1
|
Balam S, Miura K, Ayadi I, Konaté D, Incandela NC, Agnolon V, Guindo MA, Diakité SA, Olugbile S, Nebie I, Herrera SM, Long C, Kajava AV, Diakité M, Corradin G, Herrera S, Herrera MA. Cross-reactivity of r Pvs48/45, a recombinant Plasmodium vivax protein, with sera from Plasmodium falciparum endemic areas of Africa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588966. [PMID: 38659832 PMCID: PMC11042229 DOI: 10.1101/2024.04.10.588966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background Ps48/45, a Plasmodium gametocyte surface protein, is a promising candidate for malaria transmission-blocking (TB) vaccine. Due to its relevance for a multispecies vaccine, we explored the cross-reactivity and TB activity of a recombinant P. vivax Ps48/45 protein (rPvs48/45) with sera from P. falciparum-exposed African donors. Methods rPvs48/45 was produced in Chinese hamster ovary cell lines and tested by ELISA for its cross-reactivity with sera from Burkina Faso, Tanzania, Mali, and Nigeria - In addition, BALB/c mice were immunized with the rPvs48/45 protein formulated in Montanide ISA-51 and inoculated with a crude extract of P. falciparum NF-54 gametocytes to evaluate the parasite-boosting effect on rPvs48/45 antibody titers. Specific anti-rPvs48/45 IgG purified from African sera was used to evaluate the ex vivo TB activity on P. falciparum, using standard mosquito membrane feeding assays (SMFA). Results rPvs48/45 protein showed cross-reactivity with sera of individuals from all four African countries, in proportions ranging from 94% (Tanzania) to 40% (Nigeria). Also, the level of cross-reactive antibodies varied significantly between countries (p<0.0001), with a higher antibody level in Mali and the lowest in Nigeria. In addition, antibody levels were higher in adults (≥ 17 years) than young children (≤ 5 years) in both Mali and Tanzania, with a higher proportion of responders in adults (90%) than in children (61%) (p<0.0001) in Mali, where male (75%) and female (80%) displayed similar antibody responses. Furthermore, immunization of mice with P. falciparum gametocytes boosted anti-Pvs48/45 antibody responses, recognizing P. falciparum gametocytes in indirect immunofluorescence antibody test. Notably, rPvs48/45 affinity-purified African IgG exhibited a TB activity of 61% against P. falciparum in SMFA. Conclusion African sera (exposed only to P. falciparum) cross-recognized the rPvs48/45 protein. This, together with the functional activity of IgG, warrants further studies for the potential development of a P. vivax and P. falciparum cross-protective TB vaccine.
Collapse
Affiliation(s)
- Saidou Balam
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Imen Ayadi
- Immunobiology Department, University of Lausanne, Lausanne, Switzerland
| | - Drissa Konaté
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | | | - Valentina Agnolon
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland aaaa
| | - Merepen A Guindo
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Seidina A.S. Diakité
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Sope Olugbile
- Immunobiology Department, University of Lausanne, Lausanne, Switzerland
| | - Issa Nebie
- Groupe de Recherche Action Santé (GRAS), Burkina Faso, West Africa
| | | | - Carole Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Andrey V. Kajava
- Montpellier Cell Biology Research Center (CRBM), University of Montpellier, CNRS, France
| | - Mahamadou Diakité
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | | | - Socrates Herrera
- Caucaseco Scientific Research Center, Cali, Colombia
- Malaria Vaccine and Drug Development Center, Cali, Colombia
| | | |
Collapse
|
2
|
Needle-free, spirulina-produced Plasmodium falciparum circumsporozoite vaccination provides sterile protection against pre-erythrocytic malaria in mice. NPJ Vaccines 2022; 7:113. [PMID: 36195607 PMCID: PMC9532447 DOI: 10.1038/s41541-022-00534-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/05/2022] [Indexed: 02/02/2023] Open
Abstract
Antibodies against the Plasmodium falciparum circumsporozoite protein (PfCSP) can block hepatocyte infection by sporozoites and protect against malaria. Needle-free vaccination strategies are desirable, yet most PfCSP-targeted vaccines like RTS,S require needle-based administration. Here, we evaluated the edible algae, Arthrospira platensis (commonly called 'spirulina') as a malaria vaccine platform. Spirulina were genetically engineered to express virus-like particles (VLPs) consisting of the woodchuck hepatitis B core capsid protein (WHcAg) displaying a (NANP)15 PfCSP antigen on its surface. PfCSP-spirulina administered to mice intranasally followed by oral PfCSP-spirulina boosters resulted in a strong, systemic anti-PfCSP immune response that was protective against subcutaneous challenge with PfCSP-expressing P. yoelii. Unlike male mice, female mice did not require Montanide adjuvant to reach high antibody titers or protection. The successful use of spirulina as a vaccine delivery system warrants further development of spirulina-based vaccines as a useful tool in addressing malaria and other diseases of global health importance.
Collapse
|
3
|
Highly efficient protein expression of Plasmodium vivax surface antigen, Pvs25, by silkworm and its biochemical analysis. Protein Expr Purif 2022; 195-196:106096. [PMID: 35460871 DOI: 10.1016/j.pep.2022.106096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/20/2022]
Abstract
Plasmodium vivax ookinete surface protein, Pvs25, is a candidate for a transmission-blocking vaccine (TBV) for malaria. Pvs25 has four EGF-like domains containing 22 cysteine residues forming 11 intramolecular disulfide bonds, a structural feature that makes its recombinant protein expression difficult. In this study, we report the high expression of recombinant Pvs25 as a soluble form in silkworm, Bombyx mori. The Pvs25 protein was purified from hemolymphs of larvae and pupae by affinity chromatography. In the Pvs25 expressed by silkworm, no isoforms with inappropriate disulfide bonds were found, requiring no further purification step, which is necessary in the case of Pichia pastoris-based expression systems. The Pvs25 from silkworm was confirmed to be molecularly uniform by sodium dodecyl sulfate gel electrophoresis and size-exclusion chromatography. To examine the immunogenicity, the Pvs25 from B. mori was administered to BALB/c mice subcutaneously with oil adjuvant. The Pvs25 produced by silkworm induced potent and robust immune responses, and the induced antisera correctly recognized P. vivax ookinetes in vitro, demonstrating the potency of Pvs25 from silkworm as a candidate for a malaria TBV. To the best of our knowledge, this is the first study to construct a system for mass-producing malaria TBV antigens using silkworm.
Collapse
|
4
|
Zaric M, Marini A, Nielsen CM, Gupta G, Mekhaiel D, Pham TP, Elias SC, Taylor IJ, de Graaf H, Payne RO, Li Y, Silk SE, Williams C, Hill AVS, Long CA, Miura K, Biswas S. Poor CD4 + T Cell Immunogenicity Limits Humoral Immunity to P. falciparum Transmission-Blocking Candidate Pfs25 in Humans. Front Immunol 2021; 12:732667. [PMID: 34659219 PMCID: PMC8515144 DOI: 10.3389/fimmu.2021.732667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum transmission-blocking vaccines (TBVs) targeting the Pfs25 antigen have shown promise in mice but the same efficacy has never been achieved in humans. We have previously published pre-clinical data related to a TBV candidate Pfs25-IMX313 encoded in viral vectors which was very promising and hence progressed to human clinical trials. The results from the clinical trial of this vaccine were very modest. Here we unravel why, contrary to mice, this vaccine has failed to induce robust antibody (Ab) titres in humans to elicit transmission-blocking activity. We examined Pfs25-specific B cell and T follicular helper (Tfh) cell responses in mice and humans after vaccination with Pfs25-IMX313 encoded by replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA) delivered in the heterologous prime-boost regimen via intramuscular route. We found that after vaccination, the Pfs25-IMX313 was immunologically suboptimal in humans compared to mice in terms of serum Ab production and antigen-specific B, CD4+ and Tfh cell responses. We identified that the key determinant for the poor anti-Pfs25 Ab formation in humans was the lack of CD4+ T cell recognition of Pfs25-IMX313 derived peptide epitopes. This is supported by correlations established between the ratio of proliferated antigen-specific CD4+/Tfh-like T cells, CXCL13 sera levels, and the corresponding numbers of circulating Pfs25-specific memory B cells, that consequently reflected on antigen-specific IgG sera levels. These correlations can inform the design of next-generation Pfs25-based vaccines for robust and durable blocking of malaria transmission.
Collapse
Affiliation(s)
- Marija Zaric
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Arianna Marini
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Carolyn M Nielsen
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Gaurav Gupta
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - David Mekhaiel
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Thao P Pham
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Sean C Elias
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Iona J Taylor
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Hans de Graaf
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ruth O Payne
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Yuanyuan Li
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah E Silk
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Chris Williams
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Adrian V S Hill
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Sumi Biswas
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Old and Recent Advances in Life Cycle, Pathogenesis, Diagnosis, Prevention, and Treatment of Malaria Including Perspectives in Ethiopia. ScientificWorldJournal 2020. [DOI: 10.1155/2020/1295381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Malaria, caused by apicomplexan parasite, is an old disease and continues to be a major public health threat in many countries. This article aims to present different aspects of malaria including causes, pathogenesis, prevention, and treatment in an articulate and comprehensive manner. Six Plasmodium species are recognized as the etiology of human malaria, of which Plasmodium falciparum is popular in East and Southern Africa. Malaria is transmitted mainly through Anopheles gambiae and Anopheles funestus, the two most effective malaria vectors in the world. Half of the world’s population is at risk for malaria infection. Globally, the morbidity and mortality rates of malaria have become decreased even though few reports in Ethiopia showed high prevalence of malaria. The malaria parasite has a complex life cycle that takes place both inside the mosquito and human beings. Generally, diagnosis of malaria is classified into clinical and parasitological diagnoses. Lack of clear understanding on the overall biology of Plasmodium has created a challenge in an effort to develop new drugs, vaccines, and preventive methods against malaria. However, three types of vaccines and a lot of novel compounds are under perclinical and clinical studies that are triggered by the occurrence of resistance among commonly used drugs and insecticides. Antiadhesion adjunctive therapies are also under investigation in the laboratory. In addition to previously known targets for diagnostic tool, vaccine and drug discovery scientists from all corner of the world are in search of new targets and chemical entities.
Collapse
|
6
|
Narula AK, Azad CS, Nainwal LM. New dimensions in the field of antimalarial research against malaria resurgence. Eur J Med Chem 2019; 181:111353. [DOI: 10.1016/j.ejmech.2019.05.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/16/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
|
7
|
A recombinant bovine herpesvirus-4 vectored vaccine delivered via intranasal nebulization elicits viral neutralizing antibody titers in cattle. PLoS One 2019; 14:e0215605. [PMID: 31002724 PMCID: PMC6474629 DOI: 10.1371/journal.pone.0215605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/05/2019] [Indexed: 02/05/2023] Open
Abstract
Recombinant herpesvirus vaccine vectors offer distinct advantages in next-generation vaccine development, primarily due to the ability to establish persistent infections to provide sustainable antigen responses in the host. Recombinant bovine herpesvirus-4 (BoHV-4) has been previously shown to elicit protective immunity in model laboratory animal species against a variety of pathogens. For the first time, we describe the induction of antigen-specific immune responses to two delivered antigens in the host species after intranasal nebulization of recombinant BoHV-4 expressing the chimeric peptide containing the bovine viral diarrhea virus (BVDV) glycoprotein E2 and the bovine herpesvirus 1 (BoHV-1) glycoprotein D (BoHV-4-A-CMV-IgK-gE2gD-TM). In this study, four cattle were immunized via intranasal nebulization with the recombinant BoHV-4 construct. Two of the cattle were previously infected with wild-type BoHV-4, and both developed detectable serologic responses to BVDV and BoHV-1. All four immunized cattle developed detectable viral neutralizing antibody responses to BVDV, and one steer developed a transient viral neutralizing response to BoHV-1. Approximately one year after immunization, immunosuppressive doses of the glucocorticoid dexamethasone were administered intravenously to all four cattle. Within two weeks of immunosuppression, all animals developed viral neutralizing antibody responses to BoHV-1, and all animals maintained BVDV viral neutralizing capacity. Overall, nebulization of BoHV-4-A-CMV-IgK-gE2gD-TM persistently infects cattle, is capable of eliciting antigen-specific immunity following immunization, including in the presence of pre-existing BoHV-4 immunity, and recrudescence of the virus boosts the immune response to BoHV-4-vectored antigens. These results indicate that BoHV-4 is a viable and attractive vaccine delivery platform for use in cattle.
Collapse
|
8
|
White SE, Harvey SA, Meza G, Llanos A, Guzman M, Gamboa D, Vinetz JM. Acceptability of a herd immunity-focused, transmission-blocking malaria vaccine in malaria-endemic communities in the Peruvian Amazon: an exploratory study. Malar J 2018; 17:179. [PMID: 29703192 PMCID: PMC5921293 DOI: 10.1186/s12936-018-2328-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/18/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A transmission-blocking vaccine (TBV) to prevent malaria-infected humans from infecting mosquitoes has been increasingly considered as a tool for malaria control and elimination. This study tested the hypothesis that a malaria TBV would be acceptable among residents of a malaria-hypoendemic region. METHODS The study was carried out in six Spanish-speaking rural villages in the Department of Loreto in the Peruvian Amazon. These villages comprise a cohort of 430 households associated with the Peru-Brazil International Centre for Excellence in Malaria Research. Individuals from one-third (143) of enrolled households in an ongoing longitudinal, prospective cohort study in 6 communities in Loreto, Peru, were randomly selected to participate by answering a pre-validated questionnaire. RESULTS All 143 participants expressed desire for a malaria vaccine in general; only 1 (0.7%) expressed unwillingness to receive a transmission-blocking malaria vaccine. Injection was considered most acceptable for adults (97.2%); for children drops in the mouth were preferred (96.8%). Acceptability waned marginally with the prospect of multiple injections (83.8%) and different projected efficacies at 70 and 50% (90.1 and 71.8%, respectively). Respondents demonstrated clear understanding that the vaccine was for community, rather than personal, protection against malaria infection. DISCUSSION In this setting of the Peruvian Amazon, a transmission-blocking malaria vaccine was found to be almost universally acceptable. This study is the first to report that residents of a malaria-endemic region have been queried regarding a malaria vaccine strategy that policy-makers in the industrialized world often dismiss as altruistic.
Collapse
Affiliation(s)
- Sara E White
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive 0760, Biomedical Research Facility Room 4A16, La Jolla, CA, 92093-0760, USA
| | - Steven A Harvey
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St. E5030, Baltimore, MD, 21205, USA.
| | - Graciela Meza
- Facultad de Medicina Humana, Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | - Alejandro Llanos
- Malaria and Leishmaniasis Division, Instituto de Medicina Tropical Alexander von Humboldt, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru
| | - Mitchel Guzman
- Malaria and Leishmaniasis Division, Instituto de Medicina Tropical Alexander von Humboldt, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru
| | - Dionicia Gamboa
- Malaria and Leishmaniasis Division, Instituto de Medicina Tropical Alexander von Humboldt, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru.,Department of Cellular and Molecular Sciences, Faculty of Sciences and Laboratory of Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive 0760, Biomedical Research Facility Room 4A16, La Jolla, CA, 92093-0760, USA. .,Malaria and Leishmaniasis Division, Instituto de Medicina Tropical Alexander von Humboldt, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru. .,Department of Cellular and Molecular Sciences, Faculty of Sciences and Laboratory of Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru.
| |
Collapse
|
9
|
Qian F, Yin J, Li M, Guo A, Li T, Zhou L, Wu X, Xu H. Intranasal immunization with a peptide conjugated to Salmonella flagellin induces both systemic and mucosal peptide-specific antibody responses in mice. Microbiol Immunol 2017; 60:497-500. [PMID: 27301339 DOI: 10.1111/1348-0421.12396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/06/2016] [Accepted: 06/02/2016] [Indexed: 11/30/2022]
Abstract
In this study, the mucosal adjuvant activity of Salmonella flagellin as a carrier in a conjugate of EXP153-rFliC was investigated. EXP153-rFliC was made by conjugation of a synthetic B-cell epitope peptide derived from Plasmodium falciparum exported protein-1(EXP153) to recombinant phase 1 flagellin of Salmonella enterica serovar Typhimurium expressed in Escherichia coli (rFliC), and used to immunize BALB/c mice via intranasal instillation. It was found that robust EXP153-specific serum IgG antibodies were induced without additional adjuvant. EXP153-specific sIgA antibodies were also induced, these being detected in bronchoalveolar, nasal, vaginal and intestinal washes. These observations demonstrate that Salmonella flagellin as a carrier is an effective mucosal adjuvant in that its conjugated peptide induces antibody responses.
Collapse
Affiliation(s)
- Feng Qian
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Jian Yin
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Mengmeng Li
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Aihua Guo
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Ting Li
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Ling Zhou
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Xin Wu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| |
Collapse
|
10
|
Mishra M, Mishra VK, Kashaw V, Iyer AK, Kashaw SK. Comprehensive review on various strategies for antimalarial drug discovery. Eur J Med Chem 2016; 125:1300-1320. [PMID: 27886547 DOI: 10.1016/j.ejmech.2016.11.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 01/14/2023]
Abstract
The resistance of malaria parasites to existing drugs carries on growing and progressively limiting our ability to manage this severe disease and finally lead to a massive global health burden. Till now, malaria control has relied upon the traditional quinoline, antifolate and artemisinin compounds. Very few new antimalarials were developed in the past 50 years. Among recent approaches, identification of novel chemotherapeutic targets, exploration of natural products with medicinal significance, covalent bitherapy having a dual mode of action into a single hybrid molecule and malaria vaccine development are explored heavily. The proper execution of these approaches and proper investment from international agencies will accelerate the discovery of drugs that provide new hope for the control or eventual eradication of this global infectious disease. This review explores various strategies for assessment and development of new antimalarial drugs. Current status and scientific value of previous approaches are systematically reviewed and new approaches provide a pragmatic forecast for future developments are introduced as well.
Collapse
Affiliation(s)
- Mitali Mishra
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India
| | - Vikash K Mishra
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India
| | - Varsha Kashaw
- SVN Institute of Pharmaceutical Sciences, SVN University, Sagar, MP, India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Sushil Kumar Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India; Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
11
|
Asadi Karam MR, Habibi M, Bouzari S. Use of flagellin and cholera toxin as adjuvants in intranasal vaccination of mice to enhance protective immune responses against uropathogenic Escherichia coli antigens. Biologicals 2016; 44:378-86. [PMID: 27461240 DOI: 10.1016/j.biologicals.2016.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 01/16/2023] Open
Abstract
Urinary tract infections (UTIs) caused by Uropathogenic Escherichia coli (UPEC) are among the most common infections in human. Antibiotics are common therapy for UTIs, but increase in antibiotic resistance will complicate future treatment of the infections, making the development of an efficacious UTI vaccine more urgent. In this study, we have evaluated intranasally the efficacy of FliC and FimH antigens of UPEC in different vaccine formulations with and without cholera toxin (CT) adjuvant. Immunization of mice with FliC in fusion form or admixed with FimH elicited higher levels of serum, mucosal and cell-mediated responses than FimH alone. Furthermore, the use of CT in synergism with FliC resulted in the stimulation of a mixed Th1 and Th2 responses against FimH and FliC as antigen and maintained the antibody responses for at least 24 weeks following the last vaccine dose. Of the vaccine preparations, Fusion, Fusion + CT, and FimH admixed with FliC and CT showed the best protection against UPEC. These data indicated that intranasal administration of a FliC and CT adjuvant-based vaccine has the potential to provide protective responses against UPEC strains.
Collapse
Affiliation(s)
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
12
|
Habibi M, Asadi Karam MR, Bouzari S. Transurethral instillation with fusion protein MrpH.FimH induces protective innate immune responses against uropathogenic Escherichia coli and Proteus mirabilis. APMIS 2016; 124:444-52. [PMID: 26918627 DOI: 10.1111/apm.12523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/12/2016] [Indexed: 12/25/2022]
Abstract
Urinary tract infections (UTIs) are among the most common infections in human. Innate immunity recognizes pathogen-associated molecular patterns (PAMPs) by Toll-like receptors (TLRs) to activate responses against pathogens. Recently, we demonstrated that MrpH.FimH fusion protein consisting of MrpH from Proteus mirabilis and FimH from Uropathogenic Escherichia coli (UPEC) results in the higher immunogenicity and protection, as compared with FimH and MrpH alone. In this study, we evaluated the innate immunity and adjuvant properties induced by fusion MrpH.FimH through in vitro and in vivo methods. FimH and MrpH.FimH were able to induce significantly higher IL-8 and IL-6 responses than untreated or MrpH alone in cell lines tested. The neutrophil count was significantly higher in the fusion group than other groups. After 6 h, IL-8 and IL-6 production reached a peak, with a significant decline at 24 h post-instillation in both bladder and kidney tissues. Mice instilled with the fusion and challenged with UPEC or P. mirabilis showed a significant decrease in the number of bacteria in bladder and kidney compared to control mice. The results of these studies demonstrate that the use of recombinant fusion protein encoding TLR-4 ligand represents an effective vaccination strategy that does not require the use of a commercial adjuvant. Furthermore, MrpH.FimH was presented as a promising vaccine candidate against UTIs caused by UPEC and P. mirabilis.
Collapse
Affiliation(s)
- Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
13
|
Patra KP, Li F, Carter D, Gregory JA, Baga S, Reed SG, Mayfield SP, Vinetz JM. Alga-produced malaria transmission-blocking vaccine candidate Pfs25 formulated with a human use-compatible potent adjuvant induces high-affinity antibodies that block Plasmodium falciparum infection of mosquitoes. Infect Immun 2015; 83:1799-808. [PMID: 25690099 PMCID: PMC4399074 DOI: 10.1128/iai.02980-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/08/2015] [Indexed: 01/21/2023] Open
Abstract
A vaccine to prevent the transmission of malaria parasites from infected humans to mosquitoes is an important component for the elimination of malaria in the 21st century, yet it remains neglected as a priority of malaria vaccine development. The lead candidate for Plasmodium falciparum transmission-blocking vaccine development, Pfs25, is a sexual stage surface protein that has been produced for vaccine testing in a variety of heterologous expression systems. Any realistic malaria vaccine will need to optimize proper folding balanced against cost of production, yield, and potentially reactogenic contaminants. Here Chlamydomonas reinhardtii microalga-produced recombinant Pfs25 protein was formulated with four different human-compatible adjuvants (alum, Toll-like receptor 4 [TLR-4] agonist glucopyranosal lipid A [GLA] plus alum, squalene-oil-in-water emulsion, and GLA plus squalene-oil-in-water emulsion) and compared for their ability to induce malaria transmission-blocking antibodies. Alga-produced recombinant Pfs25 plus GLA plus squalene-oil-in-water adjuvant induced the highest titer and avidity in IgG antibodies, measured using alga-produced recombinant Pfs25 as the enzyme-linked immunosorbent assay (ELISA) antigen. These antibodies specifically reacted with the surface of P. falciparum macrogametes and zygotes and effectively prevented parasites from developing within the mosquito vector in standard membrane feeding assays. Alga-produced Pfs25 in combination with a human-compatible adjuvant composed of a TLR-4 agonist in a squalene-oil-in-water emulsion is an attractive new vaccine candidate that merits head-to-head comparison with other modalities of vaccine production and administration.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Protozoan/blood
- Antibody Affinity
- Chlamydomonas reinhardtii/genetics
- Chlamydomonas reinhardtii/metabolism
- Culicidae/parasitology
- Enzyme-Linked Immunosorbent Assay
- Female
- Humans
- Immunoglobulin G/blood
- Malaria Vaccines/administration & dosage
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Malaria Vaccines/isolation & purification
- Mice, Inbred BALB C
- Plasmodium falciparum/immunology
- Plasmodium falciparum/isolation & purification
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Proteins/isolation & purification
- Treatment Outcome
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Subunit/isolation & purification
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Kailash P Patra
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Fengwu Li
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Darrick Carter
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - James A Gregory
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Sheyenne Baga
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Steven G Reed
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Stephen P Mayfield
- Division of Biological Science and the San Diego Center for Algae Biotechnology, University of California San Diego, La Jolla, California, USA
| | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
14
|
Nikolaeva D, Draper SJ, Biswas S. Toward the development of effective transmission-blocking vaccines for malaria. Expert Rev Vaccines 2015; 14:653-80. [PMID: 25597923 DOI: 10.1586/14760584.2015.993383] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The continued global burden of malaria can in part be attributed to a complex lifecycle, with both human hosts and mosquito vectors serving as transmission reservoirs. In preclinical models of vaccine-induced immunity, antibodies to parasite sexual-stage antigens, ingested in the mosquito blood meal, can inhibit parasite survival in the insect midgut as judged by ex vivo functional studies such as the membrane feeding assay. In an era of renewed political momentum for malaria elimination and eradication campaigns, such observations have fueled support for the development and implementation of so-called transmission-blocking vaccines. While leading candidates are being evaluated using a variety of promising vaccine platforms, the field is also beginning to capitalize on global '-omics' data for the rational genome-based selection and unbiased characterization of parasite and mosquito proteins to expand the candidate list. This review covers the progress and prospects of these recent developments.
Collapse
Affiliation(s)
- Daria Nikolaeva
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | | | | |
Collapse
|
15
|
Habibi M, Asadi Karam MR, Shokrgozar MA, Oloomi M, Jafari A, Bouzari S. Intranasal immunization with fusion protein MrpH·FimH and MPL adjuvant confers protection against urinary tract infections caused by uropathogenic Escherichia coli and Proteus mirabilis. Mol Immunol 2015; 64:285-94. [PMID: 25562574 DOI: 10.1016/j.molimm.2014.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 01/25/2023]
Abstract
Urinary tract infections (UTIs) caused by Uropathogenic Escherichia coli (UPEC) and Proteus mirabilis are among the most common infections in the world. Currently there are no vaccines available to confer protection against UTI in humans. In this study, the immune responses and protection of FimH of UPEC with MrpH antigen of P. mirabilis in different vaccine formulations with and without MPL adjuvant were assessed. Mice intranasally immunized with the novel fusion protein MrpH·FimH induced a significant increase in IgG and IgA in serum, nasal wash, vaginal wash, and urine samples. Mice immunized with fusion MrpH·FimH also showed a significant boost in cellular immunity. Addition of MPL as the adjuvant enhanced FimH and MrpH specific humoral and cellular responses in both systemic and mucosal samples. Vaccination with MrpH·FimH alone or in combination with MPL showed the highest efficiency in clearing bladder and kidney infections in mice challenged with UPEC and P. mirabilis. These findings may indicate that the protection observed correlates with the systemic, mucosal and cellular immune responses induced by vaccination with these preparations. Our data suggest MrpH·FimH fusion protein with or without MPL as adjuvant could be potential vaccine candidates for elimination of UPEC and P. mirabilis. These data altogether are promising and these formulations are good candidates for elimination of UPEC and P. mirabilis.
Collapse
Affiliation(s)
- Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran
| | | | | | - Mana Oloomi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran
| | - Anis Jafari
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran.
| |
Collapse
|
16
|
Abstract
Malaria is a life-threatening disease caused by parasites of the Plasmodium genus. In many parts of the world, the parasites have developed resistance to a number of antimalarial agents. Key interventions to control malaria include prompt and effective treatment with artemisinin-based combination therapies, use of insecticidal nets by individuals at risk and active research into malaria vaccines. Protection against malaria through vaccination was demonstrated more than 30 years ago when individuals were vaccinated via repeated bites by Plasmodium falciparum-infected and irradiated but still metabolically active mosquitoes. However, vaccination with high doses of irradiated sporozoites injected into humans has long been considered impractical. Yet, following recent success using whole-organism vaccines, the approach has received renewed interest; it was recently reported that repeated injections of irradiated sporozoites increased protection in 80 vaccinated individuals. Other approaches include subunit malaria vaccines, such as the current leading candidate RTS,S (consisting of fusion between a portion of the P. falciparum-derived circumsporozoite protein and the hepatitis B surface antigen), which has been demonstrated to induce reasonably good protection. Although results have been encouraging, the level of protection is generally considered to be too low to achieve eradication of malaria. There is great interest in developing new and better formulations and stable delivery systems to improve immunogenicity. In this review, we will discuss recent strategies to develop efficient malaria vaccines.
Collapse
Affiliation(s)
- C Arama
- Malaria Research and Training Center, University of Sciences Techniques and Technologies of Bamako (USTTB), Bamako, Mali; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
17
|
Imaging murine NALT following intranasal immunization with flagellin-modified circumsporozoite protein malaria vaccines. Mucosal Immunol 2014; 7:304-14. [PMID: 23820750 PMCID: PMC3884030 DOI: 10.1038/mi.2013.48] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/04/2013] [Indexed: 02/04/2023]
Abstract
Intranasal (IN) immunization with a Plasmodium circumsporozoite (CS) protein conjugated to flagellin, a Toll-like receptor 5 agonist, was found to elicit antibody-mediated protective immunity in our previous murine studies. To better understand IN-elicited immune responses, we examined the nasopharynx-associated lymphoid tissue (NALT) in immunized mice and the interaction of flagellin-modified CS with murine dendritic cells (DCs) in vitro. NALT of immunized mice contained a predominance of germinal center (GC) B cells and increased numbers of CD11c+ DCs localized beneath the epithelium and within the GC T-cell area. We detected microfold cells distributed throughout the NALT epithelial cell layer and DC dendrites extending into the nasal cavity, which could potentially function in luminal CS antigen uptake. Flagellin-modified CS taken up by DCs in vitro was initially localized within intracellular vesicles followed by a cytosolic distribution. Vaccine modifications to enhance delivery to the NALT and specifically target NALT antigen-presenting cell populations will advance development of an efficacious needle-free vaccine for the 40% of the world's population at risk of malaria.
Collapse
|
18
|
Tricomponent complex loaded with a mosquito-stage antigen of the malaria parasite induces potent transmission-blocking immunity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:561-9. [PMID: 24521783 DOI: 10.1128/cvi.00053-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of malaria vaccines is challenging, partly because the immunogenicity of recombinant malaria parasite antigens is low. We previously demonstrated that parasite antigens integrated into a tricomponent immunopotentiating complex increase antiparasitic immunity. In this study, the B domains of a group G Streptococcus (SpG) strain and Peptostreptococcus magnus (PpL) were used to evaluate whether vaccine efficacy is influenced by the type of immunoglobulin-binding domain (IBD) in the tricomponent complex. IBDs were fused to a pentameric cartilage oligomeric matrix protein (COMP) to increase the binding avidity of the complexes for their targets. The COMP-IBD fusion proteins generated (COMP-SpG and COMP-PpL and the previously constructed COMP-Z) bound a large fraction of splenic B lymphocytes but not T lymphocytes. These carrier molecules were then loaded with an ookinete surface protein of Plasmodium vivax, Pvs25, by chemical conjugation. The administration of the tricomponent complexes to mice induced more Pvs25-specific serum IgG than did the unloaded antigen. The PpL complex, which exhibited a broad Ig-binding spectrum, conferred higher vaccine efficacy than did the Z or SpG complexes when evaluated with a membrane feed assay. This study demonstrates that this tricomponent immunopotentiating system, incorporating IBDs as the B-lymphocyte-targeting ligands, is a promising technology for the delivery of malaria vaccines, particularly when combined with an aluminum salt adjuvant.
Collapse
|
19
|
Potent malaria transmission-blocking antibody responses elicited by Plasmodium falciparum Pfs25 expressed in Escherichia coli after successful protein refolding. Infect Immun 2014; 82:1453-9. [PMID: 24421036 DOI: 10.1128/iai.01438-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Production of Pfs25, a Plasmodium falciparum transmission-blocking vaccine target antigen, in functional conformation with the potential to elicit effective immunogenicity still remains a major challenge. In the current study, codon-harmonized recombinant Pfs25 (CHrPfs25) was expressed in Escherichia coli, and purified protein after simple oxidative refolding steps retained reduction-sensitive conformational epitopes of transmission-blocking monoclonal antibodies. CHrPfs25 formulated in several adjuvants elicited strong immunogenicity in preclinical studies in mice. Antibodies elicited after immunization recognized native Pfs25 on the surface of live gametes of P. falciparum and demonstrated complete malaria transmission-blocking activity. The transmission-blocking efficacy was 100% even after a 1:128 dilution of sera from immunized mice in the complete Freund's adjuvant and Montanide ISA51 groups and after a 1:16 dilution of sera from mice in the alum group. The blocking was mediated by antibodies; purified IgG at concentrations as low as 31.25 μg/ml exhibited 100% transmission blocking in membrane feeding assays employing two different species of mosquitoes, Anopheles gambiae and Anopheles stephensi. This study provides the first evidence for successful expression of biologically functional rPfs25 in E. coli. The extremely potent malaria transmission-blocking activity of antibodies elicited by immunization with purified protein provides strong support for further evaluation of E. coli-derived CHrPfs25 as a malaria transmission-blocking vaccine in human clinical trials.
Collapse
|
20
|
Arakawa T. Adjuvants: no longer a ‘dirty little secret’, but essential key players in vaccines of the future. Expert Rev Vaccines 2014; 10:1-5. [DOI: 10.1586/erv.10.140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Anti-Pfs25 human plasma reduces transmission of Plasmodium falciparum isolates that have diverse genetic backgrounds. Infect Immun 2013; 81:1984-9. [PMID: 23509152 DOI: 10.1128/iai.00016-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pfs25 is a leading candidate for a malaria transmission-blocking vaccine whose potential has been demonstrated in a phase 1 trial with recombinant Pfs25 formulated with Montanide ISA51. Because of limited sequence polymorphism, the anti-Pfs25 antibodies induced by this vaccine are likely to have transmission-blocking or -reducing activity against most, if not all, field isolates. To test this hypothesis, we evaluated transmission-blocking activities by membrane feeding assay of anti-Pfs25 plasma from the Pfs25/ISA51 phase 1 trial against Plasmodium falciparum parasites from patients in two different geographical regions of the world, Thailand and Burkina Faso. In parallel, parasite isolates from these patients were sequenced for the Pfs25 gene and genotyped for seven microsatellites. The results indicate that despite different genetic backgrounds among parasite isolates, the Pfs25 sequences are highly conserved, with a single nonsynonymous nucleotide polymorphism detected in 1 of 41 patients in Thailand and Burkina Faso. The anti-Pfs25 immune plasma had significantly higher transmission-reducing activity against parasite isolates from the two geographical regions than the nonimmune controls (P < 0.0001).
Collapse
|
22
|
Debache K, Hemphill A. Differential effects of intranasal vaccination with recombinant NcPDI in different mouse models ofNeospora caninuminfection. Parasite Immunol 2012; 35:11-20. [DOI: 10.1111/pim.12013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 10/02/2012] [Indexed: 01/28/2023]
Affiliation(s)
- K. Debache
- Institute of Parasitology; Vetsuisse Faculty; University of Berne; Berne; Switzerland
| | - A. Hemphill
- Institute of Parasitology; Vetsuisse Faculty; University of Berne; Berne; Switzerland
| |
Collapse
|
23
|
Goodman AL, Blagborough AM, Biswas S, Wu Y, Hill AV, Sinden RE, Draper SJ. A viral vectored prime-boost immunization regime targeting the malaria Pfs25 antigen induces transmission-blocking activity. PLoS One 2011; 6:e29428. [PMID: 22216279 PMCID: PMC3247263 DOI: 10.1371/journal.pone.0029428] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 11/29/2011] [Indexed: 11/18/2022] Open
Abstract
The ookinete surface protein Pfs25 is a macrogamete-to-ookinete/ookinete stage antigen of Plasmodium falciparum, capable of exerting high-level anti-malarial transmission-blocking activity following immunization with recombinant protein-in-adjuvant formulations. Here, this antigen was expressed in recombinant chimpanzee adenovirus 63 (ChAd63), human adenovirus serotype 5 (AdHu5) and modified vaccinia virus Ankara (MVA) viral vectored vaccines. Two immunizations were administered to mice in a heterologous prime-boost regime. Immunization of mice with AdHu5 Pfs25 at week 0 and MVA Pfs25 at week 10 (Ad-MVA Pfs25) resulted in high anti-Pfs25 IgG titers, consisting of predominantly isotypes IgG1 and IgG2a. A single priming immunization with ChAd63 Pfs25 was as effective as AdHu5 Pfs25 with respect to ELISA titers at 8 weeks post-immunization. Sera from Ad-MVA Pfs25 immunized mice inhibited the transmission of P. falciparum to the mosquito both ex vivo and in vivo. In a standard membrane-feeding assay using NF54 strain P. falciparum, oocyst intensity in Anopheles stephensi mosquitoes was significantly reduced in an IgG concentration-dependent manner when compared to control feeds (96% reduction of intensity, 78% reduction in prevalence at a 1 in 5 dilution of sera). In addition, an in vivo transmission-blocking effect was also demonstrated by direct feeding of immunized mice infected with Pfs25DR3, a chimeric P. berghei line expressing Pfs25 in place of endogenous Pbs25. In this assay the density of Pfs25DR3 oocysts was significantly reduced when mosquitoes were fed on vaccinated as compared to control mice (67% reduction of intensity, 28% reduction in prevalence) and specific IgG titer correlated with efficacy. These data confirm the utility of the adenovirus-MVA vaccine platform for the induction of antibodies with transmission-blocking activity, and support the continued development of this alternative approach to transmission-blocking malaria subunit vaccines.
Collapse
Affiliation(s)
- Anna L Goodman
- The Jenner Institute, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
24
|
Intranasal immunization with LACK-DNA promotes protective immunity in hamsters challenged with Leishmania chagasi. Parasitology 2011; 138:1892-7. [PMID: 21867591 DOI: 10.1017/s0031182011001417] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
LACK (Leishmania analogue of the receptor kinase C) is a conserved protein in protozoans of the genus Leishmania which is associated with the immunopathogenesis and susceptibility of BALB/c mice to L. major infection. Previously, we demonstrated that intranasal immunization with a plasmid carrying the LACK gene of Leishmania infantum (LACK-DNA) promotes protective immunity in BALB/c mice against Leishmania amazonensis and Leishmania chagasi. In the present study, we investigated the protective immunity achieved in hamsters intranasally vaccinated with 2 doses of LACK-DNA (30 μg). Compared with controls (PBS and pCI-neo plasmid), animals vaccinated with LACK-DNA showed significant reduction in parasite loads in the spleen and liver, increased lymphoproliferative response and increased nitric oxide (NO) production by parasite antigen-stimulated splenocytes. Furthermore, hamsters vaccinated with LACK-DNA presented high IgG and IgG2a serum levels when compared to control animals. Our results showed that intranasal vaccination with LACK-DNA promotes protective immune responses in hamsters and demonstrated the broad spectrum of intranasal LACK-DNA efficacy in different host species, confirming previous results in murine cutaneous and visceral leishmaniasis.
Collapse
|
25
|
Tricomponent immunopotentiating system as a novel molecular design strategy for malaria vaccine development. Infect Immun 2011; 79:4260-75. [PMID: 21807905 DOI: 10.1128/iai.05214-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The creation of subunit vaccines to prevent malaria infection has been hampered by the intrinsically weak immunogenicity of the recombinant antigens. We have developed a novel strategy to increase immune responses by creating genetic fusion proteins to target specific antigen-presenting cells (APCs). The fusion complex was composed of three physically linked molecular entities: (i) a vaccine antigen, (ii) a multimeric α-helical coiled-coil core, and (iii) an APC-targeting ligand linked to the core via a flexible linker. The vaccine efficacy of the tricomponent complex was evaluated using an ookinete surface protein of Plasmodium vivax, Pvs25, and merozoite surface protein-1 of Plasmodium yoelii. Immunization of mice with the tricomponent complex induced a robust antibody response and conferred substantial levels of P. vivax transmission blockade as evaluated by a membrane feed assay, as well as protection from lethal P. yoelii infection. The observed effect was strongly dependent on the presence of all three components physically integrated as a fusion complex. This system, designated the tricomponent immunopotentiating system (TIPS), onto which any recombinant protein antigens or nonproteinaceous substances could be loaded, may be a promising strategy for devising subunit vaccines or adjuvants against various infectious diseases, including malaria.
Collapse
|
26
|
Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev 2011; 24:377-410. [PMID: 21482730 PMCID: PMC3122489 DOI: 10.1128/cmr.00051-10] [Citation(s) in RCA: 508] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Malaria remains a major cause of morbidity and mortality in the tropics, with Plasmodium falciparum responsible for the majority of the disease burden and P. vivax being the geographically most widely distributed cause of malaria. Gametocytes are the sexual-stage parasites that infect Anopheles mosquitoes and mediate the onward transmission of the disease. Gametocytes are poorly studied despite this crucial role, but with a recent resurgence of interest in malaria elimination, the study of gametocytes is in vogue. This review highlights the current state of knowledge with regard to the development and longevity of P. falciparum and P. vivax gametocytes in the human host and the factors influencing their distribution within endemic populations. The evidence for immune responses, antimalarial drugs, and drug resistance influencing infectiousness to mosquitoes is reviewed. We discuss how the application of molecular techniques has led to the identification of submicroscopic gametocyte carriage and to a reassessment of the human infectious reservoir. These components are drawn together to show how control measures that aim to reduce malaria transmission, such as mass drug administration and a transmission-blocking vaccine, might better be deployed.
Collapse
Affiliation(s)
- Teun Bousema
- Department of Immunology & Infection, London School of Hygiene and Tropical Medicine, London W1CE 7HT, United Kingdom
| | - Chris Drakeley
- Department of Immunology & Infection, London School of Hygiene and Tropical Medicine, London W1CE 7HT, United Kingdom
| |
Collapse
|
27
|
Adenovirus-vectored Plasmodium vivax ookinete surface protein, Pvs25, as a potential transmission-blocking vaccine. Vaccine 2011; 29:2720-6. [PMID: 21315699 DOI: 10.1016/j.vaccine.2011.01.083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/29/2010] [Accepted: 01/21/2011] [Indexed: 11/22/2022]
Abstract
Adjuvants or delivery vehicles are essential components to expedite malaria vaccine development. In this study, replication-defective human adenovirus serotype 5 (rAd) was genetically engineered to express the Plasmodium vivax ookinete surface protein (OSP), Pvs25 (AdPvs25). BALB/c mice immunized with the AdPvs25 through various routes including intramuscular, subcutaneous and intranasal routes were analyzed for induction of antigen-specific transmission-blocking immunity. Parenteral but not mucosal immunization induced high serum immunoglobulin G (IgG) responses specific to P. vivax ookinetes isolated from P. vivax volunteer patients from Thailand. The membrane feeding assay revealed that antisera conferred a transmission blockade of up to 99% reduction in the average oocyst numbers per mosquito, while immunization with a rAd expressing Pfs25 from Plasmodium falciparum, a homolog of Pvs25, conferred only a background level of blockade, suggesting that a species-specific transmission-blocking immunity was induced. Vaccine efficacy of AdPvs25 was slightly higher than to a recombinant Pvs25 protein mixed with aluminum hydroxide, but less efficacious than the protein emulsified with incomplete Freund's adjuvant. This study, the first preclinical evaluation of adenovirus-vectored malaria OSPs, implicates a potential inclusion of malaria transmission-blocking vaccine antigens in viral vector systems.
Collapse
|
28
|
Yesuf EA, Dejene T. Effect of schistosoma infection on malaria immune response: A systematic review. JBI LIBRARY OF SYSTEMATIC REVIEWS 2011; 9:1551-1602. [PMID: 27819936 DOI: 10.11124/01938924-201109380-00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
EXECUTIVE SUMMARY Background Worldwide an estimated 225 million cases and about 800, 000 deaths due to malaria were documented in 2009. Malaria vaccines have been developed as a malaria control strategy. Immune response to these vaccines might be affected by the blood fluke schistosoma which is often co-endemic with malaria in Sub-Saharan Africa where most of phase II and Phase III malaria vaccine trials were conducted.Objectives To systematically search, appraise and synthesize the best available evidence on the effect of schistosoma infection on the immune response to malaria antigens and provide direction to future malaria vaccination trials.Types of participants The review considered studies with above 5 year old individuals as participants.Phenomenon of interest The phenomenon of interest was the presence of schistosoma infectionTypes of outcomes Blood serum levels of Th1 and Th2 specific to Merozoite Surface Proteins 1, 2, and 3 of malaria were considered as primary outcomes. While blood serum levels of IgG1, IgG2, IgG3, IFN-γ, IL-10 and TGF-β directed against Merozoite Surface Proteins were considered as secondary outcomes.Types of studies Studies with any quantitative study designs were considered for inclusion.Search Strategy Any quantitative English language articles published between 1994 and April 2011 were sought using a comprehensive search strategy.Assessment of methodological quality It was done using Joanna Briggs Institutes' Meta Analysis of Statistical Assessment and Review Instrument critical appraisal tools.Data extraction Data extraction was carried out using the Joanna Briggs Institute Meta Analysis of Statistical Assessment and Review Instrument data extraction tool.Data synthesis Meta- analysis was conducted using random effects model with an inverse variance method with RevMan5 software. Heterogeneity between the studies was assessed using ξ test at a p-value of <0.1. Summary statistics were expressed as Standardized Mean Difference with 95% confidence intervals at a p-value of <0.05.Results From 3985 titles identified during the initial search, 3 cohort studies were included in the review following detailed examination and critical appraisal. Mean blood serum level of IgG1 directed against MSP of malaria was increased in S.hematobium positive individuals than in schistosoma negative individuals (0.478 and 0.181). This effect was small with no statistical significance, SMD (95% CI), 0.15 (-2.00, 2.31), p=0.89.Similarly a small and statistically not significant increase in mean blood serum levels of IgG3 and IFN-γ directed against MSP of malaria were found in schistosoma positive individuals than in schistosoma negative individuals with a SMD (95% CI) of 0.31 (-0.66, 1.29), p=0.52 and 0.16 (-0.27, 0.59), p=0.46, respectively. CONCLUSIONS Implications for Practice Concurrent schistosoma infection increases humoral immune response measures to malaria. This could confound an increase in humoral immune response measures after the administration of malaria vaccine. In addition, it might increase the incidence of malaria complication such as cerebral malaria by increasing IFN-γ levels.Implications for Research Further longitudinal studies aimed at determining the difference in long term response (cellular immunity) to malaria vaccine in individuals with and without schistosoma infection need to be undertaken.
Collapse
Affiliation(s)
- Elias Ali Yesuf
- 1. Elias Ali Yesuf (MD) Lecturer of Pharmacology, Department of Pharmacy. Jimma University. 2. Tariku Dejene (MSc) Lecturer of Biostatistics, Department of Epidemiology. Jimma University, P.O. Box. 378. Jimma, Ethiopia. E-mail: Tel. Mobile: +251 911727342
| | | |
Collapse
|
29
|
Yesuf EA, Dejene T. Effect of Schistosomiasis infection on Malaria immune response- systematic review. JBI LIBRARY OF SYSTEMATIC REVIEWS 2011; 9:1-18. [PMID: 27820249 DOI: 10.11124/01938924-201109161-00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Elias Ali Yesuf
- 1Lecturer of pharmacology, Department of Pharmacy Jimma University, P.O.Box. 378 Jimma, Ethiopia E-mail: Tel. Fixed: +251 471111979, Mobile: +251 910089451 2Lecturer of Biostatistics, Department of Epidemiology Jimma University, P.O. Box. 378 Jimma, Ethiopia E-mail: Tel. Mobile: +251 911727342
| | | |
Collapse
|
30
|
Mlambo G, Kumar N, Yoshida S. Functional immunogenicity of baculovirus expressing Pfs25, a human malaria transmission-blocking vaccine candidate antigen. Vaccine 2010; 28:7025-9. [PMID: 20709008 DOI: 10.1016/j.vaccine.2010.08.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/19/2010] [Accepted: 08/02/2010] [Indexed: 11/19/2022]
Abstract
We have focused on development of a novel vaccine vector based on "Baculophage", a baculovirus display system for expression of proteins on the surface of the viral envelope, as a non-pathogenic and non-vertebrate insect virus. In the present study, recombinant baculovirus (AcNPV-Pfs25surf) were generated, which displayed Pfs25, a potent Plasmodium falciparum transmission-blocking vaccine candidate. Both intranasal and intramuscular immunizations of mice with AcNPV-Pfs25surf induced high levels of Pfs25-specific antibodies, which strongly reacted with ookinetes of transgenic Plasmodium berghei expressing Pfs25 (TrPfs25Pb). Importantly, sera obtained from immunized rabbits exhibited a significant transmission-blocking effect (>90% reduction in infection intensity) in standard membrane feeding assay using P. falciparum gametocytes. Additionally, active immunization (both intranasal and intramuscular routes) of mice followed by challenge using TrPfs25Pb demonstrated an effective transmission-blocking response, with an 83% (intranasal) and ∼95% (intramuscular) reduction in oocyst intensity, respectively. Thus, the baculovirus-based vaccines offer a promising new alternative to current human vaccine delivery platforms for the development of malaria multi-stage vaccines.
Collapse
Affiliation(s)
- Godfree Mlambo
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
31
|
Blagborough AM, Yoshida S, Sattabongkot J, Tsuboi T, Sinden RE. Intranasal and intramuscular immunization with Baculovirus Dual Expression System-based Pvs25 vaccine substantially blocks Plasmodium vivax transmission. Vaccine 2010; 28:6014-20. [PMID: 20637303 DOI: 10.1016/j.vaccine.2010.06.100] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/28/2010] [Accepted: 06/29/2010] [Indexed: 12/20/2022]
Abstract
We have recently developed a new experimental vaccine vector system based on Autographa californica nucleopolyhedrosis virus (AcNPV) termed the "Baculovirus Dual Expression System", which drives expression of vaccine candidate antigens by a dual promoter that consists of tandemly arranged baculovirus-derived polyhedrin and mammalian-derived CMV promoters. The present study used this system to generate a Plasmodium vivax transmission-blocking immunogen (AcNPV-Dual-Pvs25). AcNPV-Dual-Pvs25 not only displayed Pvs25 on the AcNPV envelope, exhibiting aspects of its native three-dimensional structure, but also expressed appropriately immunogenic protein upon transduction of mammalian cells. Both intranasal and intramuscular immunization of mice with AcNPV-Dual-Pvs25 induced high Pvs25-specific antibody titres, notably of IgG1, IgG2a and IgG2b isotypes, indicating a mixed Th1/Th2 response. Importantly, sera obtained from subcutaneously immunized rabbits exhibited a significant transmission-blocking effect (96% reduction in infection intensity, 24% reduction in prevalence) when challenged with human blood infected with P. vivax gametocytes using the standard membrane feeding assay. Additionally, active immunization (both intranasal and intramuscular routes) of mice followed by challenge using a transgenic P. berghei line expressing Pvs25 in place of native Pbs25 and Pbs28 (clone Pvs25DR3) demonstrates a strong transmission-blocking response, with a 92.1% (intranasal) and 83.8% (intramuscular) reduction in oocyst intensity. Corresponding reductions in prevalence of infection were observed (88.4% and 75.5% respectively). This study offers a novel tool for the development of malarial transmission-blocking vaccines against the sexual stages of the parasite, using the Baculovirus Dual Expression System that functions as both a subunit, and DNA based vaccine.
Collapse
Affiliation(s)
- Andrew M Blagborough
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, London SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
32
|
Plasmodium vivax ookinete surface protein Pvs25 linked to cholera toxin B subunit induces potent transmission-blocking immunity by intranasal as well as subcutaneous immunization. Infect Immun 2010; 78:3773-82. [PMID: 20584978 DOI: 10.1128/iai.00306-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The nontoxic cholera toxin B subunit (CTB) was evaluated as a potential delivery molecule for the Plasmodium vivax ookinete surface protein, Pvs25. Recombinant Pvs25 was expressed as a secreted protein in the yeast Pichia pastoris, as a mixture of isoforms including multimers and the A and B monomers. The A isoform with the presumed native protein fold was the most abundant, accounting for more than 40% of all expressed protein. The molecularly uniform A isoform was chemically conjugated to CTB via its primary amines, and the fusion protein, retaining GM1-ganglioside affinity, was administered to BALB/c mice by the subcutaneous (s.c.) or intranasal (i.n.) route. Immunization of mice with conjugated Pvs25 without supplemental adjuvant induced antisera that specifically recognized P. vivax ookinetes in vitro. Furthermore, the antisera, when mixed with parasitized blood isolated from P. vivax patients from Thailand, was found to reduce parasite transmission to mosquitoes, conferring a 93 to 98% (s.c.) or a 73 to 88% (i.n.) decrease in oocyst number. Unconjugated Pvs25 alone conferred only a 23 to 60% (s.c.) or a 0 to 6% (i.n.) decrease in oocyst number. Coadministration of extraneous adjuvants, however, further enhanced the vaccine efficacy up to complete blockade. Taken together, we conclude that a weakly immunogenic Pvs25 by itself, when linked to CTB, transforms into a potent transmission-blocking antigen in both i.n. and s.c. routes. In addition, the present study is, to the best of our knowledge, the first demonstration of the immune potentiating function of CTB for a vaccine antigen delivered by the s.c. route.
Collapse
|
33
|
Solano-Parada J, Gonzalez-Gonzalez G, Torró LMDP, dos Santos MFB, Espino AM, Burgos M, Osuna A. Effectiveness of intranasal vaccination against Angiostrongylus costaricensis using a serine/threonine phosphatase 2 A synthetic peptide and recombinant antigens. Vaccine 2010; 28:5185-96. [PMID: 20558243 DOI: 10.1016/j.vaccine.2010.05.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 05/20/2010] [Accepted: 05/28/2010] [Indexed: 01/26/2023]
Abstract
Intranasal immunization was assayed in C57BL/6 mice against Angiostrongylus costaricensis using a synthetic and a recombinant peptide belonging to the catalytic region of the serine/threonine phosphatase 2 A (PP2A) of the parasite. Immunization was carried out with the synthetic peptide (SP) polymerized either with itself or with the beta fraction of the cholera toxin (CTB) and then enclosed in nanocapsules of phosphatidyl choline, cholesterol and Quil A (ISCOM). Another group of mice was immunized with recombinant peptide. Immunization consisted of two intranasal inoculations at two-week intervals, and the challenge with L3 larvae was made one month after the last vaccination. The effectiveness of immunization was evaluated 30 days after infection by analysis of the number of parasites in the arteries of the immunized mice, as well as by measuring spleen sizes in the experimental groups. The response induced was determined by identifying the isotypes of IgG as well as the IgE and IgA specific antigen response. The interleukins produced by the splenocyte culture of the different groups were assessed after exposing them to the peptide used in the immunization. From our results, 60%, 80%, and 100% protection against the A. costaricensis challenge was achieved in mice immunized with polymerized synthetic peptide in ISCOM, synthetic peptide polymerized with the CTB in ISCOM and inclusion bodies respectively. Splenomegaly was found to be less evident in the immunized mice than in the controls. A significant increase in IFN gamma and IL-17 levels was observed in the group with 100% protection. The results showed that vaccination through the nasal mucosa may constitute a useful method of immunization and result in a protective immune response against A. costaricensis.
Collapse
Affiliation(s)
- J Solano-Parada
- Institute of Biotechnology, Biochemistry and Molecular Parasitology Group, University of Granada, Edif Mecenas, Campus Fuentenueva, 18071 Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Coutinho-Abreu IV, Ramalho-Ortigao M. Transmission blocking vaccines to control insect-borne diseases: a review. Mem Inst Oswaldo Cruz 2010; 105:1-12. [PMID: 20209323 DOI: 10.1590/s0074-02762010000100001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 12/17/2009] [Indexed: 11/22/2022] Open
Abstract
Insect-borne diseases are responsible for severe mortality and morbidity worldwide. As control of insect vector populations relies primarily on the use of insecticides, the emergence of insecticide resistance as well to unintended consequences of insecticide use pose significant challenges to their continued application. Novel approaches to reduce pathogen transmission by disease vectors are been attempted, including transmission-blocking vaccines (TBVs) thought to be a feasible strategy to reduce pathogen burden in endemic areas. TBVs aim at preventing the transmission of pathogens from infected to uninfected vertebrate host by targeting molecule(s) expressed on the surface of pathogens during their developmental phase within the insect vector or by targeting molecules expressed by the vectors. For pathogen-based molecules, the majority of the TBV candidates selected as well as most of the data available regarding the effectiveness of this approach come from studies using malaria parasites. However, TBV candidates also have been identified from midgut tissues of mosquitoes and sand flies. In spite of the successes achieved in the potential application of TBVs against insect-borne diseases, many significant barriers remain. In this review, many of the TBV strategies against insect-borne pathogens and their respective ramification with regards to the immune response of the vertebrate host are discussed.
Collapse
Affiliation(s)
- Iliano V Coutinho-Abreu
- Biology of Disease Vectors Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
35
|
Arakawa T, Tachibana M, Miyata T, Harakuni T, Kohama H, Matsumoto Y, Tsuji N, Hisaeda H, Stowers A, Torii M, Tsuboi T. Malaria ookinete surface protein-based vaccination via the intranasal route completely blocks parasite transmission in both passive and active vaccination regimens in a rodent model of malaria infection. Infect Immun 2009; 77:5496-500. [PMID: 19752035 PMCID: PMC2786443 DOI: 10.1128/iai.00640-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/06/2009] [Accepted: 09/06/2009] [Indexed: 11/20/2022] Open
Abstract
Malaria vaccines based on ookinete surface proteins (OSPs) of the malaria parasites block oocyst development in feeding mosquitoes and hence disrupt the parasite life cycle and prevent the disease from being transmitted to other individuals. To investigate whether a noninvasive mucosal vaccination regimen effectively blocks parasite transmission in vivo, Plasmodium yoelii Pys25, a homolog of the Pfs25 and Pvs25 OSPs of Plasmodium falciparum and Plasmodium vivax, respectively, was intranasally (i.n.) administered using a complement-deficient DBA/2 mouse malaria infection model, in which a highly elevated level of oocysts develops in feeding mosquitoes. Vaccinated mice developed a robust antibody response when the vaccine antigen was given together with cholera toxin adjuvant. The induced immune serum was passively transferred to DBA/2 mice 3 days after infection with P. yoelii 17XL, and Anopheles stephensi mosquitoes were allowed to feed on the infected mice before or after serum transfusion. This passive immunization completely blocked oocyst development; however, immune serum induced by the antigen or adjuvant alone did not have such a profound antiparasite effect. Further, when i.n. vaccinated mice were infected with the parasite and then mosquitoes were allowed to directly feed on the infected mice, complete blockage of transmission was again observed. To our knowledge, this is the first time that mucosal vaccination has been demonstrated to be efficacious for directly preventing parasite transmission from vaccinated animals to mosquitoes, and the results may provide important insight into rational design of nonparenteral vaccines for use against human malaria.
Collapse
Affiliation(s)
- Takeshi Arakawa
- Molecular Microbiology Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan, Division of Host Defense and Vaccinology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan, Department of Molecular Parasitology, Ehime University School of Medicine, Shigenobu-cho, Ehime 791-0295, Japan, Laboratory of Global Animal Resource Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, National Institute of Animal Health, National Agricultural Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan, Malaria Vaccine Development Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Mayumi Tachibana
- Molecular Microbiology Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan, Division of Host Defense and Vaccinology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan, Department of Molecular Parasitology, Ehime University School of Medicine, Shigenobu-cho, Ehime 791-0295, Japan, Laboratory of Global Animal Resource Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, National Institute of Animal Health, National Agricultural Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan, Malaria Vaccine Development Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Takeshi Miyata
- Molecular Microbiology Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan, Division of Host Defense and Vaccinology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan, Department of Molecular Parasitology, Ehime University School of Medicine, Shigenobu-cho, Ehime 791-0295, Japan, Laboratory of Global Animal Resource Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, National Institute of Animal Health, National Agricultural Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan, Malaria Vaccine Development Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Tetsuya Harakuni
- Molecular Microbiology Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan, Division of Host Defense and Vaccinology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan, Department of Molecular Parasitology, Ehime University School of Medicine, Shigenobu-cho, Ehime 791-0295, Japan, Laboratory of Global Animal Resource Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, National Institute of Animal Health, National Agricultural Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan, Malaria Vaccine Development Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Hideyasu Kohama
- Molecular Microbiology Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan, Division of Host Defense and Vaccinology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan, Department of Molecular Parasitology, Ehime University School of Medicine, Shigenobu-cho, Ehime 791-0295, Japan, Laboratory of Global Animal Resource Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, National Institute of Animal Health, National Agricultural Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan, Malaria Vaccine Development Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Yasunobu Matsumoto
- Molecular Microbiology Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan, Division of Host Defense and Vaccinology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan, Department of Molecular Parasitology, Ehime University School of Medicine, Shigenobu-cho, Ehime 791-0295, Japan, Laboratory of Global Animal Resource Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, National Institute of Animal Health, National Agricultural Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan, Malaria Vaccine Development Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Naotoshi Tsuji
- Molecular Microbiology Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan, Division of Host Defense and Vaccinology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan, Department of Molecular Parasitology, Ehime University School of Medicine, Shigenobu-cho, Ehime 791-0295, Japan, Laboratory of Global Animal Resource Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, National Institute of Animal Health, National Agricultural Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan, Malaria Vaccine Development Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Hajime Hisaeda
- Molecular Microbiology Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan, Division of Host Defense and Vaccinology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan, Department of Molecular Parasitology, Ehime University School of Medicine, Shigenobu-cho, Ehime 791-0295, Japan, Laboratory of Global Animal Resource Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, National Institute of Animal Health, National Agricultural Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan, Malaria Vaccine Development Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Anthony Stowers
- Molecular Microbiology Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan, Division of Host Defense and Vaccinology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan, Department of Molecular Parasitology, Ehime University School of Medicine, Shigenobu-cho, Ehime 791-0295, Japan, Laboratory of Global Animal Resource Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, National Institute of Animal Health, National Agricultural Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan, Malaria Vaccine Development Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Motomi Torii
- Molecular Microbiology Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan, Division of Host Defense and Vaccinology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan, Department of Molecular Parasitology, Ehime University School of Medicine, Shigenobu-cho, Ehime 791-0295, Japan, Laboratory of Global Animal Resource Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, National Institute of Animal Health, National Agricultural Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan, Malaria Vaccine Development Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Takafumi Tsuboi
- Molecular Microbiology Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan, Division of Host Defense and Vaccinology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan, Department of Molecular Parasitology, Ehime University School of Medicine, Shigenobu-cho, Ehime 791-0295, Japan, Laboratory of Global Animal Resource Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, National Institute of Animal Health, National Agricultural Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan, Malaria Vaccine Development Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
36
|
Intraperitoneal and intra-nasal vaccination of mice with three distinct recombinant Neospora caninum antigens results in differential effects with regard to protection against experimental challenge with Neospora caninum tachyzoites. Parasitology 2009; 137:229-40. [PMID: 19835644 DOI: 10.1017/s0031182009991259] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recombinant NcPDI(recNcPDI), NcROP2(recNcROP2), and NcMAG1(recNcMAG1) were expressed in Escherichia coli and purified, and evaluated as potential vaccine candidates by employing the C57Bl/6 mouse cerebral infection model. Intraperitoneal application of these proteins suspended in saponin adjuvants lead to protection against disease in 50% and 70% of mice vaccinated with recNcMAG1 and recNcROP2, respectively, while only 20% of mice vaccinated with recNcPDI remained without clinical signs. In contrast, a 90% protection rate was achieved following intra-nasal vaccination with recNcPDI emulsified in cholera toxin. Only 1 mouse vaccinated intra-nasally with recNcMAG1 survived the challenge infection, and protection achieved with intra-nasally applied recNcROP2 was at 60%. Determination of cerebral parasite burdens by real-time PCR showed that these were significantly reduced only in recNcROP2-vaccinated animals (following intraperitoneal and intra-nasal application) and in recNcPDI-vaccinated mice (intra-nasal application only). Quantification of viable tachyzoites in brain tissue of intra-nasally vaccinated mice showed that immunization with recNcPDI resulted in significantly decreased numbers of live parasites. These data show that, besides the nature of the antigen, the protective effect of vaccination also depends largely on the route of antigen delivery. In the case of recNcPDI, the intra-nasal route provides a platform to generate a highly protective immune response.
Collapse
|
37
|
Takeo S, Hisamori D, Matsuda S, Vinetz J, Sattabongkot J, Tsuboi T. Enzymatic characterization of the Plasmodium vivax chitinase, a potential malaria transmission-blocking target. Parasitol Int 2009; 58:243-8. [PMID: 19427918 DOI: 10.1016/j.parint.2009.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 04/29/2009] [Accepted: 05/02/2009] [Indexed: 11/16/2022]
Abstract
The chitinase (EC 3.2.1.14) of the human malaria parasite Plasmodium falciparum, PfCHT1, has been validated as a malaria transmission-blocking vaccine (TBV). The present study aimed to delineate functional characteristics of the P. vivax chitinase PvCHT1, whose primary structure differs from that of PfCHT1 by having proenzyme and chitin-binding domains. The recombinant protein rPvCHT1 expressed with a wheat germ cell-free system hydrolyzed 4-methylumbelliferone (4MU) derivatives of chitin oligosaccharides (beta-1,4-poly-N-acetyl glucosamine (GlcNAc)). An anti-rPvCHT1 polyclonal antiserum reacted with in vitro-obtained P. vivax ookinetes in anterior cytoplasm, showing uneven patchy distribution. Enzymatic activity of rPvCHT1 shared the exclusive endochitinase property with parallelly expressed rPfCHT1 as demonstrated by a marked substrate preference for 4MU-GlcNAc(3) compared to shorter GlcNAc substrates. While rPvCHT1 was found to be sensitive to the general family-18 chitinase inhibitor, allosamidin, its pH (maximal in neutral environment) and temperature (max. at approximately 25 degrees C) activity profiles and sensitivity to allosamidin (IC50=6 microM) were different from rPfCHT1. The results in this first report of functional rPvCHT1 synthesis indicate that the P. vivax chitinase is enzymatically close to long form Plasmodium chitinases represented by P. gallinaceum PgCHT1.
Collapse
Affiliation(s)
- Satoru Takeo
- Cell-Free Science and Technology Research Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Intranasal administration of the synthetic polypeptide from the C-terminus of the circumsporozoite protein of Plasmodium berghei with the modified heat-labile toxin of Escherichia coli (LTK63) induces a complete protection against malaria challenge. Vaccine 2009; 27:1266-71. [DOI: 10.1016/j.vaccine.2008.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 11/28/2008] [Accepted: 12/09/2008] [Indexed: 11/23/2022]
|
39
|
Heterologous expression of plasmodial proteins for structural studies and functional annotation. Malar J 2008; 7:197. [PMID: 18828893 PMCID: PMC2567985 DOI: 10.1186/1475-2875-7-197] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 10/01/2008] [Indexed: 11/10/2022] Open
Abstract
Malaria remains the world's most devastating tropical infectious disease with as many as 40% of the world population living in risk areas. The widespread resistance of Plasmodium parasites to the cost-effective chloroquine and antifolates has forced the introduction of more costly drug combinations, such as Coartem®. In the absence of a vaccine in the foreseeable future, one strategy to address the growing malaria problem is to identify and characterize new and durable antimalarial drug targets, the majority of which are parasite proteins. Biochemical and structure-activity analysis of these proteins is ultimately essential in the characterization of such targets but requires large amounts of functional protein. Even though heterologous protein production has now become a relatively routine endeavour for most proteins of diverse origins, the functional expression of soluble plasmodial proteins is highly problematic and slows the progress of antimalarial drug target discovery. Here the status quo of heterologous production of plasmodial proteins is presented, constraints are highlighted and alternative strategies and hosts for functional expression and annotation of plasmodial proteins are reviewed.
Collapse
|
40
|
Wang L, Coppel RL. Oral vaccine delivery: can it protect against non-mucosal pathogens? Expert Rev Vaccines 2008; 7:729-38. [PMID: 18665772 DOI: 10.1586/14760584.7.6.729] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vaccination is an efficient and cost-effective form of preventing infectious diseases. However, most currently available vaccines are delivered by injection, which makes mass immunization more costly and less safe, particularly in resource-poor developing countries. Oral vaccines have several attractive features compared with parenteral vaccines, but studies on their use have been limited almost exclusively to protection against mucosally transmitted pathogens. Their potential for controlling non-mucosally transmitted diseases has not yet been appreciated in general. In this article, we provide evidence that oral immunization is a feasible alternative for preventing infections transmitted through non-mucosal routes, including infections such as malaria, Japanese encephalitis and hepatitis B. Although there are still hurdles to overcome before such approaches can be deployed widely, recent progress in the oral vaccination field and the availability of a range of delivery systems offers hope for the development of a larger number of oral vaccines.
Collapse
Affiliation(s)
- Lina Wang
- Department of Microbiology, Monash University, Clayton, Victoira 3800, Australia.
| | | |
Collapse
|
41
|
Dinglasan RR, Jacobs-Lorena M. Flipping the paradigm on malaria transmission-blocking vaccines. Trends Parasitol 2008; 24:364-70. [PMID: 18599352 DOI: 10.1016/j.pt.2008.05.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 03/28/2008] [Accepted: 05/02/2008] [Indexed: 10/21/2022]
Abstract
The idea of malaria transmission-blocking vaccines (TBVs) surfaced more than two decades ago. Since then, the research paradigm focused on developing TBVs that target surface antigens of parasite sexual stages. Only recently has an effort emerged that flipped this paradigm, targeting antigens of the parasite's obligate invertebrate vector, the Anopheles mosquito. Here, we review the current state of knowledge of mosquito-based TBVs and discuss the utility of this approach for future vaccine development.
Collapse
Affiliation(s)
- Rhoel R Dinglasan
- Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | |
Collapse
|
42
|
Yoneda A, Tuchiya K, Takashima Y, Arakawa T, Tsuji N, Hayashi Y, Matsumoto Y. Protection of mice from rabies by intranasal immunization with inactivated rabies virus. Exp Anim 2008; 57:1-9. [PMID: 18256513 DOI: 10.1538/expanim.57.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The mucosal immunization method is a needle-free alternative way of vaccination. This study evaluated the efficacy of mucosal immunization for rabies. Mice were intranasally administered five times with inactivated and concentrated rabies virus antigen (CRV) supplemented with or without cholera toxin (CT). The anti-rabies virus antibody titer of mice intranasally immunized with CRV plus CT (CRV/CT) was comparable to that of mice intraperitoneally immunized twice with the same amount of CRV. Virus neutralizing (VNA) titers of mice immunized intranasally with CRV/CT were slightly lower than those of intraperitoneally immunized mice. Both anti-rabies virus ELISA antibody and VNA titers of mice immunized with CRV without CT were significantly lower than those of mice immunized with CRV/CT. In mice intranasally immunized with CRV/CT, and intraperitoneally immunized mice, high levels of IgG(2a) antibody were detected, suggesting the activation of Th1-driven cellular immunity by the two ways of immunization. All immunized mice were challenged intracerebrally with a lethal dose of virulent rabies virus CVS strain. The survival rates of mice immunized with CRV/CT and CRV without CT were 67% and 17%, respectively, while the rate of intraperitoneally immunized mice was 100%. Antigen-specific whole IgG and IgG(2a), and VNA titers of survived mice were significantly higher than those of dead mice at the challenge day. These data suggest the possibility of intranasal immunization with inactivated antigen as a rabies vaccination strategy and the importance of a mucosal adjuvant such as CT.
Collapse
Affiliation(s)
- Atsushi Yoneda
- Department of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Wheat germ cell-free system-based production of malaria proteins for discovery of novel vaccine candidates. Infect Immun 2008; 76:1702-8. [PMID: 18268027 DOI: 10.1128/iai.01539-07] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the major bottlenecks in malaria research has been the difficulty in recombinant protein expression. Here, we report the application of the wheat germ cell-free system for the successful production of malaria proteins. For proof of principle, the Pfs25, PfCSP, and PfAMA1 proteins were chosen. These genes contain very high A/T sequences and are also difficult to express as recombinant proteins. In our wheat germ cell-free system, native and codon-optimized versions of the Pfs25 genes produced equal amounts of proteins. PfCSP and PfAMA1 genes without any codon optimization were also expressed. The products were soluble, with yields between 50 and 200 mug/ml of the translation mixture, indicating that the cell-free system can be used to produce malaria proteins without any prior optimization of their biased codon usage. Biochemical and immunocytochemical analyses of antibodies raised in mice against each protein revealed that every antibody retained its high specificity to the parasite protein in question. The development of parasites in mosquitoes fed patient blood carrying Plasmodium falciparum gametocytes and supplemented with our mouse anti-Pfs25 sera was strongly inhibited, indicating that both Pfs25-3D7/WG and Pfs25-TBV/WG retained their immunogenicity. Lastly, we carried out a parallel expression assay of proteins of blood-stage P. falciparum. The PCR products of 124 P. falciparum genes chosen from the available database were used directly in a small-scale format of transcription and translation reactions. Autoradiogram testing revealed the production of 93 proteins. The application of this new cell-free system-based protocol for the discovery of malaria vaccine candidates will be discussed.
Collapse
|
44
|
Renom Llonch M, Lafuente van der Sluis S, Alonso Fernández PL. Vacuna frente a la malaria: el gran reto para los países en vías de desarrollo. Enferm Infecc Microbiol Clin 2008. [DOI: 10.1016/s0213-005x(08)76228-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Pradel G. Proteins of the malaria parasite sexual stages: expression, function and potential for transmission blocking strategies. Parasitology 2007; 134:1911-29. [PMID: 17714601 DOI: 10.1017/s0031182007003381] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYThe sexual phase of the malaria pathogen,Plasmodium falciparum, culminates in fertilization within the midgut of the mosquito and represents a crucial step in the completion of the parasite's life-cycle and transmission of the disease. Two decades ago, the first sexual stage-specific surface proteins were identified, among themPfs230,Pfs48/45, andPfs25, which were of scientific interest as candidates for the development of transmission blocking vaccines. A decade later, gene information gained from the sequencing of theP. falciparumgenome led to the identification of numerous additional sexual-stage proteins with antigenic properties and novel enzymes that putatively possess regulatory functions during sexual-stage development. This review aims to summarize the sexual-stage proteins identified to date, to compare their stage specificities and expression patterns and to highlight novel regulative mechanisms of sexual differentiation. The prospective candidacy of select sexual-stage proteins as targets for transmission blocking strategies will be discussed.
Collapse
Affiliation(s)
- G Pradel
- University of Würzburg, Research Center for Infectious Diseases, Röntgenring 11, 97070 Würzburg, Germany.
| |
Collapse
|
46
|
Richie T. High road, low road? Choices and challenges on the pathway to a malaria vaccine. Parasitology 2007; 133 Suppl:S113-44. [PMID: 17274843 DOI: 10.1017/s0031182006001843] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Malaria causes much physical and economic hardship in endemic countries with billions of people at risk. A vaccine would clearly benefit these countries, reducing the requirement for hospital care and the economic impact of infection. Successful immunization with irradiated sporozoites and the fact that repeated exposure to malaria induces partial immunity to infection and high levels of protection against the clinical manifestations, suggest that a vaccine is feasible. Numerous candidate antigens have been identified but the vaccine, which has been promised to be 'just round the corner' for many years, remains elusive. The factors contributing to this frustratingly slow progress are discussed including gaps in the knowledge of host/parasite biology, methods to induce potent cell-mediated immune responses, the difficulties associated with defining immune correlates of protection and antigen production and delivery. Finally, the use of attenuated organism vaccines is discussed.
Collapse
Affiliation(s)
- T Richie
- Malaria Program, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, Maryland 20910-7500, USA.
| |
Collapse
|
47
|
Abstract
Bovine spongiform encephalopathy in cattle is highly suspected to be orally transmitted to humans through contaminated food, causing new variant Creutzfeldt-Jakob disease. However, no prophylactic procedures against these diseases, such as vaccines, in particular those stimulating mucosal protective immunity, have been established. The causative agents of these diseases, termed prions, consist of the host-encoded prion protein (PrP). Therefore, prions are immunologically tolerated, inducing no host antibody responses. This immune tolerance to PrP has hampered the development of vaccines against prions. We and others recently reported that the immune tolerance could be successfully broken and mucosal immunity could be stimulated by mucosal immunization of mice with PrP fused with bacterial enterotoxin or delivered using an attenuated Salmonella strain, eliciting significantly higher immunoglobulin A and G antibody responses against PrP. In this review, we will discuss these reports.
Collapse
Affiliation(s)
- Suehiro Sakaguchi
- Division of Molecular Cytology, The Institute for Enzyme Research, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | | |
Collapse
|
48
|
Gomes DCDO, Pinto EF, de Melo LDB, Lima WP, Larraga V, Lopes UG, Rossi-Bergmann B. Intranasal delivery of naked DNA encoding the LACK antigen leads to protective immunity against visceral leishmaniasis in mice. Vaccine 2007; 25:2168-72. [PMID: 17240003 DOI: 10.1016/j.vaccine.2006.11.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 11/23/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
We previously showed that intranasal (i.n.) vaccination with pCIneo plasmid encoding the leishmanial LACK gene (pCIneo-LACK) induces long-lasting protective immunity against cutaneous leishmaniasis in mice. In this work, we proposed to investigate whether the efficacy of i.n. pCIneo-LACK is extensive to visceral leishmaniasis. BALB/c mice received two i.n. doses of 30 microg pCIneo-LACK prior to intravenous (i.v.) infection with Leishmania chagasi. Vaccinated mice developed significantly lower parasite burden in the liver and spleen than control mice receiving empty pCIneo or saline. The spleen cells of vaccinated mice produced significantly increased IFN-gamma and IL-4 concomitant with decreased IL-10 production during infection. Serum levels of specific IgG were elevated whereas TNF-alpha were decreased as compared with controls. These results show that the practical needle-free i.n. pCIneo-LACK vaccine displays potential broad-spectrum activity against leishmaniasis.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- DNA, Protozoan/genetics
- Interferon-gamma/metabolism
- Interleukin-4/metabolism
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/parasitology
- Leishmaniasis, Cutaneous/prevention & control
- Leishmaniasis, Visceral/genetics
- Leishmaniasis, Visceral/immunology
- Liver/drug effects
- Liver/parasitology
- Mice
- Mice, Inbred BALB C
- Plasmids/administration & dosage
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Vaccines/administration & dosage
- Protozoan Vaccines/genetics
- Protozoan Vaccines/immunology
- Spleen/drug effects
- Spleen/metabolism
- Spleen/parasitology
- Treatment Outcome
Collapse
|
49
|
Girard MP, Reed ZH, Friede M, Kieny MP. A review of human vaccine research and development: malaria. Vaccine 2006; 25:1567-80. [PMID: 17045367 DOI: 10.1016/j.vaccine.2006.09.074] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Accepted: 09/25/2006] [Indexed: 11/18/2022]
Abstract
The last several years have seen significant progress in the development of vaccines against malaria. Most recently, proof-of-concept of vaccine-induced protection from malaria infection and disease was demonstrated in African children. Pursued by various groups and on many fronts, several other candidate vaccines are in early clinical trials. Yet, despite the optimism and promise, an effective malaria vaccine is not yet available, in part because of the lack of understanding of the types of immune responses needed for protection, added to the difficulty of identifying, selecting and producing the appropriate protective antigens from a parasite with a genome of well over five thousand genes and to the frequent need to enhance the immunogenicity of purified antigens through the use of novel adjuvants or delivery systems. Insufficient clinical trial capacity and normative research functions such as local ethical committee reviews also contribute to slow down the development process. This article attempts to summarize the state of the art of malaria vaccine development.
Collapse
Affiliation(s)
- Marc P Girard
- University Paris 7, 39 rue Seignemartin, FR-69008 Lyon, France.
| | | | | | | |
Collapse
|
50
|
Rogier C, Orlandi-Pradines E, Fusaï T, Pradines B, Briolant S, Almeras L. [Malaria vaccines: prospects and reality]. Med Mal Infect 2006; 36:414-22. [PMID: 16949781 DOI: 10.1016/j.medmal.2006.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 05/19/2006] [Indexed: 11/15/2022]
Abstract
The development of a malaria vaccine has been accelerating in the last ten years. The number of clinical trials has increased and some malaria antigens have been tested in endemic areas. No potential vaccine has yet shown sufficient and lasting efficacy to justify its inclusion in a public health program. However, trials have unambiguously shown that some level of anti-malaria clinical immunity can be achieved by vaccination, both in experimental and in field conditions. Advances in malaria vaccine development are presented.
Collapse
Affiliation(s)
- C Rogier
- Unité de recherche en biologie et épidémiologie parasitaires, institut de médecine tropicale du service de santé des armées, Le Pharo, BP 46, 13998 Marseille-Armées, France.
| | | | | | | | | | | |
Collapse
|