W50 PPAD mutant strain, incapable of protein citrullination, and serum from disease-modifying antirheumatic drug-naïve early arthritis patients, we assessed whether autocitrullinated proteins in the P. gingivalis proteome serve as cross-activation targets in the initiation of ACPA production. We found no evidence for patient antibody activity specific to autocitrullinated P. gingivalis proteins. Moreover, deletion of PPAD did not prevent P. gingivalis-mediated intestinal barrier breakdown and exacerbation of disease during inflammatory arthritis in a murine model. Together, these findings suggest that the enzymatic activity of PPAD is not a major virulence mechanism during early stages of inflammatory arthritis.
Collapse
Affiliation(s)
- E Muñoz-Atienza
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, London, UK
| | - M B Flak
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, London, UK
| | - J Sirr
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, London, UK
| | - N A Paramonov
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - J Aduse-Opoku
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - C Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, London, UK
| | - M A Curtis
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
25
|
Devaux CA, Mezouar S, Mege JL. The E-Cadherin Cleavage Associated to Pathogenic Bacteria Infections Can Favor Bacterial Invasion and Transmigration, Dysregulation of the Immune Response and Cancer Induction in Humans. Front Microbiol 2019; 10:2598. [PMID: 31781079 PMCID: PMC6857109 DOI: 10.3389/fmicb.2019.02598] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022] Open
Abstract
Once bound to the epithelium, pathogenic bacteria have to cross epithelial barriers to invade their human host. In order to achieve this goal, they have to destroy the adherens junctions insured by cell adhesion molecules (CAM), such as E-cadherin (E-cad). The invasive bacteria use more or less sophisticated mechanisms aimed to deregulate CAM genes expression or to modulate the cell-surface expression of CAM proteins, which are otherwise rigorously regulated by a molecular crosstalk essential for homeostasis. Apart from the repression of CAM genes, a drastic decrease in adhesion molecules on human epithelial cells can be obtained by induction of eukaryotic endoproteases named sheddases or through synthesis of their own (prokaryotic) sheddases. Cleavage of CAM by sheddases results in the release of soluble forms of CAM. The overexpression of soluble CAM in body fluids can trigger inflammation and pro-carcinogenic programming leading to tumor induction and metastasis. In addition, the reduction of the surface expression of E-cad on epithelia could be accompanied by an alteration of the anti-bacterial and anti-tumoral immune responses. This immune response dysfunction is likely to occur through the deregulation of immune cells homing, which is controlled at the level of E-cad interaction by surface molecules αE integrin (CD103) and lectin receptor KLRG1. In this review, we highlight the central role of CAM cell-surface expression during pathogenic microbial invasion, with a particular focus on bacterial-induced cleavage of E-cad. We revisit herein the rapidly growing body of evidence indicating that high levels of soluble E-cad (sE-cad) in patients’ sera could serve as biomarker of bacterial-induced diseases.
Collapse
Affiliation(s)
- Christian A Devaux
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,CNRS, Institute of Biological Science (INSB), Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France
| | - Soraya Mezouar
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France
| | - Jean-Louis Mege
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France.,APHM, UF Immunology Department, Marseille, France
| |
Collapse
|
26
|
Takeuchi H, Sasaki N, Yamaga S, Kuboniwa M, Matsusaki M, Amano A. Porphyromonas gingivalis induces penetration of lipopolysaccharide and peptidoglycan through the gingival epithelium via degradation of junctional adhesion molecule 1. PLoS Pathog 2019; 15:e1008124. [PMID: 31697789 PMCID: PMC6932823 DOI: 10.1371/journal.ppat.1008124] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/26/2019] [Accepted: 10/03/2019] [Indexed: 01/07/2023] Open
Abstract
Porphyromonas gingivalis is a major pathogen in severe and chronic manifestations of periodontal disease, which is one of the most common infections of humans. A central feature of P. gingivalis pathogenicity is dysregulation of innate immunity at the gingival epithelial interface; however, the molecular basis underlying P. gingivalis–dependent abrogation of epithelial barrier function remains unknown. Gingival epithelial cells express junctional adhesion molecule (JAM1), a tight junction–associated protein, and JAM1 homodimers regulate epithelial barrier function. Here we show that Arg-specific or Lys-specific cysteine proteases (gingipains) secreted by P. gingivalis can specifically degrade JAM1 at K134 and R234 in gingival epithelial cells, resulting in permeability of the gingival epithelium to 40 kDa dextran, lipopolysaccharide (LPS), and proteoglycan (PGN). A P. gingivalis strain lacking gingipains was impaired in degradation of JAM1. Knockdown of JAM1 in monolayer cells and a three-dimensional multilayered tissue model also increased permeability to LPS, PGN, and gingipains. Inversely, overexpression of JAM1 in epithelial cells prevented penetration by these agents following P. gingivalis infection. Our findings strongly suggest that P. gingivalis gingipains disrupt barrier function of stratified squamous epithelium via degradation of JAM1, allowing bacterial virulence factors to penetrate into subepithelial tissues. Periodontal diseases, which are among the most common infections of humans, are characterized by gingival inflammation and destruction of the hard and soft tissues that support the tooth, eventually causing tooth loss. Porphyromonas gingivalis is a major pathogen in periodontal diseases. Infection of gingival epithelial cells by P. gingivalis increases epithelial permeability. However, the molecular mechanism and pathological significance of P. gingivalis–dependent barrier dysfunction in human gingival epithelium remain unknown. In this study, we developed a three-dimensional multilayered tissue model of gingival epithelium infected by P. gingivalis and used it to monitor penetration of bacterial products derived from P. gingivalis and other bacteria. We found that P. gingivalis proteases, called gingipains, have a potent and specific ability to degrade JAM1, which regulates epithelial barrier function. Mechanistically, gingipains degrade mature form of JAM1 on the plasma membrane, increasing penetration of 40 kDa dextran, lipopolysaccharide, peptidoglycan, and gingipains. Our study provides new insights into the etiological role of P. gingivalis, leading to periodontal destruction.
Collapse
Affiliation(s)
- Hiroki Takeuchi
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita-Osaka, Japan
- * E-mail: (HT); (AA)
| | - Naoko Sasaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita-Osaka, Japan
| | - Shunsuke Yamaga
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita-Osaka, Japan
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita-Osaka, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita-Osaka, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita-Osaka, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita-Osaka, Japan
- * E-mail: (HT); (AA)
| |
Collapse
|
27
|
Importance of Virulence Factors for the Persistence of Oral Bacteria in the Inflamed Gingival Crevice and in the Pathogenesis of Periodontal Disease. J Clin Med 2019; 8:jcm8091339. [PMID: 31470579 PMCID: PMC6780532 DOI: 10.3390/jcm8091339] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 01/18/2023] Open
Abstract
Periodontitis is a chronic inflammation that develops due to a destructive tissue response to prolonged inflammation and a disturbed homeostasis (dysbiosis) in the interplay between the microorganisms of the dental biofilm and the host. The infectious nature of the microbes associated with periodontitis is unclear, as is the role of specific bacterial species and virulence factors that interfere with the host defense and tissue repair. This review highlights the impact of classical virulence factors, such as exotoxins, endotoxins, fimbriae and capsule, but also aims to emphasize the often-neglected cascade of metabolic products (e.g., those generated by anaerobic and proteolytic metabolism) that are produced by the bacterial phenotypes that survive and thrive in deep, inflamed periodontal pockets. This metabolic activity of the microbes aggravates the inflammatory response from a low-grade physiologic (homeostatic) inflammation (i.e., gingivitis) into more destructive or tissue remodeling processes in periodontitis. That bacteria associated with periodontitis are linked with a number of systemic diseases of importance in clinical medicine is highlighted and exemplified with rheumatoid arthritis, The unclear significance of a number of potential "virulence factors" that contribute to the pathogenicity of specific bacterial species in the complex biofilm-host interaction clinically is discussed in this review.
Collapse
|
28
|
Takahashi N, Sulijaya B, Yamada-Hara M, Tsuzuno T, Tabeta K, Yamazaki K. Gingival epithelial barrier: regulation by beneficial and harmful microbes. Tissue Barriers 2019; 7:e1651158. [PMID: 31389292 DOI: 10.1080/21688370.2019.1651158] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The gingival epithelium acts as a physical barrier to separate the biofilm from the gingival tissue, providing the first line of defense against bacterial invasion in periodontal disease. Disruption of the gingival epithelial barrier, and the subsequent penetration of exogenous pathogens into the host tissues, triggers an inflammatory response, establishing chronic infection. Currently, more than 700 different bacterial species have been identified in the oral cavity, some of which are known to be periodontopathic. These bacteria contribute to epithelial barrier dysfunction in the gingiva by producing several virulence factors. However, some bacteria in the oral cavity appear to be beneficial, helping gingival epithelial cells maintain their integrity and barrier function. This review aims to discuss current findings regarding microorganism interactions and epithelial barrier function in the oral cavity, with reference to investigations in the gut, where this interaction has been extensively studied.
Collapse
Affiliation(s)
- Naoki Takahashi
- Division of Periodontology, Department of Oral Biological Science, Faculty of Dentistry, Niigata University , Niigata , Japan.,Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University , Niigata , Japan
| | - Benso Sulijaya
- Division of Periodontology, Department of Oral Biological Science, Faculty of Dentistry, Niigata University , Niigata , Japan.,Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Graduate School of Medical and Dental Sciences, Niigata University , Niigata , Japan.,Department of Periodontology, Faculty of Dentistry, Universitas Indonesia , Jakarta , Indonesia
| | - Miki Yamada-Hara
- Division of Periodontology, Department of Oral Biological Science, Faculty of Dentistry, Niigata University , Niigata , Japan.,Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Graduate School of Medical and Dental Sciences, Niigata University , Niigata , Japan
| | - Takahiro Tsuzuno
- Division of Periodontology, Department of Oral Biological Science, Faculty of Dentistry, Niigata University , Niigata , Japan.,Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Graduate School of Medical and Dental Sciences, Niigata University , Niigata , Japan
| | - Koichi Tabeta
- Division of Periodontology, Department of Oral Biological Science, Faculty of Dentistry, Niigata University , Niigata , Japan
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Graduate School of Medical and Dental Sciences, Niigata University , Niigata , Japan
| |
Collapse
|
29
|
Chen W, Alshaikh A, Kim S, Kim J, Chun C, Mehrazarin S, Lee J, Lux R, Kim RH, Shin KH, Park NH, Walentin K, Schmidt-Ott KM, Kang MK. Porphyromonas gingivalis Impairs Oral Epithelial Barrier through Targeting GRHL2. J Dent Res 2019; 98:1150-1158. [PMID: 31340691 DOI: 10.1177/0022034519865184] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oral mucosa provides the first line of defense against a diverse array of environmental and microbial irritants by forming the barrier of epithelial cells interconnected by multiprotein tight junctions (TJ), adherens junctions, desmosomes, and gap junction complexes. Grainyhead-like 2 (GRHL2), an epithelial-specific transcription factor, may play a role in the formation of the mucosal epithelial barrier, as it regulates the expression of the junction proteins. The current study investigated the role of GRHL2 in the Porphyromonas gingivalis (Pg)-induced impairment of epithelial barrier functions. Exposure of human oral keratinocytes (HOK-16B and OKF6 cells) to Pg or Pg-derived lipopolysaccharides (Pg LPSs) led to rapid loss of endogenous GRHL2 and the junction proteins (e.g., zonula occludens, E-cadherin, claudins, and occludin). GRHL2 directly regulated the expression levels of the junction proteins and the epithelial permeability for small molecules (e.g., dextrans and Pg bacteria). To explore the functional role of GRHL2 in oral mucosal barrier, we used a Grhl2 conditional knockout (KO) mouse model, which allows for epithelial tissue-specific Grhl2 KO in an inducible manner. Grhl2 KO impaired the expression of the junction proteins at the junctional epithelium and increased the alveolar bone loss in the ligature-induced periodontitis model. Fluorescence in situ hybridization revealed increased epithelial penetration of oral bacteria in Grhl2 KO mice compared with the wild-type mice. Also, blood loadings of oral bacteria (e.g., Bacteroides, Bacillus, Firmicutes, β-proteobacteria, and Spirochetes) were significantly elevated in Grhl2 KO mice compared to the wild-type littermates. These data indicate that Pg bacteria may enhance paracellular penetration through oral mucosa in part by targeting the expression of GRHL2 in the oral epithelial cells, which then impairs the epithelial barrier by inhibition of junction protein expression, resulting in increased alveolar tissue destruction and systemic bacteremia.
Collapse
Affiliation(s)
- W Chen
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,2 Section of Endodontics, Division of Constitutive and Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA, USA
| | - A Alshaikh
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - S Kim
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - J Kim
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - C Chun
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,2 Section of Endodontics, Division of Constitutive and Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA, USA
| | - S Mehrazarin
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - J Lee
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - R Lux
- 3 Section of Periodontics, Division of Constitutive and Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA, USA
| | - R H Kim
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - K H Shin
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - N H Park
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,3 Section of Periodontics, Division of Constitutive and Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA, USA.,4 Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - K Walentin
- 5 Max Delbruck Center for Molecular Medicine and Department of Nephrology, Charité Medical University, Berlin, Germany
| | - K M Schmidt-Ott
- 5 Max Delbruck Center for Molecular Medicine and Department of Nephrology, Charité Medical University, Berlin, Germany
| | - M K Kang
- 1 The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA.,2 Section of Endodontics, Division of Constitutive and Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
30
|
Flak MB, Colas RA, Muñoz-Atienza E, Curtis MA, Dalli J, Pitzalis C. Inflammatory arthritis disrupts gut resolution mechanisms, promoting barrier breakdown by Porphyromonas gingivalis. JCI Insight 2019; 4:125191. [PMID: 31292292 PMCID: PMC6629160 DOI: 10.1172/jci.insight.125191] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis is linked with altered host immune responses and severe joint destruction. Recent evidence suggests that loss of gut homeostasis and barrier breach by pathobionts, including Porphyromonas gingivalis, may influence disease severity. The mechanism(s) leading to altered gut homeostasis and barrier breakdown in inflammatory arthritis are poorly understood. In the present study, we found a significant reduction in intestinal concentrations of several proresolving mediators during inflammatory arthritis, including downregulation of the gut-protective mediator resolvin D5n-3 DPA (RvD5n-3 DPA). This was linked with increased metabolism of RvD5n-3 DPA to its inactive 17-oxo metabolite. We also found downregulation of IL-10 expression in the gut of arthritic mice that was coupled with a reduction in IL-10 and IL-10 receptor (IL-10R) in lamina propria macrophages. These changes were linked with a decrease in the number of mucus-producing goblet cells and tight junction molecule expression in the intestinal epithelium of arthritic mice when compared with naive mice. P. gingivalis inoculation further downregulated intestinal RvD5n-3 DPA and Il-10 levels and the expression of gut tight junction proteins. RvD5n-3 DPA, but not its metabolite 17-oxo-RvD5n-3 DPA, increased the expression of both IL-10 and IL-10R in macrophages via the upregulation of the aryl hydrocarbon receptor agonist l-kynurenine. Administration of RvD5n-3 DPA to arthritic P. gingivalis-inoculated mice increased intestinal Il-10 expression, restored gut barrier function, and reduced joint inflammation. Together, these findings uncover mechanisms in the pathogenesis of rheumatoid arthritis, where disruption of the gut RvD5n-3 DPA-IL-10 axis weakens the gut barrier, which becomes permissive to the pathogenic actions of the pathobiont P. gingivalis.
Collapse
Affiliation(s)
- Magdalena B. Flak
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London (QMUL), London, United Kingdom
| | - Romain A. Colas
- Lipid Mediator Unit, William Harvey Research Institute, QMUL, London, United Kingdom
| | - Estefanía Muñoz-Atienza
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London (QMUL), London, United Kingdom
| | | | - Jesmond Dalli
- Lipid Mediator Unit, William Harvey Research Institute, QMUL, London, United Kingdom
- Centre for Inflammation and Therapeutic Innovation, QMUL, London, United Kingdom
| | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London (QMUL), London, United Kingdom
- Centre for Inflammation and Therapeutic Innovation, QMUL, London, United Kingdom
| |
Collapse
|
31
|
Hočevar K, Potempa J, Turk B. Host cell-surface proteins as substrates of gingipains, the main proteases of Porphyromonas gingivalis. Biol Chem 2019; 399:1353-1361. [PMID: 29927743 DOI: 10.1515/hsz-2018-0215] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022]
Abstract
Gingipains are extracellular cysteine proteases of the oral pathogen Porphyromonas gingivalis and are its most potent virulence factors. They can degrade a great variety of host proteins, thereby helping the bacterium to evade the host immune response, deregulate signaling pathways, trigger anoikis and, finally, cause tissue destruction. Host cell-surface proteins targeted by gingipains are the main focus of this review and span three groups of substrates: immune-regulatory proteins, signaling pathways regulators and adhesion molecules. The analysis of published data revealed that gingipains predominantly inactivate their substrates by cleaving them at one or more sites, or through complete degradation. Sometimes, gingipains were even found to initially shed their membrane substrates, but this was mostly just the first step in the degradation of cell-surface proteins.
Collapse
Affiliation(s)
- Katarina Hočevar
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.,International Postgraduate School Jožef Stefan, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland.,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Boris Turk
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
32
|
Hoppe T, Kraus D, Probstmeier R, Jepsen S, Winter J. Stimulation with Porphyromonas gingivalis enhances malignancy and initiates anoikis resistance in immortalized oral keratinocytes. J Cell Physiol 2019; 234:21903-21914. [PMID: 31026063 DOI: 10.1002/jcp.28754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022]
Abstract
The aim of this study was to get new insights into molecular processes involved in tumor propagation of immortalized oral keratinocytes induced by the keystone pathogen Porphyromonas gingivalis. Cell culture experiments with immortalized OKF6 cells were performed to analyze cellular effects caused by bacterial stimulation focusing on altered gene expression, signaling pathways, proliferation rate, cell viability, migration and invasion behavior, and on the development of antiapoptotic pathways. Gene and protein expression were analyzed using real-time polymerase chain reaction, enzyme-linked immunosorbent assay, western blot, and protein arrays. Trypan blue staining was used to analyze proliferation and viability, transwell assays for cellular migration, Matrigel assays for invasion, and anoikis-assays for evaluating anoikis resistance. Stimulation of OKF6 cells with Porphyromonas gingivalis led to an alteration in the molecular repertoire of proteins which are involved in cell proliferation, epithelial-mesenchymal transition, stem cell formation, migration, invasion, and anoikis resistance. Higher proliferation rates were detected in conjunction with an activation of PI3K/Akt signaling and the mTOR-pathway. Additionally, inhibition of glycogen-synthase-kinase3-β led to stabilization of β-catenin and Snail, which resulted in a switch from predominant E-cadherin to N-cadherin expression and increased expression of the stem cell markers Oct3/4, Sox2, and Nanog. Enhanced biosynthesis and enzyme activity of matrix metalloproteinase-9 was accompanied by elevated invasion behavior. Finally, anoikis resistance was detected in stimulated keratinocytes by decreased apoptosis of nonadherent cells and elevated expression of epidermal growth factor receptor and c-Met. Hence, Porphyromonas gingivalis is able to induce a more aggressive tumor-like phenotype in immortalized oral keratinocytes, thus contributing to enhanced tumor features.
Collapse
Affiliation(s)
- T Hoppe
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | - D Kraus
- Department of Prosthodontics, Preclinical Education, and Material Sciences, University of Bonn, Bonn, Germany
| | - R Probstmeier
- Department of Nuclear Medicine, Neuro- and Tumor Cell Biology Group, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - S Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | - J Winter
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| |
Collapse
|
33
|
Santos‐Lima EKN, Oliveira YA, Santos RPB, Sampaio GP, Pimentel ACM, Carvalho‐Filho PC, Moura‐Costa LF, Olczak T, Gomes‐Filho IS, Meyer RJ, Xavier MT, Trindade SC. Production of interferon‐gamma, interleukin‐6, and interleukin‐1β by human peripheral blood mononuclear cells stimulated with novel lys‐gingipain synthetic peptides. J Periodontol 2019; 90:993-1001. [DOI: 10.1002/jper.18-0626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/16/2019] [Accepted: 01/27/2019] [Indexed: 01/09/2023]
Affiliation(s)
| | - Yuri A. Oliveira
- Dentistry CourseFeira de Santana State University Feira de Santana Bahia Brazil
| | - Rebeca P. B. Santos
- Postgraduate Program in ImmunologyFederal University of Bahia Salvador Bahia Brazil
| | - Geraldo P. Sampaio
- Postgraduate Program in ImmunologyFederal University of Bahia Salvador Bahia Brazil
| | | | | | | | - Teresa Olczak
- Faculty of BiotechnologyUniversity of Wrocław Wrocław Poland
| | - Isaac S. Gomes‐Filho
- Department of HealthFeira de Santana State University Feira de Santana Bahia Brazil
| | - Roberto J. Meyer
- Department of BiointeractionFederal University of Bahia Salvador Bahia Brazil
| | - Márcia T. Xavier
- Bahian School of Medicine and Public Health Salvador Bahia Brazil
| | - Soraya C. Trindade
- Department of HealthFeira de Santana State University Feira de Santana Bahia Brazil
| |
Collapse
|
34
|
Eick S, Gadzo N, Tacchi M, Sculean A, Potempa J, Stavropoulos A. Gingipains impair attachment of epithelial cell to dental titanium abutment surfaces. J Biomed Mater Res B Appl Biomater 2019; 107:2549-2556. [PMID: 30763463 DOI: 10.1002/jbm.b.34345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/23/2018] [Accepted: 02/02/2019] [Indexed: 12/17/2022]
Abstract
The study investigated in vitro the effect of Porphyromonas gingivalis and its cysteine proteases (gingipains) on epithelial cell adhesion to titanium-zirconium alloy surfaces. Titanium-zirconium discs with a standard machined (M) or chemically modified hydrophilic surface (modM) were coated with lamin-5 and incubated with telomerase-inactivated gingival keratinocytes (TIGK). Three P. gingivalis strains or gingipains were either added simultaneously with TIGK or after TIGK cells were already attached to the disks. Adhered TIGK cells were counted at 24 h. All P. gingivalis strains clearly inhibited adhesion of TIGK cells to M and modM surfaces. Compared with bacteria/gingipain-free TIGK cell cultures, the number of attached TIGK cells was reduced by about 80% and 60% when P. gingivalis was added simultaneously or after TIGK cells were already attached to the disks (each p < 0.01), respectively. Counts of attached cells were similarly reduced when only gingipains were used. Adhesion molecules of TIGK cells, in particular E-cadherin, were cleaved by P. gingivalis. In conclusion, P. gingivalis and gingipains interfere with the adhesion of epithelial cells to titanium-zirconium alloy surfaces by cleaving adhesion molecules, while a chemically modified hydrophilic titanium-zirconium alloy surface did not yield any protection. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2549-2556, 2019.
Collapse
Affiliation(s)
- Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, CH-3010, Bern, Switzerland
| | - Naida Gadzo
- Department of Periodontology, School of Dental Medicine, University of Bern, CH-3010, Bern, Switzerland
| | - Manuel Tacchi
- Department of Periodontology, School of Dental Medicine, University of Bern, CH-3010, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, CH-3010, Bern, Switzerland
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA.,Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
35
|
Oba PM, Devito FC, Santos JPF, Stipp RN, Gomes MDOS, Carciofi AC, Brunetto MA. Effects of Passive Immunization by Anti-Gingipain IgY on the Oral Health of Cats Fed Kibble Diets. J Vet Dent 2018. [DOI: 10.1177/0898756418814010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Porphyromonas gulae is one of the key microorganisms in biofilm dysbiosis that leads to periodontal disease, a prevalent disease in cats. Gingipains are proteases secreted that promote the disruption of cell adhesion and the differentiation of osteoclasts. The use of anti-gingipain immunoglobulin Y (IgY-GP) has emerged as a promising alternative to conventional prevention and treatment methods. The aim of this study was to evaluate the efficacy of IgY-GP on different parameters related to oral health in cats. Twenty adult mixed-breed cats were divided into 2 groups of 10 cats fed with 2 extruded diets differing only by coating. The control group received a coating of 4 g/kg of powdered egg and the test group received a coating of 4 g/kg of IgY-GP. The experiment followed a crossover design with 2 periods, each lasting 40 days with a washout period of 30 days. The evaluated parameters were plaque, calculus, gingivitis index, and percentage of Porphyromonas gingivalis of the oral cavity (%PG-OC) at baseline and after 40 days of diet consumption. All cats remained healthy throughout the study and no adverse reactions or side effects were observed. After 40 days of IgY-GP consumption, the plaque index was significantly lower compared to the baseline ( P = .0133). There were no significant changes in calculus index, gingivitis index, and %PG-OC between groups after 40 days ( P > .05). The consumption of IgY-GP reduces plaque accumulation, which may lead to an improvement in the oral health of adult cats.
Collapse
Affiliation(s)
- Patrícia Massae Oba
- College of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Fernanda Corrêa Devito
- College of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | | | | | | | | | - Marcio Antonio Brunetto
- College of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| |
Collapse
|
36
|
Kikuchi Y, Kimizuka R, Kato T, Okuda K, Kokubu E, Ishihara K. Treponema denticola Induces Epithelial Barrier Dysfunction in Polarized Epithelial Cells. THE BULLETIN OF TOKYO DENTAL COLLEGE 2018; 59:265-275. [PMID: 30333370 DOI: 10.2209/tdcpublication.2017-0052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Treponema denticola, an anaerobic spirochete found mainly in the oral cavity, is associated with periodontal disease and has a variety of virulence factors. Although in vitro studies have shown that T. denticola is able to penetrate epithelial cell monolayers, its effect on the epithelial barrier junction is not known. Human gingival epithelial cells are closely associated with adjacent membranes, forming barriers in the presence of tight junction proteins, including zonula occludens-1 (ZO-1), claudin-1, and occludin. Tight junction proteins are also expressed by Madin-Darby canine kidney (MDCK) cells in culture. In this study, the MDCK cell profile was investigated following infection with T. denticola (ATCC 35405) wild-type, as well as with its dentilisin-deficient mutant, K1. Basolateral exposure of MDCK cell monolayers to T. denticola at a multiplicity of infection (MOI) of 104 resulted in a decrease in transepithelial electrical resistance (TER). Transepithelial electrical resistance in MDCK cell monolayers also decreased following apical exposure to T. denticola (MOI=104), although this took longer with basolateral exposure. The effect on the TER was time-dependent and required the presence of live bacteria. Meanwhile, MDCK cell viability showed a decrease with either basolateral or apical exposure. Immunofluorescence analysis demonstrated decreases in the amounts of immunoreactive ZO-1 and claudin-1 in association with disruption of cell-cell junctions in MDCK cells exposed apically or basolaterally to T. denticola. Western blot analysis demonstrated degradation of ZO-1 and claudin-1 in culture lysates derived from T. denticola-exposed MDCK cells, suggesting a bacteria-induced protease capable of cleaving these tight junction proteins.
Collapse
Affiliation(s)
- Yuichiro Kikuchi
- Department of Microbiology, Tokyo Dental College.,Oral Health Science Center, Tokyo Dental College
| | | | - Tetsuo Kato
- Laboratory of Chemistry, Tokyo Dental College
| | | | - Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College.,Oral Health Science Center, Tokyo Dental College
| | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College.,Oral Health Science Center, Tokyo Dental College
| |
Collapse
|
37
|
Choi YS, Baek K, Choi Y. Estrogen reinforces barrier formation and protects against tumor necrosis factor alpha-induced barrier dysfunction in oral epithelial cells. J Periodontal Implant Sci 2018; 48:284-294. [PMID: 30405936 PMCID: PMC6207799 DOI: 10.5051/jpis.2018.48.5.284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/21/2018] [Indexed: 12/19/2022] Open
Abstract
Purpose Epithelial barrier dysfunction is involved in the pathophysiology of periodontitis and oral lichen planus. Estrogens have been shown to enhance the physical barrier function of intestinal and esophageal epithelia, and we aimed to investigate the effect of estradiol (E2) on the regulation of physical barrier and tight junction (TJ) proteins in human oral epithelial cell monolayers. Methods HOK-16B cell monolayers cultured on transwells were treated with E2, an estrogen receptor (ER) antagonist (ICI 182,780), tumor necrosis factor alpha (TNFα), or dexamethasone (Dexa), and the transepithelial electrical resistance (TER) was then measured. Cell proliferation was measured by the cell counting kit (CCK)-8 assay. The levels of TJ proteins and nuclear translocation of nuclear factor (NF)-κB were examined by confocal microscopy. Results E2 treatment increased the TER and the levels of junctional adhesion molecule (JAM)-A and zonula occludens (ZO)-1 in a dose-dependent manner, without affecting cell proliferation during barrier formation. Treatment of the tight-junctioned cell monolayers with TNFα induced decreases in the TER and the levels of ZO-1 and nuclear translocation of NF-κB. These TNFα-induced changes were inhibited by E2, and this effect was completely reversed by co-treatment with ICI 182,780. Furthermore, E2 and Dexa presented an additive effect on the epithelial barrier function. Conclusions E2 reinforces the physical barrier of oral epithelial cells through the nuclear ER-dependent upregulation of TJ proteins. The protective effect of E2 on the TNFα-induced impairment of the epithelial barrier and its additive effect with Dexa suggest its potential use to treat oral inflammatory diseases involving epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Yun Sik Choi
- Department of Oral Microbiology and Immunology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| | - Keumjin Baek
- Department of Oral Microbiology and Immunology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| | - Youngnim Choi
- Department of Oral Microbiology and Immunology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| |
Collapse
|
38
|
An early report: a modified porphyrin-linked metronidazole targeting intracellular Porphyromonas gingivalis in cultured oral epithelial cells. Int J Oral Sci 2018; 9:167-173. [PMID: 28960193 PMCID: PMC5709547 DOI: 10.1038/ijos.2017.31] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2017] [Indexed: 11/08/2022] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) has a strong association with the pathogenesis of periodontal disease. Recurrence of periodontal disease following therapy is attributed to numerous factors, and of growing interest is the potential problem of intracellular bacteria that are able to persist and multiply within the host cell, thereby facilitating relapse of infection. The effect of antibiotic therapy in controlling P. gingivalis is questionable. Accordingly, while metronidazole is very effective against anaerobic extracellular P. gingivalis by disrupting the DNA of anaerobic microbial cells, this antibiotic does not effectively penetrate into mammalian cells to inhibit intracellular bacteria. Therefore in the present study, a modified porphyrin-linked metronidazole adducts, developed in our laboratory, was used to kill intracellular P. gingivalis. A series of experiments were performed, including cytotoxicity assays and cellular uptake of adducts by flow cytometry coupled with live cell imaging analysis, P. gingivalis invasion and elimination assays, and the analysis of colocalization of P. gingivalis and porphyrin-linked metronidazole by confocal laser scanning microscopy. Findings indicated that P. gingivalis and porphyrin-linked metronidazole were colocalized in the cytoplasm, and this compound was able to kill P. gingivalis intracellular with a sufficient culture time. This is a novel antimicrobial approach in the elimination of P. gingivalis from the oral cavity.
Collapse
|
39
|
Yamada M, Takahashi N, Matsuda Y, Sato K, Yokoji M, Sulijaya B, Maekawa T, Ushiki T, Mikami Y, Hayatsu M, Mizutani Y, Kishino S, Ogawa J, Arita M, Tabeta K, Maeda T, Yamazaki K. A bacterial metabolite ameliorates periodontal pathogen-induced gingival epithelial barrier disruption via GPR40 signaling. Sci Rep 2018; 8:9008. [PMID: 29899364 PMCID: PMC5998053 DOI: 10.1038/s41598-018-27408-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/04/2018] [Indexed: 01/15/2023] Open
Abstract
Several studies have demonstrated the remarkable properties of microbiota and their metabolites in the pathogenesis of several inflammatory diseases. 10-Hydroxy-cis-12-octadecenoic acid (HYA), a bioactive metabolite generated by probiotic microorganisms during the process of fatty acid metabolism, has been studied for its protective effects against epithelial barrier impairment in the intestines. Herein, we examined the effect of HYA on gingival epithelial barrier function and its possible application for the prevention and treatment of periodontal disease. We found that GPR40, a fatty acid receptor, was expressed on gingival epithelial cells; activation of GPR40 by HYA significantly inhibited barrier impairment induced by Porphyromonas gingivalis, a representative periodontopathic bacterium. The degradation of E-cadherin and beta-catenin, basic components of the epithelial barrier, was prevented in a GPR40-dependent manner in vitro. Oral inoculation of HYA in a mouse experimental periodontitis model suppressed the bacteria-induced degradation of E-cadherin and subsequent inflammatory cytokine production in the gingival tissue. Collectively, these results suggest that HYA exerts a protective function, through GPR40 signaling, against periodontopathic bacteria-induced gingival epithelial barrier impairment and contributes to the suppression of inflammatory responses in periodontal diseases.
Collapse
Affiliation(s)
- Miki Yamada
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Takahashi
- Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Yumi Matsuda
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keisuke Sato
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mai Yokoji
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Benso Sulijaya
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoki Maekawa
- Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy and Bio-imaging, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshikazu Mikami
- Division of Microscopic Anatomy and Bio-imaging, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Manabu Hayatsu
- Division of Microscopic Anatomy and Bio-imaging, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yusuke Mizutani
- Division of Microscopic Anatomy and Bio-imaging, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Koichi Tabeta
- Division of Periodontology, Department of Oral Biological Science, Niigata University Faculty of Dentistry, Niigata, Japan
| | - Takeyasu Maeda
- Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
40
|
Qiu Q, Zhang F, Wu J, Xu N, Liang M. Gingipains disrupt F-actin and cause osteoblast apoptosis via integrin β1. J Periodontal Res 2018; 53:762-776. [PMID: 29777544 DOI: 10.1111/jre.12563] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to explore the cellular mechanisms underlying gingipain-caused changes in cell morphology and apoptosis of osteoblasts. MATERIAL AND METHODS Human calvarial osteoblasts and mouse osteoblasts MC3T3-E1 were treated with gingipain extracts from Porphyromonas gingivalis stain W83. Apoptosis was detected with annexin V and propidium iodide flow cytometry analysis or terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling staining. F-actin was determined by immunostaining. Western blotting was used to detect protein expression. Knocking down and overexpressing approaches were used to determine the role of integrin β1. RESULTS Osteoblasts exposed to gingipain extracts displayed increased apoptosis, accompanied by loss of F-actin integrity and cell shrinkage. The effects of gingipain extracts were abolished by the cysteine protease inhibitor N-tosyl-l-lysyl chloromethyl-ketone. Notably, gingipain extracts resulted in reduction of integrin β1, accompanied by diminished active RhoA whereas without effect on the total RhoA. Knockdown of integrin β1 resembled those seen in gingipain-treated osteoblasts. By contrast, the effects of gingipain extracts were abrogated by either overexpression of integrin β1 or presence of RhoA agonist CN03. CONCLUSION Gingipain-induced F-actin disruption and apoptosis are mediated by the degradation of integrin β1 and inhibition of RhoA activity, which account for osteoblast apoptosis.
Collapse
Affiliation(s)
- Q Qiu
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - F Zhang
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - J Wu
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - N Xu
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - M Liang
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
41
|
Abdulkareem AA, Shelton RM, Landini G, Cooper PR, Milward MR. Potential role of periodontal pathogens in compromising epithelial barrier function by inducing epithelial-mesenchymal transition. J Periodontal Res 2018; 53:565-574. [PMID: 29704258 DOI: 10.1111/jre.12546] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE Epithelial-mesenchymal transition (EMT) is a process by which epithelial cells acquire a mesenchymal-like phenotype and this may be induced by exposure to gram-negative bacteria. It has been proposed that EMT is responsible for compromising epithelial barrier function in the pathogenesis of several diseases. However, the possible role of EMT in the pathogenesis of periodontitis has not previously been investigated. The aim of this study therefore was to investigate whether gram-negative, anaerobic periodontal pathogens could trigger EMT in primary oral keratinocytes in vitro. MATERIAL AND METHODS Primary oral keratinocytes were harvested from labial mandibular mucosa of Wistar Han rats. Cells were exposed to heat-killed Fusobacterium nucleatum and Porphyromonas gingivalis (100 bacteria/epithelial cell) and to 20 μg/mL of Escherichia coli lipopolysaccharide over an 8-day period. Exposure to bacteria did not significantly change epithelial cell number or vitality in comparison with unstimulated controls at the majority of time-points examined. Expression of EMT marker genes was determined by semiquantitative RT-PCR at 1, 5, and 8 days following stimulation. The expression of EMT markers was also assessed by immunofluorescence (E-cadherin and vimentin) and using immunocytochemistry to determine Snail activation. The loss of epithelial monolayer coherence, in response to bacterial challenge, was determined by measuring trans-epithelial electrical resistance. The induction of a migratory phenotype was investigated using scratch-wound and transwell migration assays. RESULTS Exposure of primary epithelial cell cultures to periodontal pathogens was associated with a significant decrease in transcription (~3-fold) of E-cadherin and the upregulation of N-cadherin, vimentin, Snail, matrix metalloproteinase-2 (~3-5 fold) and toll-like receptor 4. Bacterial stimulation (for 8 days) also resulted in an increased percentage of vimentin-positive cells (an increase of 20% after stimulation with P. gingivalis and an increase of 30% after stimulation with F. nucleatum, compared with controls). Furthermore, periodontal pathogens significantly increased the activation of Snail (60%) and cultures exhibited a decrease in electrical impedance (P < .001) in comparison with unexposed controls. The migratory ability of the cells increased significantly in response to bacterial stimulation, as shown by both the number of migrated cells and scratch-wound closure rates. CONCLUSION Prolonged exposure of primary rat oral keratinocyte cultures to periodontal pathogens generated EMT-like features, which introduces the possibility that this process may be involved in loss of epithelial integrity during periodontitis.
Collapse
Affiliation(s)
- A A Abdulkareem
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - R M Shelton
- Biomaterials, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| | - G Landini
- Oral Pathology, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| | - P R Cooper
- Oral Biology & Periodontology, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| | - M R Milward
- Periodontology, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| |
Collapse
|
42
|
Eckert M, Mizgalska D, Sculean A, Potempa J, Stavropoulos A, Eick S. In vivo expression of proteases and protease inhibitor, a serpin, by periodontal pathogens at teeth and implants. Mol Oral Microbiol 2018; 33:240-248. [PMID: 29498485 DOI: 10.1111/omi.12220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2018] [Indexed: 12/16/2022]
Abstract
Porphyromonas gingivalis and Tannerella forsythia secrete proteases, gingipains and KLIKK-proteases. In addition, T. forsythia produces a serpin (miropin) with broad inhibitory spectrum. The aim of this pilot study was to determine the level of expression of miropin and individual proteases in vivo in periodontal and peri-implant health and disease conditions. Biofilm and gingival crevicular fluid (GCF)/ peri-implant sulcular fluid (PISF) samples were taken from healthy tooth and implant sites (n = 10), gingivitis and mucositis sites (n = 12), and periodontitis and peri-implantitis sites (n = 10). Concentration of interleukin-8 (IL-8), IL-1β and IL-10 in GCF was determined by enzyme-linked immunosorbent assay. Loads of P. gingivalis and T. forsythia and the presence of proteases and miropin genes were assessed in biofilm by quantitative PCR, whereas gene expression was estimated by quantitative RT-PCR. The presence of P. gingivalis and T. forsythia, as well as the level of IL-8 and IL-1β, were associated with disease severity in the periodontal and peri-implant tissues. In biofilm samples harboring T. forsythia, genes encoding proteases were found to be present at 72.4% for karilysin and 100% for other KLIKK-protease genes and miropin. At the same time, detectable mRNA expression of individual genes ranged from 20.7% to 58.6% of samples (for forsylisin and miropsin-1, respectively). In comparison with the T. forsythia proteases, miropin and the gingipains were highly expressed. The level of expression of gingipains was associated with those of miropin and certain T. forsythia proteases around teeth but not implants. Cumulatively, KLIKK-proteases and especially miropin, might play a role in pathogenesis of both periodontal and peri-implant diseases.
Collapse
Affiliation(s)
- M Eckert
- Department of Periodontology, University of Bern, School of Dental Medicine, Bern, Switzerland
| | - D Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - A Sculean
- Department of Periodontology, University of Bern, School of Dental Medicine, Bern, Switzerland
| | - J Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - A Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - S Eick
- Department of Periodontology, University of Bern, School of Dental Medicine, Bern, Switzerland
| |
Collapse
|
43
|
Abstract
The conversion of junctional epithelium to pocket epithelium is regarded as a hallmark in the development of periodontitis. Knowledge of factors contributing to the initiation and progression of pocket formation is important and may result in the development of better preventive measures and improve healing outcomes after therapeutic interventions. The periodontal pocket is a pathologically deepened gingival sulcus. In healthy periodontal conditions, the defense mechanisms are generally sufficient to control the constant microbiological challenge through a normally functioning junctional epithelium and the concentrated powerful mass of inflammatory and immune cells and macromolecules transmigrating through this epithelium. In contrast, destruction of the structural integrity of the junctional epithelium, which includes disruption of cell-to-cell contacts and detachment from the tooth surface, consequently leading to pocket formation, disequilibrates this delicate defense system. Deepening of the pocket apically, and also horizontal expansion of the biofilm on the tooth root, puts this system to a grueling test. There is no more this powerful concentration of defense cells and macromolecules that are discharged at the sulcus bottom and that face a relatively small biofilm surface in the gingival sulcus. In a pocket situation, the defense cells and the macromolecules are directly discharged into the periodontal pocket and the majority of epithelial cells directly face the biofilm. The thinning of the epithelium and its ulceration increase the chance for invasion of microorganisms and their products into the soft connective tissue and this aggravates the situation. Depending on the severity and duration of disease, a vicious circle may develop in the pocket environment, which is difficult or impossible to break without therapeutic intervention.
Collapse
|
44
|
Xu X, Tong T, Yang X, Pan Y, Lin L, Li C. Differences in survival, virulence and biofilm formation between sialidase-deficient and W83 wild-type Porphyromonas gingivalis strains under stressful environmental conditions. BMC Microbiol 2017; 17:178. [PMID: 28821225 PMCID: PMC5563019 DOI: 10.1186/s12866-017-1087-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/09/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Porphyromonas gingivalis is a major causative pathogen of chronic periodontitis. Within the inflammatory microenvironment, there exists extreme pH values, elevated temperatures and oxidative stress. Pathogens adapt to these stressful environmental conditions by regulating the transcription of virulence genes, modifying themselves with macromolecules and by aggregating and entering into a biofilm growth phase. Our previous study showed that the P. gingivalis sialidase can help cells obtain sialic acid from the environment, which is used to modify macromolecules on the surface of P. gingivalis cells. In this study, we compared the survival, virulence factors and biofilm formation of a sialidase-deficient strain (ΔPG0352) and the wild-type P. gingivalis W83 strain under various pH values, temperatures and oxidative stress conditions to identify the roles of sialidase in the adaptation of P. gingivalis to stressful conditions. RESULTS Compared to the growth of the P. gingivalis W83 strain, the growth of the △PG0352 was more inhibited by oxidative stress (0.25 and 0.5 mM H2O2) and exhibited greater cell structure damage when treated with H2O2 as assessed by transmission electron microscopy. Both Lys-gingipain (Kgp) and Arg-gingipain (Rgp) activities were lower in the ΔPG0352 than those in the P. gingivalis W83 strain under all the assayed culture conditions. The lipopolysaccharide (LPS) activity of the W83 strain was higher than that of the ΔPG0352 under acidic conditions (pH 5.0), but no differences between the strains were observed under other conditions. Compared to the biofilms formed by P. gingivalis W83, those formed by the ΔPG0352 were decreased and discontinuous under acidic, alkaline and oxidative stress conditions. CONCLUSION Compared to the P. gingivalis W83 strain, the survival, virulence and biofilm formation of the ΔPG0352 were decreased under stressful environmental conditions.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Department of Periodontics, School of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, Liaoning China
| | - Tong Tong
- Department of Periodontics, School of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, Liaoning China
- Department of Stomatology, Anshan Shuangshan Hospital, Anshan, Liaoning China
| | - Xue Yang
- Shenyang Medical College, Shenyang, Liaoning China
| | - Yaping Pan
- Department of Periodontics, School of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, Liaoning China
| | - Li Lin
- Department of Periodontics, School of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, Liaoning China
| | - Chen Li
- Department of Periodontics, School of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, Liaoning China
| |
Collapse
|
45
|
Ebersole JL, Dawson D, Emecen-Huja P, Nagarajan R, Howard K, Grady ME, Thompson K, Peyyala R, Al-Attar A, Lethbridge K, Kirakodu S, Gonzalez OA. The periodontal war: microbes and immunity. Periodontol 2000 2017; 75:52-115. [DOI: 10.1111/prd.12222] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Jung YJ, Jun HK, Choi BK. Porphyromonas gingivalis suppresses invasion of Fusobacterium nucleatum into gingival epithelial cells. J Oral Microbiol 2017; 9:1320193. [PMID: 28748028 PMCID: PMC5508355 DOI: 10.1080/20002297.2017.1320193] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/01/2017] [Accepted: 04/13/2017] [Indexed: 01/12/2023] Open
Abstract
Invasion of periodontal pathogens into periodontal tissues is an important step that can cause tissue destruction in periodontal diseases. Porphyromonas gingivalis is a keystone pathogen and its gingipains are key virulence factors. Fusobacterium nucleatum is a bridge organism that mediates coadhesion of disease-causing late colonizers such as P. gingivalis and early colonizers during the development of dental biofilms. The aim of this study was to investigate how P. gingivalis, in particular its gingipains, influences the invasion of coinfecting F. nucleatum into gingival epithelial cells. When invasion of F. nucleatum was analyzed after 4 h of infection, invasion of F. nucleatum was suppressed in the presence of P. gingivalis compared with during monoinfection. However, coinfection with a gingipain-null mutant of P. gingivalis did not affect invasion of F. nucleatum. Inhibition of PI3K reduced invasion of F. nucleatum. P. gingivalis inactivated the PI3K/AKT pathway, which was also dependent on gingipains. Survival of intracellular F. nucleatum was promoted by P. gingivalis with Arg gingipain mutation. The results suggest that P. gingivalis, in particular its gingipains, can affect the invasion of coinfecting F. nucleatum through modulating intracellular signaling of the host cells.
Collapse
Affiliation(s)
- Young-Jung Jung
- Department of Oral Microbiology and Immunology, School of Dentistry, University of Louisville, KY, USA
| | - Hye-Kyoung Jun
- Department of Oral Microbiology and Immunology, School of Dentistry, University of Louisville, KY, USA
| | - Bong-Kyu Choi
- Department of Oral Microbiology and Immunology, School of Dentistry, University of Louisville, KY, USA.,Dental Research Institute;Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
47
|
Interferon Regulatory Factor 6 Promotes Keratinocyte Differentiation in Response to Porphyromonas gingivalis. Infect Immun 2017; 85:IAI.00858-16. [PMID: 28289145 DOI: 10.1128/iai.00858-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/06/2017] [Indexed: 02/07/2023] Open
Abstract
We recently demonstrated that the expression of the interferon regulatory factor 6 (IRF6) transcription factor in oral keratinocytes was stimulated by the periodontal pathogen Porphyromonas gingivalis Here, we have established that IRF6 promotes the differentiation of oral keratinocytes in response to P. gingivalis This was evidenced by the IRF6-dependent upregulation of specific markers of keratinocyte terminal differentiation (e.g., involucrin [IVL] and keratin 13 [KRT13]), together with additional transcriptional regulators of keratinocyte differentiation, including Grainyhead-like 3 (GRHL3) and Ovo-like zinc finger 1 (OVOL1). We have previously established that the transactivator function of IRF6 is activated by receptor-interacting protein kinase 4 (RIPK4). Consistently, the silencing of RIPK4 inhibited the stimulation of IVL, KRT13, GRHL3, and OVOL1 gene expression. IRF6 was shown to also regulate the stimulation of transglutaminase-1 (TGM1) gene expression by P. gingivalis, as well as that of small proline-rich proteins (e.g., SPRR1), which are covalently cross-linked by TGM1 to other proteins, including IVL, during cornification. The expression of the tight junction protein occludin (OCLN) was found to also be upregulated in an IRF6-dependent manner. IRF6 was demonstrated to be important for the barrier function of oral keratinocytes; specifically, silencing of IRF6 increased P. gingivalis-induced intercellular permeability and cell invasion. Taken together, our findings potentially position IRF6 as an important mediator of barrier defense against P. gingivalis.
Collapse
|
48
|
Jin Baek K, Choi YS, Kang CK, Choi Y. The Proteolytic Activity of Porphyromonas gingivalis Is Critical in a Murine Model of Periodontitis. J Periodontol 2017; 88:218-224. [DOI: 10.1902/jop.2016.160262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
49
|
Antibacterial effects of Lactobacillus and bacteriocin PLNC8 αβ on the periodontal pathogen Porphyromonas gingivalis. BMC Microbiol 2016; 16:188. [PMID: 27538539 PMCID: PMC4990846 DOI: 10.1186/s12866-016-0810-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/12/2016] [Indexed: 11/18/2022] Open
Abstract
Background The complications in healthcare systems associated with antibiotic-resistant microorganisms have resulted in an intense search for new effective antimicrobials. Attractive substances from which novel antibiotics may be developed are the bacteriocins. These naturally occurring peptides are generally considered to be safe and efficient at eliminating pathogenic bacteria. Among specific keystone pathogens in periodontitis, Porphyromonas gingivalis is considered to be the most important pathogen in the development and progression of chronic inflammatory disease. The aim of the present study was to investigate the antimicrobial effects of different Lactobacillus species and the two-peptide bacteriocin PLNC8 αβ on P. gingivalis. Results Growth inhibition of P. gingivalis was obtained by viable Lactobacillus and culture media from L. plantarum NC8 and 44048, but not L. brevis 30670. The two-peptide bacteriocin from L. plantarum NC8 (PLNC8 αβ) was found to be efficient against P. gingivalis through binding followed by permeabilization of the membranes, using Surface plasmon resonance analysis and DNA staining with Sytox Green. Liposomal systems were acquired to verify membrane permeabilization by PLNC8 αβ. The antimicrobial activity of PLNC8 αβ was found to be rapid (1 min) and visualized by TEM to cause cellular distortion through detachment of the outer membrane and bacterial lysis. Conclusion Soluble or immobilized PLNC8 αβ bacteriocins may be used to prevent P. gingivalis colonization and subsequent pathogenicity, and thus supplement the host immune system against invading pathogens associated with periodontitis. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0810-8) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Abe-Yutori M, Chikazawa T, Shibasaki K, Murakami S. Decreased expression of E-cadherin by Porphyromonas gingivalis-lipopolysaccharide attenuates epithelial barrier function. J Periodontal Res 2016; 52:42-50. [PMID: 27016120 DOI: 10.1111/jre.12367] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVE The gingival epithelium is a first line of defense against bacterial challenge. E-cadherin (E-cad) plays an important role in cell-cell adhesion as a barrier in the epithelium. Recently, a decrease in the expression of E-cad has been observed in inflamed gingival tissue. The aims of this study were to clarify the changes in E-cad expression and barrier function in human gingival epithelial cells stimulated with Porphyromonas gingivalis-lipopolysaccharide (P. gingivalis-LPS) and to evaluate the influence of these changes on the inflammatory reaction. Furthermore, to clarify the mechanism of the E-cad changes induced by P. gingivalis-LPS, we focused on reactive oxygen species (ROS) that are reported to induce a decrease in E-cad expression. MATERIAL AND METHODS Human gingival epithelial cells were incubated in Humedia-KG2 in the presence or absence of P. gingivalis-LPS and antioxidants to analyze ROS involvement in P. gingivalis-LPS-induced E-cad changes. E-cad protein expression was analyzed by immunofluorescence staining. To investigate barrier function and inflammatory changes, we performed transport and cytokine assays using gingival epithelial cells and macrophages co-culture model in transwell plates. Medium containing 10 μg/mL P. gingivalis-LPS (transport substance) was added to the upper compartment, which harvested gingival epithelial cells, and medium without P. gingivalis-LPS was added to the lower compartment, which harvested macrophages. In the transport assay, P. gingivalis-LPS penetration was analyzed using the Limulus amebocyte lysate test. In the cytokine assay, we examined the change in tumor necrosis factor-α (TNF-α) production from the macrophages in the lower compartment using enzyme-linked immunosorbent assay. RESULTS Expression of E-cad in human gingival epithelial cells was decreased by P. gingivalis-LPS, and the decrease in E-cad accelerated the penetration of P. gingivalis-LPS through the monolayer. In addition, the concentration of TNF-α was higher under the E-cad reduced monolayer. Antioxidants, particularly vitamin E and l-ascorbic acid 2-phosphate magnesium salt, inhibited the decrease in E-cad expression, penetration of P. gingivalis-LPS and increase in TNF-α. CONCLUSION These results suggest that the decrease in E-cad caused by P. gingivalis-LPS leads to destruction of the epithelial barrier function in human gingival epithelial cells, and finally accelerates the inflammatory reaction under the barrier. Antioxidants, particularly vitamin E and l-ascorbic acid 2-phosphate magnesium salt, may restore the impaired function by scavenging ROS, which are related to the decrease in E-cad expression by P. gingivalis-LPS.
Collapse
Affiliation(s)
- M Abe-Yutori
- Oral Care Research Laboratories, Lion Corporation, Tokyo, Japan
| | - T Chikazawa
- Oral Care Research Laboratories, Lion Corporation, Tokyo, Japan
| | - K Shibasaki
- Oral Care Research Laboratories, Lion Corporation, Tokyo, Japan
| | - S Murakami
- Department of Periodontology, Osaka University, Graduate School of Dentistry, Suita, Japan
| |
Collapse
|