1
|
Lohr T, Scheuplein NJ, Jenkins C, Norville I, Erk C, Stapf M, Kirchner L, Sarkar-Tyson M, Holzgrabe U. Identification of active main metabolites of anti-infective inhibitors of the macrophage infectivity potentiator protein by liquid chromatography using mass detection. Arch Pharm (Weinheim) 2024; 357:e2400032. [PMID: 38687906 DOI: 10.1002/ardp.202400032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Due to increasing antibiotic resistance, the development of anti-infectives with new mechanisms of action is crucial. Virulence factors such as the "macrophage infectivity potentiator" (Mip) protein, which catalyzes the folding of proline-containing proteins by means of their cis-trans isomerase (PPIase) activity, have come into focus as a potential new target. Since the inhibition of Mip by small molecules has been shown to lead to reduced virulence and survival in vitro, especially of Gram-negative bacteria such as Burkholderia pseudomallei (Bp), Neisseria meningitidis (Nm), and Neisseria gonorrhoeae (Ng), or Coxiella burnetii (Cb), among many others, a library of Mip inhibitors was developed. As drug metabolism has a significant impact on the overall therapeutic outcome, this report describes the biotransformation of the most potent Mip inhibitors. Therefore, the anti-infectives were treated using human liver microsomes in vitro. Liquid chromatography with tandem mass spectrometry (LC/MS-MS) methods were applied to identify the metabolites and quantify the metabolic degradation of the hit compounds. Active metabolites, N-oxides, were found, leading to new opportunities for further drug development.
Collapse
Affiliation(s)
- Theresa Lohr
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | | | | | - Isobel Norville
- DSTL, Defence Science and Technology Laboratory, Salisbury, UK
| | - Christine Erk
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Maximilian Stapf
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Lukas Kirchner
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Leseigneur C, Buchrieser C. Modelling Legionnaires' disease: Lessons learned from invertebrate and vertebrate animal models. Eur J Cell Biol 2023; 102:151369. [PMID: 37926040 DOI: 10.1016/j.ejcb.2023.151369] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
The study of virulence of Legionella pneumophila and its interactions with its hosts has been predominantly conducted in cellulo in the past decades. Although easy to implement and allowing the dissection of molecular pathways underlying host-pathogen interactions, these cellular models fail to provide conditions of the complex environments encountered by the bacteria during the infection of multicellular organisms. To improve our understanding of human infection, several animal models have been developed. This review provides an overview of the invertebrate and vertebrate models that have been established to study L. pneumophila infection and that are alternatives to the classical mouse model, which does not recall human infection with L. pneumophila well. Finally we provide insight in the main contributions made by these models along with their pros and cons.
Collapse
Affiliation(s)
- Clarisse Leseigneur
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires, 75724 Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires, 75724 Paris, France.
| |
Collapse
|
3
|
Deutscher RCE, Safa Karagöz M, Purder PL, Kolos JM, Meyners C, Oki Sugiarto W, Krajczy P, Tebbe F, Geiger TM, Ünal C, Hellmich UA, Steinert M, Hausch F. [4.3.1]Bicyclic FKBP Ligands Inhibit Legionella Pneumophila Infection by LpMip-Dependent and LpMip-Independent Mechanisms. Chembiochem 2023; 24:e202300442. [PMID: 37489700 DOI: 10.1002/cbic.202300442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
Legionella pneumophila is the causative agent of Legionnaires' disease, a serious form of pneumonia. Its macrophage infectivity potentiator (Mip), a member of a highly conserved family of FK506-binding proteins (FKBPs), plays a major role in the proliferation of the gram-negative bacterium in host organisms. In this work, we test our library of >1000 FKBP-focused ligands for inhibition of LpMip. The [4.3.1]-bicyclic sulfonamide turned out as a highly preferred scaffold and provided the most potent LpMip inhibitors known so far. Selected compounds were non-toxic to human cells, displayed antibacterial activity and block bacterial proliferation in cellular infection-assays as well as infectivity in human lung tissue explants. The results confirm [4.3.1]-bicyclic sulfonamides as anti-legionellal agents, although their anti-infective properties cannot be explained by inhibition of LpMip alone.
Collapse
Affiliation(s)
- Robin C E Deutscher
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - M Safa Karagöz
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Patrick L Purder
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Jürgen M Kolos
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Christian Meyners
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Wisely Oki Sugiarto
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Patryk Krajczy
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Frederike Tebbe
- Institute of Organic Chemistry & Macromolecular Chemistry (IOMC), Friedrich Schiller University Germany, Humboldtstraße 10, 07743, Jena, Germany
| | - Thomas M Geiger
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Can Ünal
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Ute A Hellmich
- Institute of Organic Chemistry & Macromolecular Chemistry (IOMC), Friedrich Schiller University Germany, Humboldtstraße 10, 07743, Jena, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Max-von-Laue-Str. 9, 60438, Frankurt/Main, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
- Helmholtz Centre for Infection Research, 38106, Braunschweig, Germany
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany
| |
Collapse
|
4
|
Seal S, Chakraborty T, Polley S, Paul D, Banerjee N, Sinha D, Dutta A, Chatterjee S, Sau K, Ghosh Dastidar S, Sau S. Modeling and monitoring the effects of three partly conserved Ile residues in the dimerization domain of a Mip-like virulence factor from Escherichia coli. J Biomol Struct Dyn 2023:1-14. [PMID: 37902555 DOI: 10.1080/07391102.2023.2274978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/18/2023] [Indexed: 10/31/2023]
Abstract
FKBP22, an Escherichia coli-made peptidyl-prolyl cis-trans isomerase, has shown considerable homology with Mip-like virulence factors. While the C-terminal domain of this enzyme is used for executing catalytic function and binding inhibitor, the N-terminal domain is employed for its dimerization. To precisely determine the underlying factors of FKBP22 dimerization, its structural model, developed using a suitable template, was carefully inspected. The data show that the dimeric FKBP22, like dimeric Mip proteins, has a V-like shape. Further, it dimerizes using 40 amino acid residues including Ile 9, Ile 17, Ile 42, and Ile 65. All of the above Ile residues except Ile 9 are partly conserved in the Mip-like proteins. To confirm the roles of the partly conserved Ile residues, three FKBP22 mutants, constructed by substituting them with an Ala residue, were studied as well. The results together indicate that Ile 65 has little role in maintaining the dimeric state or enzymatic activity of FKBP22. Conversely, both Ile 17 and Ile 42 are essential for preserving the structure, enzymatic activity, and dimerization ability of FKBP22. Ile 42 in particular looks more essential to FKBP22. However, none of these two Ile residues is required for binding the cognate inhibitor. Additional computational studies also indicated the change of V-shape and the dimeric state of FKBP22 due to the Ala substitution at position 42. The ways Ile 17 and Ile 42 protect the structure, function, and dimerization of FKBP22 have been discussed at length.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soham Seal
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | | | - Soumitra Polley
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Debarati Paul
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | | | - Debasmita Sinha
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Anindya Dutta
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | | | - Keya Sau
- Department of Biotechnology, Haldia Institute of Technology, Haldia, India
| | | | - Subrata Sau
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
5
|
Scheuplein NJ, Bzdyl NM, Lohr T, Kibble EA, Hasenkopf A, Herbst C, Sarkar-Tyson M, Holzgrabe U. Analysis of Structure-Activity Relationships of Novel Inhibitors of the Macrophage Infectivity Potentiator (Mip) Proteins of Neisseria meningitidis, Neisseria gonorrhoeae, and Burkholderia pseudomallei. J Med Chem 2023; 66:8876-8895. [PMID: 37389560 DOI: 10.1021/acs.jmedchem.3c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The macrophage infectivity potentiator (Mip) protein is a promising target for developing new drugs to combat antimicrobial resistance. New rapamycin-derived Mip inhibitors have been designed that may be able to combine two binding modes to inhibit the Mip protein of Burkholderia pseudomallei (BpMip). These novel compounds are characterized by an additional substituent in the middle chain linking the lateral pyridine to the pipecoline moiety, constituting different stereoisomers. These compounds demonstrated high affinity for the BpMip protein in the nanomolar range and high anti-enzymatic activity and ultimately resulted in significantly reduced cytotoxicity of B. pseudomallei in macrophages. They also displayed strong anti-enzymatic activity against the Mip proteins of Neisseria meningitidis and Neisseria gonorrhoeae and substantially improved the ability of macrophages to kill the bacteria. Hence, the new Mip inhibitors are promising, non-cytotoxic candidates for further testing against a broad spectrum of pathogens and infectious diseases.
Collapse
Affiliation(s)
- Nicolas J Scheuplein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nicole M Bzdyl
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
| | - Theresa Lohr
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Emily A Kibble
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
- DMTC Limited, Level 1, 620 High Street, Kew, Victoria 3101, Australia
| | - Anja Hasenkopf
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Carina Herbst
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
6
|
Debowski AW, Bzdyl NM, Thomas DR, Scott NE, Jenkins CH, Iwasaki J, Kibble EA, Khoo CA, Scheuplein NJ, Seibel PM, Lohr T, Metters G, Bond CS, Norville IH, Stubbs KA, Harmer NJ, Holzgrabe U, Newton HJ, Sarkar-Tyson M. Macrophage infectivity potentiator protein, a peptidyl prolyl cis-trans isomerase, essential for Coxiella burnetii growth and pathogenesis. PLoS Pathog 2023; 19:e1011491. [PMID: 37399210 DOI: 10.1371/journal.ppat.1011491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
Coxiella burnetii is a Gram-negative intracellular pathogen that causes the debilitating disease Q fever, which affects both animals and humans. The only available human vaccine, Q-Vax, is effective but has a high risk of severe adverse reactions, limiting its use as a countermeasure to contain outbreaks. Therefore, it is essential to identify new drug targets to treat this infection. Macrophage infectivity potentiator (Mip) proteins catalyse the folding of proline-containing proteins through their peptidyl prolyl cis-trans isomerase (PPIase) activity and have been shown to play an important role in the virulence of several pathogenic bacteria. To date the role of the Mip protein in C. burnetii pathogenesis has not been investigated. This study demonstrates that CbMip is likely to be an essential protein in C. burnetii. The pipecolic acid derived compounds, SF235 and AN296, which have shown utility in targeting other Mip proteins from pathogenic bacteria, demonstrate inhibitory activities against CbMip. These compounds were found to significantly inhibit intracellular replication of C. burnetii in both HeLa and THP-1 cells. Furthermore, SF235 and AN296 were also found to exhibit antibiotic properties against both the virulent (Phase I) and avirulent (Phase II) forms of C. burnetii Nine Mile Strain in axenic culture. Comparative proteomics, in the presence of AN296, revealed alterations in stress responses with H2O2 sensitivity assays validating that Mip inhibition increases the sensitivity of C. burnetii to oxidative stress. In addition, SF235 and AN296 were effective in vivo and significantly improved the survival of Galleria mellonella infected with C. burnetii. These results suggest that unlike in other bacteria, Mip in C. burnetii is required for replication and that the development of more potent inhibitors against CbMip is warranted and offer potential as novel therapeutics against this pathogen.
Collapse
Affiliation(s)
- Aleksandra W Debowski
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nicole M Bzdyl
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - David R Thomas
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | | | - Jua Iwasaki
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
- Centre for Child Health Research, University of Western Australia, Perth, Western Australia, Australia
| | - Emily A Kibble
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
- DMTC Limited, Level 1, Kew, Australia
| | - Chen Ai Khoo
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Nicolas J Scheuplein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Pamela M Seibel
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Theresa Lohr
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Georgie Metters
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, United Kingdom
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Isobel H Norville
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, United Kingdom
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nicholas J Harmer
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, United Kingdom
- Living Systems Institute, Stocker Road Exeter, United Kingdom
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Hayley J Newton
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
7
|
Scheuplein NJ, Lohr T, Vivoli Vega M, Ankrett D, Seufert F, Kirchner L, Harmer NJ, Holzgrabe U. Fluorescent probe for the identification of potent inhibitors of the macrophage infectivity potentiator (Mip) protein of Burkholderia pseudomallei. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:211-222. [PMID: 37001588 DOI: 10.1016/j.slasd.2023.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/02/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
The macrophage infectivity potentiator (Mip) protein belongs to the immunophilin superfamily. This class of enzymes catalyzes the interconversion between the cis and trans configuration of proline-containing peptide bonds. Mip has been shown to be important for the virulence of a wide range of pathogenic microorganisms, including the Gram-negative bacterium Burkholderia pseudomallei. Small molecules derived from the natural product rapamycin, lacking its immunosuppression-inducing moiety, inhibit Mip's peptidyl-prolyl cis-trans isomerase (PPIase) activity and lead to a reduction in pathogen load in vitro. Here, a fluorescence polarization assay (FPA) to enable the screening and effective development of BpMip inhibitors was established. A fluorescent probe was prepared, derived from previous pipecolic scaffold Mip inhibitors labeled with fluorescein. This probe showed moderate affinity for BpMip and enabled a highly robust FPA suitable for screening large compound libraries with medium- to high-throughput (Z factor ∼ 0.89) to identify potent new inhibitors. The FPA results are consistent with data from the protease-coupled PPIase assay. Analysis of the temperature dependence of the probe's binding highlighted that BpMip's ligand binding is driven by enthalpic rather than entropic effects. This has considerable consequences for the use of low-temperature kinetic assays.
Collapse
Affiliation(s)
- Nicolas Julian Scheuplein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Theresa Lohr
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | | | - Dyan Ankrett
- Living Systems Institute, Stocker Road, Exeter EX4 4QD, UK
| | - Florian Seufert
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Lukas Kirchner
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | | | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany.
| |
Collapse
|
8
|
Scheithauer L, Karagöz MS, Mayer BE, Steinert M. Protein sociology of ProA, Mip and other secreted virulence factors at the Legionella pneumophila surface. Front Cell Infect Microbiol 2023; 13:1140688. [PMID: 36936764 PMCID: PMC10017501 DOI: 10.3389/fcimb.2023.1140688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
The pathogenicity of L. pneumophila, the causative agent of Legionnaires' disease, depends on an arsenal of interacting proteins. Here we describe how surface-associated and secreted virulence factors of this pathogen interact with each other or target extra- and intracellular host proteins resulting in host cell manipulation and tissue colonization. Since progress of computational methods like AlphaFold, molecular dynamics simulation, and docking allows to predict, analyze and evaluate experimental proteomic and interactomic data, we describe how the combination of these approaches generated new insights into the multifaceted "protein sociology" of the zinc metalloprotease ProA and the peptidyl-prolyl cis/trans isomerase Mip (macrophage infectivity potentiator). Both virulence factors of L. pneumophila interact with numerous proteins including bacterial flagellin (FlaA) and host collagen, and play important roles in virulence regulation, host tissue degradation and immune evasion. The recent progress in protein-ligand analyses of virulence factors suggests that machine learning will also have a beneficial impact in early stages of drug discovery.
Collapse
Affiliation(s)
- Lina Scheithauer
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Mustafa Safa Karagöz
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Benjamin E. Mayer
- Computational Biology & Simulation, Technische Universität Darmstadt, Darmstadt, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Michael Steinert,
| |
Collapse
|
9
|
Yang JL, Li D, Zhan XY. Concept about the Virulence Factor of Legionella. Microorganisms 2022; 11:microorganisms11010074. [PMID: 36677366 PMCID: PMC9867486 DOI: 10.3390/microorganisms11010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Pathogenic species of Legionella can infect human alveolar macrophages through Legionella-containing aerosols to cause a disease called Legionellosis, which has two forms: a flu-like Pontiac fever and severe pneumonia named Legionnaires' disease (LD). Legionella is an opportunistic pathogen that frequently presents in aquatic environments as a biofilm or protozoa parasite. Long-term interaction and extensive co-evolution with various genera of amoebae render Legionellae pathogenic to infect humans and also generate virulence differentiation and heterogeneity. Conventionally, the proteins involved in initiating replication processes and human macrophage infections have been regarded as virulence factors and linked to pathogenicity. However, because some of the virulence factors are associated with the infection of protozoa and macrophages, it would be more accurate to classify them as survival factors rather than virulence factors. Given that the molecular basis of virulence variations among non-pathogenic, pathogenic, and highly pathogenic Legionella has not yet been elaborated from the perspective of virulence factors, a comprehensive explanation of how Legionella infects its natural hosts, protozoans, and accidental hosts, humans is essential to show a novel concept regarding the virulence factor of Legionella. In this review, we overviewed the pathogenic development of Legionella from protozoa, the function of conventional virulence factors in the infections of protozoa and macrophages, the host's innate immune system, and factors involved in regulating the host immune response, before discussing a probably new definition for the virulence factors of Legionella.
Collapse
|
10
|
Muruaga EJ, Briones G, Roset MS. Biochemical and functional characterization of Brucella abortus cyclophilins: So similar, yet so different. Front Microbiol 2022; 13:1046640. [DOI: 10.3389/fmicb.2022.1046640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Brucella spp. are the etiological agent of animal and human brucellosis. We have reported previously that cyclophilins of Brucella (CypA and CypB) are upregulated within the intraphagosomal replicative niche and required for stress adaptation and host intracellular survival and virulence. Here, we characterize B. abortus cyclophilins, CypA, and CypB from a biochemical standpoint by studying their PPIase activity, chaperone activity, and oligomer formation. Even though CypA and CypB are very similar in sequence and share identical chaperone and PPIase activities, we were able to identify outstanding differential features between them. A series of differential peptide loops were predicted when comparing CypA and CypB, differences that might explain why specific antibodies (anti-CypA or anti-CypB) were able to discriminate between both cyclophilins without cross-reactivity. In addition, we identified the presence of critical amino acids in CypB, such as the Trp134 which is responsible for the cyclosporin A inhibition, and the Cys128 that leads to CypB homodimer formation by establishing a disulfide bond. Here, we demonstrated that CypB dimer formation was fully required for stress adaptation, survival within HeLa cells, and mouse infection in B. abortus. The presence of Trp134 and the Cys128 in CypB, which are not present in CypA, suggested that two different kinds of cyclophilins have evolved in Brucella, one with eukaryotic features (CypB), another (CypA) with similar features to Gram-negative cyclophilins.
Collapse
|
11
|
Legionella pneumophila PPIase Mip Interacts with the Bacterial Proteins SspB, Lpc2061, and FlaA and Promotes Flagellation. Infect Immun 2022; 90:e0027622. [PMID: 36314784 PMCID: PMC9670971 DOI: 10.1128/iai.00276-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The peptidyl-prolyl-
cis/trans
-isomerase (PPIase) macrophage infectivity potentiator (Mip) contributes to the pathogenicity and fitness of
L. pneumophila
, the causative agent of Legionnaires’ disease. Here, we identified the stringent starvation protein SspB, hypothetical protein Lpc2061, and flagellin FlaA as bacterial interaction partners of Mip.
Collapse
|
12
|
Huang Q, Yang J, Li C, Song Y, Zhu Y, Zhao N, Mou X, Tang X, Luo G, Tong A, Sun B, Tang H, Li H, Bai L, Bao R. Structural characterization of PaFkbA: A periplasmic chaperone from Pseudomonas aeruginosa. Comput Struct Biotechnol J 2021; 19:2460-2467. [PMID: 34025936 PMCID: PMC8113782 DOI: 10.1016/j.csbj.2021.04.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
Bacterial Mip-like FK506-binding proteins (FKBPs) mostly exhibit peptidyl-prolyl-cis/trans-isomerase (PPIase) and chaperone activities. These activities are associated with various intracellular functions with diverse molecular mechanisms. Herein, we report the PA3262 gene-encoded crystal structure of the Pseudomonas aeruginosa PAO1's Mip-like protein PaFkbA. Biochemical characterization of PaFkbA demonstrated PaFkbA's chaperone activity for periplasmic protein MucD, a negative regulator of alginate biosynthesis. Furthermore, structural analysis of PaFkbA was used to describe the key features of PaFkbA chaperone activity. The outcomes of this analysis showed that the hinge region in the connecting helix of PaFbkA leads to the crucial conformational state transition for PaFkbA activity. Besides, the N-terminal domains participated in dimerization, and revealed its potential connection with FKBP domain and substrate binding. Mutagenesis and chaperone activity assay supported the theory that inter-domain motions are essential for PaFkbA function. These results provide biochemical and structural insights into the mechanism for FKBP's chaperone activity and establish a plausible correlation between PaFkbA and P. aeruginosa MucD.
Collapse
Affiliation(s)
| | | | - Changcheng Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yingjie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yibo Zhu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ninglin Zhao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xingyu Mou
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xinyue Tang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Guihua Luo
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Aiping Tong
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Bo Sun
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Hong Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Lang Bai
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| |
Collapse
|
13
|
Scheuplein NJ, Bzdyl NM, Kibble EA, Lohr T, Holzgrabe U, Sarkar-Tyson M. Targeting Protein Folding: A Novel Approach for the Treatment of Pathogenic Bacteria. J Med Chem 2020; 63:13355-13388. [PMID: 32786507 DOI: 10.1021/acs.jmedchem.0c00911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Infectious diseases are a major cause of morbidity and mortality worldwide, exacerbated by increasing antibiotic resistance in many bacterial species. The development of drugs with new modes of action is essential. A leading strategy is antivirulence, with the aim to target bacterial proteins that are important in disease causation and progression but do not affect growth, resulting in reduced selective pressure for resistance. Immunophilins, a superfamily of peptidyl-prolyl cis-trans isomerase (PPIase) enzymes have been shown to be important for virulence in a broad-spectrum of pathogenic bacteria. This Perspective will provide an overview of the recent advances made in understanding the role of each immunophilin family, cyclophilins, FK506 binding proteins (FKBPs), and parvulins in bacteria. Inhibitor design and medicinal chemistry strategies for development of novel drugs against bacterial FKBPs will be discussed. Furthermore, drugs against human cyclophilins and parvulins will be reviewed in their current indication as antiviral and anticancer therapies.
Collapse
Affiliation(s)
- Nicolas J Scheuplein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nicole M Bzdyl
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
| | - Emily A Kibble
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia.,School of Veterinary and Life Sciences, Murdoch University, 6150 Murdoch, Australia
| | - Theresa Lohr
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
| |
Collapse
|
14
|
Peptidyl-Prolyl- cis/ trans-Isomerases Mip and PpiB of Legionella pneumophila Contribute to Surface Translocation, Growth at Suboptimal Temperature, and Infection. Infect Immun 2018; 87:IAI.00939-17. [PMID: 30323027 DOI: 10.1128/iai.00939-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 09/12/2018] [Indexed: 12/31/2022] Open
Abstract
The gammaproteobacterium Legionella pneumophila is the causative agent of Legionnaires' disease, an atypical pneumonia that manifests itself with severe lung damage. L. pneumophila, a common inhabitant of freshwater environments, replicates in free-living amoebae and persists in biofilms in natural and man-made water systems. Its environmental versatility is reflected in its ability to survive and grow within a broad temperature range as well as its capability to colonize and infect a wide range of hosts, including protozoa and humans. Peptidyl-prolyl-cis/trans-isomerases (PPIases) are multifunctional proteins that are mainly involved in protein folding and secretion in bacteria. In L. pneumophila the surface-associated PPIase Mip was shown to facilitate the establishment of the intracellular infection cycle in its early stages. The cytoplasmic PpiB was shown to promote cold tolerance. Here, we set out to analyze the interrelationship of these two relevant PPIases in the context of environmental fitness and infection. We demonstrate that the PPIases Mip and PpiB are important for surfactant-dependent sliding motility and adaptation to suboptimal temperatures, features that contribute to the environmental fitness of L. pneumophila Furthermore, they contribute to infection of the natural host Acanthamoeba castellanii as well as human macrophages and human explanted lung tissue. These effects were additive in the case of sliding motility or synergistic in the case of temperature tolerance and infection, as assessed by the behavior of the double mutant. Accordingly, we propose that Mip and PpiB are virulence modulators of L. pneumophila with compensatory action and pleiotropic effects.
Collapse
|
15
|
Knowledge to Predict Pathogens: Legionella pneumophila Lifecycle Critical Review Part I Uptake into Host Cells. WATER 2018. [DOI: 10.3390/w10020132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Polley S, Chakravarty D, Chakrabarti G, Sau S. Determining the roles of a conserved tyrosine residue in a Mip-like peptidyl-prolyl cis–trans isomerase. Int J Biol Macromol 2016; 87:273-80. [DOI: 10.1016/j.ijbiomac.2016.02.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 11/16/2022]
|
17
|
Polley S, Chakravarty D, Chakrabarti G, Chattopadhyaya R, Sau S. Proline substitutions in a Mip-like peptidyl-prolyl cis-trans isomerase severely affect its structure, stability, shape and activity. BIOCHIMIE OPEN 2015; 1:28-39. [PMID: 29632827 PMCID: PMC5889476 DOI: 10.1016/j.biopen.2015.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/12/2015] [Indexed: 01/28/2023]
Abstract
FKBP22, an Escherichia coli-specific peptidyl-prolyl cis-trans isomerase, shows substantial homology with the Mip-like virulence factors. Mip-like proteins are homodimeric and possess a V-shaped conformation. Their N-terminal domains form dimers, whereas their C-terminal domains bind protein/peptide substrates and distinct inhibitors such as rapamycin and FK506. Interestingly, the two domains of the Mip-like proteins are separated by a lengthy, protease-susceptible α-helix. To delineate the structural requirement of this domain-connecting region in Mip-like proteins, we have investigated a recombinant FKBP22 (rFKBP22) and its three point mutants I65P, V72P and A82P using different probes. Each mutant harbors a Pro substitution mutation at a distinct location in the hinge region. We report that the three mutants are not only different from each other but also different from rFKBP22 in structure and activity. Unlike rFKBP22, the three mutants were unfolded by a non-two state mechanism in the presence of urea. In addition, the stabilities of the mutants, particularly I65P and V72P, differed considerably from that of rFKBP22. Conversely, the rapamycin binding affinity of no mutant was different from that of rFKBP22. Of the mutants, I65P showed the highest levels of structural/functional loss and dissociated partly in solution. Our computational study indicated a severe collapse of the V-shape in I65P due to the anomalous movement of its C-terminal domains. The α-helical nature of the domain-connecting region is, therefore, critical for the Mip-like proteins.
Collapse
Key Words
- A82P, a FKBP22/rFKBP22 derivative harboring a Ala to Pro change at position 82 in the helix α3
- CTD, C-terminal domain of FKBP22
- FKBP22, a PPIase from Escherichia coli
- Helix α3
- I65P, a FKBP22/rFKBP22 variant carrying a Ile to Pro replacement at position 65 in the helix α3
- Mip, macrophage infectivity potentiator
- Mutation
- NTD, N-terminal domain of FKBP22
- PPIase, peptidyl-prolyl cis-trans isomerase
- Peptidyl-prolyl cis-trans isomerase
- Stability
- Structure
- TUGE, transverse urea gradient gel electrophoresis
- V72P, a FKBP22/rFKBP22 variant with a Val to Pro substitution at position 72 in the helix α3
- rFKBP22, a polyhistidine-tagged FKBP22
Collapse
Affiliation(s)
- Soumitra Polley
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Devlina Chakravarty
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Gopal Chakrabarti
- Dr. B.C. Guha Centre for Genetic Engineering, University of Calcutta, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Rajagopal Chattopadhyaya
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| |
Collapse
|
18
|
Microbial peptidyl-prolyl cis/trans isomerases (PPIases): virulence factors and potential alternative drug targets. Microbiol Mol Biol Rev 2015; 78:544-71. [PMID: 25184565 DOI: 10.1128/mmbr.00015-14] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Initially discovered in the context of immunomodulation, peptidyl-prolyl cis/trans isomerases (PPIases) were soon identified as enzymes catalyzing the rate-limiting protein folding step at peptidyl bonds preceding proline residues. Intense searches revealed that PPIases are a superfamily of proteins consisting of three structurally distinguishable families with representatives in every described species of prokaryote and eukaryote and, recently, even in some giant viruses. Despite the clear-cut enzymatic activity and ubiquitous distribution of PPIases, reports on solely PPIase-dependent biological roles remain scarce. Nevertheless, they have been found to be involved in a plethora of biological processes, such as gene expression, signal transduction, protein secretion, development, and tissue regeneration, underscoring their general importance. Hence, it is not surprising that PPIases have also been identified as virulence-associated proteins. The extent of contribution to virulence is highly variable and dependent on the pleiotropic roles of a single PPIase in the respective pathogen. The main objective of this review is to discuss this variety in virulence-related bacterial and protozoan PPIases as well as the involvement of host PPIases in infectious processes. Moreover, a special focus is given to Legionella pneumophila macrophage infectivity potentiator (Mip) and Mip-like PPIases of other pathogens, as the best-characterized virulence-related representatives of this family. Finally, the potential of PPIases as alternative drug targets and first tangible results are highlighted.
Collapse
|
19
|
Rasch J, Theuerkorn M, Ünal C, Heinsohn N, Tran S, Fischer G, Weiwad M, Steinert M. Novel Cycloheximide Derivatives Targeting the Moonlighting Protein Mip Exhibit Specific Antimicrobial Activity Against Legionella pneumophila. Front Bioeng Biotechnol 2015; 3:41. [PMID: 25870856 PMCID: PMC4376002 DOI: 10.3389/fbioe.2015.00041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/15/2015] [Indexed: 12/28/2022] Open
Abstract
Macrophage infectivity potentiator (Mip) and Mip-like proteins are virulence factors in a wide range of pathogens including Legionella pneumophila. These proteins belong to the FK506 binding protein (FKBP) family of peptidyl-prolyl-cis/trans-isomerases (PPIases). In L. pneumophila, the PPIase activity of Mip is required for invasion of macrophages, transmigration through an in vitro lung–epithelial barrier, and full virulence in the guinea pig infection model. Additionally, Mip is a moonlighting protein that binds to collagen IV in the extracellular matrix. Here, we describe the development and synthesis of cycloheximide derivatives with adamantyl moieties as novel FKBP ligands, and analyze their effect on the viability of L. pneumophila and other bacteria. All compounds efficiently inhibited PPIase activity of the prototypic human FKBP12 as well as Mip with IC50-values as low as 180 nM and 1.7 μM, respectively. Five of these derivatives inhibited the growth of L. pneumophila at concentrations of 30–40 μM, but exhibited no effect on other tested bacterial species indicating a specific spectrum of antibacterial activity. The derivatives carrying a 3,5-dimethyladamantan-1-[yl]acetamide substitution (MT_30.32), and a 3-ethyladamantan-1-[yl]acetamide substitution (MT_30.51) had the strongest effects in PPIase- and liquid growth assays. MT_30.32 and MT_30.51 were also inhibitory in macrophage infection studies without being cytotoxic. Accordingly, by applying a combinatorial approach, we were able to generate novel, hybrid inhibitors consisting of cycloheximide and adamantane, two known FKBP inhibitors that interact with different parts of the PPIase domain, respectively. Interestingly, despite the proven Mip-inhibitory activity, the viability of a Mip-deficient strain was affected to the same degree as its wild type. Hence, we also propose that cycloheximide derivatives with adamantyl moieties are potent PPIase inhibitors with multiple targets in L. pneumophila.
Collapse
Affiliation(s)
- Janine Rasch
- Institut für Mikrobiologie, Technische Universität Braunschweig , Braunschweig , Germany
| | - Martin Theuerkorn
- Max Planck Institute of Biophysical Chemistry Göttingen BO Halle , Halle , Germany
| | - Can Ünal
- Institut für Mikrobiologie, Technische Universität Braunschweig , Braunschweig , Germany ; Türk-Alman Üniversitesi, Fen Fakültesi , Istanbul , Turkey
| | - Natascha Heinsohn
- Institut für Mikrobiologie, Technische Universität Braunschweig , Braunschweig , Germany
| | - Stefan Tran
- Institut für Mikrobiologie, Technische Universität Braunschweig , Braunschweig , Germany
| | - Gunter Fischer
- Max Planck Institute of Biophysical Chemistry Göttingen BO Halle , Halle , Germany ; Institut für Biochemie und Biotechnologie, Universität Halle-Wittenberg , Halle-Wittenberg , Germany
| | - Matthias Weiwad
- Max Planck Institute of Biophysical Chemistry Göttingen BO Halle , Halle , Germany ; Institut für Biochemie und Biotechnologie, Universität Halle-Wittenberg , Halle-Wittenberg , Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig , Braunschweig , Germany ; Helmholtz Centre for Infection Research , Braunschweig , Germany
| |
Collapse
|
20
|
Ünal CM, Steinert M. FKBPs in bacterial infections. Biochim Biophys Acta Gen Subj 2014; 1850:2096-102. [PMID: 25529296 DOI: 10.1016/j.bbagen.2014.12.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/11/2014] [Accepted: 12/13/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND FK506-binding proteins (FKBPs) contain a domain with peptidyl-prolyl-cis/trans-isomerase (PPIase) activity and bind the immunosuppressive drugs FK506 and rapamycin. FKBPs belong to the immunophilin family and are found in eukaryotes and bacteria. SCOPE OF REVIEW In this review we describe two major groups of bacterial virulence-associated FKBPs, the trigger factor and Mip-like PPIases. Moreover, we discuss the contribution of host FKBPs in bacterial infection processes. MAJOR CONCLUSIONS Since PPIases are regarded as alternative antiinfective drug targets we highlight current research strategies utilizing pipecolinic acid and cycloheximide derivatives as well as substrate based inhibitors. GENERAL SIGNIFICANCE The current research strategies suggest a beneficial synergism of drug development and basic research. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Can M Ünal
- Türk-Alman Üniversitesi, Fen Fakültesi, Istanbul, Turkey; Technische Universität Braunschweig, Institut für Mikrobiologie, Braunschweig, Germany
| | - Michael Steinert
- Technische Universität Braunschweig, Institut für Mikrobiologie, Braunschweig, Germany; Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
21
|
Peptidylprolyl cis–trans isomerases of Legionella pneumophila: virulence, moonlighting and novel therapeutic targets. Biochem Soc Trans 2014; 42:1728-33. [DOI: 10.1042/bst20140202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Legionella pneumophila, typically a parasite of free-living protozoa, can also replicate in human alveolar macrophages and lung epithelial cells causing Legionnaires’ disease in humans, a severe atypical pneumonia. The pathogen encodes six peptidylprolyl cis–trans isomerases (PPIases), which generally accelerate folding of prolyl peptide bonds, and influence protein folding. PPIases can be divided into three classes, cyclophilins, parvulins and FK506-binding proteins (FKBPs). They contribute to a multitude of cellular functions including bacterial virulence. In the present review, we provide an overview of L. pneumophila PPIases, discussing their known and anticipated functions as well as moonlighting phenomena. By taking the example of the macrophage infectivity potentiator (Mip) of L. pneumophila, we highlight the potential of PPIases as promising drug targets.
Collapse
|
22
|
FipB, an essential virulence factor of Francisella tularensis subsp. tularensis, has dual roles in disulfide bond formation. J Bacteriol 2014; 196:3571-81. [PMID: 25092026 DOI: 10.1128/jb.01359-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
FipB, an essential virulence factor of Francisella tularensis, is a lipoprotein with two conserved domains that have similarity to disulfide bond formation A (DsbA) proteins and the amino-terminal dimerization domain of macrophage infectivity potentiator (Mip) proteins, which are proteins with peptidyl-prolyl cis/trans isomerase activity. This combination of conserved domains is unusual, so we further characterized the enzymatic activity and the importance of the Mip domain and lipid modification in virulence. Unlike typical DsbA proteins, which are oxidases, FipB exhibited both oxidase and isomerase activities. FipA, which also shares similarity with Mip proteins, potentiated the isomerase activity of FipB in an in vitro assay and within the bacteria, as measured by increased copper sensitivity. To determine the importance of the Mip domain and lipid modification of FipB, mutants producing FipB proteins that lacked either the Mip domain or the critical cysteine necessary for lipid modification were constructed. Both strains replicated within host cells and retained virulence in mice, though there was some attenuation. FipB formed surface-exposed dimers that were sensitive to dithiothreitol (DTT), dependent on the Mip domain and on at least one cysteine in the active site of the DsbA-like domain. However, these dimers were not essential for virulence, because the Mip deletion mutant, which failed to form dimers, was still able to replicate intracellularly and retained virulence in mice. Thus, the Mip domains of FipB and FipA impart additional isomerase functionality to FipB, but only the DsbA-like domain and oxidase activity are essential for its critical virulence functions.
Collapse
|
23
|
Vanden Bergh P, Heller M, Braga-Lagache S, Frey J. The Aeromonas salmonicida subsp. salmonicida exoproteome: global analysis, moonlighting proteins and putative antigens for vaccination against furunculosis. Proteome Sci 2013; 11:44. [PMID: 24127837 PMCID: PMC3826670 DOI: 10.1186/1477-5956-11-44] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 10/04/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Aeromonas salmonicida subsp. salmonicida, the etiologic agent of furunculosis, is a major pathogen of fisheries worldwide. Despite the identification of several virulence factors the pathogenesis is still poorly understood. We have used high-throughput proteomics to display the differences between in vitro secretome of A. salmonicida wild-type (wt, hypervirulent, JF5054) and T3SS-deficient (isogenic ΔascV, extremely low-virulent, JF2747) strains in exponential (GP) and stationary (SP) phases of growth. RESULTS Among the different experimental conditions we obtained semi-quantitative values for a total of 2136 A. salmonicida proteins. Proteins of specific A. salmonicida species were proportionally less detected than proteins common to the Aeromonas genus or those shared with other Aeromonas species, suggesting that in vitro growth did not induce the expression of these genes. Four detected proteins which are unidentified in the genome of reference strains of A. salmonicida were homologous to components of the conjugative T4SS of A. hydrophila pRA1 plasmid. Polypeptides of three proteins which are specific to the 01-B526 strain were also discovered. In supernatants (SNs), the number of detected proteins was higher in SP (326 for wt vs 329 for mutant) than in GP (275 for wt vs 263 for mutant). In pellets, the number of identified proteins (a total of 1536) was approximately the same between GP and SP. Numerous highly conserved cytoplasmic proteins were present in A. salmonicida SNs (mainly EF-Tu, EF-G, EF-P, EF-Ts, TypA, AlaS, ribosomal proteins, HtpG, DnaK, peptidyl-prolyl cis-trans isomerases, GAPDH, Enolase, FbaA, TpiA, Pgk, TktA, AckA, AcnB, Mdh, AhpC, Tpx, SodB and PNPase), and several evidences support the theory that their extracellular localization was not the result of cell lysis. According to the Cluster of Orthologous Groups classification, 29% of excreted proteins in A. salmonicida SNs were currently poorly characterized. CONCLUSIONS In this part of our work we elucidated the whole in vitro exoproteome of hypervirulent A. salmonicida subsp. salmonicida and showed the secretion of several highly conserved cytoplasmic proteins with putative moonlighting functions and roles in virulence. All together, our results offer new information about the pathogenesis of furunculosis and point out potential candidates for vaccine development.
Collapse
Affiliation(s)
- Philippe Vanden Bergh
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse 122, P.O. Box 8466, 3001 Bern, Switzerland
| | - Manfred Heller
- Department of Clinical Research, University of Bern, P.O. Box 37, 3010 Bern, Switzerland
| | - Sophie Braga-Lagache
- Department of Clinical Research, University of Bern, P.O. Box 37, 3010 Bern, Switzerland
| | - Joachim Frey
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse 122, P.O. Box 8466, 3001 Bern, Switzerland
| |
Collapse
|
24
|
Schmidt M, Klimentova J, Rehulka P, Straskova A, Spidlova P, Szotakova B, Stulik J, Pavkova I. Francisella tularensis subsp. holarctica DsbA homologue: a thioredoxin-like protein with chaperone function. MICROBIOLOGY-SGM 2013; 159:2364-2374. [PMID: 24014665 DOI: 10.1099/mic.0.070516-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Francisella tularensis is a highly infectious facultative intracellular bacterium and aetiological agent of tularaemia. The conserved hypothetical lipoprotein with homology to thiol/disulphide oxidoreductase proteins (FtDsbA) is an essential virulence factor in F. tularensis. Its protein sequence has two different domains: the DsbA_Com1_like domain (DSBA), with the highly conserved catalytically active site CXXC and cis-proline residue; and the domain amino-terminal to FKBP-type peptidyl-prolyl isomerases (FKBP_N). To establish the role of both domains in tularaemia infection models, site-directed and deletion mutagenesis affecting the active site (AXXA), the cis-proline (P286T) and the FKBP_N domain (ΔFKBP_N) were performed. The generated mutations led to high attenuation with the ability to induce full or partial host protective immunity. Recombinant protein analysis revealed that the active site CXXC as well as the cis-proline residue and the FKBP_N domain are necessary for correct thiol/disulphide oxidoreductase activity. By contrast, only the DSBA domain (and not the FKBP_N domain) seems to be responsible for the in vitro chaperone activity of the FtDsbA protein.
Collapse
Affiliation(s)
- Monika Schmidt
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic.,Department of Biochemical Studies, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, 500 05 Hradec Kralove, Czech Republic
| | - Jana Klimentova
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Pavel Rehulka
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Adela Straskova
- Center of Advanced Studies, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Petra Spidlova
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Barbora Szotakova
- Department of Biochemical Studies, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, 500 05 Hradec Kralove, Czech Republic
| | - Jiri Stulik
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Ivona Pavkova
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
25
|
Jana B, Sau S. The helix located between the two domains of a mip-like peptidyl-prolyl cis-trans isomerase is crucial for its structure, stability, and protein folding ability. Biochemistry 2012; 51:7930-9. [PMID: 22989269 DOI: 10.1021/bi300720g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FKBP22, a PPIase (peptidyl-prolyl cis-trans isomerase) produced by Escherichia coli, binds FK506 and rapamycin (both immunosuppressive drugs), shares significant homology with the Mip-like virulence factors, and has been thought to carry a long α-helix (namely α3) between its two domains. To understand whether the length of helix α3 plays any role in the structure, function, and stability of FKBP22-like proteins, we studied a recombinant E. coli FKBP22 (rFKBP22) and its four helix α3 mutant variants by various in vitro probes. Of the helix α3 mutants, two were deletion mutants (rFKBP22D5 and rFKBP22D30), whereas the two others were insertion mutants (rFKBP22I3 and rFKBP22I6). Our investigations revealed that the molecular dimensions, dimerization efficiencies, secondary structures, tertiary structures, stabilities, and protein folding abilities of all mutant proteins are different from those of rFKBP22. Conversely, the rapamycin binding affinities of the mutant proteins were affected very little. Urea-induced unfolding of each protein followed a two-state mechanism and was reversible in nature. Interestingly, rFKBP22D30 was the least stable, whereas rFKBP22I3 appeared to be the most stable of the five proteins. The data together suggest that length of helix α3 contributes significantly to the preservation of the structure, function, and stability of E. coli FKBP22.
Collapse
Affiliation(s)
- Biswanath Jana
- Department of Biochemistry, Bose Institute , P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | | |
Collapse
|
26
|
PpiA, a surface PPIase of the cyclophilin family in Lactococcus lactis. PLoS One 2012; 7:e33516. [PMID: 22442694 PMCID: PMC3307742 DOI: 10.1371/journal.pone.0033516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/10/2012] [Indexed: 12/05/2022] Open
Abstract
Background Protein folding in the envelope is a crucial limiting step of protein export and secretion. In order to better understand this process in Lactococcus lactis, a lactic acid bacterium, genes encoding putative exported folding factors like Peptidyl Prolyl Isomerases (PPIases) were searched for in lactococcal genomes. Results In L. lactis, a new putative membrane PPIase of the cyclophilin subfamily, PpiA, was identified and characterized. ppiA gene was found to be constitutively expressed under normal and stress (heat shock, H2O2) conditions. Under normal conditions, PpiA protein was synthesized and released from intact cells by an exogenously added protease, showing that it was exposed at the cell surface. No obvious phenotype could be associated to a ppiA mutant strain under several laboratory conditions including stress conditions, except a very low sensitivity to H2O2. Induction of a ppiA copy provided in trans had no effect i) on the thermosensitivity of an mutant strain deficient for the lactococcal surface protease HtrA and ii) on the secretion and stability on four exported proteins (a highly degraded hybrid protein and three heterologous secreted proteins) in an otherwise wild-type strain background. However, a recombinant soluble form of PpiA that had been produced and secreted in L. lactis and purified from a culture supernatant displayed both PPIase and chaperone activities. Conclusions Although L. lactis PpiA, a protein produced and exposed at the cell surface under normal conditions, displayed a very moderate role in vivo, it was found, as a recombinant soluble form, to be endowed with folding activities in vitro.
Collapse
|
27
|
Involvement of peptidylprolyl cis/trans isomerases in Enterococcus faecalis virulence. Infect Immun 2012; 80:1728-35. [PMID: 22331431 DOI: 10.1128/iai.06251-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Peptidylprolyl cis/trans isomerases (PPIases) are enzymes involved in protein folding. Analysis of the genome sequence of Enterococcus faecalis V583 allowed for identification of 3 PPIases carrying genes. ef2898 encodes an intracellular PPIase which was not shown to be important for the E. faecalis stress response or virulence. The other two PPIases, the parvulin family rotamase EF0685 and the cyclophilin family member EF1534, are expected to be surface-exposed proteins. They were shown to be important for virulence and resistance to NaCl. A Δef0685 Δef1534 mutant was also more resistant to oxidative stress, was able to grow under a high manganese concentration, and showed altered resistance to ampicillin and quinolone antibiotics.
Collapse
|
28
|
Jana B, Bandhu A, Mondal R, Biswas A, Sau K, Sau S. Domain Structure and Denaturation of a Dimeric Mip-like Peptidyl-Prolyl cis–trans Isomerase from Escherichia coli. Biochemistry 2012; 51:1223-37. [PMID: 22263615 DOI: 10.1021/bi2015037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Biswanath Jana
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054,
West Bengal, India
| | - Amitava Bandhu
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054,
West Bengal, India
| | - Rajkrishna Mondal
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054,
West Bengal, India
| | - Anindya Biswas
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054,
West Bengal, India
| | - Keya Sau
- Department
of Biotechnology, Haldia Institute of Technology, PO-HIT, Dt-Purba Medinipur,
Pin 721657, West Bengal, India
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054,
West Bengal, India
| |
Collapse
|
29
|
Chen MY, Gong YH, Yuan Y. Differential distribution of the PPIase gene in Helicobacter pylori strains isolated from patients with different gastric diseases. Shijie Huaren Xiaohua Zazhi 2012; 20:155-159. [DOI: 10.11569/wcjd.v20.i2.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the distribution of the peptidyl-prolyl cis-trans isomerase (PPIase) gene in Helicobacter pylori (H. pylori) strains isolated from patients with different gastric diseases.
METHODS: Biopsy specimens were taken from the gastric mucosa of patients with superficial gastritis (GS), atrophic gastritis (GA) or gastric cancer (GC) and used to isolate a total of 64 H. pylori strains. The distribution of the PPIase gene in these strains was analyzed by PCR.
RESULTS: The GA group had the highest distribution frequency (94.4%) of the PPIase gene, which was significantly higher than those in the GS (57.7%) and GC (65.0%) groups (P = 0.014, 0.045). Although the frequency of the PPIase gene was higher in the GC group than in the GS group, there was no statistical difference between them (P > 0.05).
CONCLUSION: H. pylori strains isolated from patients with AG carried a higher frequency of the PPIase gene.
Collapse
|
30
|
Haroon A, Koide M, Higa F, Tateyama M, Fujita J. Identification of Legionella pneumophila serogroups and other Legionella species by mip gene sequencing. J Infect Chemother 2011; 18:276-81. [PMID: 22015397 DOI: 10.1007/s10156-011-0324-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/29/2011] [Indexed: 10/16/2022]
Abstract
The virulence factor known as the macrophage infectivity potentiator (mip) is responsible for the intracellular survival of Legionella species. In this study, we investigated the potential of the mip gene sequence to differentiate isolates of different species of Legionella and different serogroups of Legionella pneumophila. We used 35 clinical L. pneumophila isolates and one clinical isolate each of Legionella micdadei, Legionella longbeachae, and Legionella dumoffii (collected from hospitals all over Japan between 1980 and 2007). We used 19 environmental Legionella anisa isolates (collected in the Okinawa, Nara, Osaka, and Hyogo prefectures between 1987 and 2007) and two Legionella type strains. We extracted bacterial genomic DNA and amplified out the mip gene by PCR. PCR products were purified by agarose gel electrophoresis and the mip gene was then sequenced. The L. pneumophila isolates could be divided into two groups: one group was very similar to the type strain and was composed of serogroup (SG) 1 isolates only; the second group had more sequence variations and was composed of SG1 isolates as well as SG2, SG3, SG5, and SG10 isolates. Phylogenetic analysis displayed one cluster for L. anisa isolates, while other Legionella species were present at discrete levels. Our findings show that mip gene sequencing is an effective technique for differentiating L. pneumophila strains from other Legionella species.
Collapse
Affiliation(s)
- Attiya Haroon
- Department of Infectious, Respiratory, and Digestive Medicine, Control and Prevention of Infectious Diseases (First Department of Internal Medicine), University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | | | | | | | | |
Collapse
|
31
|
Qin A, Scott DW, Rabideau MM, Moore EA, Mann BJ. Requirement of the CXXC motif of novel Francisella infectivity potentiator protein B FipB, and FipA in virulence of F. tularensis subsp. tularensis. PLoS One 2011; 6:e24611. [PMID: 21931773 PMCID: PMC3169626 DOI: 10.1371/journal.pone.0024611] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/14/2011] [Indexed: 12/21/2022] Open
Abstract
The lipoprotein encoded by the Francisella tularensis subsp. tularensis locus FTT1103 is essential for virulence; an FTT1103 deletion mutant is defective in uptake and intracellular survival, and mice survive high dose challenges of greater than 108 bacteria. This protein has two conserved domains; one is found in a class of virulence proteins called macrophage infectivity potentiator (Mip) proteins, and the other in oxidoreductase Disulfide Bond formation protein A (DsbA)-related proteins. We have designated the protein encoded by FTT1103 as FipB for Francisellainfectivity potentiator protein B. The locus FTT1102 (fipA), which is upstream of fipB, also has similarity to same conserved Mip domain. Deletion and site-specific mutants of fipA and fipB were constructed in the Schu S4 strain, and characterized with respect to intracellular replication and in vivo virulence. A nonpolar fipA mutant demonstrated reduced survival in host cells, but was only slightly attenuated in vivo. Although FipB protein was present in a fipA mutant, the abundance of the three isoforms of FipB was altered, suggesting that FipA has a role in post-translational modification of FipB. Similar to many DsbA homologues, FipB contains a cysteine-any amino acid-any amino acid-cysteine (CXXC) motif. This motif was found to be important for FipB's role in virulence; a deletion mutant complemented with a gene encoding a FipB protein in which the first cysteine was changed to an alanine residue (AXXC) failed to restore intracellular survival or in vivo virulence. Complementation with a gene that encoded a CXXA containing FipB protein was significantly defective in intracellular growth; however, only slightly attenuated in vivo.
Collapse
Affiliation(s)
- Aiping Qin
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- Office of Laboratory Management, Chinese Center for Disease Control and Prevention, Beijing, Peoples Republic of China
| | - David W. Scott
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Meaghan M. Rabideau
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Emily A. Moore
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Barbara J. Mann
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
32
|
Hung MC, Salim O, Williams JN, Heckels JE, Christodoulides M. The Neisseria meningitidis macrophage infectivity potentiator protein induces cross-strain serum bactericidal activity and is a potential serogroup B vaccine candidate. Infect Immun 2011; 79:3784-91. [PMID: 21708989 PMCID: PMC3165472 DOI: 10.1128/iai.05019-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/17/2011] [Indexed: 01/08/2023] Open
Abstract
A gene encoding a 29-kDa protein from Neisseria meningitidis serogroup B strain MC58 with homology to the macrophage infectivity potentiator (MIP) protein of Legionella pneumophila was cloned and expressed in Escherichia coli, and the purified soluble recombinant protein (rMIP) was used for immunization studies. Analysis of the predicted amino acid sequences of MIP from 13 well-characterized meningococcal strains, isolated from carriers or patients and differing in serogroup, serotype, and subtype, showed that the protein was highly conserved (98 to 100%), with only three distinct sequence types (designated I, II, and III) found. Western blotting showed that the MIP protein was expressed at similar levels by all of these strains. Immunization of mice with type I MC58 rMIP in detergent micelles and liposomes containing monophosphoryl lipid A (MPLA) induced high levels of surface-reactive antibodies with serum bactericidal activity (SBA) titers of 1/1,024 against the homologous strain. Bactericidal antibodies were also induced with the protein in saline alone and liposomes alone (titers, 1/128) but not following adsorption to Al(OH)(3). Significantly, antisera raised against type I rMIP administered in saline or liposomes killed strains of heterologous sequence types II and III with similar SBA titers (1/128 to 1/256). Taken together, these findings suggest that rMIP can provide cross-strain protection against meningococci and should be considered a potential antigen for inclusion in new vaccines against meningococcal infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/metabolism
- Bacterial Outer Membrane Proteins/chemistry
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/immunology
- Bacterial Outer Membrane Proteins/metabolism
- Blood Bactericidal Activity
- Blotting, Western
- Cross Reactions
- Enzyme-Linked Immunosorbent Assay
- Escherichia coli/genetics
- Macrophages
- Meningitis, Meningococcal/immunology
- Meningitis, Meningococcal/prevention & control
- Meningitis, Meningococcal/therapy
- Meningococcal Vaccines/immunology
- Mice
- Mice, Inbred BALB C
- Neisseria meningitidis, Serogroup B/genetics
- Neisseria meningitidis, Serogroup B/immunology
- Rabbits
- Recombinant Proteins/immunology
- Serum Bactericidal Antibody Assay
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Miao-Chiu Hung
- Neisseria Research Laboratory, Molecular Microbiology, Division of Infection, Inflammation and Immunity, Sir Henry Wellcome Research Laboratories, MP814, University of Southampton Medical School, Southampton SO16 6YD, United Kingdom
| | - Omar Salim
- Neisseria Research Laboratory, Molecular Microbiology, Division of Infection, Inflammation and Immunity, Sir Henry Wellcome Research Laboratories, MP814, University of Southampton Medical School, Southampton SO16 6YD, United Kingdom
| | - Jeannette N. Williams
- Neisseria Research Laboratory, Molecular Microbiology, Division of Infection, Inflammation and Immunity, Sir Henry Wellcome Research Laboratories, MP814, University of Southampton Medical School, Southampton SO16 6YD, United Kingdom
| | - John E. Heckels
- Neisseria Research Laboratory, Molecular Microbiology, Division of Infection, Inflammation and Immunity, Sir Henry Wellcome Research Laboratories, MP814, University of Southampton Medical School, Southampton SO16 6YD, United Kingdom
| | - Myron Christodoulides
- Neisseria Research Laboratory, Molecular Microbiology, Division of Infection, Inflammation and Immunity, Sir Henry Wellcome Research Laboratories, MP814, University of Southampton Medical School, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
33
|
A Burkholderia pseudomallei macrophage infectivity potentiator-like protein has rapamycin-inhibitable peptidylprolyl isomerase activity and pleiotropic effects on virulence. Infect Immun 2011; 79:4299-307. [PMID: 21859853 DOI: 10.1128/iai.00134-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Macrophage infectivity potentiators (Mips) are a group of virulence factors encoded by pathogenic bacteria such as Legionella, Chlamydia, and Neisseria species. Mips are part of the FK506-binding protein (FKBP) family, whose members typically exhibit peptidylprolyl cis-trans isomerase (PPIase) activity which is inhibitable by the immunosuppressants FK506 and rapamycin. Here we describe the identification and characterization of BPSS1823, a Mip-like protein in the intracellular pathogen Burkholderia pseudomallei. Recombinant BPSS1823 protein has rapamycin-inhibitable PPIase activity, indicating that it is a functional FKBP. A mutant strain generated by deletion of BPSS1823 in B. pseudomallei exhibited a reduced ability to survive within cells and significant attenuation in vivo, suggesting that BPSS1823 is important for B. pseudomallei virulence. In addition, pleiotropic effects were observed with a reduction in virulence mechanisms, including resistance to host killing mechanisms, swarming motility, and protease production.
Collapse
|
34
|
Ünal C, Schwedhelm KF, Thiele A, Weiwad M, Schweimer K, Frese F, Fischer G, Hacker J, Faber C, Steinert M. Collagen IV-derived peptide binds hydrophobic cavity of Legionella pneumophila Mip and interferes with bacterial epithelial transmigration. Cell Microbiol 2011; 13:1558-72. [DOI: 10.1111/j.1462-5822.2011.01641.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Norville IH, Breitbach K, Eske-Pogodda K, Harmer NJ, Sarkar-Tyson M, Titball RW, Steinmetz I. A novel FK-506-binding-like protein that lacks peptidyl-prolyl isomerase activity is involved in intracellular infection and in vivo virulence of Burkholderia pseudomallei. MICROBIOLOGY-SGM 2011; 157:2629-2638. [PMID: 21680634 DOI: 10.1099/mic.0.049163-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Burkholderia pseudomallei is a facultative intracellular bacterial pathogen causing melioidosis, an often fatal infectious disease that is endemic in several tropical and subtropical areas around the world. We previously described a Ptk2 cell-based plaque assay screening system of B. pseudomallei transposon mutants that led to the identification of several novel virulence determinants. Using this approach we identified a mutant with reduced plaque formation in which the BPSL0918 gene was disrupted. BPSL0918 encodes a putative FK-506-binding protein (FKBP) representing a family of proteins that typically possess peptidyl-prolyl isomerase (PPIase) activity. A B. pseudomallei ΔBPSL0918 mutant showed a severely impaired ability to resist intracellular killing and to replicate within primary macrophages. Complementation of the mutant fully restored its ability to grow intracellularly. Moreover, B. pseudomallei ΔBPSL0918 was significantly attenuated in a murine model of infection. Structural modelling confirmed a modified FKBP fold of the BPSL0918-encoded protein but unlike virulence-associated FKBPs from other pathogenic bacteria, recombinant BPSL0918 protein did not possess PPIase activity in vitro. In accordance with this observation BPSL0918 exhibits several mutations in residues that have been proposed to mediate PPIase activity in other FKBPs. To our knowledge this B. pseudomallei FKBP represents the first example of this protein family which lacks PPIase activity but is important in intracellular infection of a bacterial pathogen.
Collapse
Affiliation(s)
- Isobel H Norville
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| | - Katrin Breitbach
- Friedrich Loeffler Institute of Medical Microbiology, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Kristin Eske-Pogodda
- Friedrich Loeffler Institute of Medical Microbiology, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | | | - Mitali Sarkar-Tyson
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| | | | - Ivo Steinmetz
- Friedrich Loeffler Institute of Medical Microbiology, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| |
Collapse
|
36
|
Juli C, Sippel M, Jäger J, Thiele A, Weiwad M, Schweimer K, Rösch P, Steinert M, Sotriffer CA, Holzgrabe U. Pipecolic Acid Derivatives As Small-Molecule Inhibitors of the Legionella MIP Protein. J Med Chem 2010; 54:277-83. [DOI: 10.1021/jm101156y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christina Juli
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Sippel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jens Jäger
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Alexandra Thiele
- Research Center for Enzymology of Proteinfolding, Max-Planck-Institute Halle, Weinbergweg 22, 06120 Halle, Germany
| | - Matthias Weiwad
- Research Center for Enzymology of Proteinfolding, Max-Planck-Institute Halle, Weinbergweg 22, 06120 Halle, Germany
| | - Kristian Schweimer
- Department of Biopolymers, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Paul Rösch
- Department of Biopolymers, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Christoph A. Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
37
|
Miyake M. [Intracellular survival and replication of legionella pneumophila within host cells]. YAKUGAKU ZASSHI 2009; 128:1763-70. [PMID: 19043295 DOI: 10.1248/yakushi.128.1763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Legionella pneumophila is a facultative intracellular pathogen which replicates within macrophages and monocytes and finally cause a severe pneumonia known as Legionnaires' disease. An important hallmark of the pathogenesis of this bacterium is their ability to manipulate host cell processes, creating a specified replicative niche within host cells. An L. pneumophila-containing phagosome (LCP) is allowed to associate sequentially with smooth vesicles, mitochondria, and the rough endoplasmic reticulum (RER) to form a compartment called a replicative phagosome. LCPs are biologically characterized by delayed acidification and a low tendency to fuse with lysosomes. The establishment of these specialized phagosomes is mediated by the Icm/Dot Type IV secretion system, which is essential for the intracellular growth of L. pneumophila. L. pneumophila utilizes the Icm/Dot system to inject bacterial effector molecules into the host cell cytosol to survive and replicate in the intracellular compartment through modulation of phagosome biogenesis. This review focuses on our studies on specific aspects of L. pneumophila infection to host cells and bacterial factors which regulates its intracellular growth. We found several characteristic phenomena leading to L. pneumophila infection, which is dependent on LCP formation: active bacterial protein synthesis in L. pneumophila within macrophages, specific exclusion of actin-binding protein p57/Coronin-1 from LCP, and suppression of reactive oxygen species (ROS) production by macrophages upon infection with L. pneumophila. Furthermore, we identified a novel bacterial factor, PmiA, which is involved in multiplication within both protozoa and macrophages. Our recent study has begun to reveal that the biological function of PmiA is closely associated with that of the Icm/Dot type IV secretion system.
Collapse
Affiliation(s)
- Masaki Miyake
- Laboratory of Microbiology and Immunology, University of Shizuoka School of Pharmaceutical Sciences, Shizuoka, Japan.
| |
Collapse
|
38
|
Parente JA, Borges CL, Bailão AM, Felipe MSS, Pereira M, de Almeida Soares CM. Comparison of transcription of multiple genes during mycelia transition to yeast cells of Paracoccidioides brasiliensis reveals insights to fungal differentiation and pathogenesis. Mycopathologia 2008; 165:259-73. [PMID: 18777633 DOI: 10.1007/s11046-007-9078-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The ascomycete Paracoccidioides brasiliensis is a human pathogen with a broad distribution in Latin America. The infection process of P. brasiliensis is initiated by aerially dispersed mycelia propagules, which differentiate into the yeast parasitic phase in human lungs. Therefore, the transition to yeast is an initial and fundamental step in the infective process. In order to identify and characterize genes involved in P. brasiliensis transition to yeast, which could be potentially associated to early fungal adaptation to the host, expressed sequence tags (ESTs) were examined from a cDNA library, prepared from mycelia ongoing differentiation to yeast cells. In this study, it is presented a screen for a set of genes related to protein synthesis and to protein folding/modification/destination expressed during morphogenesis from mycelium to yeast. Our analysis revealed 43 genes that are induced during the early transition process, when compared to mycelia. In addition, eight novel genes related to those processes were described in the P. brasiliensis transition cDNA library. The types of induced and novel genes in the transition cDNA library highlight some metabolic aspects, such as putative increase in protein synthesis, in protein glycosylation, and in the control of protein folding that seem to be relevant to the fungal transition to the parasitic phase.
Collapse
Affiliation(s)
- Juliana Alves Parente
- Laboratório de Biologia Molecular, ICB II, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Ceymann A, Horstmann M, Ehses P, Schweimer K, Paschke AK, Steinert M, Faber C. Solution structure of the Legionella pneumophila Mip-rapamycin complex. BMC STRUCTURAL BIOLOGY 2008; 8:17. [PMID: 18366641 PMCID: PMC2311308 DOI: 10.1186/1472-6807-8-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 03/17/2008] [Indexed: 11/28/2022]
Abstract
Background Legionella pneumphila is the causative agent of Legionnaires' disease. A major virulence factor of the pathogen is the homodimeric surface protein Mip. It shows peptidyl-prolyl cis/trans isomerase activty and is a receptor of FK506 and rapamycin, which both inhibit its enzymatic function. Insight into the binding process may be used for the design of novel Mip inhibitors as potential drugs against Legionnaires' disease. Results We have solved the solution structure of free Mip77–213 and the Mip77–213-rapamycin complex by NMR spectroscopy. Mip77–213 showed the typical FKBP-fold and only minor rearrangements upon binding of rapamycin. Apart from the configuration of a flexible hairpin loop, which is partly stabilized upon binding, the solution structure confirms the crystal structure. Comparisons to the structures of free FKBP12 and the FKBP12-rapamycin complex suggested an identical binding mode for both proteins. Conclusion The structural similarity of the Mip-rapamycin and FKBP12-rapamycin complexes suggests that FKBP12 ligands may be promising starting points for the design of novel Mip inhibitors. The search for a novel drug against Legionnaires' disease may therefore benefit from the large variety of known FKBP12 inhibitors.
Collapse
Affiliation(s)
- Andreas Ceymann
- Department of Experimental Physics 5, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Proteomic characterization of the whole secretome of Legionella pneumophila and functional analysis of outer membrane vesicles. Infect Immun 2008; 76:1825-36. [PMID: 18250176 DOI: 10.1128/iai.01396-07] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secretion of effector molecules is one of the major mechanisms by which the intracellular human pathogen Legionella pneumophila interacts with host cells during infection. Specific secretion machineries which are responsible for the subfraction of secreted proteins (soluble supernatant proteins [SSPs]) and the production of bacterial outer membrane vesicles (OMVs) both contribute to the protein composition of the extracellular milieu of this lung pathogen. Here we present comprehensive proteome reference maps for both SSPs and OMVs. Protein identification and assignment analyses revealed a total of 181 supernatant proteins, 107 of which were specific to the SSP fraction and 33 of which were specific to OMVs. A functional classification showed that a large proportion of the identified OMV proteins are involved in the pathogenesis of Legionnaires' disease. Zymography and enzyme assays demonstrated that the SSP and OMV fractions possess proteolytic and lipolytic enzyme activities which may contribute to the destruction of the alveolar lining during infection. Furthermore, it was shown that OMVs do not kill host cells but specifically modulate their cytokine response. Binding of immunofluorescently stained OMVs to alveolar epithelial cells, as visualized by confocal laser scanning microscopy, suggested that there is delivery of a large and complex group of proteins and lipids in the infected tissue in association with OMVs. On the basis of these new findings, we discuss the relevance of protein sorting and compartmentalization of virulence factors, as well as environmental aspects of the vesicle-mediated secretion.
Collapse
|
41
|
Synthesis of Nα-Z, Nβ-Fmoc or Boc protected α-hydrazinoacids and study of the coupling reaction in solution of Nα-Z-α-hydrazinoesters. Tetrahedron 2007. [DOI: 10.1016/j.tet.2006.12.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Wagner C, Khan AS, Kamphausen T, Schmausser B, Unal C, Lorenz U, Fischer G, Hacker J, Steinert M. Collagen binding protein Mip enables Legionella pneumophila to transmigrate through a barrier of NCI-H292 lung epithelial cells and extracellular matrix. Cell Microbiol 2007; 9:450-62. [PMID: 16953800 DOI: 10.1111/j.1462-5822.2006.00802.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Guinea pigs are highly susceptible to Legionella pneumophila infection and therefore have been the preferred animal model for studies of legionellosis. In this study guinea pig infections revealed that the Legionella virulence factor Mip (macrophage infectivity potentiator) contributes to the bacterial dissemination within the lung tissue and the spread of Legionella to the spleen. Histopathology of infected animals, binding assays with components of the extracellular matrix (ECM), bacterial transmigration experiments across an artificial lung epithelium barrier, inhibitor studies and ECM degradation assays were used to elucidate the underlying mechanism of the in vivo observation. The Mip protein, which belongs to the enzyme family of FK506-binding proteins (FKBP), was shown to bind to the ECM protein collagen (type I, II, III, IV, V, VI). Transwell assays with L. pneumophila and recombinant Escherichia coli HB101 strains revealed that Mip enables these bacteria to transmigrate across a barrier of NCI-H292 lung epithelial cells and ECM (NCI-H292/ECM barrier). Mip-specific monoclonal antibodies and the immunosuppressants rapamycin and FK506, which inhibit the peptidyl prolyl cis/trans isomerase (PPIase) activity of Mip, were able to inhibit this transmigration. By using protease inhibitors we found that the penetration of the NCI-H292/ECM barrier additionally requires a serine protease activity. Degradation assays with (35)S-labelled ECM proteins supported the finding of a concerted action of Mip and a serine protease. The described synergism between the activity of the collagen binding Mip protein and the serine protease activity represents an entirely new mechanism for bacterial penetration of the lung epithelial barrier and has implications for other prokaryotic and eukaryotic pathogens.
Collapse
Affiliation(s)
- Carina Wagner
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pathak SK, Basu S, Bhattacharyya A, Pathak S, Banerjee A, Basu J, Kundu M. TLR4-dependent NF-kappaB activation and mitogen- and stress-activated protein kinase 1-triggered phosphorylation events are central to Helicobacter pylori peptidyl prolyl cis-, trans-isomerase (HP0175)-mediated induction of IL-6 release from macrophages. THE JOURNAL OF IMMUNOLOGY 2007; 177:7950-8. [PMID: 17114467 DOI: 10.4049/jimmunol.177.11.7950] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Helicobacter pylori infection is associated with the local production of chemokines and cytokines, of which IL-6 is overexpressed at the margin of gastric ulcer in H. pylori-positive gastritis. Cells of the monocytic lineage are the major sources of IL-6, and mononuclear cell infiltration in the lamina propria is characteristic of H. pylori-induced chronic infection. Our study shows for the first time that a secreted peptidyl prolyl cis-, trans-isomerase, HP0175 elicits IL-6 gene expression and IL-6 release from macrophages. An isogenic strain inactivated in the HP0175 gene (knockout) was attenuated in its IL-6-inducing ability, which was restored after complementation with the HP0175 gene. The specificity of the HP0175-induced effect was confirmed by the fact that rHP0175 purified from HEK293 cells could also induce IL-6 release, ruling out the possibility that the observed effect was due to bacterial contaminants. HP0175 was capable of interacting directly with the extracellular domain of TLR4. HP0175-induced IL-6 gene expression was critically dependent on TLR4-dependent NF-kappaB and MAPK activation. TLR4/PI3K-dependent ERK1/2 and p38 MAPK signaling converged upon activation of mitogen- and stress-activated protein kinase 1 (MSK1). The central role of MSK1 was borne out by the fact that silencing of MSK1 expression abrogated HP0175-mediated NF-kappaB-dependent IL-6 gene transcription. MSK1 regulated the recruitment of p65 and phopho-Ser(10)-histone H3 to the IL-6 promoter. HP0175 therefore regulated IL-6 gene transcription through chromatin modification at the IL-6 promoter.
Collapse
Affiliation(s)
- Sushil Kumar Pathak
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla, Chandra Road, Kolkata 700009, India
| | | | | | | | | | | | | |
Collapse
|
44
|
Zang N, Tang DJ, Wei ML, He YQ, Chen B, Feng JX, Xu J, Gan YQ, Jiang BL, Tang JL. Requirement of a mip-like gene for virulence in the phytopathogenic bacterium Xanthomonas campestris pv. campestris. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:21-30. [PMID: 17249419 DOI: 10.1094/mpmi-20-0021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Macrophage infectivity potentiators (Mips) are FKBP domain-containing proteins reported as virulence factors in several human pathogens, such as members of genera Legionella, Salmonella and Chlamydia. The putative peptidylprolyl cis-trans isomerase (PPIase) encoded by XC2699 of the plant bacterial pathogen Xanthomonas campestris pv. campestris 8004 exhibits a 49% similarity at the amino-acid level to the Mip protein of Legionella pneumophila. This mip-like gene, XC2699, was overexpressed in Escherichia coli and the purified (His)6-tagged Mip-like protein encoded by XC2699 exhibited a PPIase activity specifically inhibited by FK-506. A mutation in the mip-like gene XC2699 led to significant reductions in virulence and replication capacity in the host plant Chinese radish (Raphanus sativus L. var. radiculus Pers.). Furthermore, the production of exopolysaccharide and the activity of extracellular proteases, virulence factors of X. campestris pv. campestris, were significantly decreased in the mip-like mutant. These results reveal that the mip-like gene is involved in the pathogenesis of X. campestris pv. campestris through an effect on the production of these virulence factors.
Collapse
Affiliation(s)
- Ning Zang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Debroy S, Aragon V, Kurtz S, Cianciotto NP. Legionella pneumophila Mip, a surface-exposed peptidylproline cis-trans-isomerase, promotes the presence of phospholipase C-like activity in culture supernatants. Infect Immun 2006; 74:5152-60. [PMID: 16926407 PMCID: PMC1594821 DOI: 10.1128/iai.00484-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type II secretion system of Legionella pneumophila promotes pathogenesis. Among the Legionella type II-dependent exoenzymes is a p-nitrophenol phosphorylcholine (p-NPPC) hydrolase whose activity is only partially explained by the PlcA phospholipase C. In a screen to identify other factors that promote secreted hydrolase activity, we isolated a mip mutant. L. pneumophila Mip is a surface-exposed, FK506-binding protein that is needed for optimal infection and has peptidylproline cis-trans-isomerase (PPIase) activity. Since the molecular target of Mip was undefined, we investigated a possible relationship between Mip and the secreted p-NPPC hydrolase activity. In the mip mutant there was a 40 to 70% reduction in secreted activity that was successfully complemented by providing mip on a plasmid. A similar phenotype was observed when we examined four other independently derived mip mutants, and in all cases the defect was complemented by reintroduction of mip. Thus, mip promotes the presence of a p-NPPC hydrolase activity in culture supernatants. We also found that the C terminus of Mip is required for this effect. When supernatants were examined by anion-exchange chromatography, the p-NPPC hydrolase activity associated with Mip proved to be type II dependent but distinct from PlcA. This conclusion was supported by the phenotype of a newly constructed mip plcA double mutant. Thus, Mip promotes the elaboration of a new type II exoprotein. These data provide both the first evidence for a target for Mip and the first indication that a surface PPIase is involved in the secretion or activation of proteins beyond the outer membrane.
Collapse
Affiliation(s)
- Sruti Debroy
- Department of Microbiology-Immunology, Northwestern University Medical School, 320 East Superior Street, Chicago, IL 60611-3010, USA
| | | | | | | |
Collapse
|
46
|
Gavini N, Tungtur S, Pulakat L. Peptidyl-prolyl cis/trans isomerase-independent functional NifH mutant of Azotobacter vinelandii. J Bacteriol 2006; 188:6020-5. [PMID: 16885471 PMCID: PMC1540071 DOI: 10.1128/jb.00379-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIases) play a pivotal role in catalyzing the correct folding of many prokaryotic and eukaryotic proteins that are implicated in a variety of biological functions, ranging from cell cycle regulation to bacterial infection. The nif accessory protein NifM, which is essential for the biogenesis of a functional NifH component of nitrogenase, is a PPIase. To understand the nature of the molecular signature that defines the NifM dependence of NifH, we screened a library of nifH mutants in the nitrogen-fixing bacterium Azotobacter vinelandii for mutants that acquired NifM independence. Here, we report that NifH can acquire NifM independence when the conserved Pro258 located in the C-terminal region of NifH, which wraps around the other subunit in the NifH dimer, is replaced by serine.
Collapse
Affiliation(s)
- Nara Gavini
- Department of Biological Sciences, P.O. Box GY, Mississippi State University, Mississippi State, MS 39762, USA.
| | | | | |
Collapse
|
47
|
Vipond C, Suker J, Jones C, Tang C, Feavers IM, Wheeler JX. Proteomic analysis of a meningococcal outer membrane vesicle vaccine prepared from the group B strain NZ98/254. Proteomics 2006; 6:3400-13. [PMID: 16645985 DOI: 10.1002/pmic.200500821] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the absence of a suitable carbohydrate-based vaccine, outer membrane vesicle (OMV) vaccines have been used to disrupt outbreaks of serogroup B meningococcal disease for more than 20 years. Proteomic technology provides physical methods with the potential to assess the composition and consistency of these complex vaccines. 2-DE, combined with MS, were used to generate a proteome map of an OMV vaccine, developed to disrupt a long-running outbreak of group B disease in New Zealand. Seventy four spots from the protein map were identified including the outer membrane protein (OMP) antigens: PorA, PorB, RmpM and OpcA. Protein identification indicates that, in addition to OMPs, OMV vaccines contain periplasmic, membrane-associated and cytoplasmic proteins. 2-D-DIGE technology highlighted differences between preclinical development batches of vaccines from two different manufacturers.
Collapse
Affiliation(s)
- Caroline Vipond
- Department of Bacteriology, National Institute for Biological Standards and Control, South Mimms, Hertfordshire, UK.
| | | | | | | | | | | |
Collapse
|
48
|
Lück PC, Steinert M. Pathogenese, Diagnostik und Therapie der Legionella-Infektion. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2006; 49:439-49. [PMID: 16596363 DOI: 10.1007/s00103-006-1254-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Legionella species are ubiquitous in aquatic environments. About 50 years ago they entered the engineered (technical) environment, i.e. warm water systems with zones of stagnation. Since that time they represent a hygienic problem. After transmission to humans via aerosols legionellae might cause Legionella pneumonia (legionnaires' disease) or influenza-like respiratory infections (Pontiac fever). Epidemiological data suggest that Legionella strains might differ substantially in their virulence properties. Although the molecular basis is not understood L. pneumophila serogroup 1 especially MAb 3/1-positive strains cause the majority of infections. The main virulence feature is the ability to multiply intracellularly. After uptake into macrophages legionellae multiply in a specialized vacuole and finally lyse their host cells. Several bacterial factors like surface components, secretion systems and iron uptake systems are involved in this process. Since the clinical picture of Legionella pneumonia does not allow differentiation from pneumoniae caused by other pathogens, microbiological diagnostic methods are needed to establish the diagnosis. Cultivation of legionellae from clinical specimens, detection of antigens and DNA in patients' samples and detection of antibodies in serum samples are suitable methods. However, none of the diagnostic tests presently available offers the desired quality with respect to sensitivity and specificity. Therefore, the standard technique is to use several diagnostic tests in parallel. Advantages and disadvantages of the diagnostic procedures are discussed. Therapeutic options for Legionella infections are newer macrolides like azithromycin and chinolones (ciprofloxacin, levofloxacin and moxifloxacin).
Collapse
Affiliation(s)
- P C Lück
- Institut für Medizinische Mikrobiologie, Nationales Konsiliarlabor für Legionellen, TU-Dresden, Fiedlerstrasse 42, 01307 Dresden.
| | | |
Collapse
|
49
|
Herrmann M, Schuhmacher A, Mühldorfer I, Melchers K, Prothmann C, Dammeier S. Identification and characterization of secreted effector proteins of Chlamydophila pneumoniae TW183. Res Microbiol 2006; 157:513-24. [PMID: 16797933 DOI: 10.1016/j.resmic.2005.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 12/20/2005] [Indexed: 11/18/2022]
Abstract
We report the expression of several chlamydial effector proteins in Chlamydophila pneumoniae, as well as their time-dependent secretion into the inclusion membrane. Localization of the respective genes within type III secretion gene clusters as well as bioinformatic analysis suggest that the identified proteins are type III-secreted effector proteins. Immunocytochemistry with antisera raised against CpMip (C. pneumoniae macrophage infectivity potentiator, Cpn0661), Pkn5 (Cpn0703), Cpn0709, Cpn0712 and Cpn0827 showed secretion of the respective proteins into the inclusion membrane at 20 h postinfection (hpi). CpMip was detected within the inclusion membrane from 20 to 72 hpi, whereas Cpn0324 (CopN) was located in this compartment at 72 hpi only. This was confirmed by co-localization of the respective proteins with IncA, an inclusion membrane marker protein. These data illustrate the fact that different effectors are being expressed and secreted during different time intervals of the infection cycle. Proteins Cpn0706 and Cpn0808 were not secreted by C. pneumoniae. The immunophilin FK506, known to inhibit the activity of Legionella, C. trachomatis and C. psittaci Mip proteins, was shown to interfere with chlamydial infection. Here we report the putatively type III-dependent secretion of CpMip into the inclusion membrane as well as the effect of its inhibition on C. pneumoniae infection of HEp-2 cells.
Collapse
Affiliation(s)
- Michael Herrmann
- Department of Gastroenterology (RDR/B3), ALTANA Pharma AG, Byk-Gulden Strasse 2, 78467 Konstanz, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Leuzzi R, Serino L, Scarselli M, Savino S, Fontana MR, Monaci E, Taddei A, Fischer G, Rappuoli R, Pizza M. Ng-MIP, a surface-exposed lipoprotein of Neisseria gonorrhoeae, has a peptidyl-prolyl cis/trans isomerase (PPIase) activity and is involved in persistence in macrophages. Mol Microbiol 2006; 58:669-81. [PMID: 16238618 DOI: 10.1111/j.1365-2958.2005.04859.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Macrophage infectivity potentiators (MIPs) are a family of surface-exposed virulence factors of intracellular microorganisms such as Legionella, Chlamydia and Trypanosoma. These proteins display peptidyl-prolyl cis/trans isomerase (PPIase) activity that is inhibited by immunosuppressants FK506 and rapamycin. Here we describe the identification and characterization in Neisseria gonorrhoeae of Ng-MIP, a surface-exposed lipoprotein with high homology to MIPs. The protein is an homodimer with rapamycin-inhibited PPIase activity confirming that it is a functional member of the MIP family. A knock-out strain, generated by deletion of the mip gene in N. gonorrhoeae F62 strain, was evaluated for its role in infection of mouse and human macrophages. We show that Ng-MIP promotes the intracellular survival of N. gonorrhoeae in macrophages, highlighting a possible role of this protein in promoting the persistence of gonococcal infection.
Collapse
Affiliation(s)
- Rosanna Leuzzi
- IRIS, Chiron S.r.l., Via Fiorentina, 1, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|