1
|
Stott KE, Mohabir JT, Bowers K, Tenor JL, Toffaletti DL, Unsworth J, Jimenez-Valverde A, Ahmadu A, Moyo M, Gondwe E, Chimang’anga W, Chasweka M, Lawrence DS, Jarvis JN, Harrison T, Hope W, Lalloo DG, Mwandumba HC, Perfect JR, Cuomo CA. Integration of genomic and pharmacokinetic data to predict clinical outcomes in HIV-associated cryptococcal meningitis. mBio 2024; 15:e0159224. [PMID: 39189739 PMCID: PMC11481554 DOI: 10.1128/mbio.01592-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024] Open
Abstract
Cryptococcal meningitis causes an estimated 112,000 global deaths per annum. Genomic and phenotypic features of the infecting strain of Cryptococcus spp. have been associated with outcomes from cryptococcal meningitis. Additionally, population-level pharmacokinetic variability is well documented in these patient cohorts. The relative contribution of these factors to clinical outcomes is unknown. Based in Malawi, we conducted a sub-study of the phase 3 Ambition-CM trial (ISRCTN72509687), collecting plasma and cerebrospinal fluid at serial time points during the first 14 days of antifungal therapy. We explored the relative contribution of pathogen genotype, drug resistance phenotype, and pharmacokinetics on clinical outcomes including lumbar opening pressure, pharmacodynamic effect, and mortality. We report remarkable genomic homogeneity among infecting strains of Cryptococcus spp., within and between patients. There was no evidence of acquisition of antifungal resistance in our isolates. Genotypic features of the infecting strain were not consistently associated with adverse or favorable clinical outcomes. However, baseline fungal burden and early fungicidal activity (EFA) were associated with mortality. The strongest predictor of EFA was the level of exposure to amphotericin B. Our analysis suggests the most effective means of improving clinical outcomes from HIV-associated cryptococcal meningitis is to optimize exposure to potent antifungal therapy. IMPORTANCE HIV-associated cryptococcal meningitis is associated with a high burden of mortality. Research into the different strain types causing this disease has yielded inconsistent findings in terms of which strains are associated with worse clinical outcomes. Our study suggests that the exposure of patients to potent anti-cryptococcal drugs has a more significant impact on clinical outcomes than the strain type of the infecting organism. Future research should focus on optimizing drug exposure, particularly in the context of novel anticryptococcal drugs coming into clinical use.
Collapse
Affiliation(s)
- Katharine E. Stott
- Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| | - Jason T. Mohabir
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Katharine Bowers
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jennifer L. Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dena L. Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jennifer Unsworth
- Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Ana Jimenez-Valverde
- Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Ajisa Ahmadu
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| | - Melanie Moyo
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
- Department of Medicine, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Ebbie Gondwe
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| | - Wezi Chimang’anga
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| | | | - David S. Lawrence
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine, London, United Kingdom
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Joseph N. Jarvis
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine, London, United Kingdom
- Botswana Harvard Health Partnership, Gaborone, Botswana
| | - Tom Harrison
- Institute of Infection and Immunity, St George’s University London, London, United Kingdom
| | - William Hope
- Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - David G. Lalloo
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - The AMBITION Study Group
- Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
- Malawi Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine, London, United Kingdom
- Botswana Harvard Health Partnership, Gaborone, Botswana
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Institute of Infection and Immunity, St George’s University London, London, United Kingdom
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
2
|
Billmyre RB, Craig CJ, Lyon J, Reichardt C, Eickbush MT, Zanders SE. Saturation transposon mutagenesis enables genome-wide identification of genes required for growth and fluconazole resistance in the human fungal pathogen Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605507. [PMID: 39131341 PMCID: PMC11312461 DOI: 10.1101/2024.07.28.605507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Fungi can cause devastating invasive infections, typically in immunocompromised patients. Treatment is complicated both by the evolutionary similarity between humans and fungi and by the frequent emergence of drug resistance. Studies in fungal pathogens have long been slowed by a lack of high-throughput tools and community resources that are common in model organisms. Here we demonstrate a high-throughput transposon mutagenesis and sequencing (TN-seq) system in Cryptococcus neoformans that enables genome-wide determination of gene essentiality. We employed a random forest machine learning approach to classify the Cryptococcus neoformans genome as essential or nonessential, predicting 1,465 essential genes, including 302 that lack human orthologs. These genes are ideal targets for new antifungal drug development. TN-seq also enables genome-wide measurement of the fitness contribution of genes to phenotypes of interest. As proof of principle, we demonstrate the genome-wide contribution of genes to growth in fluconazole, a clinically used antifungal. We show a novel role for the well-studied RIM101 pathway in fluconazole susceptibility. We also show that 5' insertions of transposons can drive sensitization of essential genes, enabling screenlike assays of both essential and nonessential components of the genome. Using this approach, we demonstrate a role for mitochondrial function in fluconazole sensitivity, such that tuning down many essential mitochondrial genes via 5' insertions can drive resistance to fluconazole. Our assay system will be valuable in future studies of C. neoformans, particularly in examining the consequences of genotypic diversity.
Collapse
Affiliation(s)
- R. Blake Billmyre
- Department of Pharmaceutical and Biological Sciences, College of Pharmacy, University of Georgia, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, GA, United States
- Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, GA, United States
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, GA, United States
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Joshua Lyon
- Department of Pharmaceutical and Biological Sciences, College of Pharmacy, University of Georgia, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, GA, United States
| | - Claire Reichardt
- Department of Pharmaceutical and Biological Sciences, College of Pharmacy, University of Georgia, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, GA, United States
- Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, GA, United States
| | | | - Sarah E. Zanders
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, KS, United States
| |
Collapse
|
3
|
Kwon S, Choi Y, Kim ES, Lee KT, Bahn YS, Jung KW. Pleiotropic roles of LAMMER kinase, Lkh1 in stress responses and virulence of Cryptococcus neoformans. Front Cell Infect Microbiol 2024; 14:1369301. [PMID: 38774630 PMCID: PMC11106425 DOI: 10.3389/fcimb.2024.1369301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/27/2024] [Indexed: 05/24/2024] Open
Abstract
Dual-specificity LAMMER kinases are highly evolutionarily conserved in eukaryotes and play pivotal roles in diverse physiological processes, such as growth, differentiation, and stress responses. Although the functions of LAMMER kinase in fungal pathogens in pathogenicity and stress responses have been characterized, its role in Cryptococcus neoformans, a human fungal pathogen and a model yeast of basidiomycetes, remains elusive. In this study, we identified a LKH1 homologous gene and constructed a strain with a deleted LKH1 and a complemented strain. Similar to other fungi, the lkh1Δ mutant showed intrinsic growth defects. We observed that C. neoformans Lkh1 was involved in diverse stress responses, including oxidative stress and cell wall stress. Particularly, Lkh1 regulates DNA damage responses in Rad53-dependent and -independent manners. Furthermore, the absence of LKH1 reduced basidiospore formation. Our observations indicate that Lkh1 becomes hyperphosphorylated upon treatment with rapamycin, a TOR protein inhibitor. Notably, LKH1 deletion led to defects in melanin synthesis and capsule formation. Furthermore, we found that the deletion of LKH1 led to the avirulence of C. neoformans in a systemic cryptococcosis murine model. Taken together, Lkh1 is required for the stress response, sexual differentiation, and virulence of C. neoformans.
Collapse
Affiliation(s)
- Sunhak Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yeseul Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Eui-Seong Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
| | - Kyung-Tae Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kwang-Woo Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, Republic of Korea
| |
Collapse
|
4
|
Melhem MSC, Leite Júnior DP, Takahashi JPF, Macioni MB, Oliveira LD, de Araújo LS, Fava WS, Bonfietti LX, Paniago AMM, Venturini J, Espinel-Ingroff A. Antifungal Resistance in Cryptococcal Infections. Pathogens 2024; 13:128. [PMID: 38392866 PMCID: PMC10891860 DOI: 10.3390/pathogens13020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Antifungal therapy, especially with the azoles, could promote the incidence of less susceptible isolates of Cryptococcus neoformans and C. gattii species complexes (SC), mostly in developing countries. Given that these species affect mostly the immunocompromised host, the infections are severe and difficult to treat. This review encompasses the following topics: 1. infecting species and their virulence, 2. treatment, 3. antifungal susceptibility methods and available categorical endpoints, 4. genetic mechanisms of resistance, 5. clinical resistance, 6. fluconazole minimal inhibitory concentrations (MICs), clinical outcome, 7. environmental influences, and 8. the relevance of host factors, including pharmacokinetic/pharmacodynamic (PK/PD) parameters, in predicting the clinical outcome to therapy. As of now, epidemiologic cutoff endpoints (ECVs/ECOFFs) are the most reliable antifungal resistance detectors for these species, as only one clinical breakpoint (amphotericin B and C. neoformans VNI) is available.
Collapse
Affiliation(s)
- Marcia S C Melhem
- Graduate Program in Sciences, Secretary of Health, São Paulo 01246-002, SP, Brazil
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
- Graduate Program in Tropical Diseases, State University of São Paulo, Botucatu 18618-687, SP, Brazil
| | | | - Juliana P F Takahashi
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
- Pathology Division, Adolfo Lutz Institute, São Paulo 01246-002, SP, Brazil
| | | | | | - Lisandra Siufi de Araújo
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
- Central Public Health Laboratory-LACEN, Mycology Unit, Adolfo Lutz Institut, São Paulo 01246-002, SP, Brazil
| | - Wellington S Fava
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Lucas X Bonfietti
- Central Public Health Laboratory-LACEN, Mycology Unit, Adolfo Lutz Institut, São Paulo 01246-002, SP, Brazil
| | - Anamaria M M Paniago
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - James Venturini
- Graduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Ana Espinel-Ingroff
- Central Public Health Laboratory-LACEN, Campo Grande 79074-460, MS, Brazil
- VCU Medical Center, Richmond, VA 23284, USA
| |
Collapse
|
5
|
Boyce KJ. The Microevolution of Antifungal Drug Resistance in Pathogenic Fungi. Microorganisms 2023; 11:2757. [PMID: 38004768 PMCID: PMC10673521 DOI: 10.3390/microorganisms11112757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The mortality rates of invasive fungal infections remain high because of the limited number of antifungal drugs available and antifungal drug resistance, which can rapidly evolve during treatment. Mutations in key resistance genes such as ERG11 were postulated to be the predominant cause of antifungal drug resistance in the clinic. However, recent advances in whole genome sequencing have revealed that there are multiple mechanisms leading to the microevolution of resistance. In many fungal species, resistance can emerge through ERG11-independent mechanisms and through the accumulation of mutations in many genes to generate a polygenic resistance phenotype. In addition, genome sequencing has revealed that full or partial aneuploidy commonly occurs in clinical or microevolved in vitro isolates to confer antifungal resistance. This review will provide an overview of the mutations known to be selected during the adaptive microevolution of antifungal drug resistance and focus on how recent advances in genome sequencing technology have enhanced our understanding of this process.
Collapse
Affiliation(s)
- Kylie J Boyce
- School of Science, RMIT University, Melbourne, VIC 3085, Australia
| |
Collapse
|
6
|
Bive BZ, Sacheli R, Mudogo CN, Zakayi PK, Bontems S, Lelo GM, Hayette MP. Correlation of antifungal susceptibility and sequence types within Cryptococcus neoformans VNI from HIV patients, and ERG11 gene polymorphism. J Mycol Med 2023; 33:101428. [PMID: 37651769 DOI: 10.1016/j.mycmed.2023.101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION Here we tested the correlation between minimum inhibitory concentrations (MICs) of major antifungal agents and sequence types (STs) within Cryptococcus neoformans VNI isolates, and explored the ERG11 gene of included strains. MATERIALS AND METHODS We analysed 23 C. neoformans strains categorised into two groups according to the distribution of the ST profile in Kinshasa clinics (Democratic Republic of Congo): major ST [ST93 (n = 15)], and less common STs [ST659 (n = 2), ST5 (n = 2), ST4 (n = 1), ST 53 (n = 1), ST31 (n = 1), and ST69 (n = 1)]. The MICs of the major antifungal agents [amphotericin B (AMB), 5-fluorocytosine (5FC) and fluconazole (FCZ)] were determined following EUCAST guidelines. ERG11 gene sequences were extracted from whole genome sequence of the isolates and compared with the wild-type gene sequence of the C. neoformans VNI. RESULTS Although major ST isolates appeared to have lower median MICs for AMB and 5FU than less common ST isolates (0.50 vs. 0.75 mg/L for AMB, 2 vs. 4 mg/L for 5FU, respectively), FCZ susceptibility was similar in both groups (4 mg/L) (p-value >0.05). The susceptibility profile of C. neoformans strains separately considered did not significantly affect the patients' clinical outcomes (p-value >0.05). Furthermore, two structural modalities of the ERG11 gene were observed: (1) that of the reference gene, and (2) that containing two exonic silent point substitutions, and one intronic point substitution located in a sequence potentially involved in pre-mRNA splicing (c.337-22C > T); with no association with the MICs of the isolates (p-value >0.05). CONCLUSIONS The lack of association/correlation found in this study calls for further investigations to better understand the mechanisms of C. neoformans resistance to antifungal agents.
Collapse
Affiliation(s)
- Bive Zono Bive
- Molecular Biology Service, Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo; Department of Clinical Microbiology, National Reference Center for Mycosis, Center for Interdisciplinary Research on Medicines, University of Liege, Liege, Belgium.
| | - Rosalie Sacheli
- Department of Clinical Microbiology, National Reference Center for Mycosis, Center for Interdisciplinary Research on Medicines, University of Liege, Liege, Belgium
| | - Celestin Nzanzu Mudogo
- Molecular Biology Service, Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Pius Kabututu Zakayi
- Molecular Biology Service, Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Sébastien Bontems
- Department of Clinical Microbiology, Laboratory of Virology and Immunology, Center for Interdisciplinary Research on Medicines, University of Liege, Liege, Belgium
| | - Georges Mvumbi Lelo
- Molecular Biology Service, Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Marie-Pierre Hayette
- Department of Clinical Microbiology, National Reference Center for Mycosis, Center for Interdisciplinary Research on Medicines, University of Liege, Liege, Belgium
| |
Collapse
|
7
|
Muselius B, Roux-Dalvai F, Droit A, Geddes-McAlister J. Resolving the Temporal Splenic Proteome during Fungal Infection for Discovery of Putative Dual Perspective Biomarker Signatures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1928-1940. [PMID: 37222660 PMCID: PMC10487597 DOI: 10.1021/jasms.3c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Fungal pathogens are emerging threats to global health with the rise of incidence associated with climate change and increased geographical distribution; factors also influencing host susceptibility to infection. Accurate detection and diagnosis of fungal infections is paramount to offer rapid and effective therapeutic options. For improved diagnostics, the discovery and development of protein biomarkers presents a promising avenue; however, this approach requires a priori knowledge of infection hallmarks. To uncover putative novel biomarkers of disease, profiling of the host immune response and pathogen virulence factor production is indispensable. In this study, we use mass-spectrometry-based proteomics to resolve the temporal proteome of Cryptococcus neoformans infection of the spleen following a murine model of infection. Dual perspective proteome profiling defines global remodeling of the host over a time course of infection, confirming activation of immune associated proteins in response to fungal invasion. Conversely, pathogen proteomes detect well-characterized C. neoformans virulence determinants, along with novel mapped patterns of pathogenesis during the progression of disease. Together, our innovative systematic approach confirms immune protection against fungal pathogens and explores the discovery of putative biomarker signatures from complementary biological systems to monitor the presence and progression of cryptococcal disease.
Collapse
Affiliation(s)
- Benjamin Muselius
- Department
of Molecular and Cellular Biology, University
of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Florence Roux-Dalvai
- Proteomics
platform, CHU de Québec - Université
Laval Research Center, Québec
City, Québec G1
V 4G2, Canada
- Computational
Biology Laboratory, CHU de Québec
- Université Laval Research Center, Québec City, Québec G1 V 4G2, Canada
- Canadian
Proteomics and Artificial Intelligence Consortium, Guelph, Ontario N1G 2W1, Canada
| | - Arnaud Droit
- Proteomics
platform, CHU de Québec - Université
Laval Research Center, Québec
City, Québec G1
V 4G2, Canada
- Computational
Biology Laboratory, CHU de Québec
- Université Laval Research Center, Québec City, Québec G1 V 4G2, Canada
- Canadian
Proteomics and Artificial Intelligence Consortium, Guelph, Ontario N1G 2W1, Canada
| | - Jennifer Geddes-McAlister
- Department
of Molecular and Cellular Biology, University
of Guelph, Guelph, Ontario N1G 2W1, Canada
- Canadian
Proteomics and Artificial Intelligence Consortium, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
8
|
Sousa NSOD, Almeida JDRD, Frickmann H, Lacerda MVG, Souza JVBD. Searching for new antifungals for the treatment of cryptococcosis. Rev Soc Bras Med Trop 2023; 56:e01212023. [PMID: 37493736 PMCID: PMC10367226 DOI: 10.1590/0037-8682-0121-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/19/2023] [Indexed: 07/27/2023] Open
Abstract
There is a consensus that the antifungal repertoire for the treatment of cryptococcal infections is limited. Standard treatment involves the administration of an antifungal drug derived from natural sources (i.e., amphotericin B) and two other drugs developed synthetically (i.e., flucytosine and fluconazole). Despite treatment, the mortality rates associated with fungal cryptococcosis are high. Amphotericin B and flucytosine are toxic, require intravenous administration, and are usually unavailable in low-income countries because of their high cost. However, fluconazole is cost-effective, widely available, and harmless with regard to its side effects. However, fluconazole is a fungistatic agent that has contributed considerably to the increase in fungal resistance and frequent relapses in patients with cryptococcal meningitis. Therefore, there is an unquestionable need to identify new alternatives or adjuvants to conventional drugs for the treatment of cryptococcosis. A potential antifungal agent should be able to kill cryptococci and "bypass" the virulence mechanism of the yeast. Furthermore, it should have fungicidal action, low toxicity, high selectivity, easily penetrate the central nervous system, and widely available. In this review, we describe cryptococcosis, its conventional therapy, and failures arising from the use of drugs traditionally considered to be the reference standard. Additionally, we present the approaches used for the discovery of new drugs to counteract cryptococcosis, ranging from the conventional screening of natural products to the inclusion of structural modifications to optimize anticryptococcal activity, as well as drug repositioning and combined therapies.
Collapse
Affiliation(s)
| | | | - Hagen Frickmann
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Germany
| | - Marcus Vinícius Guimarães Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil
- Instituto de Pesquisas Leônidas & Maria Deane, Fiocruz, Manaus, AM, Brasil
- University of Texas Medical Branch, Galveston, USA
| | - João Vicente Braga de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Manaus, AM, Brasil
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| |
Collapse
|
9
|
Espinel-Ingroff A, Cantón E. Methods for Antifungal Susceptibility Testing of the Cryptococcus neoformans/ C. gattii Complex: Strengths and Limitations. J Fungi (Basel) 2023; 9:jof9050542. [PMID: 37233253 DOI: 10.3390/jof9050542] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
When method-dependent categorical endpoints are available, namely either BPs or ECVs, MICs could aid in selecting the best treatment agent(s). BPs can categorize an isolate as either susceptible or resistant while the ECVs/ECOFFs can distinguish the wild type (WT, no known resistance mechanisms) from the Non-WT (NWT, harboring resistant mechanisms). Our literature review focused on the Cryptococcus species complex (SC) and the available methods and categorization endpoints. We also covered the incidence of these infections as well as the numerous Cryptococcus neoformans SC and C. gattii SC genotypes. The most important agents to treat cryptococcal infections are fluconazole (widely used), amphotericin B, and flucytosine. We provide data from the collaborative study that defined CLSI fluconazole ECVs for the most common cryptococcal species or genotypes and modes. EUCAST ECVs/ECOFFs are not yet available for fluconazole. We have summarized the incidence of cryptococccal infections (2000-2015) where fluconazole MICs were obtained by reference and commercial antifungal susceptibility tests. This occurrence is documented all over the world and those fluconazole MICs are mostly categorized by available CLSI ECVs/BPs as "resistant" instead of non-susceptible strains, including those by the commercial methods. As expected, the agreement between the CLSI and commercial methods is variable because SYO and Etest data could yield low/variable agreement (<90%) versus the CLSI method. Therefore, since BPs/ECVs are species and method dependent, why not gather sufficient MICs by commercial methods and define the required ECVs for these species?
Collapse
Affiliation(s)
| | - Emilia Cantón
- Severe Infection Research Group, Health Research Institute Hospital La Fe, 46026 Valencia, Spain
| |
Collapse
|
10
|
Kumaraswamy M, Coady A, Szubin R, Martin TCS, Palsson B, Nizet V, Monk JM. Comprehensive whole genome sequencing with hybrid assembly of multi-drug resistant Candida albicans isolate causing cerebral abscess. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100180. [PMID: 36685102 PMCID: PMC9852921 DOI: 10.1016/j.crmicr.2023.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Comprehensive whole genome sequencing (WGS) with hybrid assembly of a multi-drug resistant (MDR) Candida albicans (CA) isolate causing cerebral abscess was performed using Illumina paired end and Oxford Nanopore long read technologies. The innovative technologies utilized here enabled us to resolve fragmented assemblies, and implement comprehensive and detailed genomic analyses involved in antifungal resistance of Candida spp. Functionally important genes (MDR1, CDR2 and SQN2) involved in antifungal resistance were identified and a phylogenetic analysis of the clinical isolate was performed. Additionally, our clinical isolate was found to share 4 single nucleotide polymorphisms with two other sequenced strains of MDR C. auris (381 and 386) including translation elongation factor EF1α and EF3, ATPase activity associated proteins, and the lysine tRNA ligase.
Collapse
Affiliation(s)
- Monika Kumaraswamy
- Collaborative to Halt Antibiotic-Resistant Microbes (CHARM), University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Infectious Diseases Section, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Alison Coady
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Richard Szubin
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Thomas CS Martin
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernhard Palsson
- Collaborative to Halt Antibiotic-Resistant Microbes (CHARM), University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Collaborative to Halt Antibiotic-Resistant Microbes (CHARM), University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jonathan M. Monk
- Collaborative to Halt Antibiotic-Resistant Microbes (CHARM), University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Gene expression profiles of ERG11, MDR1 and AFR1 in Cryptococcus neoformans var.grubbi from HIV patients. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2022; 42:697-706. [PMID: 36511671 PMCID: PMC9818250 DOI: 10.7705/biomedica.6519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 12/14/2022]
Abstract
Introduction: Fluconazole is the most used antifungal drug for prevention and treatment of Cryptococcus spp. infections, the etiological agent of cryptococcosis. Resistance to fluconazole among Cryptococcus neoformans isolates can lead to treatment failure and generate relapses.
Objective: To evaluate the expression profiles of the AFR1, MDR1 and ERG11 genes in C. neoformans var. grubii clinical isolates during the in vitro response to fluconazole induction.
Materials and methods: Fourteen C. neoformans var. grubii isolates recovered from HIV patients were studied, in which 6 showed sensitivities to fluconazole and 8 decreased sensitivity. The expression levels of ERG11, AFR1 and MDR1 genes were determined by real-time PCR from extracted mRNA.
Results: AFR1 and MDR1 genes from C. neoformans var. grubii were overexpressed in fluconazole resistant isolates, whereas ERG11 maintains homogeneous expression in all
the evaluated resistance phenotypes of C. neoformans var. grubii isolates.
Conclusions: The overexpression of AFR1 and MDR1 genes, which codify for efflux pumps, contributes to fluconazole resistance in the studied isolates. However, the resistance patterns in this fungus and the relapse cases in HIV patients cannot be attributed solely to the exposure to the drug. Heteroresistance and the emerging resistance (resistance through other ERG genes), might be other mechanisms involved in this phenomenon, which must be studied in these isolations.
Collapse
|
12
|
Oliveira NK, Bhattacharya S, Gambhir R, Joshi M, Fries BC. Novel ABC Transporter Associated with Fluconazole Resistance in Aging of Cryptococcus neoformans. J Fungi (Basel) 2022; 8:677. [PMID: 35887434 PMCID: PMC9320417 DOI: 10.3390/jof8070677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/27/2022] Open
Abstract
Cryptococcus neoformans causes meningoencephalitis in immunocompromised individuals, which is treated with fluconazole (FLC) monotherapy when resources are limited. This can lead to azole resistance, which can be mediated by overexpression of ABC transporters, a class of efflux pumps. ABC pump-mediated efflux of FLC is also augmented in 10-generation old C. neoformans cells. Here, we describe a new ABC transporter Afr3 (CNAG_06909), which is overexpressed in C. neoformans cells of advanced generational age that accumulate during chronic infection. The Δafr3 mutant strain showed higher FLC susceptibility by FLC E-Test strip testing and also by a killing test that measured survival after 3 h FLC exposure. Furthermore, Δafr3 cells exhibited lower Rhodamine 6G efflux compared to the H99 wild-type cells. Afr3 was expressed in the Saccharomyces cerevisiae ADΔ strain, which lacks several drug transporters, thus reducing background transport. The ADΔ + Afr3 strain demonstrated a higher efflux with both Rhodamine 6G and Nile red, and a higher FLC resistance. Afr3-GFP localized in the plasma membrane of the ADΔ + Afr3 strain, further highlighting its importance as an efflux pump. Characterization of the Δafr3 mutant revealed unattenuated growth but a prolongation (29%) of the replicative life span. In addition, Δafr3 exhibited decreased resistance to macrophage killing and attenuated virulence in the Galleria mellonella infection model. In summary, our data indicate that a novel ABC pump Afr3, which is upregulated in C. neoformans cells of advanced age, may contribute to their enhanced FLC tolerance, by promoting drug efflux. Lastly, its role in macrophage resistance may also contribute to the selection of older C. neoformans cells during chronic infection.
Collapse
Affiliation(s)
- Natalia Kronbauer Oliveira
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Somanon Bhattacharya
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Rina Gambhir
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (R.G.); (M.J.)
| | - Manav Joshi
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (R.G.); (M.J.)
| | - Bettina C. Fries
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Veterans Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
13
|
An Atypical ABC Transporter Is Involved in Antifungal Resistance and Host Interactions in the Pathogenic Fungus Cryptococcus neoformans. mBio 2022; 13:e0153922. [PMID: 35726920 PMCID: PMC9426558 DOI: 10.1128/mbio.01539-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette (ABC) transporters represent one of the largest protein superfamilies. Functionally diverse, ABC transporters have been implicated in many aspects of microbial physiology. The genome of the human fungal pathogen Cryptococcus neoformans encodes 54 putative ABC transporters and most of them remain uncharacterized. In a previous genetic screen for fungal regulators of phagocytosis, we identified an uncharacterized gene, CNAG_06909, that modulates host interactions. This gene encoded a half-size ABC transporter of the PDR-type, and phenotypic studies of a strain with this gene deleted revealed an altered antifungal susceptibility profile, including hypersensitivity to fluconazole (FLC). This gene, which we named PDR6, localized to the endoplasmic reticulum (ER) and plasma membrane (PM), and when absent, less ergosterol was observed in the PM. Additionally, we observed that the pdr6Δ strain displayed a reduction in secreted polysaccharide capsular material. These changes to the cellular surface may explain the observed increased uptake by macrophages and the reduced intracellular survival. Finally, studies in mice demonstrated that Pdr6 function was required for the normal progression of cryptococcal infection. Taken together, this study demonstrates a novel dual role for PDR transporters in C. neoformans, which could represent a potential target for antifungal therapeutics. Furthermore, the atypical half-size transporter encoded by PDR6 is conserved in many fungal pathogens, but absent in model nonpathogenic fungi. Hence, this study provided a function for this unique group of fungal half-size PDR transporters that, although conserved, remain largely understudied.
Collapse
|
14
|
Allert S, Schulz D, Kämmer P, Großmann P, Wolf T, Schäuble S, Panagiotou G, Brunke S, Hube B. From environmental adaptation to host survival: Attributes that mediate pathogenicity of Candida auris. Virulence 2022; 13:191-214. [PMID: 35142597 PMCID: PMC8837256 DOI: 10.1080/21505594.2022.2026037] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Candida species are a major cause of invasive fungal infections. While Candida albicans, C. glabrata, C. parapsilosis, and C. tropicalis are the most dominant species causing life-threatening candidiasis, C. auris recently emerged as a new species causing invasive infections with high rates of clinical treatment failures. To mimic initial phases of systemic Candida infections with dissemination via the bloodstream and to elucidate the pathogenic potential of C. auris, we used an ex vivo whole blood infection model. Similar to other clinically relevant Candida spp., C. auris is efficiently killed in human blood, but showed characteristic patterns of immune cell association, survival rates, and cytokine induction. Dual-species transcriptional profiling of C. auris-infected blood revealed a unique C. auris gene expression program during infection, while the host response proofed similar and conserved compared to other Candida species. C. auris-specific responses included adaptation and survival strategies, such as counteracting oxidative burst of immune cells, but also expression of potential virulence factors, (drug) transporters, and cell surface-associated genes. Despite comparable pathogenicity to other Candida species in our model, C. auris-specific transcriptional adaptations as well as its increased stress resistance and long-term environmental survival, likely contribute to the high risk of contamination and distribution in a nosocomial setting. Moreover, infections of neutrophils with pre-starved C. auris cells suggest that environmental preconditioning can have modulatory effects on the early host interaction. In summary, we present novel insights into C. auris pathogenicity, revealing adaptations to human blood and environmental niches distinctive from other Candida species.
Collapse
Affiliation(s)
- Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Daniela Schulz
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Philipp Kämmer
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Peter Großmann
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Thomas Wolf
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Sascha Schäuble
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany.,Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany.,Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
15
|
Vélez N, Monteoliva L, Sánchez-Quitian ZA, Amador-García A, García-Rodas R, Ceballos-Garzón A, Gil C, Escandón P, Zaragoza Ó, Parra-Giraldo CM. The Combination of Iron and Copper Increases Pathogenicity and Induces Proteins Related to the Main Virulence Factors in Clinical Isolates of Cryptococcus neoformans var. grubii. J Fungi (Basel) 2022; 8:jof8010057. [PMID: 35049997 PMCID: PMC8778102 DOI: 10.3390/jof8010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/31/2021] [Indexed: 01/09/2023] Open
Abstract
In fungi, metals are associated with the expression of virulence factors. However, it is unclear whether the uptake of metals affects their pathogenicity. This study aimed to evaluate the effect of iron/copper in modulating pathogenicity and proteomic response in two clinical isolates of C. neoformans with high and low pathogenicity. Methods: In both isolates, the effect of 50 µM iron and 500 µM copper on pathogenicity, capsule induction, and melanin production was evaluated. We then performed a quantitative proteomic analysis of cytoplasmic extracts exposed to that combination. Finally, the effect on pathogenicity by iron and copper was evaluated in eight additional isolates. Results: In both isolates, the combination of iron and copper increased pathogenicity, capsule size, and melanin production. Regarding proteomic data, proteins with increased levels after iron and copper exposure were related to biological processes such as cell stress, vesicular traffic (Ap1, Vps35), cell wall structure (Och1, Ccr4, Gsk3), melanin biosynthesis (Hem15, Mln2), DNA repair (Chk1), protein transport (Mms2), SUMOylation (Uba2), and mitochondrial transport (Atm1). Increased pathogenicity by exposure to metal combination was also confirmed in 90% of the eight isolates. Conclusions: The combination of these metals enhances pathogenicity and increases the abundance of proteins related to the main virulence factors.
Collapse
Affiliation(s)
- Nórida Vélez
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (N.V.); (Z.-A.S.-Q.); (A.C.-G.)
| | - Lucía Monteoliva
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.M.); (A.A.-G.); (C.G.)
| | - Zilpa-Adriana Sánchez-Quitian
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (N.V.); (Z.-A.S.-Q.); (A.C.-G.)
| | - Ahinara Amador-García
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.M.); (A.A.-G.); (C.G.)
| | - Rocío García-Rodas
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, 28013 Madrid, Spain; (R.G.-R.); (Ó.Z.)
| | - Andrés Ceballos-Garzón
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (N.V.); (Z.-A.S.-Q.); (A.C.-G.)
- Department of Parasitology and Medical Mycology, Faculty of Pharmacy, University of Nantes, 44200 Nantes, France
| | - Concha Gil
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.M.); (A.A.-G.); (C.G.)
| | - Patricia Escandón
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá 111321, Colombia;
| | - Óscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, 28013 Madrid, Spain; (R.G.-R.); (Ó.Z.)
| | - Claudia-Marcela Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (N.V.); (Z.-A.S.-Q.); (A.C.-G.)
- Correspondence:
| |
Collapse
|
16
|
Rogers TR, Verweij PE, Castanheira M, Dannaoui E, White PL, Arendrup MC. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:2053-2073. [PMID: 35703391 PMCID: PMC9333407 DOI: 10.1093/jac/dkac161] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The increasing incidence and changing epidemiology of invasive fungal infections continue to present many challenges to their effective management. The repertoire of antifungal drugs available for treatment is still limited although there are new antifungals on the horizon. Successful treatment of invasive mycoses is dependent on a mix of pathogen-, host- and antifungal drug-related factors. Laboratories need to be adept at detection of fungal pathogens in clinical samples in order to effectively guide treatment by identifying isolates with acquired drug resistance. While there are international guidelines on how to conduct in vitro antifungal susceptibility testing, these are not performed as widely as for bacterial pathogens. Furthermore, fungi generally are recovered in cultures more slowly than bacteria, and often cannot be cultured in the laboratory. Therefore, non-culture-based methods, including molecular tests, to detect fungi in clinical specimens are increasingly important in patient management and are becoming more reliable as technology improves. Molecular methods can also be used for detection of target gene mutations or other mechanisms that predict antifungal drug resistance. This review addresses acquired antifungal drug resistance in the principal human fungal pathogens and describes known resistance mechanisms and what in-house and commercial tools are available for their detection. It is emphasized that this approach should be complementary to culture-based susceptibility testing, given the range of mutations, resistance mechanisms and target genes that may be present in clinical isolates, but may not be included in current molecular assays.
Collapse
Affiliation(s)
| | | | | | | | | | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Hoenigl M, Sprute R, Egger M, Arastehfar A, Cornely OA, Krause R, Lass-Flörl C, Prattes J, Spec A, Thompson GR, Wiederhold N, Jenks JD. The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin. Drugs 2021; 81:1703-1729. [PMID: 34626339 PMCID: PMC8501344 DOI: 10.1007/s40265-021-01611-0] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 01/08/2023]
Abstract
The epidemiology of invasive fungal infections is changing, with new populations at risk and the emergence of resistance caused by the selective pressure from increased usage of antifungal agents in prophylaxis, empiric therapy, and agriculture. Limited antifungal therapeutic options are further challenged by drug-drug interactions, toxicity, and constraints in administration routes. Despite the need for more antifungal drug options, no new classes of antifungal drugs have become available over the last 2 decades, and only one single new agent from a known antifungal class has been approved in the last decade. Nevertheless, there is hope on the horizon, with a number of new antifungal classes in late-stage clinical development. In this review, we describe the mechanisms of drug resistance employed by fungi and extensively discuss the most promising drugs in development, including fosmanogepix (a novel Gwt1 enzyme inhibitor), ibrexafungerp (a first-in-class triterpenoid), olorofim (a novel dihyroorotate dehydrogenase enzyme inhibitor), opelconazole (a novel triazole optimized for inhalation), and rezafungin (an echinocandin designed to be dosed once weekly). We focus on the mechanism of action and pharmacokinetics, as well as the spectrum of activity and stages of clinical development. We also highlight the potential future role of these drugs and unmet needs.
Collapse
Affiliation(s)
- Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA.
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, San Diego, CA, USA.
| | - Rosanne Sprute
- Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Matthias Egger
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Oliver A Cornely
- Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Clinical Trials Centre Cologne (ZKS Köln), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Robert Krause
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Juergen Prattes
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Andrej Spec
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MI, USA
| | - George R Thompson
- Division of Infectious Diseases, Departments of Internal Medicine and Medical Microbiology and Immunology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Nathan Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jeffrey D Jenks
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, San Diego, CA, USA
- Division of General Internal Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| |
Collapse
|
18
|
Edwards HM, Cogliati M, Kwenda G, Fisher MC. The need for environmental surveillance to understand the ecology, epidemiology and impact of Cryptococcus infection in Africa. FEMS Microbiol Ecol 2021; 97:6312494. [PMID: 34196370 PMCID: PMC8536938 DOI: 10.1093/femsec/fiab093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Our understanding of the pathogenic yeasts Cryptococcus neoformans and Cryptococcus gattii has been greatly enhanced by use of genome sequencing technologies. Found ubiquitously as saprotrophs in the environment, inhalation of infectious spores from these pathogens can lead to the disease cryptococcosis. Individuals with compromised immune systems are at particular risk, most notably those living with HIV/AIDS. Genome sequencing in combination with laboratory and clinical studies has revealed diverse lineages with important differences in their observed frequency, virulence and clinical outcomes. However, to date, genomic analyses have focused primarily on clinical isolates that represent only a subset of the diversity in the environment. Enhanced genomic surveillance of these yeasts in their native environments is needed in order to understand their ecology, biology and evolution and how these influence the epidemiology and pathophysiology of clinical disease. This is particularly relevant on the African continent from where global cryptococcal diversity may have originated, yet where environmental sampling and sequencing has been sparse despite harbouring the largest population at risk from cryptococcosis. Here, we review what scientifically and clinically relevant insights have been provided by analysis of environmental Cryptococcus isolates to date and argue that with further sampling, particularly in Africa, many more important discoveries await.
Collapse
Affiliation(s)
- Hannah M Edwards
- MRC Centre for Global Infectious Disease Analysis, Imperial College School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Massimo Cogliati
- Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Ridgeway Campus, PO Box 50110, Lusaka, Zambia
| | - Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, Imperial College School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
19
|
The Environmental Effects on Virulence Factors and the Antifungal Susceptibility of Cryptococcus neoformans. Int J Mol Sci 2021; 22:ijms22126302. [PMID: 34208294 PMCID: PMC8230809 DOI: 10.3390/ijms22126302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/10/2023] Open
Abstract
Cryptococcus neoformans is a facultative intracellular pathogen responsible for fungal meningoencephalitis primarily in immunocompromised individuals. It has become evident the pathogenicity of C. neoformans is dependent on the fungal cell’s environment. The differential expression of virulence factors, based on the cell’s environmental conditions, is one mechanism allowing for the environmental control of the pathogenic ability of C. neoformans. Here, we discuss how these virulence factors (including melanin, the polysaccharide capsule, and Antiphagocytic protein 1) have been shown to be differentially expressed dependent on the cell’s environment. The genetics and signaling pathways leading to the environmental-dependent regulation of virulence factors will also be examined. Susceptibility to antifungal therapeutics is also regulated by the environment, and thus affects the pathogenic abilities of C. neoformans and disease outcomes. This review will also examine the role of the C. neoformans’s environment on antifungal susceptibilities, and the genetics and signaling pathways responsible for these susceptibility alterations. By examining the complex interplay between the environment and the pathogenicity of C. neoformans, we have a better understanding of the intricacies of the pathogen–environment interaction and how to exploit this interaction to develop the most effective treatment protocols.
Collapse
|
20
|
Brilhante RSN, Gotay WJP, Pereira VS, de Oliveira JS, Pereira-Neto WA, Castelo-Branco DDSCM, Cordeiro RDA, Sidrim JJC, Rocha MFG. Antifungal activity of promethazine and chlorpromazine against planktonic cells and biofilms of Cryptococcus neoformans/Cryptococcus gattii complex species. Med Mycol 2021; 58:906-912. [PMID: 32016364 DOI: 10.1093/mmy/myz140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/22/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Cryptococcus neoformans/Cryptococcus gattii are fungal pathogens that affect the central nervous system, mainly in immunocompromised individuals. Due to the limited pharmacological arsenal available for the treatment of cryptococcosis associated with cases of antifungal resistance of Cryptococcus spp. reported in some studies, the search for new compounds with antifungal potential becomes relevant. Thus, the objective of this study was to evaluate the inhibitory effect of phenothiazines (promethazine and chlorpromazine) on C. neoformans/C. gattii planktonic cells and biofilms. In vitro planktonic susceptibility testing was performed using the broth microdilution assay. The effect of phenothiazines was evaluated against biofilm formation and mature Cryptococcus biofilms. Biofilm morphology and ultrastructure were also evaluated by scanning electron microscopy. Promethazine and chlorpromazine showed antifungal activity against planktonic cells, with minimum inhibitory concentrations of 8-32 μg/ml and 4-16 μg/ml, respectively. As for biofilm formation, phenothiazines reduced biomass by 60% and metabolic activity by 90% at 64 μg/ml; while in mature biofilms, reductions of 85% and 90% in biomass and metabolic activity, respectively, were observed at 1024 μg/ml. Promethazine and chlorpromazine were also able to disrupt and fragment biofilms. In conclusion, promethazine and chlorpromazine have antifungal activity against planktonic cells and biofilms of Cryptococcus spp. These data show the potential of promethazine and chlorpromazine as antibiofilm drugs.
Collapse
Affiliation(s)
- Raimunda Sâmia Nogueira Brilhante
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Wilker Jose Perez Gotay
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Vandbergue Santos Pereira
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Jonathas Sales de Oliveira
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Waldemiro Aquino Pereira-Neto
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Rossana de Aguiar Cordeiro
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil.,Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará. Av. Dr. Silas Munguba, 1700, Campus do Itaperi, CEP: 60714-903, Fortaleza, Ceará, Brazil
| |
Collapse
|
21
|
Khunweeraphong N, Kuchler K. Multidrug Resistance in Mammals and Fungi-From MDR to PDR: A Rocky Road from Atomic Structures to Transport Mechanisms. Int J Mol Sci 2021; 22:4806. [PMID: 33946618 PMCID: PMC8124828 DOI: 10.3390/ijms22094806] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Multidrug resistance (MDR) can be a serious complication for the treatment of cancer as well as for microbial and parasitic infections. Dysregulated overexpression of several members of the ATP-binding cassette transporter families have been intimately linked to MDR phenomena. Three paradigm ABC transporter members, ABCB1 (P-gp), ABCC1 (MRP1) and ABCG2 (BCRP) appear to act as brothers in arms in promoting or causing MDR in a variety of therapeutic cancer settings. However, their molecular mechanisms of action, the basis for their broad and overlapping substrate selectivity, remains ill-posed. The rapidly increasing numbers of high-resolution atomic structures from X-ray crystallography or cryo-EM of mammalian ABC multidrug transporters initiated a new era towards a better understanding of structure-function relationships, and for the dynamics and mechanisms driving their transport cycles. In addition, the atomic structures offered new evolutionary perspectives in cases where transport systems have been structurally conserved from bacteria to humans, including the pleiotropic drug resistance (PDR) family in fungal pathogens for which high resolution structures are as yet unavailable. In this review, we will focus the discussion on comparative mechanisms of mammalian ABCG and fungal PDR transporters, owing to their close evolutionary relationships. In fact, the atomic structures of ABCG2 offer excellent models for a better understanding of fungal PDR transporters. Based on comparative structural models of ABCG transporters and fungal PDRs, we propose closely related or even conserved catalytic cycles, thus offering new therapeutic perspectives for preventing MDR in infectious disease settings.
Collapse
Affiliation(s)
| | - Karl Kuchler
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Medical University of Vienna, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria;
| |
Collapse
|
22
|
Nagy G, Kiss S, Varghese R, Bauer K, Szebenyi C, Kocsubé S, Homa M, Bodai L, Zsindely N, Nagy G, Vágvölgyi C, Papp T. Characterization of Three Pleiotropic Drug Resistance Transporter Genes and Their Participation in the Azole Resistance of Mucor circinelloides. Front Cell Infect Microbiol 2021; 11:660347. [PMID: 33937100 PMCID: PMC8079984 DOI: 10.3389/fcimb.2021.660347] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/19/2021] [Indexed: 02/04/2023] Open
Abstract
Mucormycosis is a life-threatening opportunistic infection caused by certain members of the fungal order Mucorales. This infection is associated with high mortality rate, which can reach nearly 100% depending on the underlying condition of the patient. Treatment of mucormycosis is challenging because these fungi are intrinsically resistant to most of the routinely used antifungal agents, such as most of the azoles. One possible mechanism of azole resistance is the drug efflux catalyzed by members of the ATP binding cassette (ABC) transporter superfamily. The pleiotropic drug resistance (PDR) transporter subfamily of ABC transporters is the most closely associated to drug resistance. The genome of Mucor circinelloides encodes eight putative PDR-type transporters. In this study, transcription of the eight pdr genes has been analyzed after azole treatment. Only the pdr1 showed increased transcript level in response to all tested azoles. Deletion of this gene caused increased susceptibility to posaconazole, ravuconazole and isavuconazole and altered growth ability of the mutant. In the pdr1 deletion mutant, transcript level of pdr2 and pdr6 significantly increased. Deletion of pdr2 and pdr6 was also done to create single and double knock out mutants for the three genes. After deletion of pdr2 and pdr6, growth ability of the mutant strains decreased, while deletion of pdr2 resulted in increased sensitivity against posaconazole, ravuconazole and isavuconazole. Our result suggests that the regulation of the eight pdr genes is interconnected and pdr1 and pdr2 participates in the resistance of the fungus to posaconazole, ravuconazole and isavuconazole.
Collapse
Affiliation(s)
- Gábor Nagy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- MTA-SZTE “Lendület” Fungal Pathogenicity Mechanisms Research Group, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Sándor Kiss
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Rakesh Varghese
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Kitti Bauer
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csilla Szebenyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- MTA-SZTE “Lendület” Fungal Pathogenicity Mechanisms Research Group, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Mónika Homa
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- MTA-SZTE “Lendület” Fungal Pathogenicity Mechanisms Research Group, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Nóra Zsindely
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Tamás Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- MTA-SZTE “Lendület” Fungal Pathogenicity Mechanisms Research Group, Department of Microbiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
23
|
F. Q. Smith D, Casadevall A. Fungal immunity and pathogenesis in mammals versus the invertebrate model organism Galleria mellonella. Pathog Dis 2021; 79:ftab013. [PMID: 33544836 PMCID: PMC7981337 DOI: 10.1093/femspd/ftab013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
In recent decades, Galleria mellonella (Lepidoptera: Pyralidae) have emerged as a model system to explore experimental aspects of fungal pathogenesis. The benefits of the G. mellonella model include being faster, cheaper, higher throughput and easier compared with vertebrate models. Additionally, as invertebrates, their use is subject to fewer ethical and regulatory issues. However, for G. mellonella models to provide meaningful insight into fungal pathogenesis, the G. mellonella-fungal interactions must be comparable to mammalian-fungal interactions. Indeed, as discussed in the review, studies suggest that G. mellonella and mammalian immune systems share many similarities, and fungal virulence factors show conserved functions in both hosts. While the moth model has opened novel research areas, many comparisons are superficial and leave large gaps of knowledge that need to be addressed concerning specific mechanisms underlying G. mellonella-fungal interactions. Closing these gaps in understanding will strengthen G. mellonella as a model for fungal virulence in the upcoming years. In this review, we provide comprehensive comparisons between fungal pathogenesis in mammals and G. mellonella from immunological and virulence perspectives. When information on an antifungal immune component is unknown in G. mellonella, we include findings from other well-studied Lepidoptera. We hope that by outlining this information available in related species, we highlight areas of needed research and provide a framework for understanding G. mellonella immunity and fungal interactions.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
24
|
Kumari S, Kumar M, Gaur NA, Prasad R. Multiple roles of ABC transporters in yeast. Fungal Genet Biol 2021; 150:103550. [PMID: 33675986 DOI: 10.1016/j.fgb.2021.103550] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/29/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
The ATP binding cassette (ABC) transporters, first discovered as high-affinity nutrient importers in bacteria, rose to prominence when their ability to confer multidrug resistance (MDR) to cancer cells was realized. The most characterized human permeability glycoprotein (P-gp) is a dominant exporter of anti-cancer drugs and its overexpression is directly linked to MDR. The overexpression of drug efflux pumps belonging to the ABC superfamily is also a frequent cause of resistance to antifungals. Fungi has a battery of ABC proteins, but in variable numbers and at different subcellular locations. These proteins perform many critical functions, from serving as gatekeepers for xenobiotic cleansing to translocating various structurally unrelated cargoes, including lipids, fatty acids, ions, peptides, sterols, metabolites and toxins. Their emerging additional roles in cellular physiology and virulence call for attention to analyze and re-examine their divergent functions in yeast. In brief, this review traces the history of ABC transporters in yeast and discusses their typical physiological functions that go beyond their well-known role as antifungal drug efflux pumps.
Collapse
Affiliation(s)
- Sonam Kumari
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Mohit Kumar
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; Amity Institute of Integrative Science and Health, Amity Institute of Biotechnology, Amity University Gurgaon, 122413 Haryana, India
| | - Naseem A Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health, Amity Institute of Biotechnology, Amity University Gurgaon, 122413 Haryana, India.
| |
Collapse
|
25
|
Bertout S, Roger F, Drakulovski P, Martin A, Gouveia T, Kassi F, Menan H, Krasteva D, Delaporte E, Bellet V. African ST173 Cryptococcus deuterogattii strains are commonly less susceptible to fluconazole: An unclear mechanism of resistance. J Glob Antimicrob Resist 2020; 21:262-269. [DOI: 10.1016/j.jgar.2019.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/20/2019] [Accepted: 10/17/2019] [Indexed: 12/29/2022] Open
|
26
|
Ghaffar M, Orr C, Webb G. Antiphagocytic protein 1 increases the susceptibility of Cryptococcus neoformans to amphotericin B and fluconazole. PLoS One 2019; 14:e0225701. [PMID: 31800598 PMCID: PMC6892493 DOI: 10.1371/journal.pone.0225701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Cryptococcus neoformans is a facultative intracellular pathogen responsible for the most common cause of fungal meningioencephalitis, occurring primarily in immunocompromised individuals. Antiphagocytic protein 1 (App1) is a virulence factor produced by C. neoformans that inhibits phagocytosis of the yeast by host macrophages. Treatment of cryptococcosis includes amphotericin B, fluconazole, and flucytosine. Virulence factors have been shown to affect the susceptibility of the pathogen to antifungal drugs. In this study, we aimed to examine the relationship between App1 and antifungal drugs. We found that short-term exposure to amphotericin B downregulates APP1 expression while exposure to fluconazole upregulates APP1. In addition, App1 was found to increase the susceptibility of the yeast to amphotericin B and fluconazole. This study provides evidence of an intricate relationship between App1 and antifungal drugs.
Collapse
Affiliation(s)
- Muhammad Ghaffar
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, South Carolina, United States of America
| | - Cody Orr
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, South Carolina, United States of America
| | - Ginny Webb
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
27
|
Moreno A, Banerjee A, Prasad R, Falson P. PDR-like ABC systems in pathogenic fungi. Res Microbiol 2019; 170:417-425. [PMID: 31562919 DOI: 10.1016/j.resmic.2019.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 01/23/2023]
Abstract
ABC transporters of the Pleiotropic Drug Resistance (PDR) family are the main actors of antifungal resistance in pathogenic fungi. While their involvement in clinical resistant strains has been proven, their transport mechanism remains unclear. Notably, one hallmark of PDR transporters is their asymmetry, with one canonical nucleotide-binding site capable of ATP hydrolysis while the other site is not. Recent publications reviewed here show that the so-called "deviant" site is of crucial importance for drug transport and is a step towards alleviating the mystery around the existence of non-catalytic binding sites.
Collapse
Affiliation(s)
- Alexis Moreno
- Drug Resistance & Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-Lyon 1 University Research Lab n° 5086, Institut de Biologie et Chimie des Protéines, Lyon, France.
| | - Atanu Banerjee
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, India.
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, India.
| | - Pierre Falson
- Drug Resistance & Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-Lyon 1 University Research Lab n° 5086, Institut de Biologie et Chimie des Protéines, Lyon, France.
| |
Collapse
|
28
|
MFS transporter from Botrytis cinerea provides tolerance to glucosinolate-breakdown products and is required for pathogenicity. Nat Commun 2019; 10:2886. [PMID: 31253809 PMCID: PMC6599007 DOI: 10.1038/s41467-019-10860-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 06/04/2019] [Indexed: 01/03/2023] Open
Abstract
Glucosinolates accumulate mainly in cruciferous plants and their hydrolysis-derived products play important roles in plant resistance against pathogens. The pathogen Botrytis cinerea has variable sensitivity to glucosinolates, but the mechanisms by which it responds to them are mostly unknown. Exposure of B. cinerea to glucosinolate-breakdown products induces expression of the Major Facilitator Superfamily transporter, mfsG, which functions in fungitoxic compound efflux. Inoculation of B. cinerea on wild-type Arabidopsis thaliana plants induces mfsG expression to higher levels than on glucosinolate-deficient A. thaliana mutants. A B. cinerea strain lacking functional mfsG transporter is deficient in efflux ability. It accumulates more isothiocyanates (ITCs) and is therefore more sensitive to this compound in vitro; it is also less virulent to glucosinolates-containing plants. Moreover, mfsG mediates ITC efflux in Saccharomyces cerevisiae cells, thereby conferring tolerance to ITCs in the yeast. These findings suggest that mfsG transporter is a virulence factor that increases tolerance to glucosinolates. Plant glucosinolates are important in defense against fungal pathogens. Here, the authors identify a major facilitator superfamily transporter protein of the pathogen Botrytis cinerea, mfsG, that plays a role in efflux and detoxification of glucosinolate-breakdown products during plant–pathogen interactions.
Collapse
|
29
|
Claus S, Jezierska S, Van Bogaert INA. Protein‐facilitated transport of hydrophobic molecules across the yeast plasma membrane. FEBS Lett 2019; 593:1508-1527. [DOI: 10.1002/1873-3468.13469] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Silke Claus
- Biochemical and Microbial Technology Universiteit Gent Belgium
| | | | - Inge N. A. Van Bogaert
- Lab. of Industrial Microbiology and Biocatalysis Faculty of Bioscience Engineering Ghent University Belgium
| |
Collapse
|
30
|
Emerging Mechanisms of Drug Resistance in Candida albicans. YEASTS IN BIOTECHNOLOGY AND HUMAN HEALTH 2019; 58:135-153. [DOI: 10.1007/978-3-030-13035-0_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Kano R, Okubo M, Hasegawa A, Kamata H. Multi-azole-resistant strains of Cryptococcus neoformans var. grubii isolated from a FLZ-resistant strain by culturing in medium containing voriconazole. Med Mycol 2018; 55:877-882. [PMID: 28927230 DOI: 10.1093/mmy/myw101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/22/2016] [Indexed: 12/23/2022] Open
Abstract
A Cryptococcus neoformans var. grubii strain, NUBS14020, was the first fluconazole (FLZ)-resistant strain isolated from a feline cryptococcosis. Subsequent work demonstrated that multi-azole-resistant strains are readily isolated from FLZ-resistant strains by culturing in medium containing voriconazole (VRZ). The resulting clones were assessed for mutation and expression of known target genes, including the loci encoding lanosterol 14-α demethylase (ERG11), an ATP-binding cassette (ABC) transporter (AFR1), or a multidrug efflux pump (MEP); mutation and/or overexpression of these genes is known to be associated with azole resistance. We also examined the interaction between an efflux blocker (FK506, calcineurin inhibitor) and VRZ in the multi-azole-resistant strains. The ERG11 genes from multi-azole-resistant strains encoded a protein with a G344S substitution. Expression levels of AFR1, ERG11, and MEP in the multi-azole-resistant strains were not higher than those in the VRZ-susceptible parent strain (NUBS14020) when cultured in Sabourad's dextrose broth containing VRZ. Synergistic effects between FK506 and VRC were observed in all of the multi-azole-resistant strains. The minimal inhibitory concentrations (MICs) of the combination of VRZ and FK506 in multi-azole-resistant strains were 4 to 8 times lower that the MICs of VRZ alone. To the best of our knowledge, this work represents the first report that multi-azole-resistant strains of C. neoformans encode a G344S substitution in Erg11p. Further investigation will be needed to determine the mechanism of multi-azole resistance in C. neoformans, given that feline cryptococcosis due to multi- azole-resistant strains is readily transmitted from cats to humans.
Collapse
Affiliation(s)
- Rui Kano
- Department of Veterinary Pathobiology, Nihon University College of Bioresource Sciences, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Miki Okubo
- Department of Veterinary Pathobiology, Nihon University College of Bioresource Sciences, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Atsuhiko Hasegawa
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo 192-0395, Japan
| | - Hiroshi Kamata
- Department of Veterinary Pathobiology, Nihon University College of Bioresource Sciences, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
32
|
Host-Pathogen Interactions Mediated by MDR Transporters in Fungi: As Pleiotropic as it Gets! Genes (Basel) 2018; 9:genes9070332. [PMID: 30004464 PMCID: PMC6071111 DOI: 10.3390/genes9070332] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/21/2018] [Accepted: 06/27/2018] [Indexed: 12/12/2022] Open
Abstract
Fungal infections caused by Candida, Aspergillus, and Cryptococcus species are an increasing problem worldwide, associated with very high mortality rates. The successful prevalence of these human pathogens is due to their ability to thrive in stressful host niche colonization sites, to tolerate host immune system-induced stress, and to resist antifungal drugs. This review focuses on the key role played by multidrug resistance (MDR) transporters, belonging to the ATP-binding cassette (ABC), and the major facilitator superfamilies (MFS), in mediating fungal resistance to pathogenesis-related stresses. These clearly include the extrusion of antifungal drugs, with C. albicans CDR1 and MDR1 genes, and corresponding homologs in other fungal pathogens, playing a key role in this phenomenon. More recently, however, clues on the transcriptional regulation and physiological roles of MDR transporters, including the transport of lipids, ions, and small metabolites, have emerged, linking these transporters to important pathogenesis features, such as resistance to host niche environments, biofilm formation, immune system evasion, and virulence. The wider view of the activity of MDR transporters provided in this review highlights their relevance beyond drug resistance and the need to develop therapeutic strategies that successfully face the challenges posed by the pleiotropic nature of these transporters.
Collapse
|
33
|
Chang M, Sionov E, Khanal Lamichhane A, Kwon-Chung KJ, Chang YC. Roles of Three Cryptococcus neoformans and Cryptococcus gattii Efflux Pump-Coding Genes in Response to Drug Treatment. Antimicrob Agents Chemother 2018; 62:e01751-17. [PMID: 29378705 PMCID: PMC5913978 DOI: 10.1128/aac.01751-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/22/2018] [Indexed: 12/14/2022] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii species complexes are the etiologic agents of cryptococcosis. We have deciphered the roles of three ABC transporters, Afr1, Afr2, and Mdr1, in the representative strains of the two species, C. neoformans H99 and C. gattii R265. Deletion of AFR1 in H99 and R265 drastically reduced the levels of resistance to three xenobiotics and three triazoles, suggesting that Afr1 is the major drug efflux pump in both strains. Fluconazole susceptibility was not affected when AFR2 or MDR1 was deleted in both strains. However, when these genes were deleted in combination with AFR1, a minor additive effect in susceptibility toward several drugs was observed. Deletion of all three genes in both strains caused further increases in susceptibility toward fluconazole and itraconazole, suggesting that Afr2 and Mdr1 augment Afr1 function in pumping these triazoles. Intracellular accumulation of Nile Red significantly increased in afr1Δ mutants of both strains, but rhodamine 6G accumulation increased only in the mdr1Δ mutant of H99. Thus, the three efflux pumps play different roles in the two strains when exposed to different azoles and xenobiotics. AFR1 and AFR2 expression was upregulated in H99 and R265 when treated with fluconazole. However, MDR1 expression was upregulated only in R265 under the same conditions. We screened a library of transcription factor mutants and identified several mutants that manifested either altered fluconazole sensitivity or an increase in the frequency of fluconazole heteroresistance. Gene expression analysis suggests that the three efflux pumps are regulated independently by different transcription factors in response to fluconazole exposure.
Collapse
Affiliation(s)
- Miwha Chang
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Edward Sionov
- Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Ami Khanal Lamichhane
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kyung J Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yun C Chang
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
34
|
Cryptococcus neoformans Epidemiological Cutoff Values. CURRENT FUNGAL INFECTION REPORTS 2017. [DOI: 10.1007/s12281-017-0295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Farrer RA, Fisher MC. Describing Genomic and Epigenomic Traits Underpinning Emerging Fungal Pathogens. ADVANCES IN GENETICS 2017; 100:73-140. [PMID: 29153405 DOI: 10.1016/bs.adgen.2017.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An unprecedented number of pathogenic fungi are emerging and causing disease in animals and plants, putting the resilience of wild and managed ecosystems in jeopardy. While the past decades have seen an increase in the number of pathogenic fungi, they have also seen the birth of new big data technologies and analytical approaches to tackle these emerging pathogens. We review how the linked fields of genomics and epigenomics are transforming our ability to address the challenge of emerging fungal pathogens. We explore the methodologies and bioinformatic toolkits that currently exist to rapidly analyze the genomes of unknown fungi, then discuss how these data can be used to address key questions that shed light on their epidemiology. We show how genomic approaches are leading a revolution into our understanding of emerging fungal diseases and speculate on future approaches that will transform our ability to tackle this increasingly important class of emerging pathogens.
Collapse
|
36
|
Antifungal Susceptibility Testing of Candida and Cryptococcus Species and Mechanisms of Resistance: Implications for Clinical Laboratories. CURRENT FUNGAL INFECTION REPORTS 2017. [DOI: 10.1007/s12281-017-0282-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Ferreira GF, Santos DA. Heteroresistance and fungi. Mycoses 2017; 60:562-568. [PMID: 28660647 DOI: 10.1111/myc.12639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/07/2017] [Accepted: 05/10/2017] [Indexed: 11/27/2022]
Abstract
The concept of heteroresistance refers to the heterogeneous susceptibility to an antimicrobial drug in a microorganism population, meaning that some clones may be resistant and others are susceptible. This phenomenon has been widely studied in bacteria, but little attention has been given to its expression in fungi. We review the available literature on heteroresistance in fungi and invite the reader to recognise this phenomenon as a fungal mechanism to adapt to environmental stress, which may interfere both in resistance and virulence. Finally, heteroresistance may explain the treatment failures to eradicate mycosis in some patients treated with a seemingly appropriate antifungal.
Collapse
Affiliation(s)
- Gabriella F Ferreira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Governador Valadares, Brazil.,Departamento de Farmácia, Universidade Federal de Juiz de Fora - Campus Governador Valadares, Governador Valadares, Brazil
| | - Daniel A Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Governador Valadares, Brazil
| |
Collapse
|
38
|
Steenwyk J, Rokas A. Extensive Copy Number Variation in Fermentation-Related Genes Among Saccharomyces cerevisiae Wine Strains. G3 (BETHESDA, MD.) 2017; 7:1475-1485. [PMID: 28292787 PMCID: PMC5427499 DOI: 10.1534/g3.117.040105] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/08/2017] [Indexed: 01/30/2023]
Abstract
Due to the importance of Saccharomyces cerevisiae in wine-making, the genomic variation of wine yeast strains has been extensively studied. One of the major insights stemming from these studies is that wine yeast strains harbor low levels of genetic diversity in the form of single nucleotide polymorphisms (SNPs). Genomic structural variants, such as copy number (CN) variants, are another major type of variation segregating in natural populations. To test whether genetic diversity in CN variation is also low across wine yeast strains, we examined genome-wide levels of CN variation in 132 whole-genome sequences of S. cerevisiae wine strains. We found an average of 97.8 CN variable regions (CNVRs) affecting ∼4% of the genome per strain. Using two different measures of CN diversity, we found that gene families involved in fermentation-related processes such as copper resistance (CUP), flocculation (FLO), and glucose metabolism (HXT), as well as the SNO gene family whose members are expressed before or during the diauxic shift, showed substantial CN diversity across the 132 strains examined. Importantly, these same gene families have been shown, through comparative transcriptomic and functional assays, to be associated with adaptation to the wine fermentation environment. Our results suggest that CN variation is a substantial contributor to the genomic diversity of wine yeast strains, and identify several candidate loci whose levels of CN variation may affect the adaptation and performance of wine yeast strains during fermentation.
Collapse
Affiliation(s)
- Jacob Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
39
|
Resistance to antifungal therapies. Essays Biochem 2017; 61:157-166. [DOI: 10.1042/ebc20160067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/02/2017] [Accepted: 01/05/2017] [Indexed: 11/17/2022]
Abstract
The evolution of antifungal resistance among fungal pathogens has rendered the limited arsenal of antifungal drugs futile. Considering the recent rise in the number of nosocomial fungal infections in immunocompromised patients, the emerging clinical multidrug resistance (MDR) has become a matter of grave concern for medical professionals. Despite advances in therapeutic interventions, it has not yet been possible to devise convincing strategies to combat antifungal resistance. Comprehensive understanding of the molecular mechanisms of antifungal resistance is essential for identification of novel targets that do not promote or delay emergence of drug resistance. The present study discusses features and limitations of the currently available antifungals, mechanisms of antifungal resistance and highlights the emerging therapeutic strategies that could be deployed to combat MDR.
Collapse
|
40
|
Scorzoni L, de Paula E Silva ACA, Marcos CM, Assato PA, de Melo WCMA, de Oliveira HC, Costa-Orlandi CB, Mendes-Giannini MJS, Fusco-Almeida AM. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Front Microbiol 2017; 8:36. [PMID: 28167935 PMCID: PMC5253656 DOI: 10.3389/fmicb.2017.00036] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. Additionally, identifying novel drug targets is challenging because there are many similarities between fungal and human cells. The most common antifungal targets include fungal RNA synthesis and cell wall and membrane components, though new antifungal targets are being investigated. Nonetheless, fungi have developed resistance mechanisms, such as overexpression of efflux pump proteins and biofilm formation, emphasizing the importance of understanding these mechanisms. To address these problems, different approaches to preventing and treating fungal diseases are described in this review, with a focus on the resistance mechanisms of fungi, with the goal of developing efficient strategies to overcoming and preventing resistance as well as new advances in antifungal therapy. Due to the limited antifungal arsenal, researchers have sought to improve treatment via different approaches, and the synergistic effect obtained by the combination of antifungals contributes to reducing toxicity and could be an alternative for treatment. Another important issue is the development of new formulations for antifungal agents, and interest in nanoparticles as new types of carriers of antifungal drugs has increased. In addition, modifications to the chemical structures of traditional antifungals have improved their activity and pharmacokinetic parameters. Moreover, a different approach to preventing and treating fungal diseases is immunotherapy, which involves different mechanisms, such as vaccines, activation of the immune response and inducing the production of host antimicrobial molecules. Finally, the use of a mini-host has been encouraging for in vivo testing because these animal models demonstrate a good correlation with the mammalian model; they also increase the speediness of as well as facilitate the preliminary testing of new antifungal agents. In general, many years are required from discovery of a new antifungal to clinical use. However, the development of new antifungal strategies will reduce the therapeutic time and/or increase the quality of life of patients.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Ana C A de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Wanessa C M A de Melo
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Caroline B Costa-Orlandi
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| |
Collapse
|
41
|
Gago S, Serrano C, Alastruey-Izquierdo A, Cuesta I, Martín-Mazuelos E, Aller AI, Gómez-López A, Mellado E. Molecular identification, antifungal resistance and virulence ofCryptococcus neoformansandCryptococcus deneoformansisolated in Seville, Spain. Mycoses 2016; 60:40-50. [DOI: 10.1111/myc.12543] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/09/2016] [Accepted: 07/11/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Sara Gago
- Mycology Reference Laboratory; Centro Nacional de Microbiología; Instituto de Salud Carlos III; Madrid Spain
- Manchester Fungal Infection Group; Institute of Inflammation and Repair; University of Manchester; Manchester UK
| | - Carmen Serrano
- Sección Micología; Hospital San Juan de Dios del Aljarafe; Sevilla Spain
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory; Centro Nacional de Microbiología; Instituto de Salud Carlos III; Madrid Spain
- Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015); Instituto de Salud Carlos III; Madrid Spain
| | - Isabel Cuesta
- Mycology Reference Laboratory; Centro Nacional de Microbiología; Instituto de Salud Carlos III; Madrid Spain
- Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015); Instituto de Salud Carlos III; Madrid Spain
| | | | - Ana Isabel Aller
- Unidad de Gestión de Enfermedades Infecciosas y Microbiología; Hospital de Valme; Sevilla Spain
| | - Alicia Gómez-López
- Mycology Reference Laboratory; Centro Nacional de Microbiología; Instituto de Salud Carlos III; Madrid Spain
- Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015); Instituto de Salud Carlos III; Madrid Spain
| | - Emilia Mellado
- Mycology Reference Laboratory; Centro Nacional de Microbiología; Instituto de Salud Carlos III; Madrid Spain
- Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015); Instituto de Salud Carlos III; Madrid Spain
| |
Collapse
|
42
|
Steenwyk JL, Soghigian JS, Perfect JR, Gibbons JG. Copy number variation contributes to cryptic genetic variation in outbreak lineages of Cryptococcus gattii from the North American Pacific Northwest. BMC Genomics 2016; 17:700. [PMID: 27590805 PMCID: PMC5009542 DOI: 10.1186/s12864-016-3044-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022] Open
Abstract
Background Copy number variants (CNVs) are a class of structural variants (SVs) and are defined as fragments of DNA that are present at variable copy number in comparison with a reference genome. Recent advances in bioinformatics methodologies and sequencing technologies have enabled the high-resolution quantification of genome-wide CNVs. In pathogenic fungi SVs have been shown to alter gene expression, influence host specificity, and drive fungicide resistance, but little attention has focused specifically on CNVs. Using publicly available sequencing data, we identified 90 isolates across 212 Cryptococcus gattii genomes that belong to the VGII subgroups responsible for the recent deadly outbreaks in the North American Pacific Northwest. We generated CNV profiles for each sample to investigate the prevalence and function of CNV in C. gattii. Results We identified eight genetic clusters among publicly available Illumina whole genome sequence data from 212 C. gattii isolates through population structure analysis. Three clusters represent the VGIIa, VGIIb, and VGIIc subgroups from the North American Pacific Northwest. CNV was bioinformatically predicted and affected ~300–400 Kilobases (Kb) of the C. gattii VGII subgroup genomes. Sixty-seven loci, encompassing 58 genes, showed highly divergent patterns of copy number variation between VGII subgroups. Analysis of PFam domains within divergent CN variable genes revealed enrichment of protein domains associated with transport, cell wall organization and external encapsulating structure. Conclusions CNVs may contribute to pathological and phenotypic differences observed between the C. gattii VGIIa, VGIIb, and VGIIc subpopulations. Genes overlapping with population differentiated CNVs were enriched for several virulence related functional terms. These results uncover novel candidate genes to examine the genetic and functional underpinnings of C. gattii pathogenicity. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3044-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Biology Department, Clark University, 950 Main Street, Worcester, MA, USA.,Current address: Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - John S Soghigian
- Biology Department, Clark University, 950 Main Street, Worcester, MA, USA.,Current address: Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - John G Gibbons
- Biology Department, Clark University, 950 Main Street, Worcester, MA, USA.
| |
Collapse
|
43
|
Bosco-Borgeat ME, Mazza M, Taverna CG, Córdoba S, Murisengo OA, Vivot W, Davel G. Amino acid substitution in Cryptococcus neoformans lanosterol 14-α-demethylase involved in fluconazole resistance in clinical isolates. Rev Argent Microbiol 2016; 48:137-42. [PMID: 27311753 DOI: 10.1016/j.ram.2016.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/03/2015] [Accepted: 03/01/2016] [Indexed: 12/28/2022] Open
Abstract
The molecular basis of fluconazole resistance in Cryptococcus neoformans has been poorly studied. A common azole resistance mechanism in Candida species is the acquisition of point mutations in the ERG11 gene encoding the enzyme lanosterol 14-α-demethylase, target of the azole class of drugs. In C. neoformans only two mutations were described in this gene. In order to evaluate other mutations that could be implicated in fluconazole resistance in C. neoformans we studied the genomic sequence of the ERG11 gene in 11 clinical isolates with minimal inhibitory concentration (MIC) values to fluconazole of ≥16μg/ml. The sequencing revealed the G1855A mutation in 3 isolates, resulting in the enzyme amino acid substitution G484S. These strains were isolated from two fluconazole-treated patients. This mutation would not intervene in the susceptibility to itraconazole and voriconazole.
Collapse
Affiliation(s)
- María E Bosco-Borgeat
- Departamento Micología, Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina.
| | - Mariana Mazza
- Departamento Micología, Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Constanza G Taverna
- Departamento Micología, Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Susana Córdoba
- Departamento Micología, Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Omar A Murisengo
- Departamento Micología, Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Walter Vivot
- Departamento Micología, Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Graciela Davel
- Departamento Micología, Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
44
|
Pleiotropic effects of the vacuolar ABC transporter MLT1 of Candida albicans on cell function and virulence. Biochem J 2016; 473:1537-52. [PMID: 27026051 PMCID: PMC4888455 DOI: 10.1042/bcj20160024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/29/2016] [Indexed: 01/14/2023]
Abstract
Among the several mechanisms that contribute to MDR (multidrug resistance), the overexpression of drug-efflux pumps belonging to the ABC (ATP-binding cassette) superfamily is the most frequent cause of resistance to antifungal agents. The multidrug transporter proteins Cdr1p and Cdr2p of the ABCG subfamily are major players in the development of MDR in Candida albicans. Because several genes coding for ABC proteins exist in the genome of C. albicans, but only Cdr1p and Cdr2p have established roles in MDR, it is implicit that the other members of the ABC family also have alternative physiological roles. The present study focuses on an ABC transporter of C. albicans, Mlt1p, which is localized in the vacuolar membrane and specifically transports PC (phosphatidylcholine) into the vacuolar lumen. Transcriptional profiling of the mlt1∆/∆ mutant revealed a down-regulation of the genes involved in endocytosis, oxidoreductase activity, virulence and hyphal development. High-throughput MS-based lipidome analysis revealed that the Mlt1p levels affect lipid homoeostasis and thus lead to a plethora of physiological perturbations. These include a delay in endocytosis, inefficient sequestering of reactive oxygen species (ROS), defects in hyphal development and attenuated virulence. The present study is an emerging example where new and unconventional roles of an ABC transporter are being identified.
Collapse
|
45
|
Rossi SA, Trevijano-Contador N, Scorzoni L, Mesa-Arango AC, de Oliveira HC, Werther K, de Freitas Raso T, Mendes-Giannini MJS, Zaragoza O, Fusco-Almeida AM. Impact of Resistance to Fluconazole on Virulence and Morphological Aspects of Cryptococcus neoformans and Cryptococcus gattii Isolates. Front Microbiol 2016; 7:153. [PMID: 26909069 PMCID: PMC4754443 DOI: 10.3389/fmicb.2016.00153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/29/2016] [Indexed: 01/12/2023] Open
Abstract
Cryptococcus sp. are responsible for around 1 million cases of meningitis every year. Fluconazole (FLU) is commonly used in the treatment of cryptococcosis, mainly in immunocompromised patients and the resistance is usually reported after long periods of treatment. In this study, the morphological characterization and virulence profile of FLU-susceptible and FLU-resistant clinical and environmental isolates of C. neoformans and C. gattii were performed both in vitro and in vivo using the Galleria mellonella model. FLU-susceptible isolates from C. neoformans were significantly more virulent than the FLU-resistant isolates. FLU-susceptible C. gattii isolates showed a different virulence profile from C. neoformans isolates where only the environmental isolate, CL, was more virulent compared with the resistant isolates. Cell morphology and capsule size were analyzed and the FLU-resistant isolates did not change significantly compared with the most sensitive isolates. Growth at 37°C was also evaluated and in both species, the resistant isolates showed a reduced growth at this temperature, indicating that FLU resistance can affect their growth. Based on the results obtained is possible suggest that FLU resistance can influence the morphology of the isolates and consequently changed the virulence profiles. The most evident results were observed for C. neoformans showing that the adaptation of isolates to antifungal selective pressure influenced the loss of virulence.
Collapse
Affiliation(s)
- Suélen A Rossi
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clíncas São Paulo, Brazil
| | - Nuria Trevijano-Contador
- Centro Nacional de Microbiologia, Unidad de Micologia, Instituto de Salud Carlos III, Majadahonda Madrid, Spain
| | - Liliana Scorzoni
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clíncas São Paulo, Brazil
| | | | - Haroldo C de Oliveira
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clíncas São Paulo, Brazil
| | - Karin Werther
- Faculdade de Medicina Veterinária e Zootecnia, USP - Universidade de São Paulo, Departamento de Patologia São Paulo, Brazil
| | - Tânia de Freitas Raso
- Faculdade de Medicina Veterinária e Zootecnia, USP - Universidade de São Paulo, Departamento de Patologia São Paulo, Brazil
| | - Maria J S Mendes-Giannini
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clíncas São Paulo, Brazil
| | - Oscar Zaragoza
- Centro Nacional de Microbiologia, Unidad de Micologia, Instituto de Salud Carlos III, Majadahonda Madrid, Spain
| | - Ana M Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clíncas São Paulo, Brazil
| |
Collapse
|
46
|
Candida Efflux ATPases and Antiporters in Clinical Drug Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:351-376. [PMID: 26721282 DOI: 10.1007/978-3-319-25304-6_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An enhanced expression of genes encoding ATP binding cassette (ABC) and major facilitator superfamily (MFS) transport proteins are known to contribute to the development of tolerance to antifungals in pathogenic yeasts. For example, the azole resistant (AR) clinical isolates of the opportunistic human fungal pathogen Candida albicans show an overexpression of CDR1 and/or CaMDR1 belonging to ABC and MFS, superfamilies, respectively. The reduced accumulation (due to rapid efflux) of drugs in AR isolates confirms the role of efflux pump proteins in the development of drug tolerance. Considering the importance of major multidrug transporters, the focus of recent research has been to understand the structure and function of these proteins which could help to design inhibitors/modulators of these pump proteins. This chapter focuses on some aspects of the structure and function of yeast transporter proteins particularly in relation to MDR in Candida.
Collapse
|
47
|
Prasad R, Shah AH, Rawal MK. Antifungals: Mechanism of Action and Drug Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:327-349. [PMID: 26721281 DOI: 10.1007/978-3-319-25304-6_14] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There are currently few antifungals in use which show efficacy against fungal diseases. These antifungals mostly target specific components of fungal plasma membrane or its biosynthetic pathways. However, more recent class of antifungals in use is echinocandins which target the fungal cell wall components. The availability of mostly fungistatic antifungals in clinical use, often led to the development of tolerance to these very drugs by the pathogenic fungal species. Thus, the development of clinical multidrug resistance (MDR) leads to higher tolerance to drugs and its emergence is helped by multiple mechanisms. MDR is indeed a multifactorial phenomenon wherein a resistant organism possesses several mechanisms which contribute to display reduced susceptibility to not only single drug in use but also show collateral resistance to several drugs. Considering the limited availability of antifungals in use and the emergence of MDR in fungal infections, there is a continuous need for the development of novel broad spectrum antifungal drugs with better efficacy. Here, we briefly present an overview of the current understanding of the antifungal drugs in use, their mechanism of action and the emerging possible novel antifungal drugs with great promise.
Collapse
Affiliation(s)
- Rajendra Prasad
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India. .,AMITY Institute of Integrative Sciences and Health (AIISH), Amity University Haryana, Manesar, Gurgaon, Haryana, India.
| | - Abdul Haseeb Shah
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manpreet Kaur Rawal
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
48
|
Fluconazole Susceptibility in Cryptococcus gattii Is Dependent on the ABC Transporter Pdr11. Antimicrob Agents Chemother 2015; 60:1202-7. [PMID: 26643330 DOI: 10.1128/aac.01777-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023] Open
Abstract
Cryptococcus gattii isolates from the Pacific Northwest have exhibited higher fluconazole MICs than isolates from other sites. The mechanism of fluconazole resistance in C. gattii is unknown. We sought to determine the role of the efflux pumps Mdr1 and Pdr11 in fluconazole susceptibility. Using biolistic transformation of the parent isolate, we created a strain lacking Mdr1 (mdr1Δ) and another strain lacking Pdr11 (pdr11Δ). Phenotypic virulence factors were assessed by standard methods (capsule size, melanin production, growth at 30 and 37 °C). Survival was assessed in an intranasal murine model of cryptococcosis. Antifungal MICs were determined by the M27-A3 methodology. No differences in key virulence phenotypic components were identified. Fluconazole susceptibility was unchanged in the Mdr1 knockout or reconstituted isolates. However, fluconazole MICs decreased from 32 μg/ml for the wild-type isolate to <0.03 μg/ml for the pdr11Δ strain and reverted to 32 μg/ml for the reconstituted strain. In murine models, no difference in virulence was observed between wild-type, knockout, or reconstituted isolates. We conclude that Pdr11 plays an essential role in fluconazole susceptibility in C. gattii. Genomic and expression differences between resistant and susceptible C. gattii clinical isolates should be assessed further in order to identify other potential mechanisms of resistance.
Collapse
|
49
|
Abstract
Cryptococcus gattii is a fungal pathogen of humans, causing pulmonary infections in otherwise healthy hosts. To characterize genomic variation among the four major lineages of C. gattii (VGI, -II, -III, and -IV), we generated, annotated, and compared 16 de novo genome assemblies, including the first for the rarely isolated lineages VGIII and VGIV. By identifying syntenic regions across assemblies, we found 15 structural rearrangements, which were almost exclusive to the VGI-III-IV lineages. Using synteny to inform orthology prediction, we identified a core set of 87% of C. gattii genes present as single copies in all four lineages. Remarkably, 737 genes are variably inherited across lineages and are overrepresented for response to oxidative stress, mitochondrial import, and metal binding and transport. Specifically, VGI has an expanded set of iron-binding genes thought to be important to the virulence of Cryptococcus, while VGII has expansions in the stress-related heat shock proteins relative to the other lineages. We also characterized genes uniquely absent in each lineage, including a copper transporter absent from VGIV, which influences Cryptococcus survival during pulmonary infection and the onset of meningoencephalitis. Through inclusion of population-level data for an additional 37 isolates, we identified a new transcontinental clonal group that we name VGIIx, mitochondrial recombination between VGII and VGIII, and positive selection of multidrug transporters and the iron-sulfur protein aconitase along multiple branches of the phylogenetic tree. Our results suggest that gene expansion or contraction and positive selection have introduced substantial variation with links to mechanisms of pathogenicity across this species complex. The genetic differences between phenotypically different pathogens provide clues to the underlying mechanisms of those traits and can lead to new drug targets and improved treatments for those diseases. In this paper, we compare 16 genomes belonging to four highly differentiated lineages of Cryptococcus gattii, which cause pulmonary infections in otherwise healthy humans and other animals. Half of these lineages have not had their genomes previously assembled and annotated. We identified 15 ancestral rearrangements in the genome and over 700 genes that are unique to one or more lineages, many of which are associated with virulence. In addition, we found evidence for recent transcontinental spread, mitochondrial genetic exchange, and positive selection in multidrug transporters. Our results suggest that gene expansion/contraction and positive selection are diversifying the mechanisms of pathogenicity across this species complex.
Collapse
|
50
|
Kano R, Okubo M, Yanai T, Hasegawa A, Kamata H. First Isolation of Azole-Resistant Cryptococcus neoformans from Feline Cryptococcosis. Mycopathologia 2015; 180:427-33. [PMID: 26162642 DOI: 10.1007/s11046-015-9919-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/30/2015] [Indexed: 11/24/2022]
Abstract
We report here, to the best of our knowledge, the first description of an in vitro fluconazole (FLZ)-resistant Cryptococcus neoformans var. grubii from a case of feline cryptococcosis. In vitro testing demonstrated that this isolate was resistant to FLZ (minimum inhibitory concentration, MIC, of 128 μg/ml) but remained susceptible to amphotericin B (0.064 µg/ml), itraconazole (0.38 µg/ml), voriconazole (0.023 µg/ml), and posaconazole (0.125 µg/ml). The predicted amino acid sequence of the lanosterol 14-α demethylase (ERG11) protein in the isolate was identical to that of the C. neoformans var. grubii reference strain, indicating that resistance was not mediated by mutation of the target gene's open reading frame. The RT-qPCR analysis for ERG11 and ATP-binding cassette (ABC) transporter-encoding gene (AFR1) indicated that the isolate increased transcription factor function of ERG11 and AFR1 than that of FLZ-susceptive strains. This observation, in combination with the lack of resistance to other azoles (that is, lack of crossresistance), suggests that resistance in our isolate was the result of overexpression of the endogenous ERG11 and ABC transporter.
Collapse
Affiliation(s)
- Rui Kano
- Department of Veterinary Pathobiology, Nihon University College of Bioresource Sciences, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Miki Okubo
- Department of Veterinary Pathobiology, Nihon University College of Bioresource Sciences, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tokuma Yanai
- Department of Veterinary Pathology, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Atsuhiko Hasegawa
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan
| | - Hiroshi Kamata
- Department of Veterinary Pathobiology, Nihon University College of Bioresource Sciences, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|