1
|
Kinyua AW, Turner L, Kimingi HW, Mwai K, Mwikali K, Andisi C, Sim BKL, Bejon P, Kapulu MC, Kinyanjui SM, Lavstsen T, Abdi AI. Antibodies to PfEMP1 and variant surface antigens: Protection after controlled human malaria infection in semi-immune Kenyan adults. J Infect 2024; 89:106252. [PMID: 39182654 PMCID: PMC11409615 DOI: 10.1016/j.jinf.2024.106252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVES Acquisition of antibodies to Plasmodium falciparum variant surface antigens (VSA) expressed on infected red blood cells (iRBCs) is associated with naturally acquired immunity to malaria. We have previously shown that antibodies to VSA on iRBCs are associated with protection against parasite growth in the context of controlled human malaria infection (CHMI). This study explored whether antibodies to recombinant antigens derived from PfEMP1 domains were independently associated with protection during CHMI in semi-immune Kenyan adults. METHODS We used a multiplex bead assay to measure levels of IgG antibody against a panel of 27 recombinant PfEMP1 antigens derived from the PfEMP1 repertoire of the 3D7 parasite clone. We measured IgG levels in plasma samples collected from the CHMI participants before inoculation with Sanaria® PfSPZ Challenge, on the day of diagnosis, and 35 days post-inoculation. Univariable and multivariable Cox regression analysis was used to evaluate the relationship between the levels of antibodies to the antigens and CHMI outcome. We also adjusted for previous data including antibodies to VSA on iRBCs, and we assessed the kinetics of antibody acquisition to the different PfEMP1 recombinant antigens over time. RESULTS All study participants had detectable antibodies to multiple PfEMP1 proteins before inoculation. All PfEMP1 antigens were associated with protection against parasite growth to the threshold criteria for treatment in CHMI, albeit with substantial collinearity. However, individual PfEMP1 antigens were not independently associated with protection following adjustment for breadth of reactivity to VSA on iRBCs and schizont extract. In addition, antibodies to PfEMP1 antigens derived from group B PfEMP1 were induced and sustained in the participants who could not control parasite growth. CONCLUSION This study shows that the breadth of antibody response to VSA on iRBCs, and not to specific PfEMP1 antigens, is predictive of protection against malaria in CHMI.
Collapse
Affiliation(s)
- Ann W Kinyua
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Louise Turner
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Hannah W Kimingi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kennedy Mwai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kioko Mwikali
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Cheryl Andisi
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya
| | | | - Philip Bejon
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom
| | - Melissa C Kapulu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom
| | - Samson M Kinyanjui
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom; School of Business Studies, Strathmore University, Nairobi, Kenya
| | - Thomas Lavstsen
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Abdirahman I Abdi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
Buendía-González FO, Cervantes-Candelas LA, Aguilar-Castro J, Fernández-Rivera O, Nolasco-Pérez TDJ, López-Padilla MS, Chavira-Ramírez DR, Cervantes-Sandoval A, Legorreta-Herrera M. DHEA Induces Sex-Associated Differential Patterns in Cytokine and Antibody Levels in Mice Infected with Plasmodium berghei ANKA. Int J Mol Sci 2023; 24:12549. [PMID: 37628731 PMCID: PMC10454633 DOI: 10.3390/ijms241612549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Malaria is the most lethal parasitic disease worldwide; the severity of symptoms and mortality are higher in men than in women, exhibiting an evident sexual dimorphism in the immune response; therefore, the contribution of 17β-estradiol and testosterone to this phenomenon has been studied. Both hormones differentially affect several aspects of innate and adaptive immunity. Dehydroepiandrosterone (DHEA) is the precursor of both hormones and is the sexual steroid in higher concentrations in humans, with immunomodulatory properties in different parasitic diseases; however, the involvement of DHEA in this sexual dimorphism has not been studied. In the case of malaria, the only information is that higher levels of DHEA are associated with reduced Plasmodium falciparum parasitemia. Therefore, this work aims to analyze the DHEA contribution to the sexual dimorphism of the immune response in malaria. We assessed the effect of modifying the concentration of DHEA on parasitemia, the number of immune cells in the spleen, cytokines, and antibody levels in plasma of CBA/Ca mice infected with Plasmodium berghei ANKA (P. berghei ANKA). DHEA differentially affected the immune response in males and females: it decreased IFN-γ, IL-2 and IL-4 concentrations only in females, whereas in gonadectomized males, it increased IgG2a and IgG3 antibodies. The results presented here show that DHEA modulates the immune response against Plasmodium differently in each sex, which helps to explain the sexual dimorphism present in malaria.
Collapse
Affiliation(s)
- Fidel Orlando Buendía-González
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (F.O.B.-G.); (L.A.C.-C.); (J.A.-C.); (O.F.-R.); (T.J.N.-P.); (M.S.L.-P.)
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Luis Antonio Cervantes-Candelas
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (F.O.B.-G.); (L.A.C.-C.); (J.A.-C.); (O.F.-R.); (T.J.N.-P.); (M.S.L.-P.)
| | - Jesús Aguilar-Castro
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (F.O.B.-G.); (L.A.C.-C.); (J.A.-C.); (O.F.-R.); (T.J.N.-P.); (M.S.L.-P.)
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Omar Fernández-Rivera
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (F.O.B.-G.); (L.A.C.-C.); (J.A.-C.); (O.F.-R.); (T.J.N.-P.); (M.S.L.-P.)
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Teresita de Jesús Nolasco-Pérez
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (F.O.B.-G.); (L.A.C.-C.); (J.A.-C.); (O.F.-R.); (T.J.N.-P.); (M.S.L.-P.)
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Monserrat Sofía López-Padilla
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (F.O.B.-G.); (L.A.C.-C.); (J.A.-C.); (O.F.-R.); (T.J.N.-P.); (M.S.L.-P.)
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - David Roberto Chavira-Ramírez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico;
| | - Armando Cervantes-Sandoval
- Laboratorio de Aplicaciones Computacionales, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico;
| | - Martha Legorreta-Herrera
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (F.O.B.-G.); (L.A.C.-C.); (J.A.-C.); (O.F.-R.); (T.J.N.-P.); (M.S.L.-P.)
| |
Collapse
|
3
|
Kwarteng A, Ahuno ST. Immunity in Filarial Infections: Lessons from Animal Models and Human Studies. Scand J Immunol 2017; 85:251-257. [DOI: 10.1111/sji.12533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/27/2017] [Indexed: 02/03/2023]
Affiliation(s)
- A. Kwarteng
- Department of Biochemistry and Biotechnology; Kwame Nkrumah University of Science Technology, PMB; Kumasi Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR); KNUST, PMB; Kumasi Ghana
| | - S. T. Ahuno
- Department of Biochemistry and Biotechnology; Kwame Nkrumah University of Science Technology, PMB; Kumasi Ghana
| |
Collapse
|
4
|
Anchang-Kimbi JK, Achidi EA, Nkegoum B, Mendimi JMN, Sverremark-Ekström E, Troye-Blomberg M. IgG isotypic antibodies to crude Plasmodium falciparum blood-stage antigen associated with placental malaria infection in parturient Cameroonian women. Afr Health Sci 2016; 16:1007-1017. [PMID: 28479893 DOI: 10.4314/ahs.v16i4.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Few studies have reported an association between placental malaria (PM) infection and levels of isotypic antibodies against non-pregnancy associated antigens. OBJECTIVE To determine and evaluate IgG isotypic antibody levels to crude P. falciparum blood stage in women with and without PM infection. METHODS Levels of IgG (IgG1-IgG4) and IgM to crude P. falciparum blood stage antigen were measured by ELISA in 271 parturient women. Placental malaria infection was determined by placental blood microscopy and placental histology. Age, parity and intermittent preventive treatment during pregnancy with sulphadoxine-pyrimethamine (IPTp-SP) usage were considered during analysis. RESULTS P. falciparum-specific IgG1 (96.5%) and IgG3 (96.7%) antibodies were predominant compared with IgG2 (64.6%) and IgG4 (49.1%). Active PM infection was associated with significant increased levels of IgG1, IgG4 and IgM while lower levels of these antibodies were associated with uptake of two or more IPTp-SP doses. PM infection was the only independent factor associated with IgG4 levels. Mean IgG1 + IgG3/IgG2 + IgG4 and IgG1 + IgG2 +IgG3/ IgG4 ratios were higher among the PM-uninfected group while IgG4/IgG2 ratio prevailed in the infected group. CONCLUSION PM infection and IPTp-SP dosage influenced P. falciparum-specific isotypic antibody responses to blood stage antigens. An increase in IgG4 levels in response to PM infection is of particular interest.
Collapse
Affiliation(s)
| | - Eric Akum Achidi
- Department of Biochemistry and Molecular Biology , University of Buea, Buea-63, Cameroon
| | - Blaise Nkegoum
- Department of Anatomy and Pathology, University of Yaoundé Teaching Hospital, Yaoundé-812
| | - Joseph-Marie N Mendimi
- Department of Anatomy and Pathology, University of Yaoundé I Teaching Hospital, Yaoundé-812
| | - Eva Sverremark-Ekström
- Department of Molecular Bioscience, Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm
| | - Marita Troye-Blomberg
- Department of Molecular Bioscience, Wenner-Gren Institute, Stockholm University, SE- 10691 Stockholm
| |
Collapse
|
5
|
Abstract
The Plasmodium falciparum erythrocyte membrane protein 1 antigens that are inserted onto the surface of P. falciparum infected erythrocytes play a key role both in the pathology of severe malaria and as targets of naturally acquired immunity. They might be considered unlikely vaccine targets because they are extremely diverse. However, several lines of evidence suggest that underneath this molecular diversity there are a restricted set of epitopes which may act as effective targets for a vaccine against severe malaria. Here we review some of the recent developments in this area of research, focusing on work that has assessed the potential of these molecules as possible vaccine targets.
Collapse
|
6
|
Ferreira AR, Singh B, Cabrera-Mora M, Magri De Souza AC, Queiroz Marques MT, Porto LCS, Santos F, Banic DM, Calvo-Calle JM, Oliveira-Ferreira J, Moreno A, Da Costa Lima-Junior J. Evaluation of naturally acquired IgG antibodies to a chimeric and non-chimeric recombinant species of Plasmodium vivax reticulocyte binding protein-1: lack of association with HLA-DRB1*/DQB1* in malaria exposed individuals from the Brazilian Amazon. PLoS One 2014; 9:e105828. [PMID: 25148251 PMCID: PMC4141821 DOI: 10.1371/journal.pone.0105828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/24/2014] [Indexed: 02/06/2023] Open
Abstract
The development of modular constructs that include antigenic regions targeted by protective immune responses is an attractive approach for subunit vaccine development. However, a main concern of using these vaccine platforms is how to preserve the antigenic identity of conformational B cell epitopes. In the present study we evaluated naturally acquired antibody responses to a chimeric protein engineered to contain a previously defined immunodominant domain of the Plasmodium vivax reticulocyte binding protein-1 located between amino acid positions K435-I777. The construct also includes three regions of the cognate protein (F571-D587, I1745-S1786 and L2235-E2263) predicted to contain MHC class II promiscuous T cell epitopes. Plasma samples from 253 naturally exposed individuals were tested against this chimeric protein named PvRMC-RBP1 and a control protein that includes the native sequence PvRBP123-751 in comparative experiments to study the frequency of total IgG and IgG subclass reactivity. HLA-DRB1 and HLA-DQB1 allelic groups were typed by PCR-SSO to evaluate the association between major HLA class II alleles and antibody responses. We found IgG antibodies that recognized the chimeric PvRMC-RBP1 and the PvRBP123-751 in 47.1% and 60% of the studied population, respectively. Moreover, the reactivity index against both proteins were comparable and associated with time of exposure (p<0.0001) and number of previous malaria episodes (p<0.005). IgG subclass profile showed a predominance of cytophilic IgG1 over other subclasses against both proteins tested. Collectively these studies suggest that the chimeric PvRMC-RBP1 protein retained antigenic determinants in the PvRBP1435–777 native sequence. Although 52.9% of the population did not present detectable titers of antibodies to PvRMC-RBP1, genetic restriction to this chimeric protein does not seem to occur, since no association was observed between the HLA-DRB1* or HLA-DQB1* alleles and the antibody responses. This experimental evidence strongly suggests that the identity of the conformational B cell epitopes is preserved in the chimeric protein.
Collapse
Affiliation(s)
- Amanda Ribeiro Ferreira
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Monica Cabrera-Mora
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Alana Cristina Magri De Souza
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | | | | | - Fatima Santos
- National Health Foundation, Department of Entomology, Central Laboratory, Porto Velho, RO, Brazil
| | - Dalma Maria Banic
- Laboratory for Simuliidae and Onchocerciasis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - J. Mauricio Calvo-Calle
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Joseli Oliveira-Ferreira
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (AM); (JCLJ)
| | - Josué Da Costa Lima-Junior
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- * E-mail: (AM); (JCLJ)
| |
Collapse
|
7
|
Hasang W, Dembo EG, Wijesinghe R, Molyneux ME, Kublin JG, Rogerson S. HIV-1 infection and antibodies to Plasmodium falciparum in adults. J Infect Dis 2014; 210:1407-14. [PMID: 24795481 DOI: 10.1093/infdis/jiu262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Coinfection with human immunodeficiency virus (HIV) may increase susceptibility to malaria by compromising naturally acquired immunity. METHODS In 339 adults (64% HIV infected), we measured antibodies to Plasmodium falciparum variant surface antigens (VSA) and antibodies that opsonise infected erythrocytes using parasite lines FCR3, E8B, and R29, and antibodies to merozoite antigens AMA-1 and MSP2. We determined the relationship between malaria antibodies, HIV infection, markers of immune compromise, and risk of incident parasitemia. RESULTS HIV-infected adults had significantly lower mean levels of opsonizing antibody to all parasite lines (P < .0001), and lower levels of antibody to AMA-1 (P = .01) and MSP2 (P < .0001). Levels of immunoglobulin G (IgG) to VSA were not affected by HIV status. Opsonising antibody titres against some isolates were positively correlated with CD4 count. There were negative associations between human immunodeficiency virus type 1 (HIV-1) viral load and opsonizing antibodies to FCR3 (P = .04), and levels of IgG to AMA-1 (P ≤ .03) and MSP2-3D7 (P = .05). Lower opsonizing antibody levels on enrollment were seen in those who became parasitemic during follow-up, independent of HIV infection (P ≤ .04 for each line). CONCLUSIONS HIV-1 infection decreases opsonizing antibodies to VSA, and antibody to merozoite antigens. Opsonizing antibodies were associated with lack of parasitemia during follow up, suggesting a role in protection.
Collapse
Affiliation(s)
- Wina Hasang
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Edson G Dembo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre
| | - Rushika Wijesinghe
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne
| | - Malcolm E Molyneux
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre The Liverpool School of Tropical Medicine, United Kingdom
| | - James G Kublin
- Fred Hutchison Cancer Research Center, Seattle, Washington
| | - Stephen Rogerson
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Chan JA, Fowkes FJI, Beeson JG. Surface antigens of Plasmodium falciparum-infected erythrocytes as immune targets and malaria vaccine candidates. Cell Mol Life Sci 2014; 71:3633-57. [PMID: 24691798 PMCID: PMC4160571 DOI: 10.1007/s00018-014-1614-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/04/2014] [Accepted: 03/17/2014] [Indexed: 12/19/2022]
Abstract
Understanding the targets and mechanisms of human immunity to malaria caused by Plasmodium falciparum is crucial for advancing effective vaccines and developing tools for measuring immunity and exposure in populations. Acquired immunity to malaria predominantly targets the blood stage of infection when merozoites of Plasmodium spp. infect erythrocytes and replicate within them. During the intra-erythrocytic development of P. falciparum, numerous parasite-derived antigens are expressed on the surface of infected erythrocytes (IEs). These antigens enable P. falciparum-IEs to adhere in the vasculature and accumulate in multiple organs, which is a key process in the pathogenesis of disease. IE surface antigens, often referred to as variant surface antigens, are important targets of acquired protective immunity and include PfEMP1, RIFIN, STEVOR and SURFIN. These antigens are highly polymorphic and encoded by multigene families, which generate substantial antigenic diversity to mediate immune evasion. The most important immune target appears to be PfEMP1, which is a major ligand for vascular adhesion and sequestration of IEs. Studies are beginning to identify specific variants of PfEMP1 linked to disease pathogenesis that may be suitable for vaccine development, but overcoming antigenic diversity in PfEMP1 remains a major challenge. Much less is known about other surface antigens, or antigens on the surface of gametocyte-IEs, the effector mechanisms that mediate immunity, and how immunity is acquired and maintained over time; these are important topics for future research.
Collapse
|
9
|
Pinkevych M, Petravic J, Chelimo K, Vulule J, Kazura JW, Moormann AM, Davenport MP. Decreased growth rate of P. falciparum blood stage parasitemia with age in a holoendemic population. J Infect Dis 2013; 209:1136-43. [PMID: 24265441 DOI: 10.1093/infdis/jit613] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In malaria holoendemic settings, decreased parasitemia and clinical disease is associated with age and cumulative exposure. The relative contribution of acquired immunity against various stages of the parasite life cycle is not well understood. In particular, it is not known whether changes in infection dynamics can be best explained by decreasing rates of infection, or by decreased growth rates of parasites in blood. Here, we analyze the dynamics of Plasmodium falciparum infection after treatment in a cohort of 197 healthy study participants of different ages. We use both polymerase chain reaction (PCR) and microscopy detection of parasitemia in order to understand parasite growth rates and infection rates over time. The more sensitive PCR assay detects parasites earlier than microscopy, and demonstrates a higher overall prevalence of infection than microscopy alone. The delay between PCR and microscopy detection is significantly longer in adults compared with children, consistent with slower parasite growth with age. We estimated the parasite multiplication rate from delay to PCR and microscopy detections of parasitemia. We find that both the delay between PCR and microscopy infection as well as the differing reinfection dynamics in different age groups are best explained by a slowing of parasite growth with age.
Collapse
Affiliation(s)
- Mykola Pinkevych
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
10
|
Pinkevych M, Petravic J, Chelimo K, Kazura JW, Moormann AM, Davenport MP. The dynamics of naturally acquired immunity to Plasmodium falciparum infection. PLoS Comput Biol 2012; 8:e1002729. [PMID: 23093922 PMCID: PMC3475668 DOI: 10.1371/journal.pcbi.1002729] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 08/21/2012] [Indexed: 11/18/2022] Open
Abstract
Severe malaria occurs predominantly in young children and immunity to clinical disease is associated with cumulative exposure in holoendemic settings. The relative contribution of immunity against various stages of the parasite life cycle that results in controlling infection and limiting disease is not well understood. Here we analyse the dynamics of Plasmodium falciparum malaria infection after treatment in a cohort of 197 healthy study participants of different ages in order to model naturally acquired immunity. We find that both delayed time-to-infection and reductions in asymptomatic parasitaemias in older age groups can be explained by immunity that reduces the growth of blood stage as opposed to liver stage parasites. We found that this mechanism would require at least two components – a rapidly acting strain-specific component, as well as a slowly acquired cross-reactive or general immunity to all strains. Analysis and modelling of malaria infection dynamics and naturally acquired immunity with age provides important insights into what mechanisms of immune control may be harnessed by malaria vaccine strategists. Human malaria infections resulting in serious complications and death occur predominantly in young children, and resistance is gradually acquired with repeated exposure. Malaria parasites have two major stages within the human host during its life cycle: an initial liver stage, and the subsequent blood stage, where parasites replicate in and destroy red blood cells. The mechanisms of acquired resistance to severe malaria may involve immunity to both the liver and blood stage parasites. However the relative contribution of each type of immunity is not yet understood. To gain novel insight, we have analysed data from a malaria exposed cohort from western Kenya. We used mathematical modeling to understand what form of immunity is consistent with the observed rates of reinfection in adults and children seen in the field study data. We found that the reinfection pattern can be completely explained by blood stage immunity. Moreover, the blood stage immunity must consist of rapidly-induced strain-specific immunity that clears individual infections, and general immunity that accumulates slowly and decreases the average parasite growth rate with age. Understanding the dynamics of naturally acquired immunity and infection provides important insights for effective vaccine development.
Collapse
Affiliation(s)
- Mykola Pinkevych
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Janka Petravic
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia
| | | | - James W. Kazura
- Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ann M. Moormann
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Miles P. Davenport
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
11
|
Vigan-Womas I, Lokossou A, Guillotte M, Juillerat A, Bentley G, Garcia A, Mercereau-Puijalon O, Migot-Nabias F. The humoral response to Plasmodium falciparum VarO rosetting variant and its association with protection against malaria in Beninese children. Malar J 2010; 9:267. [PMID: 20923548 PMCID: PMC2959068 DOI: 10.1186/1475-2875-9-267] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 10/05/2010] [Indexed: 11/27/2022] Open
Abstract
Background The capacity of Plasmodium falciparum-infected erythrocytes to bind uninfected erythrocytes (rosetting) is associated with severe malaria in African children. Rosetting is mediated by a subset of the variant surface antigens PfEMP1 targeted by protective antibody responses. Analysis of the response to rosette-forming parasites and their PfEMP1 adhesive domains is essential for understanding the acquisition of protection against severe malaria. To this end, the antibody response to a rosetting variant was analysed in children recruited with severe or uncomplicated malaria or asymptomatic P. falciparum infection. Methods Serum was collected from Beninese children with severe malaria, uncomplicated malaria or P. falciparum asymptomatic infection (N = 65, 37 and 52, respectively) and from immune adults (N = 30) living in the area. Infected erythrocyte surface-reactive IgG, rosette disrupting antibodies and IgG to the parasite crude extract were analysed using the single variant Palo Alto VarO-infected line. IgG, IgG1 and IgG3 to PfEMP1-varO-derived NTS-DBL1α1, CIDRγ and DBL2βC2 recombinant domains were analysed by ELISA. Antibody responses were compared in the clinical groups. Stability of the response was studied using a blood sampling collected 14 months later from asymptomatic children. Results Seroprevalence of erythrocyte surface-reactive IgG was high in adults (100%) and asymptomatic children (92.3%) but low in children with severe or uncomplicated malaria (26.1% and 37.8%, respectively). The IgG, IgG1 and IgG3 antibody responses to the varO-derived PfEMP1 domains were significantly higher in asymptomatic children than in children with clinical malaria in a multivariate analysis correcting for age and parasite density at enrolment. They were essentially stable, although levels tended to decrease with time. VarO-surface reactivity correlated positively with IgG reactivity to the rosetting domain varO-NTS-DBL1α1. None of the children sera, including those with surface-reactive antibodies possessed anti-VarO-rosetting activity, and few adults had rosette-disrupting antibodies. Conclusions Children with severe and uncomplicated malaria had similar responses. The higher prevalence and level of VarO-reactive antibodies in asymptomatic children compared to children with malaria is consistent with a protective role for anti-VarO antibodies against clinical falciparum malaria. The mechanism of such protection seems independent of rosette-disruption, suggesting that the cytophilic properties of antibodies come into play.
Collapse
Affiliation(s)
- Inès Vigan-Womas
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, F-75015 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Naturally acquired immunity to falciparum malaria protects millions of people routinely exposed to Plasmodium falciparum infection from severe disease and death. There is no clear concept about how this protection works. There is no general agreement about the rate of onset of acquired immunity or what constitutes the key determinants of protection; much less is there a consensus regarding the mechanism(s) of protection. This review summarizes what is understood about naturally acquired and experimentally induced immunity against malaria with the help of evolving insights provided by biotechnology and places these insights in the context of historical, clinical, and epidemiological observations. We advocate that naturally acquired immunity should be appreciated as being virtually 100% effective against severe disease and death among heavily exposed adults. Even the immunity that occurs in exposed infants may exceed 90% effectiveness. The induction of an adult-like immune status among high-risk infants in sub-Saharan Africa would greatly diminish disease and death caused by P. falciparum. The mechanism of naturally acquired immunity that occurs among adults living in areas of hyper- to holoendemicity should be understood with a view toward duplicating such protection in infants and young children in areas of endemicity.
Collapse
Affiliation(s)
- Denise L Doolan
- Queensland Institute of Medical Research, The Bancroft Centre, Post Office Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia.
| | | | | |
Collapse
|
13
|
Antibody-mediated growth inhibition of Plasmodium falciparum: relationship to age and protection from parasitemia in Kenyan children and adults. PLoS One 2008; 3:e3557. [PMID: 18958285 PMCID: PMC2570335 DOI: 10.1371/journal.pone.0003557] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 10/09/2008] [Indexed: 12/01/2022] Open
Abstract
Background Antibodies that impair Plasmodium falciparum merozoite invasion and intraerythrocytic development are one of several mechanisms that mediate naturally acquired immunity to malaria. Attempts to correlate anti-malaria antibodies with risk of infection and morbidity have yielded inconsistent results. Growth inhibition assays (GIA) offer a convenient method to quantify functional antibody activity against blood stage malaria. Methods A treatment-time-to-infection study was conducted over 12-weeks in a malaria holoendemic area of Kenya. Plasma collected from healthy individuals (98 children and 99 adults) before artemether-lumefantrine treatment was tested by GIA in three separate laboratories. Results Median GIA levels varied with P. falciparum line (D10, 8.8%; 3D7, 34.9%; FVO, 51.4% inhibition). The magnitude of growth inhibition decreased with age in all P. falciparum lines tested with the highest median levels among children <4 years compared to adults (e.g. 3D7, 45.4% vs. 30.0% respectively, p = 0.0003). Time-to-infection measured by weekly blood smears was significantly associated with level of GIA controlling for age. Upper quartile inhibition activity was associated with less risk of infection compared to individuals with lower levels (e.g. 3D7, hazard ratio = 1.535, 95% CI = 1.012–2.329; p = 0.0438). Various GIA methodologies had little effect on measured parasite growth inhibition. Conclusion Plasma antibody-mediated growth inhibition of blood stage P. falciparum decreases with age in residents of a malaria holoendemic area. Growth inhibition assay may be a useful surrogate of protection against infection when outcome is controlled for age.
Collapse
|
14
|
Evaluation of the genetic polymorphism of Plasmodium falciparum P126 protein (SERA or SERP) and its influence on naturally acquired specific antibody responses in malaria-infected individuals living in the Brazilian Amazon. Malar J 2008; 7:144. [PMID: 18667071 PMCID: PMC2515332 DOI: 10.1186/1475-2875-7-144] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 07/30/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Plasmodium falciparum P126 protein is an asexual blood-stage malaria vaccine candidate antigen. Antibodies against P126 are able to inhibit parasite growth in vitro, and a major parasite-inhibitory epitope has been recently mapped to its 47 kDa N-terminal extremity (octamer repeat domain--OR domain). The OR domain basically consists of six octamer units, but variation in the sequence and number of repeat units may appear in different alleles. The aim of the present study was to investigate the polymorphism of P126 N-terminal region OR domain in P. falciparum isolates from two Brazilian malaria endemic areas and its impact on anti-OR naturally acquired antibodies. METHODS The study was carried out in two villages, Candeias do Jamari (Rondonia state) and Peixoto de Azevedo (Mato Grosso state), both located in the south-western part of the Amazon region. The repetitive region of the gene encoding the P126 antigen was PCR amplified and sequenced with the di-deoxy chain termination procedure. The antibody response was evaluated by ELISA with the Nt47 synthetic peptide corresponding to the P126 OR-II domain. RESULTS Only two types of OR fragments were identified in the studied areas, one of 175 bp (OR-I) and other of 199 bp (OR-II). A predominance of the OR-II fragment was observed in Candeias do Jamari whereas in Peixoto de Azevedo both fragments OR-I and OR-II were frequent as well as mixed infection (both fragments simultaneously) reported here for the first time. Comparing the DNA sequencing of OR-I and OR-II fragments, there was a high conservation among predicted amino acid sequences of the P126 N-terminal extremity. Data of immune response demonstrated that the OR domain is highly immunogenic in natural conditions of exposure and that the polymorphism of the OR domain does not apparently influence the specific immune response. CONCLUSION These findings confirm a limited genetic polymorphism of the P126 OR domain in P. falciparum isolates and that this limited genetic polymorphism does not seem to influence the development of a specific humoral immune response to P126 and its immunogenicity in the studied population.
Collapse
|
15
|
Papp K, Szekeres Z, Erdei A, Prechl J. Two-dimensional immune profiles improve antigen microarray-based characterization of humoral immunity. Proteomics 2008; 8:2840-8. [DOI: 10.1002/pmic.200800014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Mibei EK, Otieno WO, Orago ASS, Stoute JA. Distinct pattern of class and subclass antibodies in immune complexes of children with cerebral malaria and severe malarial anaemia. Parasite Immunol 2008; 30:334-41. [PMID: 18466201 DOI: 10.1111/j.1365-3024.2008.01030.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmodium falciparum infection can lead to deadly complications such as severe malaria-associated anaemia (SMA) and cerebral malaria (CM). Children with severe malaria have elevated levels of circulating immune complexes (ICs). To further investigate the quantitative differences in antibody class/subclass components of ICs in SMA and CM, we enrolled 75 children with SMA and 32 children with CM from hospitals in western Kenya and matched them to 74 and 52 control children, respectively, with uncomplicated symptomatic malaria. Total IgG IC levels were always elevated in children with malaria upon enrollment, but children with CM had the highest levels of any group. Conditional logistic regression showed a borderline association between IgG4-containing IC levels and increased risk of SMA (OR = 3.11, 95% CI 1.01-9.56, P = 0.05). Total IgG ICs (OR = 2.84, 95% CI 1.08-7.46, P = 0.03) and IgE-containing ICs (OR = 6.82, OR 1.88-24.73, P < or = 0.01) were associated with increased risk of CM. These results point to differences in the contribution of the different antibody class and subclass components of ICs to the pathogenesis of SMA and CM and give insight into potential mechanisms of disease.
Collapse
Affiliation(s)
- E K Mibei
- Department of Pre-Clinical Sciences, Kenyatta University, Nairobi, Kenya
| | | | | | | |
Collapse
|
17
|
Guitard J, Cottrell G, Magnouha NM, Salanti A, Li T, Sow S, Deloron P, Tuikue Ndam N. Differential evolution of anti-VAR2CSA- IgG3 in primigravidae and multigravidae pregnant women infected by Plasmodium falciparum. Malar J 2008; 7:10. [PMID: 18190692 PMCID: PMC2254423 DOI: 10.1186/1475-2875-7-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 01/11/2008] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Pregnant women develop protective anti-VSA IgG1 and IgG3 when infected by Plasmodium falciparum. The major target of IgG from serum of infected pregnant women is VAR2CSA. METHODS In this study, ELISA was used to compare the level of VAR2CSA DBL5epsilon- specific IgG subclasses at enrolment and at delivery in a cohort of pregnant women in Senegal. All antibody measures were analysed in relation to placental infection according to parity. RESULTS The results show an interaction between immune response to placental malaria and parity. A higher level of anti- DBL5epsilon- IgG3 at enrolment and a higher increase between enrolment and delivery were found in primigravidae who presented with uninfected placenta at delivery in comparison to those who presented with an infection of the placenta. However, high antibody level at delivery was associated with the infection of the placenta in multigravidae. CONCLUSION This high level of IgG3 in uninfected primigravidae suggests a protective role of these antibodies in this susceptible group, highlighting the importance of VAR2CSA in general and of some of its variants still to be defined, in the induction of protective immunity to pregnancy malaria.
Collapse
Affiliation(s)
- Juliette Guitard
- Institut de Recherche pour le Développement (IRD), UR010, Mother and Child Health in the Tropics, Université Paris Descartes, France.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Stephens R, Langhorne J. Priming of CD4+ T cells and development of CD4+ T cell memory; lessons for malaria. Parasite Immunol 2006; 28:25-30. [PMID: 16438673 DOI: 10.1111/j.1365-3024.2006.00767.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CD4 T cells play a central role in the immune response to malaria. They are required to help B cells produce the antibody that is essential for parasite clearance. They also produce cytokines that amplify the phagocytic and parasitocidal response of the innate immune system, as well as dampening this response later on to limit immunopathology. Therefore, understanding the mechanisms by which T helper cells are activated and the requirements for development of specific, and effective, T cell memory and immunity is essential in the quest for a malaria vaccine. In this paper on the CD4 session of the Immunology of Malaria Infections meeting, we summarize discussions of CD4 cell priming and memory in malaria and in vaccination and outline critical future lines of investigation. B. Stockinger and M.K. Jenkins proposed cutting edge experimental systems to study basic T cell biology in malaria. Critical parameters in T cell activation include the cell types involved, the route of infection and the timing and location and cell types involved in antigen presentation. A new generation of vaccines that induce CD4 T cell activation and memory are being developed with new adjuvants. Studies of T cell memory focus on differentiation and factors involved in maintenance of antigen specific T cells and control of the size of that population. To improve detection of T cell memory in the field, efforts will have to be made to distinguish antigen-specific responses from cytokine driven responses.
Collapse
Affiliation(s)
- R Stephens
- National Institute for Medical Research, Division of Parasitology, London, UK
| | | |
Collapse
|
19
|
Elliott SR, Brennan AK, Beeson JG, Tadesse E, Molyneux ME, Brown GV, Rogerson SJ. Placental malaria induces variant-specific antibodies of the cytophilic subtypes immunoglobulin G1 (IgG1) and IgG3 that correlate with adhesion inhibitory activity. Infect Immun 2005; 73:5903-7. [PMID: 16113309 PMCID: PMC1231106 DOI: 10.1128/iai.73.9.5903-5907.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibodies targeting variant antigens on the surfaces of chondroitin sulfate A (CSA)-binding malaria-infected erythrocytes have been linked to protection against the complications of malaria in pregnancy. We examined the isotype/subtype profiles of antibodies that bound to variant surface antigens expressed by CSA-adherent Plasmodium falciparum in pregnant Malawian women with and without histologically defined placental malaria. Women in their first pregnancy with placental malaria produced significantly greater amounts of immunoglobulin G1 (IgG1) and IgG3 reactive with surface antigens of malaria-infected erythrocytes than uninfected women of the same gravidity. IgG1 and IgG3 levels in infected and control women in later pregnancies were similar to those in infected women in their first pregnancy. Levels of IgG2 and IgG4 were similarly low in infected and uninfected women of all gravidities. IgM that bound to the surface of CSA-adherent P. falciparum occurred in all groups of women and malaria-naïve controls. There was a significant correlation between IgG1 and IgG3 levels, indicating that women usually produced both subtypes. Levels of IgG1 and IgG3 correlated with the ability of serum or plasma to inhibit parasite adhesion to CSA. Taken together, these data suggest that IgG1 and IgG3 dominate the IgG response to placental-type variant surface antigens. They may function by blocking parasite adhesion to placental CSA, but given their cytophilic nature, they might also opsonize malaria-infected erythrocytes for interaction with Fc receptors on phagocytic cells.
Collapse
Affiliation(s)
- Salenna R Elliott
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Victoria, 3050, Australia.
| | | | | | | | | | | | | |
Collapse
|