1
|
Harris MC, Gary HE, Cooper SK, Ackart DF, DiLisio JE, Basaraba RJ, Cheng TY, van Rhijn I, Branch Moody D, Podell BK. Establishment of CD1b-restricted immunity to lipid antigens in the pulmonary response to Mycobacterium tuberculosis infection. Infect Immun 2024:e0038024. [PMID: 39494875 DOI: 10.1128/iai.00380-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
CD1 is an antigen-presenting glycoprotein homologous to MHC I; however, CD1 proteins present lipid rather than peptide antigens. CD1 proteins are well established to present lipid antigens of Mycobacterium tuberculosis (Mtb) to T cells, but understanding the role of CD1-restricted immunity in vivo in response to Mtb infection has been limited by the availability of animal models naturally expressing the CD1 proteins implicated in human response: CD1a, CD1b, and CD1c. Guinea pigs, in contrast to other rodent models, express four CD1b orthologs, and here we utilize the guinea pig to establish the kinetics of gene and protein expression of CD1b orthologs, as well as the Mtb lipid-antigen and CD1b-restricted immune response at the tissue level over the course of Mtb infection. Our results indicate transient upregulation of CD1b expression during the effector phase of adaptive immunity that wanes with disease chronicity. Gene expression indicates that the upregulation of CD1b is the result of transcriptional induction across all CD1b orthologs. We show high CD1b3 expression on B cells, and identify CD1b3 as the predominant CD1b ortholog in pulmonary granuloma lesions. We identify ex vivo cytotoxic activity directed against CD1b that parallels the kinetic changes in CD1b expression in Mtb-infected lungs and spleen. This study confirms that CD1b expression is modulated by Mtb infection in lung and spleen, leading to pulmonary and extrapulmonary CD1b-restricted immunity as a component of the antigen-specific response to Mtb infection.
Collapse
Affiliation(s)
- Macallister C Harris
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Hadley E Gary
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah K Cooper
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - David F Ackart
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - James E DiLisio
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Randall J Basaraba
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Tan-Yun Cheng
- Brigham and Women's Hospital, Division of Rheumatology, Inflammation and Immunity, Harvard Medical School, Boston, Massachusetts, USA
| | - Ildiko van Rhijn
- Brigham and Women's Hospital, Division of Rheumatology, Inflammation and Immunity, Harvard Medical School, Boston, Massachusetts, USA
| | - D Branch Moody
- Brigham and Women's Hospital, Division of Rheumatology, Inflammation and Immunity, Harvard Medical School, Boston, Massachusetts, USA
| | - Brendan K Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Chudzik A, Bromke MA, Gamian A, Paściak M. Comprehensive lipidomic analysis of the genus Cutibacterium. mSphere 2024; 9:e0005424. [PMID: 38712970 PMCID: PMC11237483 DOI: 10.1128/msphere.00054-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024] Open
Abstract
Cutibacterium are part of the human skin microbiota and are opportunistic microorganisms that become pathogenic in immunodeficient states. These lipophilic bacteria willingly inhabit areas of the skin where sebaceous glands are abundant; hence, there is a need to thoroughly understand their metabolism. Lipids are no longer considered only structural elements but also serve as signaling molecules and may have antigenic properties. Lipidomics remains a major research challenge, mainly due to the diverse physicochemical properties of lipids. Therefore, this study aimed to perform a large comparative lipidomic analysis of eight representatives of the Cutibacterium genus, including four phylotypes of C. acnes and two strains of C. granulosum, C. avidum, and C. namnetense. Lipidomic analysis was performed by liquid chromatography‒mass spectrometry (LC-MS) in both positive and negative ion modes, allowing the detection of the widest range of metabolites. Fatty acid analysis by gas chromatography‒mass spectrometry (GC-MS) corroborated the lipidomic data. As a result, 128 lipids were identified, among which it was possible to select marker compounds, some of which were characteristic even of individual C. acnes phylotypes. These include phosphatidylcholine PC 30:0, sphingomyelins (SM 33:1, SM 35:1), and phosphatidylglycerol with an alkyl ether substituent PG O-32:0. Moreover, cardiolipins and fatty acid amides were identified in Cutibacterium spp. for the first time. This comparative characterization of the cutibacterial lipidome with the search for specific molecular markers reveals its diagnostic potential for clinical microbiology. IMPORTANCE Cutibacterium (previously Propionibacterium) represents an important part of the human skin microbiota, and its role in clinical microbiology is growing due to opportunistic infections. Lipidomics, apart from protein profiling, has the potential to prove to be a useful tool for defining the cellular fingerprint, allowing for precise differentiation of microorganisms. In this work, we presented a comparative analysis of lipids found in eight strains of the genus Cutibacterium, including a few C. acnes phylotypes. Our results are one of the first large-scale comprehensive studies regarding the bacterial lipidome, which also enabled the selection of C. acnes phylotype-specific lipid markers. The increased role of lipids not only as structural components but also as diagnostic markers or potential antigens has led to new lipid markers that can be used as diagnostic tools for clinical microbiology. We believe that the findings in our paper will appeal to a wide range of researchers.
Collapse
Affiliation(s)
- Anna Chudzik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Mariusz A Bromke
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Mariola Paściak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
3
|
Harris MC, Gary HE, Cooper SK, Ackart DF, Dilisio JE, Basaraba RJ, Cheng TY, van Rhijn I, Moody DB, Podell BK. Establishment of CD1b-restricted immunity to lipid antigens in the pulmonary response to Mycobacterium tuberculosis infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541963. [PMID: 37292852 PMCID: PMC10245897 DOI: 10.1101/2023.05.23.541963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CD1 is an antigen presenting glycoprotein homologous to MHC I; however, CD1 proteins present lipid rather than peptide antigen. CD1 proteins are well established to present lipid antigens of Mycobacterium tuberculosis (Mtb) to T cells, but understanding the role of CD1-restricted immunity in vivo in response to Mtb infection has been limited by availability of animal models naturally expressing the CD1 proteins implicated in human response: CD1a, CD1b and CD1c. Guinea pigs, in contrast to other rodent models, express four CD1b orthologs, and here we utilize the guinea pig to establish the kinetics of gene and protein expression of CD1b orthologs, as well as the Mtb lipid-antigen and CD1b-restricted immune response at the tissue level over the course of Mtb infection. Our results indicate transient upregulation of CD1b expression during the effector phase of adaptive immunity that wanes with disease chronicity. Gene expression indicates that upregulation of CD1b is the result of transcriptional induction across all CD1b orthologs. We show high CD1b3 expression on B cells, and identify CD1b3 as the predominant CD1b ortholog in pulmonary granuloma lesions. We identify ex vivo cytotoxic activity directed against CD1b that closely paralleled the kinetic changes in CD1b expression in Mtb infected lung and spleen. This study confirms that CD1b expression is modulated by Mtb infection in lung and spleen, leading to pulmonary and extrapulmonary CD1b-restricted immunity as a component of the antigen-specific response to Mtb infection.
Collapse
|
4
|
Larson EC, Ellis AL, Rodgers MA, Gubernat AK, Gleim JL, Moriarty RV, Balgeman AJ, Menezes YK, Ameel CL, Fillmore DJ, Pergalske SM, Juno JA, Maiello P, White AG, Borish HJ, Godfrey DI, Kent SJ, Ndhlovu LC, O’Connor SL, Scanga CA. Host Immunity to Mycobacterium tuberculosis Infection Is Similar in Simian Immunodeficiency Virus (SIV)-Infected, Antiretroviral Therapy-Treated and SIV-Naïve Juvenile Macaques. Infect Immun 2023; 91:e0055822. [PMID: 37039653 PMCID: PMC10187125 DOI: 10.1128/iai.00558-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/20/2023] [Indexed: 04/12/2023] Open
Abstract
Pre-existing HIV infection increases tuberculosis (TB) risk in children. Antiretroviral therapy (ART) reduces, but does not abolish, this risk in children with HIV. The immunologic mechanisms involved in TB progression in both HIV-naive and HIV-infected children have not been explored. Much of our current understanding is based on human studies in adults and adult animal models. In this study, we sought to model childhood HIV/Mycobacterium tuberculosis (Mtb) coinfection in the setting of ART and characterize T cells during TB progression. Macaques equivalent to 4 to 8 year-old children were intravenously infected with SIVmac239M, treated with ART 3 months later, and coinfected with Mtb 3 months after initiating ART. SIV-naive macaques were similarly infected with Mtb alone. TB pathology and total Mtb burden did not differ between SIV-infected, ART-treated and SIV-naive macaques, although lung Mtb burden was lower in SIV-infected, ART-treated macaques. No major differences in frequencies of CD4+ and CD8+ T cells and unconventional T cell subsets (Vγ9+ γδ T cells, MAIT cells, and NKT cells) in airways were observed between SIV-infected, ART-treated and SIV-naive macaques over the course of Mtb infection, with the exception of CCR5+ CD4+ and CD8+ T cells which were slightly lower. CD4+ and CD8+ T cell frequencies did not differ in the lung granulomas. Immune checkpoint marker levels were similar, although ki-67 levels in CD8+ T cells were elevated. Thus, ART treatment of juvenile macaques, 3 months after SIV infection, resulted in similar progression of Mtb and T cell responses compared to Mtb in SIV-naive macaques.
Collapse
Affiliation(s)
- Erica C. Larson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy L. Ellis
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
| | - Mark A. Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Abigail K. Gubernat
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Janelle L. Gleim
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ryan V. Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
| | - Alexis J. Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
| | - Yonne K. Menezes
- Department of Immunobiology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Cassaundra L. Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Daniel J. Fillmore
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Skyler M. Pergalske
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alexander G. White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - H. Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Centre Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Disease, Weill Cornell Medicine, New York, New York, USA
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin - Madison, Wisconsin, USA
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Farquhar R, Van Rhijn I, Moody DB, Rossjohn J, Shahine A. αβ T-cell receptor recognition of self-phosphatidylinositol presented by CD1b. J Biol Chem 2023; 299:102849. [PMID: 36587766 PMCID: PMC9900620 DOI: 10.1016/j.jbc.2022.102849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
CD1 glycoproteins present lipid-based antigens to T-cell receptors (TCRs). A role for CD1b in T-cell-mediated autoreactivity was proposed when it was established that CD1b can present self-phospholipids with short alkyl chains (∼C34) to T cells; however, the structural characteristics of this presentation and recognition are unclear. Here, we report the 1.9 Å resolution binary crystal structure of CD1b presenting a self-phosphatidylinositol-C34:1 and an endogenous scaffold lipid. Moreover, we also determined the 2.4 Å structure of CD1b-phosphatidylinositol complexed to an autoreactive αβ TCR, BC8B. We show that the TCR docks above CD1b and directly contacts the presented antigen, selecting for both the phosphoinositol headgroup and glycerol neck region via antigen remodeling within CD1b and allowing lateral escape of the inositol moiety through a channel formed by the TCR α-chain. Furthermore, through alanine scanning mutagenesis and surface plasmon resonance, we identified key CD1b residues mediating this interaction, with Glu-80 abolishing TCR binding. We in addition define a role for both CD1b α1 and CD1b α2 molecular domains in modulating this interaction. These findings suggest that the BC8B TCR contacts both the presented phospholipid and the endogenous scaffold lipid via a dual mechanism of corecognition. Taken together, these data expand our understanding into the molecular mechanisms of CD1b-mediated T-cell autoreactivity.
Collapse
Affiliation(s)
- Rachel Farquhar
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - D Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, United Kingdom.
| | - Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
6
|
Correia-Neves M, Nigou J, Mousavian Z, Sundling C, Källenius G. Immunological hyporesponsiveness in tuberculosis: The role of mycobacterial glycolipids. Front Immunol 2022; 13:1035122. [PMID: 36544778 PMCID: PMC9761185 DOI: 10.3389/fimmu.2022.1035122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 12/09/2022] Open
Abstract
Glycolipids constitute a major part of the cell envelope of Mycobacterium tuberculosis (Mtb). They are potent immunomodulatory molecules recognized by several immune receptors like pattern recognition receptors such as TLR2, DC-SIGN and Dectin-2 on antigen-presenting cells and by T cell receptors on T lymphocytes. The Mtb glycolipids lipoarabinomannan (LAM) and its biosynthetic relatives, phosphatidylinositol mannosides (PIMs) and lipomannan (LM), as well as other Mtb glycolipids, such as phenolic glycolipids and sulfoglycolipids have the ability to modulate the immune response, stimulating or inhibiting a pro-inflammatory response. We explore here the downmodulating effect of Mtb glycolipids. A great proportion of the studies used in vitro approaches although in vivo infection with Mtb might also lead to a dampening of myeloid cell and T cell responses to Mtb glycolipids. This dampened response has been explored ex vivo with immune cells from peripheral blood from Mtb-infected individuals and in mouse models of infection. In addition to the dampening of the immune response caused by Mtb glycolipids, we discuss the hyporesponse to Mtb glycolipids caused by prolonged Mtb infection and/or exposure to Mtb antigens. Hyporesponse to LAM has been observed in myeloid cells from individuals with active and latent tuberculosis (TB). For some myeloid subsets, this effect is stronger in latent versus active TB. Since the immune response in individuals with latent TB represents a more protective profile compared to the one in patients with active TB, this suggests that downmodulation of myeloid cell functions by Mtb glycolipids may be beneficial for the host and protect against active TB disease. The mechanisms of this downmodulation, including tolerance through epigenetic modifications, are only partly explored.
Collapse
Affiliation(s)
- Margarida Correia-Neves
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal,Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B's), Portuguese (PT) Government Associate Laboratory, Braga, Portugal,Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France
| | - Zaynab Mousavian
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran, Tehran, Iran,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Gunilla Källenius
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden,*Correspondence: Gunilla Källenius,
| |
Collapse
|
7
|
Silva CS, Sundling C, Folkesson E, Fröberg G, Nobrega C, Canto-Gomes J, Chambers BJ, Lakshmikanth T, Brodin P, Bruchfeld J, Nigou J, Correia-Neves M, Källenius G. High Dimensional Immune Profiling Reveals Different Response Patterns in Active and Latent Tuberculosis Following Stimulation With Mycobacterial Glycolipids. Front Immunol 2021; 12:727300. [PMID: 34887849 PMCID: PMC8650708 DOI: 10.3389/fimmu.2021.727300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Upon infection with Mycobacterium tuberculosis (Mtb) the host immune response might clear the bacteria, control its growth leading to latent tuberculosis (LTB), or fail to control its growth resulting in active TB (ATB). There is however no clear understanding of the features underlying a more or less effective response. Mtb glycolipids are abundant in the bacterial cell envelope and modulate the immune response to Mtb, but the patterns of response to glycolipids are still underexplored. To identify the CD45+ leukocyte activation landscape induced by Mtb glycolipids in peripheral blood of ATB and LTB, we performed a detailed assessment of the immune response of PBMCs to the Mtb glycolipids lipoarabinomannan (LAM) and its biosynthetic precursor phosphatidyl-inositol mannoside (PIM), and purified-protein derivate (PPD). At 24 h of stimulation, cell profiling and secretome analysis was done using mass cytometry and high-multiplex immunoassay. PIM induced a diverse cytokine response, mainly affecting antigen-presenting cells to produce both pro-inflammatory and anti-inflammatory cytokines, but not IFN-γ, contrasting with PPD that was a strong inducer of IFN-γ. The effect of PIM on the antigen-presenting cells was partly TLR2-dependent. Expansion of monocyte subsets in response to PIM or LAM was reduced primarily in LTB as compared to healthy controls, suggesting a hyporesponsive/tolerance pattern derived from Mtb infection.
Collapse
Affiliation(s)
- Carolina S Silva
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Elin Folkesson
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Gabrielle Fröberg
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Claudia Nobrega
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal
| | - João Canto-Gomes
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal
| | - Benedict J Chambers
- Center for Infectious Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Tadepally Lakshmikanth
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Petter Brodin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Judith Bruchfeld
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal.,Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunilla Källenius
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
The thick waxy coat of mycobacteria, a protective layer against antibiotics and the host's immune system. Biochem J 2020; 477:1983-2006. [PMID: 32470138 PMCID: PMC7261415 DOI: 10.1042/bcj20200194] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022]
Abstract
Tuberculosis, caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb), is the leading cause of death from an infectious disease, with a mortality rate of over a million people per year. This pathogen's remarkable resilience and infectivity is largely due to its unique waxy cell envelope, 40% of which comprises complex lipids. Therefore, an understanding of the structure and function of the cell wall lipids is of huge indirect clinical significance. This review provides a synopsis of the cell envelope and the major lipids contained within, including structure, biosynthesis and roles in pathogenesis.
Collapse
|
9
|
Visvabharathy L, Genardi S, Cao L, He Y, Alonzo F, Berdyshev E, Wang CR. Group 1 CD1-restricted T cells contribute to control of systemic Staphylococcus aureus infection. PLoS Pathog 2020; 16:e1008443. [PMID: 32343740 PMCID: PMC7188215 DOI: 10.1371/journal.ppat.1008443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/28/2020] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus (SA) is the causative agent of both skin/soft tissue infections as well as invasive bloodstream infections. Though vaccines have been developed to target both humoral and T cell-mediated immune responses against SA, they have largely failed due to lack of protective efficacy. Group 1 CD1-restricted T cells recognize lipid rather than peptide antigens. Previously found to recognize lipids derived from cell wall of Mycobacterium tuberculosis (Mtb), these cells were associated with protection against Mtb infection in humans. Using a transgenic mouse model expressing human group 1 CD1 molecules (hCD1Tg), we demonstrate that group 1 CD1-restricted T cells can recognize SA-derived lipids in both immunization and infection settings. Systemic infection of hCD1Tg mice showed that SA-specific group 1 CD1-restricted T cell response peaked at 10 days post-infection, and hCD1Tg mice displayed significantly decreased kidney pathology at this time point compared with WT control mice. Immunodominant SA lipid antigens recognized by group 1 CD1-restricted T cells were comprised mainly of cardiolipin and phosphatidyl glycerol, with little contribution from lysyl-phosphatidyl glycerol which is a unique bacterial lipid not present in mammals. Group 1 CD1-restricted T cell lines specific for SA lipids also conferred protection against SA infection in the kidney after adoptive transfer. They were further able to effectively control SA replication in vitro through direct antigen presentation by group 1 CD1-expressing BMDCs. Together, our data demonstrate a previously unknown role for group 1 CD1-restricted SA lipid-specific T cells in the control of systemic MRSA infection.
Collapse
Affiliation(s)
- Lavanya Visvabharathy
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Samantha Genardi
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Liang Cao
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Ying He
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| | - Francis Alonzo
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, United States of America
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, United States of America
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| |
Collapse
|
10
|
Harris LD, Khayumbi J, Ongalo J, Sasser LE, Tonui J, Campbell A, Odhiambo FH, Ouma SG, Alter G, Gandhi NR, Day CL. Distinct Human NK Cell Phenotypes and Functional Responses to Mycobacterium tuberculosis in Adults From TB Endemic and Non-endemic Regions. Front Cell Infect Microbiol 2020; 10:120. [PMID: 32266170 PMCID: PMC7105570 DOI: 10.3389/fcimb.2020.00120] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), which leads to an estimated 1. 5 million deaths worldwide each year. Although the immune correlates of protection against Mtb infection and TB disease have not been well-defined, natural killer (NK) cells are increasingly recognized as a key component of the innate immune response to Mtb and as a link between innate and adaptive immunity. In this study, we evaluated NK cell phenotypic and functional profiles in QuantiFERON-TB (QFT)+ and QFT− adults in a TB endemic setting in Kisumu, Kenya, and compared their NK cell responses to those of Mtb-naïve healthy adult controls in the U.S. We used flow cytometry to define the phenotypic profile of NK cells and identified distinct CD56dim NK cell phenotypes that differentiated the Kenyan and U.S. groups. Additionally, among Kenyan participants, NK cells from QFT+ individuals with latent Mtb infection (LTBI) were characterized by significant downregulation of the natural cytotoxicity receptor NKp46 and the inhibitory receptor TIGIT, compared with QFT− individuals. Moreover, the distinct CD56dim phenotypic profiles in Kenyan individuals correlated with dampened NK cell responses to tumor cells and diminished activation, degranulation, and cytokine production following stimulation with Mtb antigens, compared with Mtb-naïve U.S. healthy adult controls. Taken together, these data provide evidence that the phenotypic and functional profiles of NK cells are modified in TB endemic settings and will inform future studies aimed at defining NK cell-mediated immune correlates that may be protective against acquisition of Mtb infection and progression to TB disease.
Collapse
Affiliation(s)
- Levelle D Harris
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Jeremiah Khayumbi
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Joshua Ongalo
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Loren E Sasser
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Joan Tonui
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Angela Campbell
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | | | - Samuel Gurrion Ouma
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Neel R Gandhi
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Cheryl L Day
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
11
|
Abstract
Tuberculosis (TB) is a serious global public health challenge that results in significant morbidity and mortality worldwide. TB is caused by infection with the bacilli Mycobacterium tuberculosis (M. tuberculosis), which has evolved a wide variety of strategies in order to thrive within its host. Understanding the complex interactions between M. tuberculosis and host immunity can inform the rational design of better TB vaccines and therapeutics. This chapter covers innate and adaptive immunity against M. tuberculosis infection, including insights on bacterial immune evasion and subversion garnered from animal models of infection and human studies. In addition, this chapter discusses the immunology of the TB granuloma, TB diagnostics, and TB comorbidities. Finally, this chapter provides a broad overview of the current TB vaccine pipeline.
Collapse
|
12
|
Lopez K, Iwany SK, Suliman S, Reijneveld JF, Ocampo TA, Jimenez J, Calderon R, Lecca L, Murray MB, Moody DB, Van Rhijn I. CD1b Tetramers Broadly Detect T Cells That Correlate With Mycobacterial Exposure but Not Tuberculosis Disease State. Front Immunol 2020; 11:199. [PMID: 32117314 PMCID: PMC7033476 DOI: 10.3389/fimmu.2020.00199] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/27/2020] [Indexed: 12/29/2022] Open
Abstract
The non-polymorphic nature of CD1 proteins creates a situation in which T cells with invariant T cell receptors (TCRs), like CD1d-specific NKT cells, are present in all humans. CD1b is an abundant protein on human dendritic cells that presents M. tuberculosis (Mtb) lipid antigens to T cells. Analysis of T cell clones suggested that semi-invariant TCRs exist in the CD1b system, but their prevalence in humans is not known. Here we used CD1b tetramers loaded with mycolic acid or glucose monomycolate to study polyclonal T cells from 150 Peruvian subjects. We found that CD1b tetramers loaded with mycolic acid or glucose monomycolate antigens stained TRAV1-2+ GEM T cells or TRBV4-1+ LDN5-like T cells in the majority of subjects tested, at rates ~10-fold lower than NKT cells. Thus, GEM T cells and LDN5-like T cells are a normal part of the human immune system. Unlike prior studies measuring MHC- or CD1b-mediated activation, this large-scale tetramer study found no significant differences in rates of CD1b tetramer-mycobacterial lipid staining of T cells among subjects with Mtb exposure, latent Mtb infection or active tuberculosis (TB) disease. In all subjects, including “uninfected” subjects, CD1b tetramer+ T cells expressed memory markers at high levels. However, among controls with lower mycobacterial antigen exposure in Boston, we found significantly lower frequencies of T cells staining with CD1b tetramers loaded with mycobacterial lipids. These data link CD1b-specific T cell detection to mycobacterial exposure, but not TB disease status, which potentially explains differences in outcomes among CD1-based clinical studies, which used control subjects with low Mtb exposure.
Collapse
Affiliation(s)
- Kattya Lopez
- Socios En Salud, Lima, Peru.,Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Sarah K Iwany
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Sara Suliman
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Josephine F Reijneveld
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Tonatiuh A Ocampo
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | | | | | | | - Megan B Murray
- Division of Global Health Equity, Department of Global Health and Social Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - D Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
13
|
James CA, Seshadri C. T Cell Responses to Mycobacterial Glycolipids: On the Spectrum of "Innateness". Front Immunol 2020; 11:170. [PMID: 32117300 PMCID: PMC7026021 DOI: 10.3389/fimmu.2020.00170] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Diseases due to mycobacteria, including tuberculosis, leprosy, and Buruli ulcer, rank among the top causes of death and disability worldwide. Animal studies have revealed the importance of T cells in controlling these infections. However, the specific antigens recognized by T cells that confer protective immunity and their associated functions remain to be definitively established. T cells that respond to mycobacterial peptide antigens exhibit classical features of adaptive immunity and have been well-studied in humans and animal models. Recently, innate-like T cells that recognize lipid and metabolite antigens have also been implicated. Specifically, T cells that recognize mycobacterial glycolipid antigens (mycolipids) have been shown to confer protection to tuberculosis in animal models and share some biological characteristics with adaptive and innate-like T cells. Here, we review the existing data suggesting that mycolipid-specific T cells exist on a spectrum of “innateness,” which will influence how they can be leveraged to develop new diagnostics and vaccines for mycobacterial diseases.
Collapse
Affiliation(s)
- Charlotte A James
- Molecular Medicine and Mechanisms of Disease (M3D) PhD Program, Department of Pathology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Chetan Seshadri
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States.,Tuberculosis Research and Training Center, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
14
|
Zhou KL, Li X, Zhang XL, Pan Q. Mycobacterial mannose-capped lipoarabinomannan: a modulator bridging innate and adaptive immunity. Emerg Microbes Infect 2019; 8:1168-1177. [PMID: 31379262 PMCID: PMC6713153 DOI: 10.1080/22221751.2019.1649097] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mannose-capped lipoarabinomannan (ManLAM) is a high molecular mass amphipathic lipoglycan identified in pathogenic Mycobacterium tuberculosis (M. tb) and M. bovis Bacillus Calmette-Guérin (BCG). ManLAM, serves as both an immunogen and a modulator of the host immune system, and its critical role in mycobacterial survival during infection has been well-characterized. ManLAM can be recognized by various types of receptors on both innate and adaptive immune cells, including macrophages, dendritic cells (DCs), neutrophils, natural killer T (NKT) cells, T cells and B cells. MamLAM has been shown to affect phagocytosis, cytokine production, antigen presentation, T cell activation and polarization, as well as antibody production. Exploring the mechanisms underlying the roles of ManLAM during mycobacterial infection will aid in improving tuberculosis (TB) prevention, diagnosis and treatment interventions. In this review, we highlight the interaction between ManLAM and receptors, intracellular signalling pathways triggered by ManLAM and its roles in both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Kai-Liang Zhou
- a State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan , People's Republic of China.,b The eighth hospital of Wuhan , Wuhan , People's Republic of China
| | - Xin Li
- a State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan , People's Republic of China
| | - Xiao-Lian Zhang
- a State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan , People's Republic of China
| | - Qin Pan
- a State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan , People's Republic of China
| |
Collapse
|
15
|
Joosten SA, Ottenhoff TH, Lewinsohn DM, Hoft DF, Moody DB, Seshadri C. Harnessing donor unrestricted T-cells for new vaccines against tuberculosis. Vaccine 2019; 37:3022-3030. [PMID: 31040086 PMCID: PMC6525272 DOI: 10.1016/j.vaccine.2019.04.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/02/2019] [Accepted: 04/13/2019] [Indexed: 01/14/2023]
Abstract
Mycobacterium bovis bacille Calmette-Guérin (BCG) prevents extrapulmonary tuberculosis (TB) and death among infants but fails to consistently and sufficiently prevent pulmonary TB in adults. Thus, TB remains the leading infectious cause of death worldwide, and new vaccine approaches are urgently needed. T-cells are important for protective immunity to Mycobacterium tuberculosis (Mtb), but the optimal T-cell antigens to be included in new vaccines are not established. T-cells are often thought of as responding mainly to peptide antigens presented by polymorphic major histocompatibility complex (MHC) I and II molecules. Over the past two decades, the number of non-peptidic Mtb derived antigens for αβ and γδ T-cells has expanded rapidly, creating broader perspectives about the types of molecules that could be targeted by T-cell-based vaccines against TB. Many of these non-peptide responsive T-cell subsets in humans are activated in a manner that is unrestricted by classical MHC-dependent antigen-presenting systems, but instead require essentially nonpolymorphic presentation systems. These systems are Cluster of differentiation 1 (CD1), MHC related protein 1 (MR1), butyrophilin 3A1, as well as the nonclassical MHC class Ib family member HLA-E. Thus, the resulting T-cell responses can be shared among a genetically diverse population, creating the concept of donor-unrestricted T-cells (DURTs). Here, we review evidence that DURTs are an abundant component of the human immune system and recognize many antigens expressed by Mtb, including antigens that are expressed in BCG and other candidate whole cell vaccines. Further, DURTs exhibit functional diversity and demonstrate the ability to control microbial infection in small animal models. Finally, we outline specific knowledge gaps and research priorities that must be addressed to realize the full potential of DURTs as part of new TB vaccines approaches.
Collapse
Affiliation(s)
- Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom H.M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - David M. Lewinsohn
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Oregon Health Sciences University, Portland, USA
| | - Daniel F. Hoft
- Department of Internal Medicine, Saint Louis University, Doisy Research Center, 8th floor, 1100 S. Grand Blvd., St. Louis, MO 63104, USA
| | - D. Branch Moody
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham & Women’s Hospital, Boston, Harvard Medical School, USA
| | - Chetan Seshadri
- Department of Medicine, Division of Infectious Diseases, University of Washington, Seattle, USA,Tuberculosis Research & Training Center, University of Washington, Seattle, USA,Corresponding author at: University of Washington Medical Center, 750 Republican Street, Room E663, Seattle, WA 98109, USA.
| | | |
Collapse
|
16
|
Dang AT, Teles RM, Liu PT, Choi A, Legaspi A, Sarno EN, Ochoa MT, Parvatiyar K, Cheng G, Gilliet M, Bloom BR, Modlin RL. Autophagy links antimicrobial activity with antigen presentation in Langerhans cells. JCI Insight 2019; 4:126955. [PMID: 30996142 PMCID: PMC6538337 DOI: 10.1172/jci.insight.126955] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
DC, through the uptake, processing, and presentation of antigen, are responsible for activation of T cell responses to defend the host against infection, yet it is not known if they can directly kill invading bacteria. Here, we studied in human leprosy, how Langerhans cells (LC), specialized DC, contribute to host defense against bacterial infection. IFN-γ treatment of LC isolated from human epidermis and infected with Mycobacterium leprae (M. leprae) activated an antimicrobial activity, which was dependent on the upregulation of the antimicrobial peptide cathelicidin and induction of autophagy. IFN-γ induction of autophagy promoted fusion of phagosomes containing M. leprae with lysosomes and the delivery of cathelicidin to the intracellular compartment containing the pathogen. Autophagy enhanced the ability of M. leprae-infected LC to present antigen to CD1a-restricted T cells. The frequency of IFN-γ labeling and LC containing both cathelicidin and autophagic vesicles was greater in the self-healing lesions vs. progressive lesions, thus correlating with the effectiveness of host defense against the pathogen. These data indicate that autophagy links the ability of DC to kill and degrade an invading pathogen, ensuring cell survival from the infection while facilitating presentation of microbial antigens to resident T cells.
Collapse
Affiliation(s)
- Angeline Tilly Dang
- Division of Dermatology, Department of Medicine, and
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| | | | - Phillip T. Liu
- Division of Dermatology, Department of Medicine, and
- UCLA and Orthopaedic Hospital, Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, USA
| | - Aaron Choi
- Division of Dermatology, Department of Medicine, and
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| | | | - Euzenir N. Sarno
- Leprosy Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria T. Ochoa
- Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California, USA
| | - Kislay Parvatiyar
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| | - Michel Gilliet
- Department of Medicine, Dermatology Service, Lausanne University Hospital of Lausanne, Lausanne, Switzerland
| | - Barry R. Bloom
- Harvard School of Public Health, Boston, Massachusetts, USA
| | - Robert L. Modlin
- Division of Dermatology, Department of Medicine, and
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| |
Collapse
|
17
|
Taheri M, Danesh H, Bizhani F, Bahari G, Naderi M, Hashemi M. Association between genetic variants in CD1A and CD1D genes and pulmonary tuberculosis in an Iranian population. Biomed Rep 2019; 10:259-265. [PMID: 30972222 DOI: 10.3892/br.2019.1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/12/2019] [Indexed: 11/06/2022] Open
Abstract
Cluster of differentiation (CD)1 molecules are a highly conserved family of MCH-like transmembrane glycoproteins that bind lipid and glycolipid antigens and present a diverse range of microbial and self-glycolipids to antigen-specific T cells. The current study aimed to find out the impact of CD1A and CD1D polymorphisms on pulmonary tuberculosis (PTB). This case-control study encompassed 172 PTB patients and 180 healthy subjects. Genotyping of CD1A and CD1D variants was achieved using the polymerase chain reaction restriction fragment length polymorphism method. The results revealed that CD1A rs411089 variant significantly increased the risk of PTB in recessive model [odds ratio (OR)=2.71, 95% confidence interval (CI)=1.38-5.57, CC vs. TT+TC, P=0.005]. CD1D rs859009 polymorphism significantly reduced the risk of PTB in heterozygous codominant (OR=0.50, 95% CI=0.29-0.86, P=0.011, GC vs. GG) and dominant (OR=0.53, 95% CI=0.31-0.88, P=0.019, GC+CC vs. GG) inheritance model. The CD1A rs366316, CD1D rs973742 and CD1D rs859010 were not associated with the risk/protection from PTB (P>0.05). The results of the present study suggest that CD1A rs411089 and CD1D rs859009 but not CD1A rs366316, CD1D rs973742 and CD1D rs859010 polymorphisms are associated with PTB in a sample of the Iranian population. Further investigation with different ethnicities and larger sample sizes are necessary to certify the findings of the present study.
Collapse
Affiliation(s)
- Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Hiva Danesh
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Fatemeh Bizhani
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Gholamreza Bahari
- Children and Adolescent Health Research Center, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Mohammad Naderi
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Mohammad Hashemi
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| |
Collapse
|
18
|
Konečný P, Ehrlich R, Gulumian M, Jacobs M. Immunity to the Dual Threat of Silica Exposure and Mycobacterium tuberculosis. Front Immunol 2019; 9:3069. [PMID: 30687311 PMCID: PMC6334662 DOI: 10.3389/fimmu.2018.03069] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/11/2018] [Indexed: 01/28/2023] Open
Abstract
Exposure to silica and the consequent development of silicosis are well-known health problems in countries with mining and other dust producing industries. Apart from its direct fibrotic effect on lung tissue, chronic and immunomodulatory character of silica causes susceptibility to tuberculosis (TB) leading to a significantly higher TB incidence in silica-exposed populations. The presence of silica particles in the lung and silicosis may facilitate initiation of tuberculous infection and progression to active TB, and exacerbate the course and outcome of TB, including prognosis and survival. However, the exact mechanisms of the involvement of silica in the pathological processes during mycobacterial infection are not yet fully understood. In this review, we focus on the host's immunological response to both silica and Mycobacterium tuberculosis, on agents of innate and adaptive immunity, and particularly on silica-induced immunological modifications in co-exposure that influence disease pathogenesis. We review what is known about the impact of silica and Mycobacterium tuberculosis or their co-exposure on the host's immune system, especially an impact that goes beyond an exclusive focus on macrophages as the first line of the defense. In both silicosis and TB, acquired immunity plays a major role in the restriction and/or elimination of pathogenic agents. Further research is needed to determine the effects of silica in adaptive immunity and in the pathogenesis of TB.
Collapse
Affiliation(s)
- Petr Konečný
- Centre for Environmental and Occupational Health, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa.,Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rodney Ehrlich
- Centre for Environmental and Occupational Health, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Mary Gulumian
- National Health Laboratory Service, Department of Toxicology and Biochemistry, National Institute for Occupational Health, Johannesburg, South Africa.,Division of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa.,National Health Laboratory Service, Johannesburg, South Africa
| | - Muazzam Jacobs
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Service, Johannesburg, South Africa.,Immunology of Infectious Disease Research Unit, South African Medical Research Council, Cape Town, South Africa
| |
Collapse
|
19
|
Ryu S, Park JS, Kim HY, Kim JH. Lipid-Reactive T Cells in Immunological Disorders of the Lung. Front Immunol 2018; 9:2205. [PMID: 30319649 PMCID: PMC6168663 DOI: 10.3389/fimmu.2018.02205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 09/05/2018] [Indexed: 11/13/2022] Open
Abstract
Regulation of T cell-mediated immunity in the lungs is critical for prevention of immune-related lung disorders and for host protection from pathogens. While the prevalent view of pulmonary T cell responses is based on peptide recognition by antigen receptors, called T cell receptors (TCR), on the T cell surface in the context of classical major histocompatibility complex (MHC) molecules, novel pathways involving the presentation of lipid antigens by cluster of differentiation 1 (CD1) molecules to lipid-reactive T cells are emerging as key players in pulmonary immune system. Whereas, genetic conservation of group II CD1 (CD1d) in mouse and human genomes facilitated numerous in vivo studies of CD1d-restricted invariant natural killer T (iNKT) cells in lung diseases, the recent development of human CD1-transgenic mice has made it possible to examine the physiological roles of group I CD1 (CD1a-c) molecules in lung immunity. Here, we discuss current understanding of the biology of CD1-reactive T cells with a specific focus on their roles in several pulmonary disorders.
Collapse
Affiliation(s)
- Seungwon Ryu
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
| | - Joon Seok Park
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
| | - Ji Hyung Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
20
|
Abstract
Tuberculosis (TB) is an ancient infectious disease of humans that has been extensively studied both clinically and experimentally. Although susceptibility to Mycobacterium tuberculosis infection is clearly influenced by factors such as nutrition, immune status, and both mycobacterial and host genetics, the variable pathogenesis of TB in infected individuals remains poorly understood. Tuberculosis (TB) is an ancient infectious disease of humans that has been extensively studied both clinically and experimentally. Although susceptibility to Mycobacterium tuberculosis infection is clearly influenced by factors such as nutrition, immune status, and both mycobacterial and host genetics, the variable pathogenesis of TB in infected individuals remains poorly understood. During the past two decades, it has become clear that the microbiota—the trillion organisms that reside at mucosal surfaces within and on the body—can exert a major influence on disease outcome through its effects on host innate and adaptive immune function and metabolism. This new recognition of the potentially pleiotropic participation of the microbiome in immune responses has raised the possibility that the microbiota may influence M. tuberculosis infection and/or disease. Similarly, treatment of TB may alter the healthy steady-state composition and function of the microbiome, possibly affecting treatment outcome in addition to other host physiological parameters. Herein, we review emerging evidence for how the microbiota may influence the transition points in the life cycle of TB infection, including (i) resistance to initial infection, (ii) initial infection to latent tuberculosis (LTBI), (iii) LTBI to reactivated disease, and (iv) treatment to cure. A major goal of this review is to frame questions to guide future scientific and clinical studies in this largely unexplored but increasingly important area of TB research.
Collapse
|
21
|
Bagchi S, Genardi S, Wang CR. Linking CD1-Restricted T Cells With Autoimmunity and Dyslipidemia: Lipid Levels Matter. Front Immunol 2018; 9:1616. [PMID: 30061888 PMCID: PMC6055000 DOI: 10.3389/fimmu.2018.01616] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/29/2018] [Indexed: 11/13/2022] Open
Abstract
Dyslipidemia, or altered blood lipid content, is a risk factor for developing cardiovascular disease. Furthermore, several autoimmune diseases, including systemic lupus erythematosus, psoriasis, diabetes, and rheumatoid arthritis, are correlated highly with dyslipidemia. One common thread between both autoimmune diseases and altered lipid levels is the presence of inflammation, suggesting that the immune system might act as the link between these related pathologies. Deciphering the role of innate and adaptive immune responses in autoimmune diseases and, more recently, obesity-related inflammation, have been active areas of research. The broad picture suggests that antigen-presenting molecules, which present self-peptides to autoreactive T cells, can result in either aggravation or amelioration of inflammation. However, very little is known about the role of self-lipid reactive T cells in dyslipidemia-associated autoimmune events. Given that a range of autoimmune diseases are linked to aberrant lipid profiles and a majority of lipid-specific T cells are reactive to self-antigens, it is important to examine the role of these T cells in dyslipidemia-related autoimmune ailments and determine if dysregulation of these T cells can be drivers of autoimmune conditions. CD1 molecules present lipids to T cells and are divided into two groups based on sequence homology. To date, most of the information available on lipid-reactive T cells comes from the study of group 2 CD1d-restricted natural killer T (NKT) cells while T cells reactive to group 1 CD1 molecules remain understudied, despite their higher abundance in humans compared to NKT cells. This review evaluates the mechanisms by which CD1-reactive, self-lipid specific T cells contribute to dyslipidemia-associated autoimmune disease progression or amelioration by examining available literature on NKT cells and highlighting recent progress made on the study of group 1 CD1-restricted T cells.
Collapse
Affiliation(s)
| | | | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, United States
| |
Collapse
|
22
|
Lepore M, Mori L, De Libero G. The Conventional Nature of Non-MHC-Restricted T Cells. Front Immunol 2018; 9:1365. [PMID: 29963057 PMCID: PMC6010553 DOI: 10.3389/fimmu.2018.01365] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/01/2018] [Indexed: 12/17/2022] Open
Abstract
The definition “unconventional T cells” identifies T lymphocytes that recognize non-peptide antigens presented by monomorphic antigen-presenting molecules. Two cell populations recognize lipid antigens and small metabolites presented by CD1 and MR1 molecules, respectively. A third cell population expressing the TCR Vγ9Vδ2 is stimulated by small phosphorylated metabolites. In the recent past, we have learnt a lot about the selection, tissue distribution, gene transcription programs, mode of expansion after antigen recognition, and persistence of these cells. These studies depict their functions in immune homeostasis and diseases. Current investigations are revealing that unconventional T cells include distinct sub-populations, which display unexpected similarities to classical MHC-restricted T cells in terms of TCR repertoire diversity, antigen specificity variety, functional heterogeneity, and naïve-to-memory differentiation dynamic. This review discusses the latest findings with a particular emphasis on these T cells, which appear to be more conventional than previously appreciated, and with the perspective of using CD1 and MR1-restricted T cells in vaccination and immunotherapy.
Collapse
Affiliation(s)
- Marco Lepore
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Schönrich G, Raftery MJ. CD1-Restricted T Cells During Persistent Virus Infections: "Sympathy for the Devil". Front Immunol 2018; 9:545. [PMID: 29616036 PMCID: PMC5868415 DOI: 10.3389/fimmu.2018.00545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/02/2018] [Indexed: 12/12/2022] Open
Abstract
Some of the clinically most important viruses persist in the human host after acute infection. In this situation, the host immune system and the viral pathogen attempt to establish an equilibrium. At best, overt disease is avoided. This attempt may fail, however, resulting in eventual loss of viral control or inadequate immune regulation. Consequently, direct virus-induced tissue damage or immunopathology may occur. The cluster of differentiation 1 (CD1) family of non-classical major histocompatibility complex class I molecules are known to present hydrophobic, primarily lipid antigens. There is ample evidence that both CD1-dependent and CD1-independent mechanisms activate CD1-restricted T cells during persistent virus infections. Sophisticated viral mechanisms subvert these immune responses and help the pathogens to avoid clearance from the host organism. CD1-restricted T cells are not only crucial for the antiviral host defense but may also contribute to tissue damage. This review highlights the two edged role of CD1-restricted T cells in persistent virus infections and summarizes the viral immune evasion mechanisms that target these fascinating immune cells.
Collapse
Affiliation(s)
- Günther Schönrich
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin J Raftery
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
24
|
Schaible UE, Linnemann L, Redinger N, Patin EC, Dallenga T. Strategies to Improve Vaccine Efficacy against Tuberculosis by Targeting Innate Immunity. Front Immunol 2017; 8:1755. [PMID: 29312298 PMCID: PMC5732265 DOI: 10.3389/fimmu.2017.01755] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023] Open
Abstract
The global tuberculosis epidemic is the most common cause of death after infectious disease worldwide. Increasing numbers of infections with multi- and extensively drug-resistant variants of the Mycobacterium tuberculosis complex, resistant even to newly discovered and last resort antibiotics, highlight the urgent need for an efficient vaccine. The protective efficacy to pulmonary tuberculosis in adults of the only currently available vaccine, M. bovis BCG, is unsatisfactory and geographically diverse. More importantly, recent clinical studies on new vaccine candidates did not prove to be better than BCG, yet. Here, we propose and discuss novel strategies to improve efficacy of existing anti-tuberculosis vaccines. Modulation of innate immune responses upon vaccination already provided promising results in animal models of tuberculosis. For instance, neutrophils have been shown to influence vaccine efficacy, both, positively and negatively, and stimulate specific antibody secretion. Modulating immune regulatory properties after vaccination such as induction of different types of innate immune cell death, myeloid-derived suppressor or regulatory T cells, production of anti-inflammatory cytokines such as IL-10 may have beneficial effects on protection efficacy. Incorporation of lipid antigens presented via CD1 molecules to T cells have been discussed as a way to enhance vaccine efficacy. Finally, concepts of dendritic cell-based immunotherapies or training the innate immune memory may be exploitable for future vaccination strategies against tuberculosis. In this review, we put a spotlight on host immune networks as potential targets to boost protection by old and new tuberculosis vaccines.
Collapse
Affiliation(s)
- Ulrich E Schaible
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany.,Thematic Translation Unit Tuberculosis, German Center for Infection Research, Research Center Borstel, Borstel, Germany
| | - Lara Linnemann
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany
| | - Natalja Redinger
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany
| | - Emmanuel C Patin
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany.,Retroviral Immunology, The Francis Crick Institute, London, United Kingdom
| | - Tobias Dallenga
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany.,Thematic Translation Unit Tuberculosis, German Center for Infection Research, Research Center Borstel, Borstel, Germany
| |
Collapse
|
25
|
Targeting neutrophils for host-directed therapy to treat tuberculosis. Int J Med Microbiol 2017; 308:142-147. [PMID: 29055689 DOI: 10.1016/j.ijmm.2017.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/26/2017] [Accepted: 10/01/2017] [Indexed: 01/08/2023] Open
Abstract
M. tuberculosis is one of the prime killers from infectious diseases worldwide. Infections with multidrug-resistant variants counting for almost half a million new cases per year are steadily on the rise. Tuberculosis caused by extensively drug-resistant variants that are even resistant against newly developed or last resort antibiotics have to be considered untreaTable Susceptible tuberculosis already requires a six-months combinational therapy which requires further prolongation to treat drug-resistant infections. Such long treatment schedules are often accompanied by serious adverse effects causing patients to stop therapy. To tackle the global tuberculosis emergency, novel approaches for treatment need to be urgently explored. Host-directed therapies that target components of the defense system represent such a novel approach. In this review, we put a spotlight on neutrophils and neutrophil-associated effectors as promising targets for adjunct host-directed therapies to improve antibiotic efficacy and reduce both, treatment time and long-term pathological sequelae.
Collapse
|
26
|
Abstract
Tuberculosis infects millions of people worldwide and remains a leading global killer despite widespread neonatal administration of the tuberculosis vaccine, bacillus Calmette-Guérin (BCG). BCG has clear and sustained efficacy, but after 10 years, its efficacy appears to wane, at least in some populations. Fortunately, there are many new tuberculosis vaccines in development today, some in advanced stages of clinical trial testing. Here we review the epidemiological need for tuberculosis vaccination, including evolving standards for administration to at risk individuals in developing countries. We also examine proven sources of immune protection from tuberculosis, which to date have exclusively involved natural or vaccine exposure to whole cell mycobacteria. After summarizing evidence for the use and efficacy of BCG, we detail the most promising new candidate vaccines against tuberculosis. The global need for a new tuberculosis vaccine is acute and huge, but clinical trials to be completed in the coming few years are likely either to identify a new tuberculosis vaccine or to substantially reframe how we understand immune protection from this historical scourge.
Collapse
|
27
|
Van Rhijn I, Iwany SK, Fodran P, Cheng TY, Gapin L, Minnaard AJ, Moody DB. CD1b-mycolic acid tetramers demonstrate T-cell fine specificity for mycobacterial lipid tails. Eur J Immunol 2017; 47:1525-1534. [PMID: 28665555 DOI: 10.1002/eji.201747062] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/22/2017] [Accepted: 06/26/2017] [Indexed: 11/12/2022]
Abstract
Mycobacterium tuberculosis synthesizes a thick cell wall comprised of mycolic acids (MA), which are foreign antigens for human T cells. T-cell clones from multiple donors were used to determine the fine specificity of MA recognition by human αβ T cells. Most CD1-presented lipid antigens contain large hydrophilic head groups comprised of carbohydrates or peptides that dominate patterns of T-cell specificity. MA diverges from the consensus antigen motif in that it lacks a head group. Using multiple forms of natural and synthetic MA and MA-specific T-cells with different T-cell receptors, we found that, unlike antigens with larger head groups, lipid length strongly controlled T-cell responses to MA. In addition, the three forms of MA that naturally occur in M. tuberculosis that differ in modifications on the lipid tail, differ in their potency for activating MA-specific T-cell clones. Thus, naturally occurring MA forms should be considered as separate, partly cross-reactive antigens. Two of the three forms of MA could be loaded onto human CD1b proteins, creating working CD1b-MA tetramers. The creation of CD1b-MA tetramers represents a new tool for future studies that track the effector functions and kinetics of MA-specific T-cells ex vivo.
Collapse
Affiliation(s)
- Ildiko Van Rhijn
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sarah K Iwany
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Fodran
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Tan-Yun Cheng
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus and National Jewish Health, Aurora, CO, USA
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - D Branch Moody
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Harnessing the CD1 restricted T cell response for leukemia adoptive immunotherapy. Cytokine Growth Factor Rev 2017; 36:117-123. [PMID: 28712863 DOI: 10.1016/j.cytogfr.2017.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/15/2017] [Indexed: 01/03/2023]
Abstract
Disease recurrence following chemotherapy and allogeneic hematopoietic cell transplantation is the major unmet clinical need of acute leukemia. Adoptive cell therapy (ACT) with allogeneic T lymphocytes can control recurrences at the cost of inducing detrimental GVHD. Targeting T cell recognition on leukemia cells is therefore needed to overcome the problem and ensure safe and durable disease remission. In this review, we discuss adoptive cells therapy based on CD1-restricted T cells specific for tumor associated self-lipid antigens. CD1 molecules are identical in every individual and expressed essentially on mature hematopoietic cells and leukemia blasts, but not by parenchymatous cells, while lipid antigens are enriched in malignant cells and unlike to mutate upon immune-mediated selective pressure. Redirecting T cells against self-lipids presented by CD1 molecules can thus provide an appealing cell therapy strategy for acute leukemia that is patient-unrestricted and can minimize risks for GVHD, implying potential prognostic improvement for this cancer.
Collapse
|
29
|
Das I, Padhi A, Mukherjee S, Dash DP, Kar S, Sonawane A. Biocompatible chitosan nanoparticles as an efficient delivery vehicle for Mycobacterium tuberculosis lipids to induce potent cytokines and antibody response through activation of γδ T cells in mice. NANOTECHNOLOGY 2017; 28:165101. [PMID: 28206982 DOI: 10.1088/1361-6528/aa60fd] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The activation of cell-mediated and humoral immune responses to Mycobacterium tuberculosis (Mtb) is critical for protection against the pathogen and nanoparticle-mediated delivery of antigens is a more potent way to induce different immune responses. Herein, we show that mice immunized with Mtb lipid-bound chitosan nanoparticles (NPs) induce secretion of prominent type-1 T-helper (Th-1) and type-2 T-helper (Th-2) cytokines in lymph node and spleen cells, and also induces significantly higher levels of IgG, IgG1, IgG2 and IgM in comparison to control mice. Furthermore, significantly enhanced γδ-T-cell activation was observed in lymph node cells isolated from mice immunized with Mtb lipid-coated chitosan NPs as compared to mice immunized with chitosan NPs alone or Mtb lipid liposomes. In comparison to CD8+ cells, significantly higher numbers of CD4+ cells were present in both the lymph node and spleen cells isolated from mice immunized with Mtb lipid-coated chitosan NPs. In conclusion, this study represents a promising new strategy for the efficient delivery of Mtb lipids using chitosan NPs to trigger an enhanced cell-mediated and antibody response against Mtb lipids.
Collapse
Affiliation(s)
- Ishani Das
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Peptide-specific conventional T cells have been major targets for designing most antimycobacterial vaccines. Immune responses mediated by conventional T cells exhibit a delayed onset upon primary infection and are highly variable in different human populations. In contrast, innate-like T cells quickly respond to pathogens and display effector functions without undergoing extensive clonal expansion. Specifically, the activation of innate-like T cells depends on the promiscuous interaction of highly conserved antigen-presenting molecules, non-peptidic antigens, and likely semi-invariant T cell receptors. In antimicrobial immune responses, mucosal-associated invariant T cells are activated by riboflavin precursor metabolites presented by major histocompatibility complex-related protein I, while lipid-specific T cells including natural killer T cells are activated by lipid metabolites presented by CD1 proteins. Multiple innate-like T cell subsets have been shown to be protective or responsive in mycobacterial infections. Through rapid cytokine secretion, innate-like T cells function in early defense and memory response, offering novel advantages over conventional T cells in the design of anti-tuberculosis strategies.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Environmental Health, University of Cincinnati College of Medicine , Cincinnati, OH , USA
| |
Collapse
|
31
|
CD1-Restricted T Cells at the Crossroad of Innate and Adaptive Immunity. J Immunol Res 2016; 2016:2876275. [PMID: 28070524 PMCID: PMC5192300 DOI: 10.1155/2016/2876275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/13/2016] [Indexed: 11/17/2022] Open
Abstract
Lipid-specific T cells comprise a group of T cells that recognize lipids bound to the MHC class I-like CD1 molecules. There are four isoforms of CD1 that are expressed at the surface of antigen presenting cells and therefore capable of presenting lipid antigens: CD1a, CD1b, CD1c, and CD1d. Each one of these isoforms has distinct structural features and cellular localizations, which promotes binding to a broad range of different types of lipids. Lipid antigens originate from either self-tissues or foreign sources, such as bacteria, fungus, or plants and their recognition by CD1-restricted T cells has important implications in infection but also in cancer and autoimmunity. In this review, we describe the characteristics of CD1 molecules and CD1-restricted lipid-specific T cells, highlighting the innate-like and adaptive-like features of different CD1-restricted T cell subtypes.
Collapse
|
32
|
Anderson CK, Brossay L. The role of MHC class Ib-restricted T cells during infection. Immunogenetics 2016; 68:677-91. [PMID: 27368413 DOI: 10.1007/s00251-016-0932-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/22/2016] [Indexed: 01/02/2023]
Abstract
Even though major histocompatibility complex (MHC) class Ia and many Ib molecules have similarities in structure, MHC class Ib molecules tend to have more specialized functions, which include the presentation of non-peptidic antigens to non-classical T cells. Likewise, non-classical T cells also have unique characteristics, including an innate-like phenotype in naïve animals and rapid effector functions. In this review, we discuss the role of MAIT and NKT cells during infection but also the contribution of less studied MHC class Ib-restricted T cells such as Qa-1-, Qa-2-, and M3-restricted T cells. We focus on describing the types of antigens presented to non-classical T cells, their response and cytokine profile following infection, as well as the overall impact of these T cells to the immune system.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA.
| |
Collapse
|
33
|
Tima HG, Huygen K, Romano M. Innate signaling by mycobacterial cell wall components and relevance for development of adjuvants for subunit vaccines. Expert Rev Vaccines 2016; 15:1409-1420. [PMID: 27206681 DOI: 10.1080/14760584.2016.1187067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Pathogen recognition receptors (PRRs) recognize pathogen-associated molecular patterns, triggering the induction of inflammatory innate responses and contributing to the development of specific adaptive immune responses. Novel adjuvants have been developed based on agonists of PRRs. Areas covered: Lipid pathogen-associated molecular patterns (PAMPs) present in the cell wall of mycobacteria are revised, with emphasis on agonists of C-type lectin receptors, signaling pathways, and preclinical data supporting their use as novel adjuvants inducing cell-mediated immune responses. Their potential use as lipid antigens in novel tuberculosis subunit vaccines is also discussed. Expert commentary: Few adjuvants are licensed for human use and mainly favour antibody-mediated protective immunity. Use of lipid PAMPs that trigger cell-mediated immune responses could lead to the development of adjuvants for vaccines against intracellular pathogens and cancer.
Collapse
Affiliation(s)
- Hermann Giresse Tima
- a Immunology Service, Communicable and Infectious Diseases Department , Scientific Institute of Public Health (WIV-ISP) , Brussels , Belgium
| | - Kris Huygen
- a Immunology Service, Communicable and Infectious Diseases Department , Scientific Institute of Public Health (WIV-ISP) , Brussels , Belgium
| | - Marta Romano
- a Immunology Service, Communicable and Infectious Diseases Department , Scientific Institute of Public Health (WIV-ISP) , Brussels , Belgium
| |
Collapse
|
34
|
Abstract
CD1- and MHC-related molecule-1 (MR1)-restricted T lymphocytes recognize nonpeptidic antigens, such as lipids and small metabolites, and account for a major fraction of circulating and tissue-resident T cells. They represent a readily activated, long-lasting population of effector cells and contribute to the early phases of immune response, orchestrating the function of other cells. This review addresses the main aspects of their immunological functions, including antigen and T cell receptor repertoires, mechanisms of nonpeptidic antigen presentation, and the current evidence for their participation in human and experimental diseases.
Collapse
Affiliation(s)
- Lucia Mori
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , , .,Singapore Immunology Network, A*STAR, 138648 Singapore
| | - Marco Lepore
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , ,
| | - Gennaro De Libero
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , , .,Singapore Immunology Network, A*STAR, 138648 Singapore
| |
Collapse
|
35
|
Shin C, Kim M, Han JA, Choi B, Hwang D, Do Y, Yun JH. Human periodontal ligament stem cells suppress T-cell proliferation via down-regulation of non-classical major histocompatibility complex-like glycoprotein CD1b on dendritic cells. J Periodontal Res 2016; 52:135-146. [PMID: 27021598 DOI: 10.1111/jre.12378] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontal ligament stem cells (PDLSCs) from the periodontal ligament tissue were recently identified as mesenchymal stem cells (MSCs). The capabilities of PDLSCs in periodontal tissue or bone regeneration have been reported, but their immunomodulatory role in T-cell immune responses via dendritic cells (DCs), known as the most potent antigen-presenting cell, has not been studied. The aim of this study is to understand the immunological function of homogeneous human STRO-1+ CD146+ PDLSCs in DC-mediated T-cell immune responses to modulate the periodontal disease process. MATERIAL AND METHODS We utilized highly purified (> 95%) human STRO-1+ CD146+ PDLSCs and human bone marrow mesenchymal stem cells (BMSCs). Each stem cell was co-cultured with human monocyte-derived DCs in the presence of lipopolysaccharide isolated from Porphyromonas gingivalis, a major pathogenic bacterium responsible for periodontal disease, in vitro to examine the immunological effect of each stem cell on DCs and DC-mediated T-cell proliferation. RESULTS We discovered that STRO-1+ CD146+ PDLSCs, as well as BMSCs, significantly decreased the level of non-classical major histocompatibility complex glycoprotein CD1b on DCs, resulting in defective T-cell proliferation, whereas most human leukocyte antigens and the co-stimulatory molecules CD80 and CD86 in/on DCs were not significantly affected by the presence of BMSCs or STRO-1+ CD146+ PDLSCs. CONCLUSIONS This study unveiled an immunomodulatory role of STRO-1+ CD146+ PDLSCs in negatively regulating DC-mediated T-cell immune responses, demonstrating their potential to be utilized in promising new stem cell therapies.
Collapse
Affiliation(s)
- C Shin
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - M Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea
| | - J-A Han
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - B Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - D Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea.,Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Y Do
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - J-H Yun
- Department of Periodontology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Korea.,Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
36
|
Tang J, Yam WC, Chen Z. Mycobacterium tuberculosis infection and vaccine development. Tuberculosis (Edinb) 2016; 98:30-41. [PMID: 27156616 DOI: 10.1016/j.tube.2016.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/22/2016] [Indexed: 12/17/2022]
Abstract
Following HIV/AIDS, tuberculosis (TB) continues to be the second most deadly infectious disease in humans. The global TB prevalence has become worse in recent years due to the emergence of multi-drug resistant (MDR) and extensively-drug resistant (XDR) strains, as well as co-infection with HIV. Although Bacillus Calmette-Guérin (BCG) vaccine has nearly been used for a century in many countries, it does not protect adult pulmonary tuberculosis and even causes disseminated BCG disease in HIV-positive population. It is impossible to use BCG to eliminate the Mycobacterium tuberculosis (M. tb) infection or to prevent TB onset and reactivation. Consequently, novel vaccines are urgently needed for TB prevention and immunotherapy. In this review, we discuss the TB prevalence, interaction between M. tb and host immune system, as well as recent progress of TB vaccine research and development.
Collapse
Affiliation(s)
- Jiansong Tang
- AIDS Institute and Department of Microbiology, Research Centre for Infection and Immunity, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Wing-Cheong Yam
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, Research Centre for Infection and Immunity, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, PR China.
| |
Collapse
|
37
|
Zhao J, Siddiqui S, Shang S, Bian Y, Bagchi S, He Y, Wang CR. Mycolic acid-specific T cells protect against Mycobacterium tuberculosis infection in a humanized transgenic mouse model. eLife 2015; 4. [PMID: 26652001 PMCID: PMC4718816 DOI: 10.7554/elife.08525] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 11/01/2015] [Indexed: 11/25/2022] Open
Abstract
Group 1 CD1 molecules, CD1a, CD1b and CD1c, present lipid antigens from Mycobacterium tuberculosis (Mtb) to T cells. Mtb lipid-specific group 1 CD1-restricted T cells have been detected in Mtb-infected individuals. However, their role in protective immunity against Mtb remains unclear due to the absence of group 1 CD1 expression in mice. To overcome the challenge, we generated mice that expressed human group 1 CD1 molecules (hCD1Tg) and a CD1b-restricted, mycolic-acid specific TCR (DN1Tg). Using DN1Tg/hCD1Tg mice, we found that activation of DN1 T cells was initiated in the mediastinal lymph nodes and showed faster kinetics compared to Mtb Ag85B-specific CD4+ T cells after aerosol infection with Mtb. Additionally, activated DN1 T cells exhibited polyfunctional characteristics, accumulated in lung granulomas, and protected against Mtb infection. Therefore, our findings highlight the vaccination potential of targeting group 1 CD1-restricted lipid-specific T cells against Mtb infection. DOI:http://dx.doi.org/10.7554/eLife.08525.001 Most cases of tuberculosis are caused by a bacterium called Mycobacterium tuberculosis, which is believed to have infected one third of the world’s population. Most of these infections are dormant and don’t cause any symptoms. However, active infections can be deadly if left untreated and often require six months of treatment with multiple antibiotics. One reason why these infections are so difficult to treat is because the M. tuberculosis cell walls contain fatty molecules known as mycolic acids, which make the bacteria less susceptible to antibiotics. These molecules also help the bacteria to subvert and then hide from the immune system. The prevalence of the disease and the increasing problem of antibiotic resistance have spurred the search for an effective vaccine against tuberculosis. While most efforts have focused on using protein fragments in tuberculosis vaccines, some evidence suggests that human immune cells can recognize fatty molecules such as mycolic acids and that these cells could help manage and control M. tuberculosis infections. However, it has been difficult to determine whether these immune cells genuinely play a protective role against the disease because most vaccine research uses mouse models and mice do not have an equivalent of these immune cells. Now, Zhao et al. have engineered a “humanized” mouse model that produces the fatty molecule-specific immune cells, and show that these mice do respond to the presence of mycolic acids. Infecting the genetically engineered mice with M. tuberculosis revealed that the fatty molecule-specific immune cells were quickly activated within lymph nodes at the center of the chest. These cells later accumulated at sites in the lung where the bacteria reside, and ultimately protected against M. tuberculosis infection. The results show that these specific immune cells can counteract M. tuberculosis, and highlight the potential of using mycolic acids to generate an effective vaccine that provides protection against tuberculosis. DOI:http://dx.doi.org/10.7554/eLife.08525.002
Collapse
Affiliation(s)
- Jie Zhao
- Department of Microbiology and Immunology, Northwestern University, Chicago, United States
| | - Sarah Siddiqui
- Department of Microbiology and Immunology, Northwestern University, Chicago, United States
| | - Shaobin Shang
- Department of Microbiology and Immunology, Northwestern University, Chicago, United States
| | - Yao Bian
- Department of Microbiology and Immunology, Northwestern University, Chicago, United States
| | - Sreya Bagchi
- Department of Microbiology and Immunology, Northwestern University, Chicago, United States
| | - Ying He
- Department of Microbiology and Immunology, Northwestern University, Chicago, United States
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University, Chicago, United States
| |
Collapse
|
38
|
Chen Z, Gupta T, Xu P, Phan S, Pickar A, Yau W, Karls RK, Quinn FD, Sakamoto K, He B. Efficacy of parainfluenza virus 5 (PIV5)-based tuberculosis vaccines in mice. Vaccine 2015; 33:7217-7224. [PMID: 26552000 DOI: 10.1016/j.vaccine.2015.10.124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/24/2015] [Accepted: 10/28/2015] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), is an important human pathogen. Bacillus Calmette-Guérin (BCG), a live, attenuated variant of Mycobacterium bovis, is currently the only available TB vaccine despite its low efficacy against the infectious pulmonary form of the disease in adults. Thus, a more-effective TB vaccine is needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, has several characteristics that make it an attractive vaccine vector. It is safe, inexpensive to produce, and has been previously shown to be efficacious as the backbone of vaccines for influenza, rabies, and respiratory syncytial virus. In this work, recombinant PIV5 expressing M. tuberculosis antigens 85A (PIV5-85A) and 85B (PIV5-85B) have been generated and their immunogenicity and protective efficacy evaluated in a mouse aerosol infection model. In a long-term protection study, a single dose of PIV5-85A was found to be most effective in reducing M. tuberculosis colony forming units (CFU) in lungs when compared to unvaccinated, whereas the BCG vaccinated animals had similar numbers of CFUs to unvaccinated animals. BCG-prime followed by a PIV5-85A or PIV5-85B boost produced better outcomes highlighted by close to three-log units lower lung CFUs compared to PBS. The results indicate that PIV5-based M. tuberculosis vaccines are promising candidates for further development.
Collapse
Affiliation(s)
- Zhenhai Chen
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Tuhina Gupta
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Pei Xu
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Shannon Phan
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Adrian Pickar
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Wilson Yau
- Department of Pathology, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Russell K Karls
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Frederick D Quinn
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Biao He
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA.
| |
Collapse
|
39
|
Seshadri C, Lin L, Scriba TJ, Peterson G, Freidrich D, Frahm N, DeRosa SC, Moody DB, Prandi J, Gilleron M, Mahomed H, Jiang W, Finak G, Hanekom WA, Gottardo R, McElrath MJ, Hawn TR. T Cell Responses against Mycobacterial Lipids and Proteins Are Poorly Correlated in South African Adolescents. THE JOURNAL OF IMMUNOLOGY 2015; 195:4595-603. [PMID: 26466957 DOI: 10.4049/jimmunol.1501285] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022]
Abstract
Human T cells are activated by both peptide and nonpeptide Ags produced by Mycobacterium tuberculosis. T cells recognize cell wall lipids bound to CD1 molecules, but effector functions of CD1-reactive T cells have not been systematically assessed in M. tuberculosis-infected humans. It is also not known how these features correlate with T cell responses to secreted protein Ags. We developed a flow cytometric assay to profile CD1-restricted T cells ex vivo and assessed T cell responses to five cell wall lipid Ags in a cross-sectional study of 19 M. tuberculosis-infected and 22 M. tuberculosis-uninfected South African adolescents. We analyzed six T cell functions using a recently developed computational approach for flow cytometry data in high dimensions. We compared these data with T cell responses to five protein Ags in the same cohort. We show that CD1b-restricted T cells producing antimycobacterial cytokines IFN-γ and TNF-α are detectable ex vivo in CD4(+), CD8(+), and CD4(-)CD8(-) T cell subsets. Glucose monomycolate was immunodominant among lipid Ags tested, and polyfunctional CD4 T cells specific for this lipid simultaneously expressed CD40L, IFN-γ, IL-2, and TNF-α. Lipid-reactive CD4(+) T cells were detectable at frequencies of 0.001-0.01%, and this did not differ by M. tuberculosis infection status. Finally, CD4 T cell responses to lipids were poorly correlated with CD4 T cell responses to proteins (Spearman rank correlation -0.01; p = 0.95). These results highlight the functional diversity of CD1-restricted T cells circulating in peripheral blood as well as the complementary nature of T cell responses to mycobacterial lipids and proteins. Our approach enables further population-based studies of lipid-specific T cell responses during natural infection and vaccination.
Collapse
Affiliation(s)
- Chetan Seshadri
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109;
| | - Lin Lin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Thomas J Scriba
- South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7700, South Africa; Department of Pediatrics and Child Health, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7700, South Africa
| | - Glenna Peterson
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109
| | - David Freidrich
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; HIV Vaccine Trials Network, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; HIV Vaccine Trials Network, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Stephen C DeRosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; HIV Vaccine Trials Network, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; Department of Laboratory Medicine, University of Washington, Seattle WA 98109
| | - D Branch Moody
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Jacques Prandi
- Institut de Pharmacologie et Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse 31077, France; and
| | - Martine Gilleron
- Institut de Pharmacologie et Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse 31077, France; and
| | - Hassan Mahomed
- Division of Community Health, Stellenbosch University, Stellanbosch 7602, South Africa
| | - Wenxin Jiang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Willem A Hanekom
- South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7700, South Africa; Department of Pediatrics and Child Health, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7700, South Africa
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; HIV Vaccine Trials Network, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Thomas R Hawn
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109
| |
Collapse
|
40
|
Kasprowicz VO, Cheng TY, Ndung'u T, Sunpath H, Moody DB, Kasmar AG. HIV Disrupts Human T Cells That Target Mycobacterial Glycolipids. J Infect Dis 2015; 213:628-33. [PMID: 26374910 DOI: 10.1093/infdis/jiv455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022] Open
Abstract
Single-cell analysis captures the heterogeneity of T-cell populations that target defined antigens. Human immunodeficiency virus (HIV) infection results in defects of antimycobacterial immunity, which remain poorly defined. We therefore recruited a small number of subjects, including those with latent and active M. tuberculosis infection, with or without concomitant HIV infection, and tracked the mycobacterial glycolipid-reactive T-cell repertoire by using CD1b tetramers. Glycolipid-reactive T cells expressed memory markers and the HIV coreceptors CD4 and CCR5; they were not detected in subjects with HIV-associated active M. tuberculosis infection. HIV infection may affect T cells that recognize mycobacterial glycolipids and influence immunity.
Collapse
Affiliation(s)
- Victoria O Kasprowicz
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal Ragon Institute of MGH, MIT, and Harvard, Cambridge
| | - Tan-Yun Cheng
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Thumbi Ndung'u
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal Ragon Institute of MGH, MIT, and Harvard, Cambridge Max Planck Institute for Infection Biology, Berlin, Germany
| | - Henry Sunpath
- Infectious Diseases Unit, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal McCord Hospital, Durban, South Africa
| | - D Branch Moody
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anne G Kasmar
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
41
|
Glucose monomycolates based on single synthetic mycolic acids. Chem Phys Lipids 2015; 190:9-14. [DOI: 10.1016/j.chemphyslip.2015.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/18/2015] [Accepted: 06/21/2015] [Indexed: 11/21/2022]
|
42
|
Siddiqui S, Visvabharathy L, Wang CR. Role of Group 1 CD1-Restricted T Cells in Infectious Disease. Front Immunol 2015; 6:337. [PMID: 26175733 PMCID: PMC4484338 DOI: 10.3389/fimmu.2015.00337] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/16/2015] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved CD1 family of antigen-presenting molecules presents lipid antigens rather than peptide antigens to T cells. CD1 molecules, unlike classical MHC molecules, display limited polymorphism, making CD1-restricted lipid antigens attractive vaccine targets that could be recognized in a genetically diverse human population. Group 1 CD1 (CD1a, CD1b, and CD1c)-restricted T cells have been implicated to play critical roles in a variety of autoimmune and infectious diseases. In this review, we summarize current knowledge and recent discoveries on the development of group 1 CD1-restricted T cells and their function in different infection models. In particular, we focus on (1) newly identified microbial and self-lipid antigens, (2) kinetics, phenotype, and unique properties of group 1 CD1-restricted T cells during infection, and (3) the similarities of group 1 CD1-restricted T cells to the closely related group 2 CD1-restricted T cells.
Collapse
Affiliation(s)
- Sarah Siddiqui
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| | - Lavanya Visvabharathy
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| |
Collapse
|
43
|
Gowthaman U, Mushtaq K, Tan AC, Rai PK, Jackson DC, Agrewala JN. Challenges and solutions for a rational vaccine design for TB-endemic regions. Crit Rev Microbiol 2015; 41:389-98. [PMID: 24495096 DOI: 10.3109/1040841x.2013.859125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vaccines have been successful for global eradication or control of dreaded diseases such as smallpox, diphtheria, tetanus, yellow fever, whooping cough, polio, and measles. Unfortunately, this success has not been achieved for controlling tuberculosis (TB) worldwide. Bacillus Calmette Guérin (BCG) is the only available vaccine against TB. Paradoxically, BCG has deciphered success in the Western world but has failed in TB-endemic areas. In this article, we highlight and discuss the aspects of immunity responsible for controlling Mycobacterium tuberculosis infection and factors responsible for the failure of BCG in TB-endemic countries. In addition, we also suggest strategies that contribute toward the development of successful vaccine in protecting populations where BCG has failed.
Collapse
|
44
|
Dorhoi A, Kaufmann SH. Perspectives on host adaptation in response to Mycobacterium tuberculosis: Modulation of inflammation. Semin Immunol 2014; 26:533-42. [DOI: 10.1016/j.smim.2014.10.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 12/11/2022]
|
45
|
Abstract
Primary immunodeficiencies (PID) are a group of rare inherited disorders that manifest as heightened susceptibility to infection, autoimmunity and/or malignancy. By exploring their genetic and cellular aetiology, we can learn much about the basis of pathogen-specific immunity in humans. This is exemplified by mycobacterial susceptibility, which occurs across several types of PID, either as an isolated problem or as part of a broader pattern of susceptibility to infection. These experiments of nature have contributed to our understanding of the central role of T cells in activating infected macrophages to eliminate phagosomal mycobacteria through mutually activating, cytokine-dependent interactions. In recent years, the discovery of novel forms of PID has emphasised the important role of dendritic cells and monocytes in mycobacterial defence in humans. Here, we provide a brief overview of these new disorders alongside other genetic causes of susceptibility to mycobacterial disease.
Collapse
Affiliation(s)
- Christopher J A Duncan
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK, and Great North Children's Hospital, Newcastle-upon-Tyne, UK
| | - Sophie Hambleton
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK, and Department of Infection and Tropical Medicine Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
| |
Collapse
|
46
|
Thirunavukkarasu S, de Silva K, Plain KM, J Whittington R. Role of host- and pathogen-associated lipids in directing the immune response in mycobacterial infections, with emphasis on Mycobacterium avium subsp. paratuberculosis. Crit Rev Microbiol 2014; 42:262-75. [PMID: 25163812 DOI: 10.3109/1040841x.2014.932327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mycobacteria have a complex cell wall with a high lipid content that confers unique advantages for bacterial survival in the hostile host environment, leading to long-term infection. There is a wealth of evidence suggesting the role cell wall-associated lipid antigens play at the host-pathogen interface by contributing to bacterial virulence. One pathway that pathogenic mycobacteria use to subvert host immune pathways to their advantage is host cholesterol/lipid homeostasis. This review focuses on the possible role of pathogen- and host-associated lipids in the survival and persistence of pathogenic mycobacteria with emphasis on Mycobacterium avium subsp. paratuberculosis. We draw upon literature in diverse areas of infectious and metabolic diseases and explain a mechanism by which mycobacterial-induced changes in the host cellular energy state could account for phenomena that are a hallmark of chronic mycobacterial diseases.
Collapse
Affiliation(s)
| | - Kumudika de Silva
- a Faculty of Veterinary Science , University of Sydney , Camden , Australia
| | - Karren M Plain
- a Faculty of Veterinary Science , University of Sydney , Camden , Australia
| | | |
Collapse
|
47
|
De Libero G, Singhal A, Lepore M, Mori L. Nonclassical T cells and their antigens in tuberculosis. Cold Spring Harb Perspect Med 2014; 4:a018473. [PMID: 25059739 DOI: 10.1101/cshperspect.a018473] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
T cells that recognize nonpeptidic antigens, and thereby are identified as nonclassical, represent important yet poorly characterized effectors of the immune response. They are present in large numbers in circulating blood and tissues and are as abundant as T cells recognizing peptide antigens. Nonclassical T cells exert multiple functions including immunoregulation, tumor control, and protection against infections. They recognize complexes of nonpeptidic antigens such as lipid and glycolipid molecules, vitamin B2 precursors, and phosphorylated metabolites of the mevalonate pathway. Each of these antigens is presented by antigen-presenting molecules other than major histocompatibility complex (MHC), including CD1, MHC class I-related molecule 1 (MR1), and butyrophilin 3A1 (BTN3A1) molecules. Here, we discuss how nonclassical T cells participate in the recognition of mycobacterial antigens and in the mycobacterial-specific immune response.
Collapse
Affiliation(s)
- Gennaro De Libero
- SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), 138648 Singapore Experimental Immunology, Department of Biomedicine, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Amit Singhal
- SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), 138648 Singapore
| | - Marco Lepore
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Lucia Mori
- SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), 138648 Singapore Experimental Immunology, Department of Biomedicine, University Hospital Basel, CH-4031 Basel, Switzerland
| |
Collapse
|
48
|
Kawasaki N, Rillahan CD, Cheng TY, Van Rhijn I, Macauley MS, Moody DB, Paulson JC. Targeted delivery of mycobacterial antigens to human dendritic cells via Siglec-7 induces robust T cell activation. THE JOURNAL OF IMMUNOLOGY 2014; 193:1560-6. [PMID: 25000981 DOI: 10.4049/jimmunol.1303278] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lipids from mycobacteria can be presented to human T cells by group 1 CD1 Ag-presenting molecules (CD1a, CD1b, and CD1c). Group 1 CD1-restricted T cells are activated by lipid Ags presented by myeloid dendritic cells (DCs), after which they generate antibacterial effector functions, including IFN-γ secretion and cytolysis. Thus, mycobacterial lipids are being investigated as components of novel vaccines for mycobacterial infections. In this study we show that the mycobacterial lipid Ag C80 glucose-6-monomycolate can be delivered to human CD1b(+) DCs via targeted liposomal nanoparticles, leading to robust group 1 CD1-restricted activation of T cells. Targeting was achieved by decorating the liposomes with a high-affinity glycan ligand of sialic acid-binding Ig-like lectin (Siglec)-7, a siglec receptor expressed on DCs that mediates rapid endocytosis and transport of its cargo to lysosomes. An Ab to Siglec-7 completely blocked the binding of targeted liposomes to human monocyte-derived DCs (Mo-DCs), demonstrating their targeting specificity. Mo-DCs pulsed with targeted liposomes containing C80 glucose-6-monomycolate more potently activated a CD1b-restricted T cell line relative to Mo-DCs pulsed with free lipid Ag or antigenic liposomes without Siglec-7 ligand. These data suggest that the endocytic function of Siglec-7 can be exploited to deliver glycolipid Ags to their target cell and increase the efficiency of display to T cells.
Collapse
Affiliation(s)
- Norihito Kawasaki
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Cory D Rillahan
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Tan-Yun Cheng
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Ildiko Van Rhijn
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Matthew S Macauley
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - D Branch Moody
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - James C Paulson
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037;
| |
Collapse
|
49
|
De Libero G, Mori L. The T-Cell Response to Lipid Antigens of Mycobacterium tuberculosis. Front Immunol 2014; 5:219. [PMID: 24904574 PMCID: PMC4033098 DOI: 10.3389/fimmu.2014.00219] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 04/30/2014] [Indexed: 11/13/2022] Open
Abstract
T-cells recognize lipid antigens presented by dedicated antigen-presenting molecules that belong to the CD1 family. This review discusses the structural properties of CD1 molecules, the nature of mycobacterial lipid antigens, and the phenotypic and functional properties of T-cells recognizing mycobacterial lipids. In humans, the five CD1 genes encode structurally similar glycoproteins that recycle in and thus survey different cellular endosomal compartments. The structure of the CD1-lipid-binding pockets, their mode of intracellular recycling and the type of CD1-expressing antigen-presenting cells all contribute to diversify lipid immunogenicity and presentation to T-cells. Mycobacteria produce a large variety of lipids, which form stable complexes with CD1 molecules and stimulate specific T-cells. The structures of antigenic lipids may be greatly different from each other and each lipid may induce unique T-cells capable of discriminating small lipid structural changes. The important functions of some lipid antigens within mycobacterial cells prevent the generation of negative mutants capable of escaping this type of immune response. T-cells specific for lipid antigens are stimulated in tuberculosis and exert protective functions. The mechanisms of antigen recognition, the type of effector functions and the mode of lipid-specific T-cell priming are discussed, emphasizing recent evidence of the roles of lipid-specific T-cells in tuberculosis.
Collapse
Affiliation(s)
- Gennaro De Libero
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) , Singapore , Singapore ; Experimental Immunology, Department of Biomedicine, University Hospital Basel , Basel , Switzerland
| | - Lucia Mori
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) , Singapore , Singapore
| |
Collapse
|
50
|
Host-pathogen interactions during Mycobacterium tuberculosis infections. Curr Top Microbiol Immunol 2014; 374:211-41. [PMID: 23881288 DOI: 10.1007/82_2013_332] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The intimate and persistent connection between Mycobacterium tuberculosis and its human host suggests that the pathogen has evolved extensive mechanisms to evade eradication by the immune system. In particular, the organism has adapted to replicate within phagocytic cells, especially macrophages, which are specialized to kill microbes. Over the past decade of M. tuberculosis research, the means to manipulate both the organism and the host has ushered in an exciting time that has uncovered some of the mechanisms of the innate macrophage-pathogen interactions that lie at the heart of M. tuberculosis pathogenesis, though many interactions likely still await discovery. In this chapter, we will delve into some of these advances, with an emphasis on the interactions that occur on the cellular level when M. tuberculosis cells encounter macrophages. In particular, we focus on two major aspects of M. tuberculosis biology regarding the proximal physical interface between the bacterium and host, namely the interactions with the phagosomal membrane as well as the distinctive mycobacterial cell wall. Importantly, some of the emerging paradigms in M. tuberculosis pathogenesis and host response represent common themes in bacterial pathogenesis, such as the role of host cell membrane perforation in intracellular survival and host response. However, the array of unique bacterial lipid mediators and their interaction with host cells highlights the unique biology of this persistent pathogen.
Collapse
|