1
|
Glowacki RWP, Martens EC. If you eat it, or secrete it, they will grow: the expanding list of nutrients utilized by human gut bacteria. J Bacteriol 2020; 203:JB.00481-20. [PMID: 33168637 PMCID: PMC8092160 DOI: 10.1128/jb.00481-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In order to persist, successful bacterial inhabitants of the human gut need to adapt to changing nutrient conditions, which are influenced by host diet and a variety of other factors. For members of the Bacteroidetes and several other phyla, this has resulted in diversification of a variety of enzyme-based systems that equip them to sense and utilize carbohydrate-based nutrients from host, diet, and bacterial origin. In this review, we focus first on human gut Bacteroides and describe recent findings regarding polysaccharide utilization loci (PULs) and the mechanisms of the multi-protein systems they encode, including their regulation and the expanding diversity of substrates that they target. Next, we highlight previously understudied substrates such as monosaccharides, nucleosides, and Maillard reaction products that can also affect the gut microbiota by feeding symbionts that possess specific systems for their metabolism. Since some pathogens preferentially utilize these nutrients, they may represent nutrient niches competed for by commensals and pathogens. Finally, we address recent work to describe nutrient acquisition mechanisms in other important gut species such as those belonging to the Gram-positive anaerobic phyla Actinobacteria and Firmicutes, as well as the Proteobacteria Because gut bacteria contribute to many aspects of health and disease, we showcase advances in the field of synthetic biology, which seeks to engineer novel, diet-controlled nutrient utilization pathways within gut symbionts to create rationally designed live therapeutics.
Collapse
Affiliation(s)
- Robert W. P. Glowacki
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Rapid Growth and Metabolism of Uropathogenic Escherichia coli in Relation to Urine Composition. Clin Microbiol Rev 2019; 33:33/1/e00101-19. [PMID: 31619395 DOI: 10.1128/cmr.00101-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) strains cause a majority of urinary tract infections (UTIs). Since UPEC strains can become antibiotic resistant, adjunct or alternate therapies are urgently needed. UPEC strains grow extremely rapidly in patients with UTIs. Thus, this review focuses on the relation between urine composition and UPEC growth and metabolism. Compilation of urinary components from two major data sources suggests the presence of sufficient amino acids and carbohydrates as energy sources and abundant phosphorus, sulfur, and nitrogen sources. In a mouse UTI model, mutants lacking enzymes of the tricarboxylic acid cycle, gluconeogenesis, and the nonoxidative branch of the pentose cycle are less competitive than the corresponding parental strains, which is consistent with amino acids as major energy sources. Other evidence suggests that carbohydrates are required energy sources. UPEC strains in urine ex vivo and in vivo express transporters for peptides, amino acids, carbohydrates, and iron and genes associated with nitrogen limitation, amino acid synthesis, nucleotide synthesis, and nucleotide salvage. Mouse models confirm the requirement for many, but not all, of these genes. Laboratory evolution studies suggest that rapid nutrient uptake without metabolic rewiring is sufficient to account for rapid growth. Proteins and pathways required for rapid growth should be considered potential targets for alternate or adjunct therapies.
Collapse
|
3
|
Guzmán GI, Sandberg TE, LaCroix RA, Nyerges Á, Papp H, de Raad M, King ZA, Hefner Y, Northen TR, Notebaart RA, Pál C, Palsson BO, Papp B, Feist AM. Enzyme promiscuity shapes adaptation to novel growth substrates. Mol Syst Biol 2019; 15:e8462. [PMID: 30962359 PMCID: PMC6452873 DOI: 10.15252/msb.20188462] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Evidence suggests that novel enzyme functions evolved from low‐level promiscuous activities in ancestral enzymes. Yet, the evolutionary dynamics and physiological mechanisms of how such side activities contribute to systems‐level adaptations are not well characterized. Furthermore, it remains untested whether knowledge of an organism's promiscuous reaction set, or underground metabolism, can aid in forecasting the genetic basis of metabolic adaptations. Here, we employ a computational model of underground metabolism and laboratory evolution experiments to examine the role of enzyme promiscuity in the acquisition and optimization of growth on predicted non‐native substrates in Escherichia coli K‐12 MG1655. After as few as approximately 20 generations, evolved populations repeatedly acquired the capacity to grow on five predicted non‐native substrates—D‐lyxose, D‐2‐deoxyribose, D‐arabinose, m‐tartrate, and monomethyl succinate. Altered promiscuous activities were shown to be directly involved in establishing high‐efficiency pathways. Structural mutations shifted enzyme substrate turnover rates toward the new substrate while retaining a preference for the primary substrate. Finally, genes underlying the phenotypic innovations were accurately predicted by genome‐scale model simulations of metabolism with enzyme promiscuity.
Collapse
Affiliation(s)
- Gabriela I Guzmán
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Troy E Sandberg
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Ryan A LaCroix
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Ákos Nyerges
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Henrietta Papp
- Virological Research Group, Szentágothai Research Centre University of Pécs, Pécs, Hungary
| | - Markus de Raad
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Zachary A King
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Richard A Notebaart
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
4
|
Fang X, Monk JM, Nurk S, Akseshina M, Zhu Q, Gemmell C, Gianetto-Hill C, Leung N, Szubin R, Sanders J, Beck PL, Li W, Sandborn WJ, Gray-Owen SD, Knight R, Allen-Vercoe E, Palsson BO, Smarr L. Metagenomics-Based, Strain-Level Analysis of Escherichia coli From a Time-Series of Microbiome Samples From a Crohn's Disease Patient. Front Microbiol 2018; 9:2559. [PMID: 30425690 PMCID: PMC6218438 DOI: 10.3389/fmicb.2018.02559] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Dysbiosis of the gut microbiome, including elevated abundance of putative leading bacterial triggers such as E. coli in inflammatory bowel disease (IBD) patients, is of great interest. To date, most E. coli studies in IBD patients are focused on clinical isolates, overlooking their relative abundances and turnover over time. Metagenomics-based studies, on the other hand, are less focused on strain-level investigations. Here, using recently developed bioinformatic tools, we analyzed the abundance and properties of specific E. coli strains in a Crohns disease (CD) patient longitudinally, while also considering the composition of the entire community over time. In this report, we conducted a pilot study on metagenomic-based, strain-level analysis of a time-series of E. coli strains in a left-sided CD patient, who exhibited sustained levels of E. coli greater than 100X healthy controls. We: (1) mapped out the composition of the gut microbiome over time, particularly the presence of E. coli strains, and found that the abundance and dominance of specific E. coli strains in the community varied over time; (2) performed strain-level de novo assemblies of seven dominant E. coli strains, and illustrated disparity between these strains in both phylogenetic origin and genomic content; (3) observed that strain ST1 (recovered during peak inflammation) is highly similar to known pathogenic AIEC strains NC101 and LF82 in both virulence factors and metabolic functions, while other strains (ST2-ST7) that were collected during more stable states displayed diverse characteristics; (4) isolated, sequenced, experimentally characterized ST1, and confirmed the accuracy of the de novo assembly; and (5) assessed growth capability of ST1 with a newly reconstructed genome-scale metabolic model of the strain, and showed its potential to use substrates found abundantly in the human gut to outcompete other microbes. In conclusion, inflammation status (assessed by the blood C-reactive protein and stool calprotectin) is likely correlated with the abundance of a subgroup of E. coli strains with specific traits. Therefore, strain-level time-series analysis of dominant E. coli strains in a CD patient is highly informative, and motivates a study of a larger cohort of IBD patients.
Collapse
Affiliation(s)
- Xin Fang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Jonathan M Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Sergey Nurk
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Margarita Akseshina
- St. Petersburg Academic University, Russian Academy of Sciences, St. Petersburg, Russia
| | - Qiyun Zhu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Christopher Gemmell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Connor Gianetto-Hill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Nelly Leung
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Jon Sanders
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Paul L Beck
- Division of Gastroenterology, University of Calgary, Calgary, AB, Canada
| | - Weizhong Li
- Human Longevity Inc., San Diego, CA, United States.,J. Craig Venter Institute, La Jolla, CA, United States
| | - William J Sandborn
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States.,Inflammatory Bowel Disease Center, University of California, San Diego, La Jolla, CA, United States
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States.,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Larry Smarr
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States.,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States.,California Institute for Telecommunications and Information Technology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
5
|
Rodea GE, Montiel-Infante FX, Cruz-Córdova A, Saldaña-Ahuactzi Z, Ochoa SA, Espinosa-Mazariego K, Hernández-Castro R, Xicohtencatl-Cortes J. Tracking Bioluminescent ETEC during In vivo BALB/c Mouse Colonization. Front Cell Infect Microbiol 2017; 7:187. [PMID: 28560186 PMCID: PMC5432549 DOI: 10.3389/fcimb.2017.00187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of diarrhea worldwide. Adhesion to the human intestinal tract is crucial for colonization. ETEC adhesive structures have been extensively studied; however, colonization dynamics remain uncharacterized. The aim of this study was to track bioluminescent ETEC during in vivo infection. The promoter region of dnaK was fused with the luc gene, resulting in the pRMkluc vector. E. coli K-12 and ETEC FMU073332 strains were electroporated with pRMkluc. E. coli K-12 pRMkluc was bioluminescent; in contrast, the E. coli K-12 control strain did not emit bioluminescence. The highest light emission was measured at 1.9 OD600 (9 h) and quantified over time. The signal was detected starting at time 0 and up to 12 h. Streptomycin-treated BALB/c mice were orogastrically inoculated with either ETEC FMU073332 pRMkluc or E. coli K-12 pRMkluc (control), and bacterial colonization was determined by measuring bacterial shedding in the feces. ETEC FMU073332 pRMkluc shedding started and stopped after inoculation of the control strain, indicating that mouse intestinal colonization by ETEC FMU073332 pRMkluc lasted longer than colonization by the control. The bioluminescence signal of ETEC FMU073332 pRMkluc was captured starting at the time of inoculation until 12 h after inoculation. The bioluminescent signal emitted by ETEC FMU073332 pRMkluc in the proximal mouse ileum was located, and the control signal was identified in the cecum. The detection of maximal light emission and bioluminescence duration allowed us to follow ETEC during in vivo infection. ETEC showed an enhanced colonization and tropism in the mouse intestine compared with those in the control strain. Here, we report the first study of ETEC colonization in the mouse intestine accompanied by in vivo imaging.
Collapse
Affiliation(s)
- Gerardo E Rodea
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico.,Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCiudad de México, Mexico
| | - Francisco X Montiel-Infante
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico
| | - Zeus Saldaña-Ahuactzi
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico
| | - Sara A Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico
| | - Karina Espinosa-Mazariego
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González"Ciudad de México, Mexico
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico GómezCiudad de México, Mexico
| |
Collapse
|
6
|
Dunne KA, Chaudhuri RR, Rossiter AE, Beriotto I, Browning DF, Squire D, Cunningham AF, Cole JA, Loman N, Henderson IR. Sequencing a piece of history: complete genome sequence of the original Escherichia coli strain. Microb Genom 2017; 3:mgen000106. [PMID: 28663823 PMCID: PMC5382810 DOI: 10.1099/mgen.0.000106] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/24/2017] [Indexed: 12/30/2022] Open
Abstract
In 1885, Theodor Escherich first described the Bacillus coli commune, which was subsequently renamed Escherichia coli. We report the complete genome sequence of this original strain (NCTC 86). The 5 144 392 bp circular chromosome encodes the genes for 4805 proteins, which include antigens, virulence factors, antimicrobial-resistance factors and secretion systems, of a commensal organism from the pre-antibiotic era. It is located in the E. coli A subgroup and is closely related to E. coli K-12 MG1655. E. coli strain NCTC 86 and the non-pathogenic K-12, C, B and HS strains share a common backbone that is largely co-linear. The exception is a large 2 803 932 bp inversion that spans the replication terminus from gmhB to clpB. Comparison with E. coli K-12 reveals 41 regions of difference (577 351 bp) distributed across the chromosome. For example, and contrary to current dogma, E. coli NCTC 86 includes a nine gene sil locus that encodes a silver-resistance efflux pump acquired before the current widespread use of silver nanoparticles as an antibacterial agent, possibly resulting from the widespread use of silver utensils and currency in Germany in the 1800s. In summary, phylogenetic comparisons with other E. coli strains confirmed that the original strain isolated by Escherich is most closely related to the non-pathogenic commensal strains. It is more distant from the root than the pathogenic organisms E. coli 042 and O157 : H7; therefore, it is not an ancestral state for the species.
Collapse
Affiliation(s)
- Karl A Dunne
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Roy R Chaudhuri
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Amanda E Rossiter
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Irene Beriotto
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Douglas F Browning
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Derrick Squire
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Adam F Cunningham
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Jeffrey A Cole
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Nicholas Loman
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Ian R Henderson
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| |
Collapse
|
7
|
Andreevskaya M, Johansson P, Jääskeläinen E, Rämö T, Ritari J, Paulin L, Björkroth J, Auvinen P. Lactobacillus oligofermentans glucose, ribose and xylose transcriptomes show higher similarity between glucose and xylose catabolism-induced responses in the early exponential growth phase. BMC Genomics 2016; 17:539. [PMID: 27487841 PMCID: PMC4972977 DOI: 10.1186/s12864-016-2840-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lactobacillus oligofermentans has been mostly isolated from cold-stored packaged meat products in connection with their spoilage, but its precise role in meat spoilage is unknown. It belongs to the L. vaccinostercus group of obligate heterofermentative lactobacilli that generally ferment pentoses (e.g. xylose and ribose) more efficiently than hexoses (e.g. glucose). However, more efficient hexose utilization can be induced. The regulation mechanisms of the carbohydrate catabolism in such bacteria have been scarcely studied. To address this question, we provided the complete genome sequence of L. oligofermentans LMG 22743(T) and generated time course transcriptomes during its growth on glucose, ribose and xylose. RESULTS The genome was manually annotated and its main functional features were examined. L. oligofermentans was confirmed to be able to efficiently utilize several hexoses and maltose, which is, presumably, induced by its repeated cultivation with glucose in vitro. Unexpectedly, in the beginning of the exponential growth phase, glucose- and xylose-induced transcriptome responses were more similar, whereas toward the end of the growth phase xylose and ribose transcriptomes became more alike. The promoter regions of genes simultaneously upregulated both on glucose and xylose in comparison with ribose (particularly, hexose and xylose utilization genes) were found to be enriched in the CcpA- binding site. Transcriptionally, no glucose-induced carbon catabolite repression was detected. The catabolism of glucose, which requires initial oxidation, led to significant overexpression of the NAD(P)H re-oxidation genes, the upstream regions of which were found to contain a motif, which was highly similar to a Rex repressor binding site. CONCLUSIONS This paper presents the second complete genome and the first study of carbohydrate catabolism-dependent transcriptome response for a member of the L. vaccinostercus group. The transcriptomic changes detected in L. oligofermentans for growth with different carbohydrates differ significantly from those of facultative heterofermentative lactobacilli. The mechanism of CcpA regulation, putatively contributing to the observed similarities between glucose- and xylose-induced transcriptome responses and the absence of stringent carbon catabolite control, requires further studies. Finally, the cell redox balance maintenance, in terms of the NAD(P)+/NAD(P)H ratio, was predicted to be regulated by the Rex transcriptional regulator, supporting the previously made inference of Rex-regulons for members of the Lactobacillaceae family.
Collapse
Affiliation(s)
| | - Per Johansson
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Elina Jääskeläinen
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Tanja Rämö
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Present Address: The National Bureau of Investigation, Vantaa, Finland
| | - Jarmo Ritari
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Present Address: Finnish Red Cross Blood Service, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Johanna Björkroth
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Pathogenesis of human diffusely adhering Escherichia coli expressing Afa/Dr adhesins (Afa/Dr DAEC): current insights and future challenges. Clin Microbiol Rev 2015; 27:823-69. [PMID: 25278576 DOI: 10.1128/cmr.00036-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pathogenicity and clinical pertinence of diffusely adhering Escherichia coli expressing the Afa/Dr adhesins (Afa/Dr DAEC) in urinary tract infections (UTIs) and pregnancy complications are well established. In contrast, the implication of intestinal Afa/Dr DAEC in diarrhea is still under debate. These strains are age dependently involved in diarrhea in children, are apparently not involved in diarrhea in adults, and can also be asymptomatic intestinal microbiota strains in children and adult. This comprehensive review analyzes the epidemiology and diagnosis and highlights recent progress which has improved the understanding of Afa/Dr DAEC pathogenesis. Here, I summarize the roles of Afa/Dr DAEC virulence factors, including Afa/Dr adhesins, flagella, Sat toxin, and pks island products, in the development of specific mechanisms of pathogenicity. In intestinal epithelial polarized cells, the Afa/Dr adhesins trigger cell membrane receptor clustering and activation of the linked cell signaling pathways, promote structural and functional cell lesions and injuries in intestinal barrier, induce proinflammatory responses, create angiogenesis, instigate epithelial-mesenchymal transition-like events, and lead to pks-dependent DNA damage. UTI-associated Afa/Dr DAEC strains, following adhesin-membrane receptor cell interactions and activation of associated lipid raft-dependent cell signaling pathways, internalize in a microtubule-dependent manner within urinary tract epithelial cells, develop a particular intracellular lifestyle, and trigger a toxin-dependent cell detachment. In response to Afa/Dr DAEC infection, the host epithelial cells generate antibacterial defense responses. Finally, I discuss a hypothetical role of intestinal Afa/Dr DAEC strains that can act as "silent pathogens" with the capacity to emerge as "pathobionts" for the development of inflammatory bowel disease and intestinal carcinogenesis.
Collapse
|
9
|
Meadows JA, Wargo MJ. Catabolism of host-derived compounds during extracellular bacterial infections. J Cell Biochem 2014; 115:217-23. [PMID: 24038340 DOI: 10.1002/jcb.24664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 11/07/2022]
Abstract
Efficient catabolism of host-derived compounds is essential for bacterial survival and virulence. While these links in intracellular bacteria are well studied, such studies in extracellular bacteria lag behind, mostly for technical reasons. The field has identified important metabolic pathways, but the mechanisms by which they impact infection and in particular, establishing the importance of a compound's catabolism versus alternate metabolic roles has been difficult. In this review we will examine evidence for catabolism during extracellular bacterial infections in animals and known or potential roles in virulence. In the process, we point out key gaps in the field that will require new or newly adapted techniques.
Collapse
Affiliation(s)
- Jamie A Meadows
- Department of Microbiology and Molecular Genetics, University of Vermont College of Medicine, Burlington, Vermont, 05405
| | | |
Collapse
|
10
|
Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proc Natl Acad Sci U S A 2013; 110:20338-43. [PMID: 24277855 DOI: 10.1073/pnas.1307797110] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genome-scale models (GEMs) of metabolism were constructed for 55 fully sequenced Escherichia coli and Shigella strains. The GEMs enable a systems approach to characterizing the pan and core metabolic capabilities of the E. coli species. The majority of pan metabolic content was found to consist of alternate catabolic pathways for unique nutrient sources. The GEMs were then used to systematically analyze growth capabilities in more than 650 different growth-supporting environments. The results show that unique strain-specific metabolic capabilities correspond to pathotypes and environmental niches. Twelve of the GEMs were used to predict growth on six differentiating nutrients, and the predictions were found to agree with 80% of experimental outcomes. Additionally, GEMs were used to predict strain-specific auxotrophies. Twelve of the strains modeled were predicted to be auxotrophic for vitamins niacin (vitamin B3), thiamin (vitamin B1), or folate (vitamin B9). Six of the strains modeled have lost biosynthetic pathways for essential amino acids methionine, tryptophan, or leucine. Genome-scale analysis of multiple strains of a species can thus be used to define the metabolic essence of a microbial species and delineate growth differences that shed light on the adaptation process to a particular microenvironment.
Collapse
|
11
|
Leimbach A, Hacker J, Dobrindt U. E. coli as an All-Rounder: The Thin Line Between Commensalism and Pathogenicity. Curr Top Microbiol Immunol 2013; 358:3-32. [PMID: 23340801 DOI: 10.1007/82_2012_303] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Role of the vpe carbohydrate permease in Escherichia coli urovirulence and fitness in vivo. Infect Immun 2012; 80:2655-66. [PMID: 22615242 DOI: 10.1128/iai.00457-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) strains are a leading cause of infections in humans, but the mechanisms governing host colonization by this bacterium remain poorly understood. Previous studies have identified numerous gene clusters encoding proteins involved in sugar transport, in pathogen-specific islands. We investigated the role in fitness and virulence of the vpe operon encoding an EII complex of the phosphotransferase (PTS) system, which is found more frequently in human strains from infected urine and blood (45%) than in E. coli isolated from healthy humans (15%). We studied the role of this locus in vivo, using the UPEC E. coli strain AL511, mutants, and complemented derivatives in two experimental mouse models of infection. Mutant strains displayed attenuated virulence in a mouse model of sepsis. A role in kidney colonization was also demonstrated by coinfection experiments in a mouse model of pyelonephritis. Electron microscopy examinations showed that the vpeBC mutant produced much smaller amounts of a capsule-like surface material than the wild type, particularly when growing in human urine. Complementation of the vpeBC mutation led to an increase in the amount of exopolysaccharide, resistance to serum killing, and virulence. It was therefore clear that the loss of vpe genes was responsible for all the observed phenotypes. We also demonstrated the involvement of the vpe locus in gut colonization in the streptomycin-treated mouse model of intestinal colonization. These findings confirm that carbohydrate transport and metabolism underlie the ability of UPEC strains to colonize the host intestine and to infect various host sites.
Collapse
|
13
|
Sabarly V, Bouvet O, Glodt J, Clermont O, Skurnik D, Diancourt L, de Vienne D, Denamur E, Dillmann C. The decoupling between genetic structure and metabolic phenotypes in Escherichia coli leads to continuous phenotypic diversity. J Evol Biol 2011; 24:1559-71. [PMID: 21569155 PMCID: PMC3147056 DOI: 10.1111/j.1420-9101.2011.02287.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To assess the extent of intra-species diversity and the links between phylogeny, lifestyle (habitat and pathogenicity) and phenotype, we assayed the growth yield on 95 carbon sources of 168 Escherichia strains. We also correlated the growth capacities of 14 E. coli strains with the presence/absence of enzyme-coding genes. Globally, we found that the genetic distance, based on multilocus sequence typing data, was a weak indicator of the metabolic phenotypic distance. Besides, lifestyle and phylogroup had almost no impact on the growth yield of non-Shigella E. coli strains. In these strains, the presence/absence of the metabolic pathways, which was linked to the phylogeny, explained most of the growth capacities. However, few discrepancies blurred the link between metabolic phenotypic distance and metabolic pathway distance. This study shows that a prokaryotic species structured into well-defined genetic and lifestyle groups can yet exhibit continuous phenotypic diversity, possibly caused by gene regulatory effects.
Collapse
Affiliation(s)
- V Sabarly
- DGA/CNRS, UMR de Génétique Végétale INRA/CNRS/Univ Paris-Sud, Ferme du Moulon, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
In vivo bioluminescence imaging for the study of intestinal colonization by Escherichia coli in mice. Appl Environ Microbiol 2009; 76:264-74. [PMID: 19880653 DOI: 10.1128/aem.01686-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bioluminescence imaging (BLI) is emerging as a powerful tool for real-time monitoring of infections in living animals. However, since luciferases are oxygenases, it has been suggested that the requirement for oxygen may limit the use of BLI in anaerobic environments, such as the lumen of the gut. Strains of Escherichia coli harboring the genes for either the bacterial luciferase from Photorhabdus luminescens or the PpyRE-TS and PpyGR-TS firefly luciferase mutants of Photinus pyralis (red and green thermostable P. pyralis luciferase mutants, respectively) have been engineered and used to monitor intestinal colonization in the streptomycin-treated mouse model. There was excellent correlation between the bioluminescence signal measured in the feces (R2=0.98) or transcutaneously in the abdominal region of whole animals (R2=0.99) and the CFU counts in the feces of bacteria harboring the luxABCDE operon. Stability in vivo of the bioluminescence signal was achieved by constructing plasmid pAT881(pGB2OmegaPamiluxABCDE), which allowed long-term monitoring of intestinal colonization without the need for antibiotic selection for plasmid maintenance. Levels of intestinal colonization by various strains of E. coli could be compared directly by simple recording of the bioluminescence signal in living animals. The difference in spectra of light emission of the PpyRE-TS and PpyGR-TS firefly luciferase mutants and dual bioluminescence detection allowed direct in vitro and in vivo quantification of two bacterial populations by measurement of red and green emitted signals and thus monitoring of the two populations simultaneously. This system offers a simple and direct method to study in vitro and in vivo competition between mutants and the parental strain. BLI is a useful tool to study intestinal colonization.
Collapse
|
15
|
Role of deoxyribose catabolism in colonization of the murine intestine by pathogenic Escherichia coli strains. Infect Immun 2009; 77:1442-50. [PMID: 19168744 DOI: 10.1128/iai.01039-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously suggested that the ability to metabolize deoxyribose, a phenotype encoded by the deoK operon, is associated with the pathogenic potential of Escherichia coli strains. Carbohydrate metabolism is thought to provide the nutritional support required for E. coli to colonize the intestine. We therefore investigated the role of deoxyribose catabolism in the colonization of the gut, which acts as a reservoir, by pathogenic E. coli strains. Molecular and biochemical characterization of 1,221 E. coli clones from various collections showed this biochemical trait to be common in the E. coli species (33.6%). However, multivariate analysis evidenced a higher prevalence of sugar-metabolizing E. coli clones in the stools of patients from countries in which intestinal diseases are endemic. Diarrhea processes frequently involve the destruction of intestinal epithelia, so it is plausible that such clones may be positively selected for in intestines containing abundant DNA, and consequently deoxyribose. Statistical analysis also indicated that symptomatic clinical disorders and the presence of virulence factors specific to extraintestinal pathogenic E. coli were significantly associated with an increased risk of biological samples and clones testing positive for deoxyribose. Using the streptomycin-treated-mouse model of intestinal colonization, we demonstrated the involvement of the deoK operon in gut colonization by two pathogenic isolates (one enteroaggregative and one uropathogenic strain). These results, indicating that deoxyribose availability promotes pathogenic E. coli growth during host colonization, suggest that the acquisition of this trait may be an evolutionary step enabling these pathogens to colonize and persist in the mammalian intestine.
Collapse
|
16
|
Lehmacher A, Bockemühl J. L-Sorbose utilization by virulent Escherichia coli and Shigella: different metabolic adaptation of pathotypes. Int J Med Microbiol 2007; 297:245-54. [PMID: 17382590 DOI: 10.1016/j.ijmm.2007.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 12/10/2006] [Accepted: 01/23/2007] [Indexed: 10/23/2022] Open
Abstract
The frequency of L-Sorbose utilization differs significantly between pathotypes of Escherichia coli and Shigella from 93% to 0%. Among 266 strains tested, this frequency increased in the order Shigella, enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), Shiga toxin-producing E. coli (STEC), enteroaggregative E. coli, enteropathogenic E. coli (EPEC), and neonatal bacterial meningitis (NBM) E. coli. This suggests an association of pathomechanism with the capability to degrade L-Sorbose. The use of a selective agar, containing L-Sorbose and antibiotics, facilitated the isolation of L-Sorbose-non-utilizing ETEC from stool specimens of patients. The sor operon, comprising seven genes in the order sorCDFBAME, confers L-Sorbose utilization. Surprisingly, L-Sorbose-non-degrading Shigella harbored all genes of the sor operon indicating L-Sorbose-utilizing E. coli as ancestor. Additionally, strains of several EIEC and STEC serotypes harbored an inactivated sor operon. These L-Sorbose-non-utilizing Shigella, EIEC, and STEC showed significantly reduced amounts of transcripts as examined for sorC and sorD. Common surface antigens, types of intimin gene, and hemolysin gene as well as use of L-Sorbose suggested the relatedness of attaching and effacing O26:H11 and O55:H7 EPEC and STEC, respectively. pepE and yibC genes flank the sor operon of E. coli and Shigella strains. Surprisingly, one O7:K1:H- NBM E. coli harbored an aroE-homologous gene between its sor operon and pepE as in Klebsiella pneumoniae suggesting a horizontal gene transfer. In conclusion, L-Sorbose utilization of virulent E. coli and Shigella is characterized by different adaptation that represents a valuable tool for evolutionary and diagnostic analysis of related patho- and serotypes.
Collapse
Affiliation(s)
- Anselm Lehmacher
- Institut für Hygiene und Umwelt, Abteilung Mikrobiologischer Verbraucherschutz, Marckmannstrasse 129a, D-20539 Hamburg, Germany.
| | | |
Collapse
|
17
|
Sorsa LJ, Feldmann F, Hildinger K, Dufke S, Schubert S. Characterization of four novel genomic regions of uropathogenic Escherichia coli highly associated with the extraintestinal virulent phenotype: a jigsaw puzzle of genetic modules. Int J Med Microbiol 2007; 297:83-95. [PMID: 17280868 DOI: 10.1016/j.ijmm.2006.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 09/21/2006] [Accepted: 11/21/2006] [Indexed: 01/18/2023] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) are a major cause of urinary tract infections, sepsis, and neonatal meningitis. A variety of virulence factors in these strains is encoded by mobile genetic elements, such as transposons or pathogenicity islands (PAIs). Using subtractive cloning of ExPEC genomes, we recently detected short DNA fragments, which were significantly associated with the extraintestinal virulent phenotype. In this study, we identified four novel genomic DNA regions of the highly virulent uropathogenic E. coli strain JS299 carrying these previously identified DNA fragments. Characterization of the partial sequences of the genomic DNA regions revealed complex DNA arrangements with variable genetic compositions regarding the G+C contents and codon usage patterns. The prevalence of 15 previously uncharacterized genes was determined in a collection of clinical ExPECs and commensal E. coli strains by means of DNA microarray analyses. From this, 13 novel DNA sequences were demonstrated to be significantly associated with extraintestinal virulent strains, and thus may represent new virulence traits. Beside genes predicted to play a role in metabolic functions, such as sucrose utilization (scr), we identified DNA sequences shared by both ExPEC and enteropathogenic E. coli (EPEC). These sequences were significantly more prevalent among ExPECs when compared to commensal E. coli isolates. Our results support the idea of a considerable genetic variability among ExPEC strains and suggest that the novel genomic determinants described in this study may contribute to the ExPEC virulence.
Collapse
Affiliation(s)
- Liisa Johanna Sorsa
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Marchioninistr. 17, D-81377 München, Germany
| | | | | | | | | |
Collapse
|
18
|
Domelier AS, van der Mee-Marquet N, Grandet A, Mereghetti L, Rosenau A, Quentin R. Loss of catabolic function in Streptococcus agalactiae strains and its association with neonatal meningitis. J Clin Microbiol 2006; 44:3245-50. [PMID: 16954255 PMCID: PMC1594740 DOI: 10.1128/jcm.02550-05] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The abilities of 151 Streptococcus agalactiae strains to oxidize 95 carbon sources were studied using the Biolog system. Two populations were constituted: one with a high risk of causing meningitis (HR group; 63 strains), and the other with a lower risk of causing meningitis (LR group; 46 strains). Strains belonging to the HR group were significantly less able to use four carbon sources, i.e., alpha-D-glucose-1-phosphate, D-ribose, beta-methyl-D-glucoside, and D,L-alpha-glycerol phosphate, than strains from the LR group (P <or= 0.004). Moreover, strains in the HR group significantly more frequently possessed one of several mobile genetic elements or genome deletions previously shown to be associated with strains responsible for neonatal meningitis than strains in the LR group (P < 0.001). These findings suggest that genetic disruption might have occurred in virulent clones of S. agalactiae. Fifteen biotypes (B1 to B15) were identified from the results of oxidation of the four carbon sources, of which six (B1 to B6) included 92% of the isolates belonging to the HR group. Strains of biotypes B1 to B6 are thus 13 times more likely to be able to invade the central nervous system of neonates than strains of biotypes B7 to B15. In addition, 86% of strains recently associated with neonatal meningitis (42 strains studied) were identified as being of biotypes B1 to B6. Identification of particular S. agalactiae biotypes may therefore be one of the criteria to assist clinicians in assessing the level of risk of neonatal meningitis when a mother and/or her neonate is colonized with S. agalactiae.
Collapse
Affiliation(s)
- Anne-Sophie Domelier
- Equipe d'Accueil 3854, Institut Fédératif de Recherche 136, Bactéries et risque maternofoetal, UFR Médecine, Université François-Rabelais de Tours, 2 bis Boulevard Tonnellé, 37032 Tours Cedex, France
| | | | | | | | | | | |
Collapse
|
19
|
Brzuszkiewicz E, Brüggemann H, Liesegang H, Emmerth M, Ölschläger T, Nagy G, Albermann K, Wagner C, Buchrieser C, Emődy L, Gottschalk G, Hacker J, Dobrindt U. How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci U S A 2006; 103:12879-84. [PMID: 16912116 PMCID: PMC1568941 DOI: 10.1073/pnas.0603038103] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Indexed: 01/16/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) strain 536 (O6:K15:H31) is one of the model organisms of extraintestinal pathogenic E. coli (ExPEC). To analyze this strain's genetic basis of urovirulence, we sequenced the entire genome and compared the data with the genome sequence of UPEC strain CFT073 (O6:K2:H1) and to the available genomes of nonpathogenic E. coli strain MG1655 (K-12) and enterohemorrhagic E. coli. The genome of strain 536 is approximately 292 kb smaller than that of strain CFT073. Genomic differences between both UPEC are mainly restricted to large pathogenicity islands, parts of which are unique to strain 536 or CFT073. Genome comparison underlines that repeated insertions and deletions in certain parts of the genome contribute to genome evolution. Furthermore, 427 and 432 genes are only present in strain 536 or in both UPEC, respectively. The majority of the latter genes is encoded within smaller horizontally acquired DNA regions scattered all over the genome. Several of these genes are involved in increasing the pathogens' fitness and adaptability. Analysis of virulence-associated traits expressed in the two UPEC O6 strains, together with genome comparison, demonstrate the marked genetic and phenotypic variability among UPEC. The ability to accumulate and express a variety of virulence-associated genes distinguishes ExPEC from many commensals and forms the basis for the individual virulence potential of ExPEC. Accordingly, instead of a common virulence mechanism, different ways exist among ExPEC to cause disease.
Collapse
Affiliation(s)
- Elzbieta Brzuszkiewicz
- *Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
- Institute for Molecular Biology of Infectious Diseases, Bayerische Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Holger Brüggemann
- *Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
- Laboratoire de Génomique des Microorganismes Pathogènes, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Heiko Liesegang
- *Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
| | - Melanie Emmerth
- Institute for Molecular Biology of Infectious Diseases, Bayerische Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Tobias Ölschläger
- Institute for Molecular Biology of Infectious Diseases, Bayerische Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Gábor Nagy
- Institute of Medical Microbiology and Immunology, University of Pécs, Szigeti ut 12, 7624 Pécs, Hungary
| | - Kaj Albermann
- Biomax Informatics AG, Lochhamerstrasse 9, 82152 Martinsried, Germany; and
| | - Christian Wagner
- Biomax Informatics AG, Lochhamerstrasse 9, 82152 Martinsried, Germany; and
| | - Carmen Buchrieser
- Laboratoire de Génomique des Microorganismes Pathogènes, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Levente Emődy
- Institute of Medical Microbiology and Immunology, University of Pécs, Szigeti ut 12, 7624 Pécs, Hungary
| | - Gerhard Gottschalk
- *Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
| | - Jörg Hacker
- Institute for Molecular Biology of Infectious Diseases, Bayerische Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Ulrich Dobrindt
- Institute for Molecular Biology of Infectious Diseases, Bayerische Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| |
Collapse
|