1
|
Nunes AP, Dos Santos YM, da Silva Sanfelice RA, Concato-Lopes VM, Silva TF, Tomiotto-Pellissier F, Lazarin-Bidoia D, Machado RRB, de Barros LD, Garcia JL, Conchon-Costa I, Pavanelli WR, Kobayashi RKT, de Freitas Barbosa B, Ferro EAV, Costa IN. Essential oil of oregano (Origanum vulgare L.) reduces infection and proliferation of Toxoplasma gondii in BeWo cells with induction of autophagy and death of tachyzoites through a mechanism similar to necrosis. Parasitol Res 2024; 123:217. [PMID: 38772951 DOI: 10.1007/s00436-024-08231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024]
Abstract
Toxoplasmosis poses a global health threat, ranging from asymptomatic cases to severe, potentially fatal manifestations, especially in immunocompromised individuals and congenital transmission. Prior research suggests that oregano essential oil (OEO) exhibits diverse biological effects, including antiparasitic activity against Toxoplasma gondii. Given concerns about current treatments, exploring new compounds is important. This study was to assess the toxicity of OEO on BeWo cells and T. gondii tachyzoites, as well as to evaluate its effectiveness in in vitro infection models and determine its direct action on free tachyzoites. OEO toxicity on BeWo cells and T. gondii tachyzoites was assessed by MTT and trypan blue methods, determining cytotoxic concentration (CC50), inhibitory concentration (IC50), and selectivity index (SI). Infection and proliferation indices were analyzed. Direct assessments of the parasite included reactive oxygen species (ROS) levels, mitochondrial membrane potential, necrosis, and apoptosis, as well as electron microscopy. Oregano oil exhibited low cytotoxicity on BeWo cells (CC50: 114.8 µg/mL ± 0.01) and reduced parasite viability (IC50 12.5 ± 0.06 µg/mL), demonstrating 9.18 times greater selectivity for parasites than BeWo cells. OEO treatment significantly decreased intracellular proliferation in infected cells by 84% after 24 h with 50 μg/mL. Mechanistic investigations revealed increased ROS levels, mitochondrial depolarization, and lipid droplet formation, linked to autophagy induction and plasma membrane permeabilization. These alterations, observed through electron microscopy, suggested a necrotic process confirmed by propidium iodide labeling. OEO treatment demonstrated anti-T. gondii action through cellular and metabolic change while maintaining low toxicity to trophoblastic cells.
Collapse
Affiliation(s)
- Angélica Paulina Nunes
- Department of Immunology, Parasitology and General Pathology - Laboratory of Experimental Immunoparasitology, State University of Londrina, Londrina, Paraná, Brazil
| | - Yasmin Munhoz Dos Santos
- Department of Immunology, Parasitology and General Pathology - Laboratory of Experimental Immunoparasitology, State University of Londrina, Londrina, Paraná, Brazil
| | - Raquel Arruda da Silva Sanfelice
- Department of Immunology, Parasitology and General Pathology - Laboratory of Experimental Immunoparasitology, State University of Londrina, Londrina, Paraná, Brazil
| | - Virgínia Marcia Concato-Lopes
- Department of Immunology, Parasitology and General Pathology - Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, Londrina, Paraná, Brazil
| | - Taylon Felipe Silva
- Department of Immunology, Parasitology and General Pathology - Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, Londrina, Paraná, Brazil
| | - Fernanda Tomiotto-Pellissier
- Department of Immunology, Parasitology and General Pathology - Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, Londrina, Paraná, Brazil
| | - Danielle Lazarin-Bidoia
- Department of Immunology, Parasitology and General Pathology - Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, Londrina, Paraná, Brazil
| | - Rayanne Regina Beltrame Machado
- Department of Immunology, Parasitology and General Pathology - Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, Londrina, Paraná, Brazil
| | - Luiz Daniel de Barros
- Department of Veterinary Medicine - Laboratory of Animal Protozoology, State University of Londrina, Londrina, Paraná, Brazil
| | - João Luis Garcia
- Department of Veterinary Medicine - Laboratory of Animal Protozoology, State University of Londrina, Londrina, Paraná, Brazil
| | - Ivete Conchon-Costa
- Department of Immunology, Parasitology and General Pathology - Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, Londrina, Paraná, Brazil
| | - Wander Rogério Pavanelli
- Department of Immunology, Parasitology and General Pathology - Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Bellisa de Freitas Barbosa
- Department of Cell Biology, Histology and Embryology - Laboratory of Reproduction Immunophysiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Eloisa Amália Vieira Ferro
- Department of Cell Biology, Histology and Embryology - Laboratory of Reproduction Immunophysiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Idessania Nazareth Costa
- Department of Immunology, Parasitology and General Pathology - Laboratory of Experimental Immunoparasitology, State University of Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
2
|
Transforming growth factor (TGF)-β1 and interferon (IFN)-γ differentially regulate ICAM-1 expression and adhesion of Toxoplasma gondii to human trophoblast (BeWo) and uterine cervical (HeLa) cells. Acta Trop 2021; 224:106111. [PMID: 34450063 DOI: 10.1016/j.actatropica.2021.106111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/24/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022]
Abstract
Toxoplasma gondii is a parasite able to infect various cell types, including trophoblast cells. Studies have demonstrated that interleukin (IL)-10, transforming growth factor (TGF)-β1 and interferon (IFN)-γ are involved in the susceptibility of BeWo trophoblast cells to T. gondii infection. Furthermore, T. gondii is able to adhere to the plasma membrane of host cells through intercellular adhesion molecule (ICAM)-1. Thus, the present study aimed to assess the role of IL-10, TGF-β1 and IFN-γ in the expression of ICAM-1 in BeWo and HeLa cells and to analyze the role of ICAM-1 in the adhesion and invasion of T. gondii to these cells under the influence of these cytokines. For this purpose, BeWo and HeLa cells were treated or not, before and after T. gondii infection, with rIL-10, rTGF-β1 or rIFN-γ. For the BeWo cells, rIL-10 and rTGF-β1 favored susceptibility to infection, but only rTGF-β1 and rIFN-γ increased ICAM-1 expression, and TNF-α release. On the other hand, rIFN-γ downregulated the expression of ICAM-1 triggered by T. gondii in HeLa cells, leading to control of the infection. Moreover, we observed that upregulation of ICAM-1, mediated by cytokine's stimulation, in BeWo and HeLa cells resulted in a high number rate of both parasite adhesion and invasion to these cells, which were strongly reduced after ICAM-1 neutralization. Likewise, the blockage of ICAM-1 molecule also impaired T. gondii infection in human villous explants. Taken together, these findings demonstrate that TGF-β1 and IFN-γ differentially regulate ICAM-1 expression, which may interfere in the adhesion/invasion of T. gondii to BeWo and HeLa cells for modulating susceptibility to infection.
Collapse
|
3
|
Karahoda R, Abad C, Horackova H, Kastner P, Zaugg J, Cerveny L, Kucera R, Albrecht C, Staud F. Dynamics of Tryptophan Metabolic Pathways in Human Placenta and Placental-Derived Cells: Effect of Gestation Age and Trophoblast Differentiation. Front Cell Dev Biol 2020; 8:574034. [PMID: 33072756 PMCID: PMC7530341 DOI: 10.3389/fcell.2020.574034] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
L-Tryptophan is an essential amino acid and a precursor of several physiologically active metabolites. In the placenta, the serotonin and kynurenine metabolic pathways of tryptophan metabolism have been identified, giving rise to various molecules of neuroactive or immunoprotective properties, such as serotonin, melatonin, kynurenine, kynurenic acid, or quinolinic acid. Current literature suggests that optimal levels of these molecules in the fetoplacental unit are crucial for proper placenta functions, fetal development and programming. Placenta is a unique endocrine organ that, being equipped with a battery of biotransformation enzymes and transporters, precisely orchestrates homeostasis of tryptophan metabolic pathways. However, because pregnancy is a dynamic process and placental/fetal needs are continuously changing throughout gestation, placenta must adapt to these changes and ensure proper communication in the feto-placental unit. Therefore, in this study we investigated alterations of placental tryptophan metabolic pathways throughout gestation. Quantitative polymerase chain reaction (PCR) analysis of 21 selected genes was carried out in first trimester (n = 13) and term (n = 32) placentas. Heatmap analysis with hierarchical clustering revealed differential gene expression of serotonin and kynurenine pathways across gestation. Subsequently, digital droplet PCR, Western blot, and functional analyses of the rate-limiting enzymes suggest preferential serotonin synthesis early in pregnancy with a switch to kynurenine production toward term. Correspondingly, increased function and/or protein expression of serotonin degrading enzyme and transporters at term indicates efficient placental uptake and metabolic degradation of serotonin. Lastly, gene expression analysis in choriocarcinoma-derived cell lines (BeWo, BeWo b30, JEG-3) revealed dissimilar expression patterns and divergent effect of syncytialization compared to primary trophoblast cells isolated from human term placentas; these findings show that the commonly used in vitro placental models are not suitable to study placental handling of tryptophan. Altogether, our data provide the first comprehensive evidence of changes in placental homeostasis of tryptophan and its metabolites as a function of gestational age, which is critical for proper placental function and fetal development.
Collapse
Affiliation(s)
- Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Cilia Abad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Hana Horackova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Petr Kastner
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Jonas Zaugg
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Lukas Cerveny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Radim Kucera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| |
Collapse
|
4
|
Haji Mazdarani M, Jafarikia M, Nemati F. Investigation of indolamine 2, 3 dioxygenase (IDO-1) gene expression by real-time PCR among patients with lung cancer. J Cell Physiol 2019; 234:13781-13787. [PMID: 30671955 DOI: 10.1002/jcp.28057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/12/2018] [Indexed: 11/09/2022]
Abstract
INTRODUCTION The aim of this study was to evaluate the expression of IDO-1 gene and cancerous grades of non-small cell lung cancer (NSCLC) and its subclasses among patients with lung cancer using real-time polymerase chain reaction (PCR). MATERIALS AND METHODS A total of 35 clinical samples were collected from patients with NSCLC. To evaluate the IDO-1 gene after the extraction of RNA and complementary DNA (cDNA) synthesis using real-time PCR, the expression of the gene was investigated. The western blot analysis method was used for protein expression. RESULTS The highest grade, IIIa grade included six patients (17.1%). Approximately 74% of adenocarcinoma cases were in T-categories of lung cancer and 25% of patients in IIIa grade. Patients in the IIA and IIB categories belong to the SCC subclass. Results showed that the expression of INDO 5.22 fold gene was more common in patients with lung cancer than NSCLC. Protein expression in western blot analysis in patients compared with normal 3.22 fold change increased. CONCLUSION The evidence shows that IDO-1 is a key parameter that inhibits antitumor immune responses in humans. This study has added interesting data to the IDO community for analyzing the expression of cancerous human cancer cells and cancer tissue in humans. The results showed that IDO-1 not only participates in the process of escape from tumor immunity but can also contribute to the safety of the pretumor area. A wide variety of observed IDO-1 expression values among patients may present serious barriers to the clinical performance of anti- IDO strategies at present.
Collapse
Affiliation(s)
| | - Milad Jafarikia
- Department of Genetic, Islamic Azad University of Varamin, Pishva, Iran
| | - Fahimeh Nemati
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Wattegedera SR, Doull LE, Goncheva MI, Wheelhouse NM, Watson DM, Pearce J, Benavides J, Palarea-Albaladejo J, McInnes CJ, Ballingall K, Entrican G. Immunological Homeostasis at the Ovine Placenta May Reflect the Degree of Maternal Fetal Interaction. Front Immunol 2019; 9:3025. [PMID: 30687304 PMCID: PMC6334339 DOI: 10.3389/fimmu.2018.03025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/06/2018] [Indexed: 01/07/2023] Open
Abstract
Successful mammalian pregnancies are a result of complex physiological, endocrinological, and immunological processes that combine to create an environment where the mother is tolerant to the semi-allogeneic fetus. Our knowledge of the mechanisms that contribute to maternal tolerance is derived mainly from human and murine studies of haemochorial placentation. However, as this is the most invasive type of placentation it cannot be assumed that identical mechanisms apply to the less invasive epitheliochorial placentation found in other species such as ruminants. Here, we examine three features associated with reproductive immune regulation in a transformed ovine trophoblast cell line and ex-vivo ovine reproductive tissues collected at term, namely: major histocompatibility complex (MHC) expression, Indoleamine 2,3 dioxygenase-1 (IDO-1) expression, and Natural Killer (NK) cell infiltration. High levels of MHC class I protein expression were detected at the surface of the trophoblast cell line using a pan-MHC class I specific monoclonal antibody. The majority of MHC class I transcripts isolated from the cell line clustered with classical MHC alleles. Transcriptional analysis of placental tissues identified only classical MHC class I transcripts. We found no evidence of constitutive transcription of IDO-1 in either the trophoblast cell line or placental tissues. Ex-vivo tissues collected from the materno-fetal interface were negative for cells expressing NKp46/NCR1. Collectively, these observations suggest that the relatively non-invasive synepitheliochorial placentation found in sheep has a more limited requirement for local immunoregulation compared to the more invasive haemochorial placentation of primates and rodents.
Collapse
Affiliation(s)
- Sean R Wattegedera
- Vaccines Department, Moredun Research Institute, Penicuik, United Kingdom
| | - Laura E Doull
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, United Kingdom
| | - Mariya I Goncheva
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | | | | | - Julian Pearce
- University College London Hospital, London, United Kingdom
| | | | | | - Colin J McInnes
- Vaccines Department, Moredun Research Institute, Penicuik, United Kingdom
| | - Keith Ballingall
- Vaccines Department, Moredun Research Institute, Penicuik, United Kingdom
| | - Gary Entrican
- Vaccines Department, Moredun Research Institute, Penicuik, United Kingdom.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
6
|
Navarro JA, García de la Fuente JN, Sánchez J, Martínez CM, Buendía AJ, Gutiérrez-Martín CB, Rodriguez-Ferri EF, Ortega N, Salinas J. Kinetics of Infection and Effects on the Placenta of Clamydophila abortus in Experimentally Infected Pregnant Ewes. Vet Pathol 2016; 41:498-505. [PMID: 15347822 DOI: 10.1354/vp.41-5-498] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A Chlamydophila abortus-induced abortion model was carried out on the basis of the experimental infection of ewes at day 75 of gestation. The infection induced abortions and the birth of weak lambs during the last 3 weeks of pregnancy. To study the kinetics of the infection in the placenta and in other organs, infected ewes were killed at 105, 120, and 130 days of gestation and also several days after abortion or parturition. Infected ewes developed a systemic infection that caused a mild and transient pneumonia and focal hepatitis. Pathologic changes were observed in placentas at 120 day of gestation, although the lesions varied between animals and even between placentomes of the same placenta. The first placental area infected was the maternal stroma and epithelium next to the intercaruncular areas, where neutrophilic response seemed to control the infection. A substantial degree of multiplication of C. abortus was then observed in the trophoblast cells of the placentome, periplacentomal choriallantoic membranes, and hilius, with an inflammatory exudate composed mainly of neutrophils, some macrophages, and very scarce lymphocytes. After abortion, the lesions affected the intercotyledonary areas of the aborted placentas, whereas in the uterus significant lymphocyte infiltration was observed, together with a rapid decrease of the C. abortus antigen in the degenerated caruncular tissues.
Collapse
Affiliation(s)
- J A Navarro
- Departmento de Anatomía y Anatomía Patológica Comparadas, Facultad deVeterinaria, Universidad de Murcia, 30100 Murcia, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Barbosa BF, Lopes-Maria JB, Gomes AO, Angeloni MB, Castro AS, Franco PS, Fermino ML, Roque-Barreira MC, Ietta F, Martins-Filho OA, Silva DAO, Mineo JR, Ferro EAV. IL10, TGF beta1, and IFN gamma modulate intracellular signaling pathways and cytokine production to control Toxoplasma gondii infection in BeWo trophoblast cells. Biol Reprod 2015; 92:82. [PMID: 25673564 DOI: 10.1095/biolreprod.114.124115] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Considering that interleukin 10 (IL10), transforming growth factor beta1 (TGFB1), and interferon gamma (IFNG) are involved in the susceptibility of BeWo trophoblast cells to Toxoplasma gondii infection, the aim of the present study was to investigate the effector mechanisms triggered by these cytokines in the control of T. gondii in BeWo cells. For this purpose, infected/uninfected BeWo cells were treated with IL10, TGFB1 (50 ng/ml), and IFNG (20 or 100 ng/ml) in order to verify the phosphorylation of signal transducers and activators of transcription 1 (STAT1), STAT3, and Smad2, parasite intracellular proliferation, as well as the Th1/Th2/IL17A cytokine production. The treatment of BeWo cells with IL10 and TGFB1 favored T. gondii proliferation, and these findings were associated with STAT3 and Smad2 phosphorylation, respectively (P < 0.05). Also, these cytokine treatments were able to down-modulate TNF alpha (TNFA) and IL6 production (P < 0.05). Low concentration of IFNG was unable to control T. gondii infection but was able to trigger STAT1 phosphorylation and up-regulate IL6 and IL17A production; whereas a high concentration of IFNG was unable to activate STAT1 but down-modulated IL6 and TNFA and increased T. gondii proliferation (P < 0.05). IL10, TGFB1, and IFNG regulate a differential T. gondii proliferation in BeWo cells because they distinctly trigger intracellular signaling pathways and cytokine production, especially IL6 and TNFA. Our data open new windows to understand the mechanisms triggered by IL10, TGFB1, and IFNG at the maternal-fetal interface in the presence of T. gondii, contributing to recognizing the importance of these effector mechanisms involved in the vertical transmission of this parasite.
Collapse
Affiliation(s)
- Bellisa Freitas Barbosa
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Janice Buiate Lopes-Maria
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Angelica Oliveira Gomes
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Mariana Bodini Angeloni
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Andressa Silva Castro
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Priscila Silva Franco
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Marise Lopes Fermino
- Department of Cellular and Molecular Biology, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Cristina Roque-Barreira
- Department of Cellular and Molecular Biology, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francesca Ietta
- Department of Life Science, University of Siena, Siena, Italy
| | - Olindo Assis Martins-Filho
- Laboratory of Chagas Disease, René Rachou Research Center, Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Deise Aparecida Oliveira Silva
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - José Roberto Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
8
|
Ban Y, Chang Y, Dong B, Kong B, Qu X. Indoleamine 2,3-dioxygenase levels at the normal and recurrent spontaneous abortion fetal-maternal interface. J Int Med Res 2013; 41:1135-49. [PMID: 23847296 DOI: 10.1177/0300060513487642] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To localize indoleamine 2,3-dioxygenase (IDO) mRNA and protein and to undertake a functional study at the first trimester fetal-maternal interface in order to determine whether the distribution and function of IDO are related to recurrent spontaneous abortion (RSA). METHODS Women undergoing legal pregnancy termination and women with RSA participated in this prospective study. Immunohistochemistry and real-time reverse transcription-polymerase chain reaction were used to analyse levels of IDO protein and mRNA in placenta, decidua and HTR-8/SVneo cells. Culture medium collected from trophoblast villous explant or HTR-8/SVneo cell cultures was used to measure IDO activity in response to interferon (IFN)-γ treatment. RESULTS A total of 40 healthy women and 26 women with RSA provided samples of placenta and decidua. For normal pregnancies, IDO protein and mRNA was identified in placental trophoblasts, invasive extravillous trophoblasts and decidual glandular epithelium. IFN-γ significantly increased IDO activity in trophoblast villous explants and HTR-8/SVneo cells. Levels of IDO protein and mRNA in the placenta and decidua from normal pregnancies were significantly higher than in those from RSA. CONCLUSIONS Decreased levels of IDO protein and mRNA in the placenta and decidua from RSA suggest an important role for IDO in the maintenance of normal pregnancy.
Collapse
Affiliation(s)
- Yanli Ban
- Department of Obstetrics and Gynaecology, Qilu Hospital of Shandong University, Ji'nan, Shandong Province, China.
| | | | | | | | | |
Collapse
|
9
|
del Rio L, Barberá-Cremades M, Navarro JA, Buendía AJ, Cuello F, Ortega N, Gallego MC, Salinas J, Caro MR. IFN-γ expression in placenta is associated to resistance to Chlamydia abortus after intragastric infection. Microb Pathog 2012; 56:1-7. [PMID: 23287018 DOI: 10.1016/j.micpath.2012.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 11/26/2022]
Abstract
Intragastric infection mimics the natural route of infection of Chlamydia abortus (etiological agent of ovine enzootic abortion). In the mouse model, intragastric experimental infection induces very mild signs of infection followed by late term abortions, as it is shown by the natural ovine host. In order to evaluate the immune mechanisms associated to the dissemination of the pathogen from the gastrointestinal tract, we have administered an intragastric dose of C. abortus to pregnant mice. Systemic and local expression of cytokines, tissue colonization and excretion of bacteria after parturition were monitored during pregnancy. Susceptible CBA/J mice showed a higher bacterial colonization of the placenta and excretion of live bacteria after parturition that were related to a higher local IL-10 expression. By contrast, resistant C57BL/6 mouse strain had higher local IFN-γ mRNA expression in the placenta just before parturition and a transient bacterial colonization of the reproductive tract, with no excretion of C. abortus after parturition. In summary, intragastric infection not only mimics the natural route of infection of C. abortus, but can also be useful in order to understand the immunopathogenesis of chlamydial abortion in the mouse.
Collapse
Affiliation(s)
- L del Rio
- Department of Animal Health, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang B, Koga K, Osuga Y, Cardenas I, Izumi G, Takamura M, Hirata T, Yoshino O, Hirota Y, Harada M, Mor G, Taketani Y. Toll-like receptor-3 ligation-induced indoleamine 2, 3-dioxygenase expression in human trophoblasts. Endocrinology 2011; 152:4984-92. [PMID: 21952237 DOI: 10.1210/en.2011-0278] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Indoleamine 2,3-dioxygenase (IDO) is an enzyme that degrades an essential amino acid, tryptophan, and plays a role in inhibiting the proliferation of T cells and intracellular pathogens. Inhibiting IDO in mice leads to fetal rejection, suggesting its significance in establishing pregnancy. Toll-like receptor 3 (TLR-3) is a key component of the innate immune system that recognizes viral double-stranded RNA and triggers immune reactions by producing type I interferon. Using a human trophoblast cell culture system, we studied the effect of TLR-3 ligation on IDO expression and function by treating trophoblasts with polyinosinic-polycytidylic acid [poly(I:C)] (a synthetic double stranded RNA, which mimics viral RNA). Real-time PCR and Western blot analysis revealed that IDO mRNA and protein expression was significantly induced by poly(I:C). The activity of IDO was also increased by poly(I:C) given that the L-kynurenine concentrations were elevated in conditioned media. Conditioned media from poly(I:C)-treated trophoblasts were found to inhibit the proliferation of human T cells significantly. Poly(I:C) was also shown to induce interferon (IFN)-β mRNA expression in trophoblasts. Recombinant human IFN-β increased IDO mRNA expression in trophoblasts more rapidly than poly(I:C). Pretreating with neutralizing antibody against IFN-β significantly suppressed IDO induction by poly(I:C). Collectively we have demonstrated that ligation of TLR-3 by poly(I:C) induces IDO expression in human first-trimester trophoblasts via an IFN-β-dependent pathway. These findings suggest that upon viral infection, trophoblasts induce IDO and in turn contribute to antimicrobial activity and maintenance of fetomaternal tolerance.
Collapse
Affiliation(s)
- Bo Wang
- Department of Obstetrics and Gynecology, University of Tokyo, 7-3-1 Hongo Bunkyo Tokyo, 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Carvalho JV, Alves CMOS, Cardoso MRD, Mota CM, Barbosa BF, Ferro EAV, Silva NM, Mineo TWP, Mineo JR, Silva DAO. Differential susceptibility of human trophoblastic (BeWo) and uterine cervical (HeLa) cells to Neospora caninum infection. Int J Parasitol 2010; 40:1629-37. [PMID: 20708622 DOI: 10.1016/j.ijpara.2010.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/22/2010] [Accepted: 06/23/2010] [Indexed: 11/18/2022]
Abstract
Neospora caninum is an apicomplexan parasite, closely related to Toxoplasma gondii, and causes abortion and congenital neosporosis in cattle worldwide. Trophoblast cells act in mechanisms of innate immune defense at the fetal-maternal interface and no data are available about the interaction of Neospora with human trophoblasts. Thus, this study aimed to verify the susceptibility of human trophoblastic (BeWo) compared with uterine cervical (HeLa) cell lines to N. caninum. BeWo and HeLa cells were infected with different parasite:cell ratios of N. caninum tachyzoites and analyzed at different times after infection for cell viability using thiazolyl blue tetrazole and lactate dehydrogenase assays. Both cell lines were also evaluated for cytokine production and parasite infection/replication assays when pre-treated or not with Neospora lysate antigen (NLA) or human recombinant IFN-γ. Cell viability was increased up to 48 h of infection in both types of cells, suggesting that infection could inhibit early cell death and/or induce cell proliferation. Neospora infection induced up-regulation of the macrophage migration inhibitory factor (MIF), mainly in HeLa cells, which was enhanced by cell pre-treatment by NLA or IFN-γ. Conversely, parasite infection induced down-regulation of the transforming growth factor (TGF-β), mostly in BeWo cells, which was decreased with NLA or IFN-γ pre-treatment. HeLa cells were more susceptible to Neospora infection than BeWo cells and IFN-γ pre-treatment resulted in reduced infection indices in both cell lines. Control of parasite growth was mediated by IFN-γ through an indoleamine-2,3-dioxygenase-dependent mechanism in HeLa cells alone. Based on these results, we concluded that BeWo and HeLa cells are readily infected by N. caninum, although presenting differences in susceptibility to infection, cytokine production and cell viability. Thus, these host cells can be considered in comparative approaches to understand strategies used by N. caninum to survive at the maternal-fetal interface.
Collapse
Affiliation(s)
- Julianne V Carvalho
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, Av. Pará 1720, 38400-902 Uberlândia, MG, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Entrican G, Wattegedera S, Wheelhouse N, Allan A, Rocchi M. Immunological paradigms and the pathogenesis of ovine chlamydial abortion. Am J Reprod Immunol 2010; 64:287-94. [PMID: 20712809 DOI: 10.1111/j.1600-0897.2010.00907.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Successful mammalian pregnancy involves complex immunological interactions between the mother and foetus that are not yet fully understood. A number of immunological paradigms have been established to explain the failure of the maternal immune system to reject the semi-allogeneic foetus, mainly based on studies in mice and humans. However, as placental structure, gestation periods and number of concepti per pregnancy can vary greatly between mammals, it is not always clear how applicable these immunological paradigms are to reproduction in other species. Here, we discuss the predictions of three important immunological paradigms in relation to the pathogenesis of ovine enzootic abortion (OEA), a common cause of infectious abortion in sheep and other ruminants. OEA is caused by the intracellular Gram-negative bacterium Chlamydophila abortus that exhibits a tropism for placental trophoblast. The paradigms of particular relevance to the pathogenesis of OEA are as follows: (i) intracellular bacterial infections are controlled by T(H)1-type CD4(+ve) T cells; (ii) indoleamine 2,3-dioxygenase is expressed in the placenta to prevent immunological rejection of the semi-allogeneic foetus; and (iii) pregnancy is a maternal T(H)2-type phenomenon. We discuss the relevance and validity of these paradigms for chlamydial abortion and reproductive immunology in sheep.
Collapse
Affiliation(s)
- Gary Entrican
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Scotland, UK.
| | | | | | | | | |
Collapse
|
13
|
de la Torre E, Mulla MJ, Yu AG, Lee SJ, Kavathas PB, Abrahams VM. Chlamydia trachomatis infection modulates trophoblast cytokine/chemokine production. THE JOURNAL OF IMMUNOLOGY 2009; 182:3735-45. [PMID: 19265152 DOI: 10.4049/jimmunol.0800764] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is well established that intrauterine infections can pose a threat to pregnancy by gaining access to the placenta and fetus, and clinical studies have strongly linked bacterial infections with preterm labor. Although Chlamydia trachomatis (Ct) can infect the placenta and decidua, little is known about its effects on trophoblast cell immune function. We have demonstrated that Ct infects trophoblast cells to form inclusions and completes the life cycle within these cells by generating infectious elementary bodies. Moreover, infection with Ct leads to differential modulation of the trophoblast cell's production of cytokines and chemokines. Using two human first trimester trophoblast cell lines, Sw.71 and H8, the most striking feature we found was that Ct infection results in a strong induction of IL-1beta secretion and a concomitant reduction in MCP-1 (CCL2) production in both cell lines. In addition, we have found that Ct infection of the trophoblast results in the cleavage and degradation of NF-kappaB p65. These findings suggest that the effect of a Chlamydia infection on trophoblast secretion of chemokines and cytokines involves both activation of innate immune receptors expressed by the trophoblast and virulence factors secreted into the trophoblast by the bacteria. Such altered trophoblast innate immune responses may have a profound impact on the microenvironment of the maternal-fetal interface and this could influence pregnancy outcome.
Collapse
Affiliation(s)
- Eugenia de la Torre
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
14
|
Mulla MJ, Yu AG, Cardenas I, Guller S, Panda B, Abrahams VM. ORIGINAL ARTICLE: Regulation of Nod1 and Nod2 in First Trimester Trophoblast Cells. Am J Reprod Immunol 2009; 61:294-302. [DOI: 10.1111/j.1600-0897.2009.00694.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
15
|
Entrican G, Wattegedera S, Rocchi M, Wheelhouse N. Pregnancy, indoleamine 2,3-dioxygenase (IDO) and chlamydial abortion: An unresolved paradox. Vet Microbiol 2009; 135:98-102. [DOI: 10.1016/j.vetmic.2008.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Protective adaptive immunity to Chlamydophila abortus infection and control of ovine enzootic abortion (OEA). Vet Microbiol 2009; 135:112-21. [DOI: 10.1016/j.vetmic.2008.09.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Barbosa BF, Silva DAO, Costa IN, Mineo JR, Ferro EAV. BeWo trophoblast cell susceptibility to Toxoplasma gondii is increased by interferon-gamma, interleukin-10 and transforming growth factor-beta1. Clin Exp Immunol 2008; 151:536-45. [PMID: 18234060 DOI: 10.1111/j.1365-2249.2007.03583.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The present study aimed to investigate BeWo trophoblast cell susceptibility to Toxoplasma gondii infection under stimulation with anti-inflammatory cytokines in comparison with HeLa cells. Both cell types were submitted to different treatments with recombinant cytokines [interleukin (IL)-10 and transforming growth factor (TGF)-beta1] or the respective antibodies (anti-IL-10 and anti-TGF-beta) before and after T. gondii infection. The effect of interferon (IFN)-gamma was also assessed alone or in combination with anti-inflammatory cytokines or the respective antibodies after the parasite infection. Cells were fixed, stained and parasites quantified under light microscopy to evaluate intracellular replication (mean number of parasites per cell in 100 infected cells) and infection index (percentage of infected cells per 100 examined cells). In contrast with HeLa cells, treatments with IL-10 or TGF-beta1 induced a considerable augmentation in both T. gondii intracellular replication and invasion into BeWo cells. In addition, treatment with IFN-gamma alone or associated with IL-10 or TGF-beta1 increased the same parameters in BeWo cells, whereas the opposite effect was observed in HeLa cells. When endogenous IL-10 or TGF-beta was blocked, both BeWo and HeLa cells were able to control the parasite infection only in the presence of IFN-gamma. Together, these results indicate that the higher susceptibility of BeWo cells to T. gondii may be due to immunomodulation mechanisms, suggesting that the role of trophoblast cells in maintaining a placental microenvironment favourable to pregnancy may facilitate the infection into the placental tissues.
Collapse
Affiliation(s)
- B F Barbosa
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | | | | | | |
Collapse
|
18
|
Oliveira JG, Silva NM, Santos AAD, Souza MA, Ferreira GLS, Mineo JR, Ferro EAV. BeWo Trophoblasts are Unable to Control Replication of Toxoplasma gondii, Even in the Presence of Exogenous IFN-γ. Placenta 2006; 27:691-8. [PMID: 16122791 DOI: 10.1016/j.placenta.2005.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/10/2005] [Accepted: 06/13/2005] [Indexed: 10/25/2022]
Abstract
The ability of RH strain of Toxoplasma gondii to invade and grow into BeWo cells was investigated in the present study using IFN-gamma, l-tryptophan, or alpha-methyl-tryptophan treatments. HeLa cells were used in the same conditions for comparison purposes. It was demonstrated that BeWo cells are more permissive to T. gondii infection, making them more susceptible to this pathogen when compared to HeLa cells. Infection rates of BeWo cells do not show any significant alteration in different protocols using IFN-gamma. In addition, BeWo treated with l-tryptophan was unable to significantly increase parasite growth. In contrast, HeLa cells treated with IFN-gamma or IFN-gamma plus l-tryptophan are able to impair or increase, respectively, parasite replication, providing evidence that this indoleamine-2,3-dioxygenase-dependent phenomenon is operant in these cells, whereas it is inactive in BeWo. Therefore, our data support the hypothesis that the immunological mechanisms controlling infection at the maternal-fetal interface are different from those occurring in the periphery. At the same time that operating regulatory mechanisms work inside and outside the cells located at that microenvironment to prevent maternal rejection of the concept, these events might facilitate the progression of infection caused by intracellular pathogens, as T. gondii.
Collapse
Affiliation(s)
- J G Oliveira
- Laboratory of Histology and Embriology, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Pará 1720, Uberlândia, Minas Gerais, Brazil 38400-902
| | | | | | | | | | | | | |
Collapse
|
19
|
Entrican G, Wheelhouse NM. Immunity in the female sheep reproductive tract. Vet Res 2006; 37:295-309. [PMID: 16611549 DOI: 10.1051/vetres:2006002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 10/18/2005] [Indexed: 11/14/2022] Open
Abstract
Immune surveillance in the female reproductive tract is dependent on the interplay of many factors that include the expression of pattern recognition receptors on epithelial cells, resident leukocyte populations and hormones, none of which are uniform. The lower reproductive tract must accommodate the presence of commensal organisms whereas the upper reproductive tract is sterile. However, the upper female reproductive tract has its own immunological challenge in that it must tolerate the presence of a semi-allogeneic fetus if pregnancy is to succeed. So, immune activation and effector mechanisms to control pathogens may be qualitatively and quantitatively different along the reproductive tract. Our knowledge of innate and adaptive immunity in the sheep is less comprehensive than that of human or mouse. Nevertheless, comparative studies suggest that there are likely to be conserved innate immune sensory mechanisms (e.g. Toll-like receptors) and defence mechanisms (anti-proteases, defensins) that combine to limit infection in its early stages while shaping the adaptive response that leads to immunological memory and long-term protection. There are many pathogens that target the reproductive tract, and in particular the placenta, where specialised immunoregulatory mechanisms are operational. Among such pathogens are bacteria belonging to the genera Chlamydia/Chlamydophila that chronically infect the reproductive tracts of sheep and humans and ultimately cause disease through inflammation and tissue damage. An understanding of the immunological microenvironment of the reproductive tract is important for the design of novel control strategies to control chlamydial disease.
Collapse
Affiliation(s)
- Gary Entrican
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, United Kingdom.
| | | |
Collapse
|
20
|
Roshick C, Wood H, Caldwell HD, McClarty G. Comparison of gamma interferon-mediated antichlamydial defense mechanisms in human and mouse cells. Infect Immun 2006; 74:225-38. [PMID: 16368976 PMCID: PMC1346650 DOI: 10.1128/iai.74.1.225-238.2006] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gamma interferon (IFN-gamma)-induced effector mechanisms have potent antichlamydial activities that are critical to host defense. The most prominent and well-studied effectors are indoleamine dioxygenase (IDO) and nitric oxide (NO) synthase. The relative contributions of these mechanisms as inhibitors of chlamydial in vitro growth have been extensively studied using different host cells, induction mechanisms, and chlamydial strains with conflicting results. Here, we have undertaken a comparative analysis of cytokine- and lipopolysaccharide (LPS)-induced IDO and NO using an extensive assortment of human and murine host cells infected with human and murine chlamydial strains. Following cytokine (IFN-gamma or tumor necrosis factor alpha) and/or LPS treatment, the majority of human cell lines induced IDO but failed to produce NO. Conversely, the majority of mouse cell lines studied produced NO, not IDO. Induction of IDO in human cell lines inhibited growth of L2 and mouse pneumonitis agent, now referred to as Chlamydia muridarum MoPn equally in all but two lines, and inhibition was completely reversible by the addition of tryptophan. IFN-gamma treatment of mouse cell lines resulted in substantially greater reduction of L2 than MoPn growth. However, despite elevated NO production by murine cells, blockage of NO synthesis with the l-arginine analogue N-monomethyl-l-arginine only partially rescued chlamydial growth, suggesting the presence of another IFN-gamma-inducible antichlamydial mechanism unique to murine cells. Moreover, NO generated from the chemical nitric oxide donor sodium nitroprusside showed little direct effect on chlamydial infectivity or growth, indicating a natural resistance to NO. Finally, IFN-gamma-inducible IDO expression in human HeLa cells was inhibited following exogenous NO treatment, resulting in a permissive environment for chlamydial growth. In summary, cytokine- and LPS-inducible effectors produced by human and mouse cells differ and, importantly, these host-specific effector responses result in chlamydial strain-specific antimicrobial activities.
Collapse
Affiliation(s)
- Christine Roshick
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, Canada R3E 3R2
| | | | | | | |
Collapse
|
21
|
Pfaff AW, Villard O, Klein JP, Mousli M, Candolfi E. Regulation of Toxoplasma gondii multiplication in BeWo trophoblast cells: cross-regulation of nitric oxide production and polyamine biosynthesis. Int J Parasitol 2005; 35:1569-76. [PMID: 16185692 DOI: 10.1016/j.ijpara.2005.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 08/02/2005] [Accepted: 08/03/2005] [Indexed: 01/07/2023]
Abstract
Materno-foetal transmission causes one of the most severe forms of infection with the protozoan parasite Toxoplasma gondii. Several studies have shown T. gondii in placental trophoblast cells, which form the barrier between maternal blood circulation and foetal tissue. Parasite multiplication in trophoblast cells is thus a critical step leading to infection of the foetus. Here, we show that multiplication of T. gondii tachyzoites was slow in BeWo trophoblast cells, compared with MRC-5 fibroblast cells. However, unlike MRC-5 cells, even combined stimulation with interferon-gamma and tumor necrosis factor-alpha did not reduce T. gondii replication in BeWo cells. This was associated with a lack of indoleamine-2,3-dioxygenase induction by these cytokines. Neither low availability of iron salts, nor an immunosuppressive action of cyclooxygenase-2 could be attributed to the low T. gondii multiplication rate in BeWo cells. However, treatment with the nitric oxide synthesis inhibitor N(G)-methyl-l-arginine and addition of ornithine enhanced the proliferation rate of the intracellular pathogen. Despite detection of inducible nitric oxide synthase-II mRNA in BeWo cells, nitric oxide production could not be detected during cell culture. Thus, inhibition of arginase activity by nitric oxide synthesis may be partially responsible for the lower multiplication rate in BeWo cells.
Collapse
Affiliation(s)
- Alexander W Pfaff
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, EA 1330 de la Faculté de Médecine: Interaction Cellulaire et Moléculaire Hôte-Parasite, Université Louis Pasteur, 3 rue Koeberlé, France.
| | | | | | | | | |
Collapse
|
22
|
Meeusen ENT, Scheerlinck JPY, Wattegedera S, Entrican G. Advances in mucosal vaccination. Anim Health Res Rev 2005; 5:209-17. [PMID: 15984326 DOI: 10.1079/ahr200470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pathogens that enter the body via mucosal surfaces face unique defense mechanisms that combine the innate barrier provided by the mucus layer with an adaptive response typified by the production and transepithelial secretion of pathogen-specific IgA. Both the measurement and induction of mucosal responses pose significant challenges for experimental and practical application and may need to be adapted to the species under study. In particular, for livestock, immunization procedures developed in small rodent models are not always effective in large animals or compatible with management practices. This paper reviews the latest advances in our understanding of the processes that lead to secretory IgA responses and how this relates to the development of mucosal immunization procedures and adjuvants for veterinary vaccines. In addition, it highlights the complex interactions that can take place between the pathogen and the host's immune response, with specific reference to Chlamydia/Chlamydophila infections in sheep.
Collapse
Affiliation(s)
- Els N T Meeusen
- Centre for Animal Biotechnology, School of Veterinary Science, The University of Melbourne, Australia
| | | | | | | |
Collapse
|
23
|
Entrican G, Wattegedera S, Rocchi M, Fleming DC, Kelly RW, Wathne G, Magdalenic V, Howie SEM. Induction of inflammatory host immune responses by organisms belonging to the genera Chlamydia/Chlamydophila. Vet Immunol Immunopathol 2004; 100:179-86. [PMID: 15207455 DOI: 10.1016/j.vetimm.2004.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chlamydia/Chlamydophila are a family of intracellular gram-negative bacteria that infect their hosts primarily via mucosal epithelia. Chronic disease associated with bacterial persistence, inflammation and tissue damage are common sequelae of infection with these organisms. Human epithelial cell lines respond to infection by releasing pro-inflammatory cytokines and chemokines such as interleukin (IL)-6 and IL-8, and upregulating the expression of mRNA encoding Ikappa-Balpha, the endogenous inhibitor of NF-kappaB. However, Ikappa-Balpha is not upregulated in response to bacterial lipopolysaccharide (LPS). The failure of epithelial cells to respond to LPS is associated with the absence of surface expression of CD14. Identification of the components of Chlamydia/Chlamydophila that can induce pro-inflammatory mediators coupled with the mechanisms by which epithelial cells detect infection and respond accordingly will advance the development of preventative strategies.
Collapse
Affiliation(s)
- Gary Entrican
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Mackler AM, Barber EM, Takikawa O, Pollard JW. Indoleamine 2,3-dioxygenase is regulated by IFN-gamma in the mouse placenta during Listeria monocytogenes infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:823-30. [PMID: 12517946 DOI: 10.4049/jimmunol.170.2.823] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) is expressed in macrophages that have been differentiated in the presence of CSF-1 and is important in the containment of intracellular pathogens. IDO also appears to play a role in suppression of T cell responses in a variety of contexts. In the placenta, its enzymatic activity is believed to establish a chemical barrier that protects the fetal allograft from T cell-mediated immune aggression. We have studied the regulation of IDO in the utero-placental unit of mice following infection with the Gram-positive, intracellular bacterium Listeria monocytogenes that has a predilection for replication in the decidua basalis. IDO mRNA and protein expression is enhanced in the utero-placental unit following infection with L. monocytogenes. However, in contrast to the human where IDO is expressed by the CSF-1R-positive syncytial trophoblast, IDO is not expressed in murine trophoblastic tissue but instead is found in stromal cells of the decidua basalis and metrial gland and following infection, in endothelial cells. Using mice carrying null mutations in cytokine/growth factor genes, we explored the regulation of IDO in the placenta. Consistent with the absence of CSF-1R expression in the IDO-expressing cells of mice, neither the basal levels of IDO nor its induction following infection is affected by the absence of CSF-1. However, although the basal level of IDO is normal, the enhanced expression during Listeriosis is completely abrogated in the absence of IFN-gamma, a cytokine required for the resolution of this infection. These data suggest that IDO plays a role in resolving bacterial infection in the placenta while at the same time maintaining a barrier to T cells whose presence might result in fetal rejection.
Collapse
Affiliation(s)
- Ari M Mackler
- Center for the Study of Reproductive Biology and Women's Health, Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|