1
|
You X, Niu L, Fu J, Ge S, Shi J, Zhang Y, Zhuang P. Bidirectional regulation of the brain-gut-microbiota axis following traumatic brain injury. Neural Regen Res 2025; 20:2153-2168. [PMID: 39359076 DOI: 10.4103/nrr.nrr-d-24-00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/11/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00002/figure1/v/2024-09-30T120553Z/r/image-tiff Traumatic brain injury is a prevalent disorder of the central nervous system. In addition to primary brain parenchymal damage, the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury; however, the underlying pathogenesis remains unclear, and effective intervention methods are lacking. Intestinal dysfunction is a significant consequence of traumatic brain injury. Being the most densely innervated peripheral tissue in the body, the gut possesses multiple pathways for the establishment of a bidirectional "brain-gut axis" with the central nervous system. The gut harbors a vast microbial community, and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal, hormonal, and immune pathways. A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications. We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury, with a specific focus on the complex biological processes of peripheral nerves, immunity, and microbes triggered by traumatic brain injury, encompassing autonomic dysfunction, neuroendocrine disturbances, peripheral immunosuppression, increased intestinal barrier permeability, compromised responses of sensory nerves to microorganisms, and potential effector nuclei in the central nervous system influenced by gut microbiota. Additionally, we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury. This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the "brain-gut-microbiota axis."
Collapse
Affiliation(s)
- Xinyu You
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Niu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiafeng Fu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shining Ge
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiangwei Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanjun Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Pengwei Zhuang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Ravesloot-Chávez MM, Van Dis E, Fox D, Anaya Sanchez A, Espich S, Nguyenla XH, Rawal SL, Samani H, Ballinger MA, Thomas H, Kotov D, Vance R, Nachman MW, Stanley SA. Tuberculosis susceptibility in genetically diverse mice reveals functional diversity of neutrophils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.29.547125. [PMID: 39211107 PMCID: PMC11361191 DOI: 10.1101/2023.06.29.547125] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Tuberculosis (TB) is a heterogenous disease in humans with individuals exhibiting a wide range of susceptibility. This heterogeneity is not captured by standard laboratory mouse lines. We used a new collection of 19 wild-derived inbred mouse lines collected from diverse geographic sites to identify novel phenotypes during Mycobacterium tuberculosis ( Mtb ) infection. Wild derived mice have heterogenous immune responses to infection that result in differential ability to control disease at early timepoints. Correlation analysis with multiple parameters including sex, weight, and cellular immune responses in the lungs revealed that enhanced control of infection is associated with increased numbers of CD4 T cells, CD8 T cells and B cells. Surprisingly, we did not observe strong correlations between IFN-γ production and control of infection. Although in most lines high neutrophils were associated with susceptibility, we identified a mouse line that harbors high neutrophils numbers yet controls infection. Using single-cell RNA sequencing, we identified a novel neutrophil signature associated with failure to control infection.
Collapse
|
3
|
Maciag K, Plumlee CR, Cohen SB, Gern BH, Urdahl KB. Reappraising the Role of T Cell-Derived IFN-γ in Restriction of Mycobacterium tuberculosis in the Murine Lung. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:339-346. [PMID: 38912839 PMCID: PMC11249196 DOI: 10.4049/jimmunol.2400145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024]
Abstract
T cells producing IFN-γ have long been considered a stalwart for immune protection against Mycobacterium tuberculosis (Mtb), but their relative importance to pulmonary immunity has been challenged by murine studies that achieved protection by adoptively transferred Mtb-specific IFN-γ-/- T cells. Using IFN-γ-/- T cell chimeric mice and adoptive transfer of IFN-γ-/- T cells into TCRβ-/-δ-/- mice, we demonstrate that control of lung Mtb burden is in fact dependent on T cell-derived IFN-γ, and, furthermore, mice selectively deficient in T cell-derived IFN-γ develop exacerbated disease compared with T cell-deficient control animals, despite equivalent lung bacterial burdens. Deficiency in T cell-derived IFN-γ skews infected and bystander monocyte-derived macrophages to an alternative M2 phenotype and promotes neutrophil and eosinophil influx. Our studies support an important role for T cell-derived IFN-γ in pulmonary immunity against tuberculosis.
Collapse
Affiliation(s)
- Karolina Maciag
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA
- Seattle Children’s Research Institute, Seattle, WA
| | | | | | - Benjamin H. Gern
- Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Kevin B. Urdahl
- Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
4
|
Piccaro G, Aquino G, Gigantino V, Tirelli V, Sanchez M, Iorio E, Matarese G, Cassone A, Palma C. Mycobacterium tuberculosis antigen 85B modifies BCG-induced antituberculosis immunity and favors pathogen survival. J Leukoc Biol 2024; 115:1053-1069. [PMID: 38242866 DOI: 10.1093/jleuko/qiae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Tuberculosis is one of the deadliest infectious diseases worldwide. Mycobacterium tuberculosis has developed strategies not only to evade host immunity but also to manipulate it for its survival. We investigated whether Mycobacterium tuberculosis exploited the immunogenicity of Ag85B, one of its major secretory proteins, to redirect host antituberculosis immunity to its advantage. We found that administration of Ag85B protein to mice vaccinated with Bacillus Calmette-Guérin impaired the protection elicited by vaccination, causing a more severe infection when mice were challenged with Mycobacterium tuberculosis. Ag85B administration reduced Bacillus Calmette-Guérin-induced CD4 T-cell activation and IFN-γ, CCL-4, and IL-22 production in response to Mycobacterium tuberculosis-infected cells. On the other hand, it promoted robust Ag85B-responsive IFN-γ-producing CD4 T cells, expansion of a subset of IFN-γ/IL-10-producing CD4+FOXP3+Treg cells, differential activation of IL-17/IL-22 responses, and activation of regulatory and exhaustion pathways, including programmed death ligand 1 expression on macrophages. All this resulted in impaired intracellular Mycobacterium tuberculosis growth control by systemic immunity, both before and after the Mycobacterium tuberculosis challenge. Interestingly, Mycobacterium tuberculosis infection itself generated Ag85B-reactive inflammatory immune cells incapable of clearing Mycobacterium tuberculosis in both unvaccinated and Bacillus Calmette-Guérin-vaccinated mice. Our data suggest that Mycobacterium tuberculosis can exploit the strong immunogenicity of Ag85B to promote its own survival and spread. Since Ag85B is normally secreted by replicating bacteria and is commonly found in the lungs of the Mycobacterium tuberculosis-infected host, our findings may advance the understanding on the mechanisms of Mycobacterium tuberculosis pathogenesis and immune evasion.
Collapse
Affiliation(s)
- Giovanni Piccaro
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Gabriella Aquino
- Pathology Unit, Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS, Via Mariano Semmola 53, 80131 Naples, Italy
| | - Vincenzo Gigantino
- Pathology Unit, Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS, Via Mariano Semmola 53, 80131 Naples, Italy
| | - Valentina Tirelli
- Core Facilities-Flow Cytometry Area, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Massimo Sanchez
- Core Facilities-Flow Cytometry Area, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Egidio Iorio
- Core Facilities-High Resolution NMR Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie mediche, Università di Napoli "Federico II," Via Sergio Pansini 5, 80131 Naples, Italy
| | - Antonio Cassone
- Polo d'innovazione della Genomica, Genetica e Biologia, Via Fiorentina 1, 53100 Siena, Italy
| | - Carla Palma
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
5
|
Maciag K, Plumlee C, Cohen S, Gern B, Urdahl K. Re-appraising the role of T-cell derived interferon gamma in restriction of Mycobacterium tuberculosis in the murine lung: T-cell derived IFNγ is required to restrict pulmonary Mtb. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588086. [PMID: 38617280 PMCID: PMC11014638 DOI: 10.1101/2024.04.04.588086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
T cells producing interferon gamma (IFNγ) have long been considered a stalwart for immune protection against Mycobacterium tuberculosis (Mtb), but their relative importance to pulmonary immunity has been challenged by murine studies which achieved protection by adoptively transferred Mtb-specific IFNγ-/- T cells. Using IFNγ-/- T cell chimeric mice and adoptive transfer of IFNγ-/- T cells into TCRβ-/-δ-/- mice, we demonstrate that control of lung Mtb burden is in fact dependent on T cell-derived IFNγ, and furthermore, mice selectively deficient in T cell-derived IFNγ develop exacerbated disease compared to T cell-deficient controls despite equivalent lung bacterial burdens. Deficiency in T cell-derived IFNγ skews infected and bystander monocyte-derived macrophages (MDMs) to an alternative M2 phenotype, and promotes neutrophil and eosinophil influx. Our studies support an important role for T cell-derived IFNγ in pulmonary immunity against TB.
Collapse
Affiliation(s)
- Karolina Maciag
- Seattle Children's Research Institute
- Division of Allergy and Infectious Diseases, University of Washington
| | | | | | | | - Kevin Urdahl
- Seattle Children's Research Institute
- Department of Immunology, University of Washington
| |
Collapse
|
6
|
García-Bengoa M, Vergara EJ, Tran AC, Bossi L, Cooper AM, Pearl JE, Mussá T, von Köckritz-Blickwede M, Singh M, Reljic R. Immunogenicity of PE18, PE31, and PPE26 proteins from Mycobacterium tuberculosis in humans and mice. Front Immunol 2023; 14:1307429. [PMID: 38124744 PMCID: PMC10730732 DOI: 10.3389/fimmu.2023.1307429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction The large family of PE and PPE proteins accounts for as much as 10% of the genome of Mycobacterium tuberculosis. In this study, we explored the immunogenicity of three proteins from this family, PE18, PE31, and PPE26, in humans and mice. Methods The investigation involved analyzing the immunoreactivity of the selected proteins using sera from TB patients, IGRA-positive household contacts, and IGRA-negative BCG vaccinated healthy donors from the TB endemic country Mozambique. Antigen-recall responses were examined in PBMC from these groups, including the evaluation of cellular responses in healthy unexposed individuals. Moreover, systemic priming and intranasal boosting with each protein, combined with the Quil-A adjuvant, were conducted in mice. Results We found that all three proteins are immunoreactive with sera from TB patients, IGRA-positive household contacts, and IGRA-negative BCG vaccinated healthy controls. Likewise, antigen-recall responses were induced in PBMC from all groups, and the proteins stimulated proliferation of peripheral blood mononuclear cells from healthy unexposed individuals. In mice, all three antigens induced IgG antibody responses in sera and predominantly IgG, rather than IgA, responses in bronchoalveolar lavage. Additionally, CD4+ and CD8+ effector memory T cell responses were observed in the spleen, with PE18 demonstrating the ability to induce tissue-resident memory T cells in the lungs. Discussion Having demonstrated immunogenicity in both humans and mice, the protective capacity of these antigens was evaluated by challenging immunized mice with low-dose aerosol of Mycobacterium tuberculosis H37Rv. The in vitro Mycobacterial Growth Inhibition Assay (MGIA) and assessment of viable bacteria in the lung did not demonstrate any ability of the vaccination protocol to reduce bacterial growth. We therefore concluded that these three specific PE/PPE proteins, while immunogenic in both humans and mice, were unable to confer protective immunity under these conditions.
Collapse
Affiliation(s)
- María García-Bengoa
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Emil Joseph Vergara
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Andy C. Tran
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Lorenzo Bossi
- Immunxperts SA, a Q² Solutions Company, Gosselies, Belgium
| | - Andrea M. Cooper
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - John E. Pearl
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Tufária Mussá
- Department of Microbiology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Maren von Köckritz-Blickwede
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Rajko Reljic
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| |
Collapse
|
7
|
Makatsa MS, Omondi FMA, Bunjun R, Wilkinson RJ, Riou C, Burgers WA. Characterization of Mycobacterium tuberculosis-Specific Th22 Cells and the Effect of Tuberculosis Disease and HIV Coinfection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:446-455. [PMID: 35777848 PMCID: PMC9339498 DOI: 10.4049/jimmunol.2200140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/26/2022] [Indexed: 02/03/2023]
Abstract
The development of a highly effective tuberculosis (TB) vaccine is likely dependent on our understanding of what constitutes a protective immune response to TB. Accumulating evidence suggests that CD4+ T cells producing IL-22, a distinct subset termed "Th22" cells, may contribute to protective immunity to TB. Thus, we characterized Mycobacterium tuberculosis-specific Th22 (and Th1 and Th17) cells in 72 people with latent TB infection or TB disease, with and without HIV-1 infection. We investigated the functional properties (IFN-γ, IL-22, and IL-17 production), memory differentiation (CD45RA, CD27, and CCR7), and activation profile (HLA-DR) of M. tuberculosis-specific CD4+ T cells. In HIV-uninfected individuals with latent TB infection, we detected abundant circulating IFN-γ-producing CD4+ T cells (median, 0.93%) and IL-22-producing CD4+ T cells (median, 0.46%) in response to M. tuberculosis The frequency of IL-17-producing CD4+ T cells was much lower, at a median of 0.06%. Consistent with previous studies, IL-22 was produced by a distinct subset of CD4+ T cells and not coexpressed with IL-17. M. tuberculosis-specific IL-22 responses were markedly reduced (median, 0.08%) in individuals with TB disease and HIV coinfection compared with IFN-γ responses. M. tuberculosis-specific Th22 cells exhibited a distinct memory and activation phenotype compared with Th1 and Th17 cells. Furthermore, M. tuberculosis-specific IL-22 was produced by conventional CD4+ T cells that required TCR engagement. In conclusion, we confirm that Th22 cells are a component of the human immune response to TB. Depletion of M. tuberculosis-specific Th22 cells during HIV coinfection may contribute to increased risk of TB disease.
Collapse
Affiliation(s)
- Mohau S Makatsa
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - F Millicent A Omondi
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rubina Bunjun
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Imperial College London, London, U.K.; and
- Francis Crick Institute Mill Hill laboratory, London, U.K
| | - Catherine Riou
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Wendy A Burgers
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa;
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Bioengineering of Bordetella pertussis Adenylate Cyclase Toxin for Vaccine Development and Other Biotechnological Purposes. Toxins (Basel) 2021; 13:toxins13020083. [PMID: 33499260 PMCID: PMC7911819 DOI: 10.3390/toxins13020083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The adenylate cyclase toxin, CyaA, is one of the key virulent factors produced by Bordetella pertussis, the causative agent of whooping cough. This toxin primarily targets innate immunity to facilitate bacterial colonization of the respiratory tract. CyaA exhibits several remarkable characteristics that have been exploited for various applications in vaccinology and other biotechnological purposes. CyaA has been engineered as a potent vaccine vehicle to deliver antigens into antigen-presenting cells, while the adenylate cyclase catalytic domain has been used to design a robust genetic assay for monitoring protein-protein interactions in bacteria. These two biotechnological applications are briefly summarized in this chapter.
Collapse
|
9
|
Ivanyi J. Tuberculosis vaccination needs to avoid 'decoy' immune reactions. Tuberculosis (Edinb) 2020; 126:102021. [PMID: 33254012 DOI: 10.1016/j.tube.2020.102021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022]
Abstract
Current search for a new effective vaccine against tuberculosis involves selected antigens, vectors and adjuvants. These are being evaluated usually by their booster inoculation following priming with Bacillus Calmette-Guerin. The purpose of this article is to point out, that despite being attenuated of virulence, priming with BCG may still involve immune mechanisms, which are not favourable for protection against active disease. It is postulated, that the responsible 'decoy' constituents selected during the evolution of pathogenic tubercle bacilli may be involved in the evasion from bactericidal host resistance and stimulate immune responses of a cytokine phenotype, which lead to the transition from latent closed granulomas to reactivation with infectious lung cavities. The decoy mechanisms appear as favourable for most infected subjects but leading in a minority of cases to pathology which can effectively transmit the infection. It is proposed that construction and development of new vaccine candidates could benefit from avoiding decoy-type immune mechanisms.
Collapse
Affiliation(s)
- Juraj Ivanyi
- Centre for Host-Microbiome Interactions, Guy's Campus of Kings College London, SE1, 1UL, United kingdom.
| |
Collapse
|
10
|
Aagaard C, Knudsen NPH, Sohn I, Izzo AA, Kim H, Kristiansen EH, Lindenstrøm T, Agger EM, Rasmussen M, Shin SJ, Rosenkrands I, Andersen P, Mortensen R. Immunization with Mycobacterium tuberculosis-Specific Antigens Bypasses T Cell Differentiation from Prior Bacillus Calmette-Guérin Vaccination and Improves Protection in Mice. THE JOURNAL OF IMMUNOLOGY 2020; 205:2146-2155. [PMID: 32887748 DOI: 10.4049/jimmunol.2000563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023]
Abstract
Despite the fact that the majority of people in tuberculosis (TB)-endemic areas are vaccinated with the Bacillus Calmette-Guérin (BCG) vaccine, TB remains the leading infectious cause of death. Data from both animal models and humans show that BCG and subunit vaccines induce T cells of different phenotypes, and little is known about how BCG priming influences subsequent booster vaccines. To test this, we designed a novel Mycobacterium tuberculosis-specific (or "non-BCG") subunit vaccine with protective efficacy in both mice and guinea pigs and compared it to a known BCG boosting vaccine. In naive mice, this M. tuberculosis-specific vaccine induced similar protection compared with the BCG boosting vaccine. However, in BCG-primed animals, only the M. tuberculosis-specific vaccine added significantly to the BCG-induced protection. This correlated with the priming of T cells with a lower degree of differentiation and improved lung-homing capacity. These results have implications for TB vaccine design.
Collapse
Affiliation(s)
- Claus Aagaard
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Niels Peter Hell Knudsen
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Iben Sohn
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Angelo A Izzo
- Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, CO 80523
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Emma Holsey Kristiansen
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Thomas Lindenstrøm
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Michael Rasmussen
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, DK-2300 Copenhagen, Denmark; and
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen, Denmark;
| |
Collapse
|
11
|
Habtamu M, Abrahamsen G, Aseffa A, Andargie E, Ayalew S, Abebe M, Spurkland A. High-throughput analysis of T cell-monocyte interaction in human tuberculosis. Clin Exp Immunol 2020; 201:187-199. [PMID: 32348546 PMCID: PMC7366737 DOI: 10.1111/cei.13447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/06/2020] [Accepted: 04/19/2020] [Indexed: 12/17/2022] Open
Abstract
The lack of efficient tools for identifying immunological correlates of tuberculosis (TB) protection or risk of disease progression impedes the development of improved control strategies. To more clearly understand the host response in TB, we recently established an imaging flow cytometer‐based in‐vitro assay, which assesses multiple aspects of T cell–monocyte interaction. Here, we extended our previous work and characterized communication between T cells and monocytes using clinical samples from individuals with different TB infection status and healthy controls from a TB endemic setting. To identify T cell–monocyte conjugates, peripheral blood mononuclear cells (PBMC) were stimulated with ds‐Red‐expressing Mycobacterium bovis bacille Calmette–Guérin or 6‐kDa early secreted antigenic target (ESAT 6) peptides for 6 h, and analyzed by imaging flow cytometer (IFC). We then enumerated T cell–monocyte conjugates using polarization of T cell receptor (TCR) and F‐actin as markers for synapse formation, and nuclear factor kappa B (NF‐κB) nuclear translocation in the T cells. We observed a reduced frequency of T cell–monocyte conjugates in cells from patients with active pulmonary tuberculosis (pTB) compared to latent TB‐infected (LTBI) and healthy controls. When we monitored NF‐κB nuclear translocation in T cells interacting with monocytes, the proportion of responding cells was significantly higher in active pTB compared with LTBI and controls. Overall, these data underscore the need to consider multiple immunological parameters against TB, where IFC could be a valuable tool.
Collapse
Affiliation(s)
- M Habtamu
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Olso, Norway.,Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - G Abrahamsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Olso, Norway
| | - A Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - E Andargie
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - S Ayalew
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - M Abebe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - A Spurkland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Olso, Norway
| |
Collapse
|
12
|
Muruganandah V, Sathkumara HD, Pai S, Rush CM, Brosch R, Waardenberg AJ, Kupz A. A systematic approach to simultaneously evaluate safety, immunogenicity, and efficacy of novel tuberculosis vaccination strategies. SCIENCE ADVANCES 2020; 6:eaaz1767. [PMID: 32181361 PMCID: PMC7056300 DOI: 10.1126/sciadv.aaz1767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/11/2019] [Indexed: 05/02/2023]
Abstract
Tuberculosis (TB) is the deadliest infectious disease worldwide. Bacille-Calmette-Guérin (BCG), the only licensed TB vaccine, affords variable protection against TB but remains the gold standard. BCG improvement is focused around three strategies: recombinant BCG strains, heterologous routes of administration, and booster vaccination. It is currently unknown whether combining these strategies is beneficial. The preclinical evaluation for new TB vaccines is heavily skewed toward immunogenicity and efficacy; however, safety and efficacy are the dominant considerations in human use. To facilitate stage gating of TB vaccines, we developed a simple empirical model to systematically rank vaccination strategies by integrating multiple measurements of safety, immunogenicity, and efficacy. We assessed 24 vaccination regimens, composed of three BCG strains and eight combinations of delivery. The model presented here highlights that mucosal booster vaccination may cause adverse outcomes and provides a much needed strategy to evaluate and rank data obtained from TB vaccine studies using different routes, strains, or animal models.
Collapse
MESH Headings
- Animals
- BCG Vaccine/administration & dosage
- Female
- Humans
- Immunization Schedule
- Immunization, Secondary/methods
- Immunogenicity, Vaccine
- Injections, Spinal
- Injections, Subcutaneous
- Mice
- Mice, Inbred C57BL
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/pathogenicity
- Patient Safety
- Research Design
- Treatment Outcome
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/pathology
- Tuberculosis, Pulmonary/prevention & control
- Vaccination/methods
- Vaccines, Synthetic
Collapse
Affiliation(s)
- Visai Muruganandah
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, Queensland, Australia
- College of Medicine and Dentistry, James Cook University, Cairns & Townsville, Queensland, Australia
| | - Harindra D. Sathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, Queensland, Australia
| | - Saparna Pai
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, Queensland, Australia
| | - Catherine M. Rush
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, Queensland, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Roland Brosch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Ashley J. Waardenberg
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns & Townsville, Queensland, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, Queensland, Australia
- Corresponding author.
| |
Collapse
|
13
|
Characterization of local and circulating bovine γδ T cell responses to respiratory BCG vaccination. Sci Rep 2019; 9:15996. [PMID: 31690788 PMCID: PMC6831659 DOI: 10.1038/s41598-019-52565-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
The Mycobacterium bovis Bacillus Calmette-Guerin (BCG) vaccine is administered parenterally to infants and young children to prevent tuberculosis (TB) infection. However, the protection induced by BCG is highly variable and the vaccine does not prevent pulmonary TB, the most common form of the illness. Until improved TB vaccines are available, it is crucial to use BCG in a manner which ensures optimal vaccine performance. Immunization directly to the respiratory mucosa has been shown to promote greater protection from TB in animal models. γδ T cells play a major role in host defense at mucosal sites and are known to respond robustly to mycobacterial infection. Their positioning in the respiratory mucosa ensures their engagement in the response to aerosolized TB vaccination. However, our understanding of the effect of respiratory BCG vaccination on γδ T cell responses in the lung is unknown. In this study, we used a calf model to investigate the immunogenicity of aerosol BCG vaccination, and the phenotypic profile of peripheral and mucosal γδ T cells responding to vaccination. We observed robust local and systemic M. bovis-specific IFN-γ and IL-17 production by both γδ and CD4 T cells. Importantly, BCG vaccination induced effector and memory cell differentiation of γδ T cells in both the lower airways and peripheral blood, with accumulation of a large proportion of effector memory γδ T cells in both compartments. Our results demonstrate the potential of the neonatal calf model to evaluate TB vaccine candidates that are to be administered via the respiratory tract, and suggest that aerosol immunization is a promising strategy for engaging γδ T cells in vaccine-induced immunity against TB.
Collapse
|
14
|
Multiplexed Quantitation of Intraphagocyte Mycobacterium tuberculosis Secreted Protein Effectors. Cell Rep 2019; 23:1072-1084. [PMID: 29694886 PMCID: PMC5946722 DOI: 10.1016/j.celrep.2018.03.125] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/16/2018] [Accepted: 03/26/2018] [Indexed: 01/21/2023] Open
Abstract
The pathogenic potential of Mycobacterium tuberculosis largely depends on ESX secretion systems exporting members of the multigenic Esx, Esp, and PE/PPE protein families. To study the secretion and regulation patterns of these proteins while circumventing immune cross-reactions due to their extensive sequence homologies, we developed an approach that relies on the recognition of their MHC class II epitopes by highly discriminative T cell receptors (TCRs) of a panel of T cell hybridomas. The latter were engineered so that each expresses a unique fluorescent reporter linked to specific antigen recognition. The resulting polychromatic and multiplexed imaging assay enabled us to measure the secretion of mycobacterial effectors inside infected host cells. We applied this novel technology to a large panel of mutants, clinical isolates, and host-cell types to explore the host-mycobacteria interplay and its impact on the intracellular bacterial secretome, which also revealed the unexpected capacity of phagocytes from lung granuloma to present mycobacterial antigens via MHC class II. T cell hybridomas detect individual mycobacterial proteins without cross-reactivity Detection of mycobacterial proteins by T cells allows visualization of their cellular topography Measurement of intraphagocyte mycobacterial proteins can be performed with T cells A multiplexed assay of mycobacterial protein quantitation has numerous applications
Collapse
|
15
|
Lyadova I, Nikitina I. Cell Differentiation Degree as a Factor Determining the Role for Different T-Helper Populations in Tuberculosis Protection. Front Immunol 2019; 10:972. [PMID: 31134070 PMCID: PMC6517507 DOI: 10.3389/fimmu.2019.00972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
Efficient tuberculosis (TB) control depends on early TB prediction and prevention. Solution to these tasks requires knowledge of TB protection correlates (TB CoPs), i.e., laboratory markers that are mechanistically involved in the protection and which allow to determine how well an individual is protected against TB or how efficient the candidate TB vaccine is. The search for TB CoPs has been largely focused on different T-helper populations, however, the data are controversial, and no reliable CoPs are still known. Here we discuss the role of different T-helper populations in TB protection focusing predominantly on Th17, “non-classical” Th1 (Th1*) and “classical” Th1 (cTh1) populations. We analyze how these populations differ besides their effector activity and suggest the hypothesis that: (i) links the protective potential of Th17, Th1*, and cTh1 to their differentiation degree and plasticity; (ii) implies different roles of these populations in response to vaccination, latent TB infection (LTBI), and active TB. One of the clinically relevant outcomes of this hypothesis is that over-stimulating T cells during vaccination and biasing T cell response toward the preferential generation of Th1 are not beneficial. The review sheds new light on the problem of TB CoPs and will help develop better strategies for TB control.
Collapse
Affiliation(s)
- Irina Lyadova
- Laboratory of Cellular and Molecular Mechanisms of Histogenesis, Koltsov Institute of Developmental Biology, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Irina Nikitina
- Laboratory of Cellular and Molecular Mechanisms of Histogenesis, Koltsov Institute of Developmental Biology, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| |
Collapse
|
16
|
Burggraaf MJ, Ates LS, Speer A, van der Kuij K, Kuijl C, Bitter W. Optimization of secretion and surface localization of heterologous OVA protein in mycobacteria by using LipY as a carrier. Microb Cell Fact 2019; 18:44. [PMID: 30841891 PMCID: PMC6402100 DOI: 10.1186/s12934-019-1093-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycobacterium bovis Bacille Calmette-Guérin (BCG) is not only used as a vaccine against tuberculosis but also protects against leprosy and is used as part of bladder cancer treatment to induce a protective immune response. However, protection by BCG vaccination is not optimal. To improve vaccine efficacy, recombinant BCG expressing heterologous antigens has been put forward to elicit antigen-specific cellular and humoral responses. Cell surface localized or secreted antigens induce better immune responses than their cytosolic counterparts. Optimizing secretion of heterologous proteins or protein fragments holds therefore unexplored potential for improving the efficacy of recombinant BCG vaccine candidates. Secretion of heterologous antigens requires crossing the mycobacterial inner and outer membrane. Mycobacteria have specialized ESX or type VII secretion systems that enable translocation of proteins across both membranes. Probing this secretion system could therefore be a valid approach to surface localize heterologous antigens. RESULTS We show that ESX-5 substrate LipY, a lipase, can be used as a carrier for heterologous secretion of an ovalbumin fragment (OVA). LipY contains a PE domain and a lipase domain, separated by a linker region. This linker domain is processed upon secretion. Fusion of the PE and linker domains of LipY to OVA enabled ESX-5-dependent secretion of the fusion construct LipY-OVA in M. marinum, albeit with low efficiency. Subsequent random mutagenesis of LipY-OVA and screening for increased secretion resulted in mutants with improved heterologous secretion. Detailed analysis identified two mutations in OVA that improved secretion, i.e. an L280P mutation and a protein-extending frameshift mutation. Finally, deletion of the linker domain of LipY enhanced secretion of LipY-OVA, although this mutation also reduced surface association. Further analysis in wild type LipY showed that the linker domain is required for surface association. CONCLUSION We show that the ESX-5 system can be used for heterologous secretion. Furthermore, minor mutations in the substrate can enhance secretion. Especially the C-terminal region seems to be important for this. The linker domain of LipY is involved in surface association. These findings show that non-biased screening approaches aid in optimization of heterologous secretion, which can contribute to heterologous vaccine development.
Collapse
Affiliation(s)
- Maroeska J Burggraaf
- Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Louis S Ates
- Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Alexander Speer
- Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Kim van der Kuij
- Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Coen Kuijl
- Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Wilbert Bitter
- Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands. .,Molecular Microbiology, Vrije Universiteit Amsterdam, de Boelelaan 1105, Amsterdam, Netherlands.
| |
Collapse
|
17
|
Barreira-Silva P, Torrado E, Nebenzahl-Guimaraes H, Kallenius G, Correia-Neves M. Aetiopathogenesis, immunology and microbiology of tuberculosis. Tuberculosis (Edinb) 2018. [DOI: 10.1183/2312508x.10020917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Chenal A, Ladant D. Bioengineering of Bordetella pertussis Adenylate Cyclase Toxin for Antigen-Delivery and Immunotherapy. Toxins (Basel) 2018; 10:E302. [PMID: 30037010 PMCID: PMC6070788 DOI: 10.3390/toxins10070302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022] Open
Abstract
The adenylate cyclase toxin (CyaA) is one of the major virulence factors of Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic cells where, upon activation by endogenous calmodulin, it synthesizes massive amounts of cAMP that alters cellular physiology. The CyaA toxin is a 1706 residues-long bifunctional protein: the catalytic domain is located in the 400 amino-proximal residues, whereas the carboxy-terminal 1306 residues are implicated in toxin binding to the cellular receptor, the αMβ₂ (CD11b/CD18) integrin, and subsequently in the translocation of the catalytic domain across the cytoplasmic membrane of the target cells. Indeed, this protein is endowed with the unique capability of delivering its N-terminal catalytic domain directly across the plasma membrane of eukaryotic target cells. These properties have been exploited to engineer the CyaA toxin as a potent non-replicating vector able to deliver antigens into antigen presenting cells and elicit specific cell-mediated immune responses. Antigens of interest can be inserted into the CyaA protein to yield recombinant molecules that are targeted in vivo to dendritic cells, where the antigens are processed and presented by the major class I and class II histocompatibility complexes (MHC-I and II). CyaA turned out to be a remarkably effective and versatile vaccine vector capable of inducing all the components of the immune response (T-CD4, T-CD8, and antibody). In this chapter, we summarize the basic knowledge on the adenylate cyclase toxin and then describe the application of CyaA in vaccinology, including some recent results of clinical trials of immunotherapy using a recombinant CyaA vaccine.
Collapse
Affiliation(s)
- Alexandre Chenal
- Institut Pasteur, Biochemistry of Macromolecular Interactions Unit, UMR CNRS 3528, Structural Biology and Chemistry Department, 28 rue du Docteur Roux, 75724 Paris CEDEX 15, France.
| | - Daniel Ladant
- Institut Pasteur, Biochemistry of Macromolecular Interactions Unit, UMR CNRS 3528, Structural Biology and Chemistry Department, 28 rue du Docteur Roux, 75724 Paris CEDEX 15, France.
| |
Collapse
|
19
|
Habtamu M, Abebe M, Aseffa A, Dyrhol-Riise AM, Spurkland A, Abrahamsen G. In vitro analysis of antigen induced T cell-monocyte conjugates by imaging flow cytometry. J Immunol Methods 2018; 460:93-100. [PMID: 29981305 DOI: 10.1016/j.jim.2018.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
There is a lack of suitable correlates of immune protection against Mycobacterium tuberculosis (Mtb) infection. T cells and monocytes play key roles in host immunity against Mtb. Thus, a method that allows assessing their interaction would contribute to the understanding of immune regulation in tuberculosis (TB). We have established imaging flow cytometer (IFC) based in vitro assay for the analysis of early events in T cell-monocyte interaction, upstream of cytokine production and T cell proliferation. This was achieved through short term stimulation of peripheral blood mononuclear cells (PBMC) from healthy Norwegian blood donors with Mycobacterium bovis Bacille Calmette-Guérin (BCG). In our assay, we examined the kinetics of BCG uptake by monocytes using fluorescently labeled BCG and T cell-monocyte interaction based on synapse formation (CD3/TCR polarization). Our results showed that BCG stimulation induced a gradual increase in the proportion of conjugated T cells displaying NF-κB translocation to the nucleus in a time dependent manner, with the highest frequency observed at 6 h. We subsequently tested PBMC from a small cohort of active TB patients (n = 7) and observed a similar BCG induced NF-κB translocation in T cells conjugated with monocytes. The method allowed for simultaneous evaluation of T cell-monocyte conjugates and T cell activation as measured by NF-κB translocation, following short-term challenge of human PBMC with BCG. Whether this novel approach could serve as a diagnostic or prognostic marker needs to be investigated using a wide array of Mtb specific antigens in a larger cohort of patients with different TB infection status.
Collapse
Affiliation(s)
- Meseret Habtamu
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway; Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Markos Abebe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Anne Margarita Dyrhol-Riise
- Department of Infectious Disease, Oslo University Hospital, N-0424 Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0424 Oslo, Norway; Department of Clinical Science, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway
| | - Anne Spurkland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Greger Abrahamsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway.
| |
Collapse
|
20
|
van den Berg RA, De Mot L, Leroux-Roels G, Bechtold V, Clement F, Coccia M, Jongert E, Evans TG, Gillard P, van der Most RG. Adjuvant-Associated Peripheral Blood mRNA Profiles and Kinetics Induced by the Adjuvanted Recombinant Protein Candidate Tuberculosis Vaccine M72/AS01 in Bacillus Calmette-Guérin-Vaccinated Adults. Front Immunol 2018; 9:564. [PMID: 29632533 PMCID: PMC5879450 DOI: 10.3389/fimmu.2018.00564] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
Systems biology has the potential to identify gene signatures associated with vaccine immunogenicity and protective efficacy. The main objective of this study was to identify optimal postvaccination time points for evaluating peripheral blood RNA expression profiles in relation to vaccine immunogenicity and potential efficacy in recipients of the candidate tuberculosis vaccine M72/AS01. In this phase II open-label study (NCT01669096; https://clinicaltrials.gov/), healthy Bacillus Calmette–Guérin-primed, HIV-negative adults were administered two doses (30 days apart) of M72/AS01. Twenty subjects completed the study and 18 subjects received two doses. Blood samples were collected pre-dose 1, pre-dose 2, and 1, 7, 10, 14, 17, and 30 days post-dose 2. RNA expression in whole blood (WB) and peripheral blood mononuclear cells (PBMCs) was quantified using microarray technology. Serum interferon-gamma responses and M72-specific CD4+ T cell responses to vaccination, and the observed safety profile were similar to previous trials. Two different approaches were utilized to analyze the RNA expression data. First, a kinetic analysis of RNA expression changes using blood transcription modules revealed early (1 day post-dose 2) activation of several pathways related to innate immune activation, both in WB and PBMC. Second, using a previously identified gene signature as a classifier, optimal postvaccination time points were identified. Since M72/AS01 efficacy remains to be established, a PBMC-derived gene signature associated with the protective efficacy of a similarly adjuvanted candidate malaria vaccine was used as a proxy for this purpose. This approach was based on the assumption that the AS01 adjuvant used in both studies could induce shared innate immune pathways. Subjects were classified as gene signature positive (GS+) or gene signature negative (GS−). Assignments of subjects to GS+ or GS− groups were confirmed by significant differences in RNA expression of the gene signature genes in PBMCs at 14 days post-dose 2 relative to prevaccination and in WB samples at 7, 10, 14, and 17 days post-dose 2 relative to prevaccination. Hence, in comparison with a prevaccination, 7, 10, 14, and 17 days postvaccination appeared to be suitable time points for identifying potentially clinically relevant transcriptome responses to M72/AS01 in WB samples.
Collapse
Affiliation(s)
| | | | - Geert Leroux-Roels
- Centre for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | | | - Frédéric Clement
- Centre for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
21
|
Nikitina IY, Panteleev AV, Kosmiadi GA, Serdyuk YV, Nenasheva TA, Nikolaev AA, Gorelova LA, Radaeva TV, Kiseleva YY, Bozhenko VK, Lyadova IV. Th1, Th17, and Th1Th17 Lymphocytes during Tuberculosis: Th1 Lymphocytes Predominate and Appear as Low-Differentiated CXCR3 +CCR6 + Cells in the Blood and Highly Differentiated CXCR3 +/-CCR6 - Cells in the Lungs. THE JOURNAL OF IMMUNOLOGY 2018; 200:2090-2103. [PMID: 29440351 DOI: 10.4049/jimmunol.1701424] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
Th1 lymphocytes are considered the main mediators of protection against tuberculosis (TB); however, their phenotypic characteristics and relationship with Th17 and Th1Th17 populations during TB are poorly understood. We have analyzed Th1, Th17, and Th1Th17 lymphocytes in the blood and pulmonary lesions of TB patients. The populations were identified based on the production of IFN-γ and/or IL-17 and the coexpression of CXCR3 (X3) and CCR6 (R6). In the blood, IL-17+ and IFN-γ+IL-17+ lymphocytes were barely detectable (median, <0.01% of CD4+ lymphocytes), whereas IFN-γ+ lymphocytes predominated (median, 0.45%). Most IFN-γ+ lymphocytes (52%) were X3+R6+, suggesting their "nonclassical" (ex-Th17) nature. In the lungs, IL-17+ and IFN-γ+IL-17+ lymphocytes were more frequent (0.3%, p < 0.005), yet IFN-γ+ cells predominated (11%). Phenotypically, lung CD4+ cells were X3+/loR6- The degree of differentiation of blood effector CD4+ lymphocytes (evaluated based on CD62L/CD27/CD28 coexpression) increased as follows: X3+R6+ < X3+R6- < X3-R6-, with X3-R6- cells being largely terminally differentiated CD62L-CD27-CD28- cells. Lung CD4+ lymphocytes were highly differentiated, recalling blood X3+/-R6- populations. Following in vitro stimulation with anti-CD3/anti-CD28 Abs, X3+R6+CD4+ lymphocytes converted into X3+R6- and X3-R6- cells. The results demonstrate that, during active TB, Th1 lymphocytes predominate in blood and lungs, document differences in X3/R6 expression by blood and lung CD4+ cells, and link the pattern of X3/R6 expression with the degree of cell differentiation. These findings add to the understanding of immune mechanisms operating during TB and are relevant for the development of better strategies to control it.
Collapse
Affiliation(s)
- Irina Yu Nikitina
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Alexander V Panteleev
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - George A Kosmiadi
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Yana V Serdyuk
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Tatiana A Nenasheva
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Alexander A Nikolaev
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Lubov A Gorelova
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Tatiana V Radaeva
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Yana Yu Kiseleva
- Department of Molecular Biology and Experimental Therapy of Tumors, Federal State Budgetary Institution Russian Scientific Center of Roentgenoradiology of the Ministry of Healthcare of the Russian Federation, Moscow 117997, Russia
| | - Vladimir K Bozhenko
- Department of Molecular Biology and Experimental Therapy of Tumors, Federal State Budgetary Institution Russian Scientific Center of Roentgenoradiology of the Ministry of Healthcare of the Russian Federation, Moscow 117997, Russia
| | - Irina V Lyadova
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| |
Collapse
|
22
|
Panteleev AV, Nikitina IY, Burmistrova IA, Kosmiadi GA, Radaeva TV, Amansahedov RB, Sadikov PV, Serdyuk YV, Larionova EE, Bagdasarian TR, Chernousova LN, Ganusov VV, Lyadova IV. Severe Tuberculosis in Humans Correlates Best with Neutrophil Abundance and Lymphocyte Deficiency and Does Not Correlate with Antigen-Specific CD4 T-Cell Response. Front Immunol 2017; 8:963. [PMID: 28871253 PMCID: PMC5566990 DOI: 10.3389/fimmu.2017.00963] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/28/2017] [Indexed: 12/26/2022] Open
Abstract
It is generally thought that Mycobacterium tuberculosis (Mtb)-specific CD4+ Th1 cells producing IFN-γ are essential for protection against tuberculosis (TB). In some studies, protection has recently been associated with polyfunctional subpopulation of Mtb-specific Th1 cells, i.e., with cells able to simultaneously secrete several type 1 cytokines. However, the role for Mtb-specific Th1 cells and their polyfunctional subpopulations during established TB disease is not fully defined. Pulmonary TB is characterized by a great variability of disease manifestations. To address the role for Mtb-specific Th1 responses during TB, we investigated how Th1 and other immune cells correlated with particular TB manifestations, such as the degree of pulmonary destruction, TB extent, the level of bacteria excretion, clinical disease severity, clinical TB forms, and “Timika X-ray score,” an integrative parameter of pulmonary TB pathology. In comparison with healthy Mtb-exposed controls, TB patients (TBP) did not exhibit deficiency in Mtb-specific cytokine-producing CD4+ cells circulating in the blood and differed by a polyfunctional profile of these cells, which was biased toward the accumulation of bifunctional TNF-α+IFN-γ+IL-2− lymphocytes. Importantly, however, severity of different TB manifestations was not associated with Mtb-specific cytokine-producing cells or their polyfunctional profile. In contrast, several TB manifestations were strongly correlated with leukocyte numbers, the percent or the absolute number of lymphocytes, segmented or band neutrophils. In multiple alternative statistical analyses, band neutrophils appeared as the strongest positive correlate of pulmonary destruction, bacteria excretion, and “Timika X-ray score.” In contrast, clinical TB severity was primarily and inversely correlated with the number of lymphocytes in the blood. The results suggest that: (i) different TB manifestations may be driven by distinct mechanisms; (ii) quantitative parameters and polyfunctional profile of circulating Mtb-specific CD4+ cells play a minor role in determining TB severity; and (iii) general shifts in production/removal of granulocytic and lymphocytic lineages represent an important factor of TB pathogenesis. Mechanisms leading to these shifts and their specific role during TB are yet to be determined but are likely to involve changes in human hematopoietic system.
Collapse
Affiliation(s)
| | - Irina Yu Nikitina
- Immunology Department, Central Tuberculosis Research Institute, Moscow, Russia
| | - Irina A Burmistrova
- Physiatry Department, Central Tuberculosis Research Institute, Moscow, Russia
| | - George A Kosmiadi
- Immunology Department, Central Tuberculosis Research Institute, Moscow, Russia
| | - Tatyana V Radaeva
- Immunology Department, Central Tuberculosis Research Institute, Moscow, Russia
| | - Rasul B Amansahedov
- Radiology Department, Central Tuberculosis Research Institute, Moscow, Russia
| | - Pavel V Sadikov
- Radiology Department, Central Tuberculosis Research Institute, Moscow, Russia
| | - Yana V Serdyuk
- Immunology Department, Central Tuberculosis Research Institute, Moscow, Russia
| | - Elena E Larionova
- Microbiology Department, Central Tuberculosis Research Institute, Moscow, Russia
| | - Tatef R Bagdasarian
- Physiatry Department, Central Tuberculosis Research Institute, Moscow, Russia
| | - Larisa N Chernousova
- Microbiology Department, Central Tuberculosis Research Institute, Moscow, Russia
| | - Vitaly V Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Irina V Lyadova
- Immunology Department, Central Tuberculosis Research Institute, Moscow, Russia
| |
Collapse
|
23
|
Abstract
ABSTRACT
Immunological memory is a central feature of the adaptive immune system and a prerequisite for generating effective vaccines. Understanding long-term memory responses to
Mycobacterium tuberculosis
will thus provide us with valuable insights that can guide us in the search for a novel vaccine against tuberculosis (TB). For many years, triggering CD4 T cells and, in particular, those secreting interferon-γ has been the goal of most TB vaccine research, and numerous data from animals and humans support the key role of this subset in protective immunity. More recently, we have learned that the memory response required for effective control of
M. tuberculosis
is much more complex, probably involving several phenotypically different CD4 T cell subsets as well as other cell types that are yet to be defined. Herein, we describe recent insights into memory immunity to TB in the context of both animal models and the human infection. With the increasing amount of data generated from clinical testing of novel TB vaccines, we also summarize recent knowledge of vaccine-induced memory immunity.
Collapse
|
24
|
Antigen-Specific IFN- γ Responses Correlate with the Activity of M. tuberculosis Infection but Are Not Associated with the Severity of Tuberculosis Disease. J Immunol Res 2016; 2016:7249369. [PMID: 28042583 PMCID: PMC5155109 DOI: 10.1155/2016/7249369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/09/2016] [Accepted: 09/21/2016] [Indexed: 01/08/2023] Open
Abstract
IFN-γ is a key cytokine in antituberculosis (TB) defense. However, how the levels of its secretion affect M. tuberculosis (Mtb) infection is not clear. We have analyzed associations between IFN-γ responses measured in QuantiFERON®-TB Gold In-tube (QFT) assay, TB disease severity, and Mtb infection activity. TB severity was evaluated based on the results of radiological, microbiological, and clinical examinations. Antigen-driven IFN-γ secretion did not correlate with TB severity. Mitogen-induced IFN-γ secretion correlated inversely with the form of pulmonary pathology and the area of affected pulmonary tissue; the levels of spontaneous IFN-γ secretion correlated with patients' age (r = 0.395, p = 0.001). Mtb infection activity was evaluated based on radiological data of lung tissue infiltration, destruction, dissemination or calcification, and condensation. The rate of positive QFT results and the levels of antigen-driven IFN-γ secretion increased in a row: patients with residual TB lesions < patients with low TB activity < patients with high TB activity. Thus, antigen-driven IFN-γ secretion and QFT results did not associate with TB severity but associated with the infection activity. The results suggest that quantitative parameters of IFN-γ secretion play a minor role in determining the course of TB disease but mirror the activity of the infectious process.
Collapse
|
25
|
Chen AL, Sun X, Wang W, Liu JF, Zeng X, Qiu JF, Liu XJ, Wang Y. Activation of the hypothalamic-pituitary-adrenal (HPA) axis contributes to the immunosuppression of mice infected with Angiostrongylus cantonensis. J Neuroinflammation 2016; 13:266. [PMID: 27733201 PMCID: PMC5062856 DOI: 10.1186/s12974-016-0743-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 10/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immunosuppression has been described as a consequence of brain injury and infection by different mechanisms. Angiostrongylus cantonensis can cause injury to the central nervous system and eosinophilic meningitis to human. Both T cell and B cell immunity play an essential role in the resistance of the infection. However, whether brain injury caused by A. cantonensis infection can lead to immunosuppression is not clear. Therefore, the present study sought to observe the alteration of immune responses in mice infected with A. cantonensis. METHODS Mice were infected with 20 third-stage A. cantonensis larvae. The messenger RNA (mRNA) expression of inflammatory mediators in brain tissues was observed by qRT-PCR. Cell surface markers including CD3, CD4, CD8, CD19, B220, 7-AAD, annexin-V, IgM, AA4.1, and CD23 were evaluated by using flow cytometry. The immune functions of T and B lymphocytes were detected upon stimulation by ConA and antibody responses to a nonself antigen OVA, respectively. Activation of the hypothalamic-pituitary-adrenal axis was evaluated by analyzing the concentration of plasma corticosterone and levels of mRNA for corticotropin-releasing hormone, tyrosine hydroxylase, and c-fos. RESULTS A. cantonensis infection results in obvious immunosuppression evidenced as progressive spleen and thymus atrophy and significant decrease in the number of lymphocyte subsets including B cells, CD3+ T cells, CD4+ T cells, and CD8+ T cells, as well as reduced T cell proliferation at 21 days post-infection and antibody reaction to exogenous protein after infection. However, the sharp decrease of splenic and thymic cells was not due to cell apoptosis but to B cell genesis cessation and impairing thymocyte development. In addition, helminthicide treatment with albendazole on infected mice at 7 days post-infection could prevent immunosuppressive symptoms. Importantly, infected mice displayed hypothalamic-pituitary-adrenal axis activation, with peak responses occurring at 16 days post-infection, and glucocorticoid receptor antagonist could partially restore the infection-induced cessation of B cell genesis. CONCLUSIONS Brain injury caused by A. cantonensis infection, like that of brain stroke and trauma, enhanced endogenous corticosteroid activity, resulting in peripheral immunosuppression.
Collapse
Affiliation(s)
- Ai-Ling Chen
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Wuxi Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214002, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Wei Wang
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Jin-Feng Liu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Xin Zeng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Jing-Fan Qiu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Xin-Jian Liu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yong Wang
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
26
|
Polyfunctional CD4 T-cells correlate with in vitro mycobacterial growth inhibition following Mycobacterium bovis BCG-vaccination of infants. Vaccine 2016; 34:5298-5305. [PMID: 27622301 DOI: 10.1016/j.vaccine.2016.09.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/15/2016] [Accepted: 09/02/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Vaccination with Bacillus Calmette Guerin (BCG) protects infants against childhood tuberculosis however the immune mechanisms involved are not well understood. Further elucidation of the infant immune response to BCG will aid with the identification of immune correlates of protection against tuberculosis and with the design of new improved vaccines. The purpose of this study was to investigate BCG-induced CD4+ T-cell responses in blood samples from infants for cytokine secretion profiles thought to be important for protection against tuberculosis and compare these to PBMC-mediated in vitro mycobacterial growth inhibition. METHODS Blood from BCG-vaccinated or unvaccinated infants was stimulated overnight with Mycobacterium tuberculosis (M. tb) purified protein derivative (PPD) or controls and intracellular cytokine staining and flow cytometry used to measure CD4+T-cell responses. PBMC cryopreserved at the time of sample collection were thawed and incubated with live BCG for four days following which inhibition of BCG growth was determined. RESULTS PPD-specific IFNγ+TNFα+IL-2+CD4+T-cells represented the dominant T-cell response at 4monthsand1yearafter infant BCG. These responses were undetectable in age-matched unvaccinated infants. IL-17+CD4+T-cells were significantly more frequent in vaccinated infants at 4monthsbut not at 1-year post-BCG. PBMC-mediated inhibition of mycobacterial growth was significantly enhanced at 4monthspost-BCG as compared to unvaccinated controls. In an analysis of all samples with both datasets available, mycobacterial growth inhibition correlated significantly with the frequency of polyfunctional (IFNγ+TNFα+IL-2+) CD4+T-cells. CONCLUSIONS These data suggest that BCG vaccination of infants induces specific polyfunctional T-helper-1 and T-helper-17 responses and the ability, in the PBMC compartment, to inhibit the growth of mycobacteria in vitro. We also demonstrate that polyfunctional T-helper-1 cells may play a role in growth inhibition as evidenced by a significant correlation between the two.
Collapse
|
27
|
Boosting BCG-primed responses with a subunit Apa vaccine during the waning phase improves immunity and imparts protection against Mycobacterium tuberculosis. Sci Rep 2016; 6:25837. [PMID: 27173443 PMCID: PMC4865829 DOI: 10.1038/srep25837] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/15/2015] [Indexed: 11/08/2022] Open
Abstract
Heterologous prime-boosting has emerged as a powerful vaccination approach against tuberculosis. However, optimal timing to boost BCG-immunity using subunit vaccines remains unclear in clinical trials. Here, we followed the adhesin Apa-specific T-cell responses in BCG-primed mice and investigated its BCG-booster potential. The Apa-specific T-cell response peaked 32-52 weeks after parenteral or mucosal BCG-priming but waned significantly by 78 weeks. A subunit-Apa-boost during the contraction-phase of BCG-response had a greater effect on the magnitude and functional quality of specific cellular and humoral responses compared to a boost at the peak of BCG-response. The cellular response increased following mucosal BCG-prime-Apa-subunit-boost strategy compared to Apa-subunit-prime-BCG-boost approach. However, parenteral BCG-prime-Apa-subunit-boost by a homologous route was the most effective strategy in-terms of enhancing specific T-cell responses during waning in the lung and spleen. Two Apa-boosters markedly improved waning BCG-immunity and significantly reduced Mycobacterium tuberculosis burdens post-challenge. Our results highlight the challenges of optimization of prime-boost regimens in mice where BCG drives persistent immune-activation and suggest that boosting with a heterologous vaccine may be ideal once the specific persisting effector responses are contracted. Our results have important implications for design of prime-boost regimens against tuberculosis in humans.
Collapse
|
28
|
Satchidanandam V, Kumar N, Biswas S, Jumani RS, Jain C, Rani R, Aggarwal B, Singh J, Kotnur MR, Sridharan A. The Secreted Protein Rv1860 of Mycobacterium tuberculosis Stimulates Human Polyfunctional CD8+ T Cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:282-93. [PMID: 26843486 PMCID: PMC4820513 DOI: 10.1128/cvi.00554-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/22/2016] [Indexed: 12/21/2022]
Abstract
We previously reported that Rv1860 protein from Mycobacterium tuberculosis stimulated CD4(+)and CD8(+)T cells secreting gamma interferon (IFN-γ) in healthy purified protein derivative (PPD)-positive individuals and protected guinea pigs immunized with a DNA vaccine and a recombinant poxvirus expressing Rv1860 from a challenge with virulent M. tuberculosis We now show Rv1860-specific polyfunctional T (PFT) cell responses in the blood of healthy latently M. tuberculosis-infected individuals dominated by CD8(+) T cells, using a panel of 32 overlapping peptides spanning the length of Rv1860. Multiple subsets of CD8(+) PFT cells were significantly more numerous in healthy latently infected volunteers (HV) than in tuberculosis (TB) patients (PAT). The responses of peripheral blood mononuclear cells (PBMC) from PAT to the peptides of Rv1860 were dominated by tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) secretions, the former coming predominantly from non-T cell sources. Notably, the pattern of the T cell response to Rv1860 was distinctly different from those of the widely studied M. tuberculosis antigens ESAT-6, CFP-10, Ag85A, and Ag85B, which elicited CD4(+) T cell-dominated responses as previously reported in other cohorts. We further identified a peptide spanning amino acids 21 to 39 of the Rv1860 protein with the potential to distinguish latent TB infection from disease due to its ability to stimulate differential cytokine signatures in HV and PAT. We suggest that a TB vaccine carrying these and other CD8(+) T-cell-stimulating antigens has the potential to prevent progression of latent M. tuberculosis infection to TB disease.
Collapse
Affiliation(s)
- Vijaya Satchidanandam
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Naveen Kumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Sunetra Biswas
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rajiv S Jumani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Chandni Jain
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rajni Rani
- Molecular Immunogenetics Group, National Institute of Immunology, New Delhi, India
| | - Bharti Aggarwal
- Molecular Immunogenetics Group, National Institute of Immunology, New Delhi, India
| | - Jaya Singh
- Molecular Immunogenetics Group, National Institute of Immunology, New Delhi, India
| | - Mohan Rao Kotnur
- Department of Chest Medicine, M. S. Ramiah Hospital, Bangalore, Karnataka, India
| | - Anand Sridharan
- National Tuberculosis Institute, Bangalore, Karnataka, India
| |
Collapse
|
29
|
Th1 and Th17 Cells in Tuberculosis: Protection, Pathology, and Biomarkers. Mediators Inflamm 2015; 2015:854507. [PMID: 26640327 PMCID: PMC4657112 DOI: 10.1155/2015/854507] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/11/2015] [Indexed: 12/24/2022] Open
Abstract
The outcome of Mycobacterium tuberculosis (Mtb) infection ranges from a complete pathogen clearance through asymptomatic latent infection (LTBI) to active tuberculosis (TB) disease. It is now understood that LTBI and active TB represent a continuous spectrum of states with different degrees of pathogen “activity,” host pathology, and immune reactivity. Therefore, it is important to differentiate LTBI and active TB and identify active TB stages.
CD4+ T cells play critical role during Mtb infection by mediating protection, contributing to inflammation, and regulating immune response. Th1 and Th17 cells are the main effector CD4+ T cells during TB. Th1 cells have been shown to contribute to TB protection by secreting IFN-γ and activating antimycobacterial action in macrophages. Th17 induce neutrophilic inflammation, mediate tissue damage, and thus have been implicated in TB pathology. In recent years new findings have accumulated that alter our view on the role of Th1 and Th17 cells during Mtb infection. This review discusses these new results and how they can be implemented for TB diagnosis and monitoring.
Collapse
|
30
|
Damjanovic D, Khera A, Afkhami S, Lai R, Zganiacz A, Jeyanathan M, Xing Z. Age at Mycobacterium bovis BCG Priming Has Limited Impact on Anti-Tuberculosis Immunity Boosted by Respiratory Mucosal AdHu5Ag85A Immunization in a Murine Model. PLoS One 2015; 10:e0131175. [PMID: 26098423 PMCID: PMC4476612 DOI: 10.1371/journal.pone.0131175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/31/2015] [Indexed: 11/18/2022] Open
Abstract
Tuberculosis (TB) remains a global pandemic despite the use of Bacillus Calmette-Guérin (BCG) vaccine, partly because BCG fails to effectively control adult pulmonary TB. The introduction of novel boost vaccines such as the human Adenovirus 5-vectored AdHu5Ag85A could improve and prolong the protective immunity of BCG immunization. Age at which BCG immunization is implemented varies greatly worldwide, and research is ongoing to discover the optimal stage during childhood to administer the vaccine, as well as when to boost the immune response with potential novel vaccines. Using a murine model of subcutaneous BCG immunization followed by intranasal AdHu5Ag85A boosting, we investigated the impact of age at BCG immunization on protective efficacy of BCG prime and AdHu5Ag85A boost immunization-mediated protection. Our results showed that age at parenteral BCG priming has limited impact on the efficacy of BCG prime-AdHu5Ag85A respiratory mucosal boost immunization-enhanced protection. However, when BCG immunization was delayed until the maturity of the immune system, longer sustained memory T cells were generated and resulted in enhanced boosting effect on T cells of AdHu5Ag85A respiratory mucosal immunization. Our findings hold implications for the design of new TB immunization protocols for humans.
Collapse
Affiliation(s)
- Daniela Damjanovic
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Amandeep Khera
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Rocky Lai
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anna Zganiacz
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
31
|
Choi HG, Kim WS, Back YW, Kim H, Kwon KW, Kim JS, Shin SJ, Kim HJ. Mycobacterium tuberculosis RpfE promotes simultaneous Th1- and Th17-type T-cell immunity via TLR4-dependent maturation of dendritic cells. Eur J Immunol 2015; 45:1957-71. [PMID: 25907170 DOI: 10.1002/eji.201445329] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/31/2015] [Accepted: 04/21/2015] [Indexed: 11/12/2022]
Abstract
Reciprocal induction of the Th1 and Th17 immune responses is essential for optimal protection against Mycobacterium tuberculosis (Mtb); however, only a few Mtb antigens are known to fulfill this task. A functional role for resuscitation-promoting factor (Rpf) E, a latency-associated member of the Rpf family, in promoting naïve CD4(+) T-cell differentiation toward both Th1 and Th17 cell fates through interaction with dendritic cells (DCs) was identified in this study. RpfE induces DC maturation by increasing expression of surface molecules and the production of IL-6, IL-1β, IL-23p19, IL-12p70, and TNF-α but not IL-10. This induction is mediated through TLR4 binding and subsequent activation of ERK, p38 MAPKs, and NF-κB signaling. RpfE-treated DCs effectively caused naïve CD4(+) T cells to secrete IFN-γ, IL-2, and IL-17A, which resulted in reciprocal expansions of the Th1 and Th17 cell response along with activation of T-bet and RORγt but not GATA-3. Furthermore, lung and spleen cells from Mtb-infected WT mice but not from TLR4(-/-) mice exhibited Th1 and Th17 polarization upon RpfE stimulation. Taken together, our data suggest that RpfE has the potential to be an effective Mtb vaccine because of its ability to activate DCs that simultaneously induce both Th1- and Th17-polarized T-cell expansion.
Collapse
Affiliation(s)
- Han-Gyu Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.,Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Woo Back
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Seok Kim
- Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.,Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
32
|
Orr MT, Windish HP, Beebe EA, Argilla D, Huang PWD, Reese VA, Reed SG, Coler RN. Interferon γ and Tumor Necrosis Factor Are Not Essential Parameters of CD4+ T-Cell Responses for Vaccine Control of Tuberculosis. J Infect Dis 2015; 212:495-504. [PMID: 25637347 DOI: 10.1093/infdis/jiv055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/16/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis infects one third of the world's population and causes >8 million cases of tuberculosis annually. New vaccines are necessary to control the spread of tuberculosis. T cells, interferon γ (IFN-γ), and tumor necrosis factor (TNF) are necessary to control M. tuberculosis infection in both humans and unvaccinated experimental animal models. However, the immune responses necessary for vaccine efficacy against M. tuberculosis have not been defined. The multifunctional activity of T-helper type 1 (TH1) cells that simultaneously produce IFN-γ and TNF has been proposed as a candidate mechanism of vaccine efficacy. METHODS We used a mouse model of T-cell transfer and aerosolized M. tuberculosis infection to assess the contributions of TNF, IFN-γ, and inducible nitric oxide synthase (iNOS) to vaccine efficacy. RESULTS CD4(+) T cells were necessary and sufficient to transfer protection against aerosolized M. tuberculosis, but neither CD4(+) T cell-produced TNF nor host cell responsiveness to IFN-γ were necessary. Transfer of Tnf(-/-) CD4(+) T cells from vaccinated donors to Ifngr(-/-) recipients was also sufficient to confer protection. Activation of iNOS to produce reactive nitrogen species was not necessary for vaccine efficacy. CONCLUSIONS Induction of TH1 cells that coexpress IFN-γ and TNF is not a requirement for vaccine efficacy against M. tuberculosis, despite these cytokines being essential for control of M. tuberculosis in nonvaccinated animals.
Collapse
Affiliation(s)
- Mark T Orr
- Infectious Disease Research Institute Department of Global Health, University of Washington, Seattle
| | | | | | | | | | | | - Steven G Reed
- Infectious Disease Research Institute Department of Global Health, University of Washington, Seattle
| | - Rhea N Coler
- Infectious Disease Research Institute Department of Global Health, University of Washington, Seattle
| |
Collapse
|
33
|
Sebo P, Osicka R, Masin J. Adenylate cyclase toxin-hemolysin relevance for pertussis vaccines. Expert Rev Vaccines 2014; 13:1215-27. [PMID: 25090574 DOI: 10.1586/14760584.2014.944900] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The adenylate cyclase toxin-hemolysin (ACT, AC-Hly or CyaA) is a key virulence factor of Bordetella pertussis. It targets bactericidal activities of phagocytes, such as oxidative burst and complement- or antibody-mediated opsonophagocytic killing of bacteria. Through cAMP signaling, CyaA also skews TLR-triggered maturation of dendritic cells, inhibiting proinflammatory IL-12 and TNF-α secretion and enhancing IL-10 production and Treg expansion, likely hampering induction of adaptive immune responses to Bordetella infections. Non-enzymatic CyaA toxoid is a potent protective antigen and adjuvant that boosts immunogenicity of co-administered B. pertussis antigens and improves potency of acellular pertussis (aP) vaccines in mice. This makes CyaA a prime antigen candidate for inclusion into a next generation of aP vaccines. Moreover, recombinant CyaA toxoids were recently shown to be safe in humans in frame of Phase I clinical evaluation of a CyaA-based immunotherapeutic vaccine that induces Th1-polarized CD8(+) cytotoxic T-lymphocyte responses targeting cervical tumors.
Collapse
Affiliation(s)
- Peter Sebo
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i, Videnska 1083, 142 20, Prague 4, Czech Republic
| | | | | |
Collapse
|
34
|
Decoration of outer membrane vesicles with multiple antigens by using an autotransporter approach. Appl Environ Microbiol 2014; 80:5854-65. [PMID: 25038093 DOI: 10.1128/aem.01941-14] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Outer membrane vesicles (OMVs) are spherical nanoparticles that naturally shed from Gram-negative bacteria. They are rich in immunostimulatory proteins and lipopolysaccharide but do not replicate, which increases their safety profile and renders them attractive vaccine vectors. By packaging foreign polypeptides in OMVs, specific immune responses can be raised toward heterologous antigens in the context of an intrinsic adjuvant. Antigens exposed at the vesicle surface have been suggested to elicit protection superior to that from antigens concealed inside OMVs, but hitherto robust methods for targeting heterologous proteins to the OMV surface have been lacking. We have exploited our previously developed hemoglobin protease (Hbp) autotransporter platform for display of heterologous polypeptides at the OMV surface. One, two, or three of the Mycobacterium tuberculosis antigens ESAT6, Ag85B, and Rv2660c were targeted to the surface of Escherichia coli OMVs upon fusion to Hbp. Furthermore, a hypervesiculating ΔtolR ΔtolA derivative of attenuated Salmonella enterica serovar Typhimurium SL3261 was generated, enabling efficient release and purification of OMVs decorated with multiple heterologous antigens, exemplified by the M. tuberculosis antigens and epitopes from Chlamydia trachomatis major outer membrane protein (MOMP). Also, we showed that delivery of Salmonella OMVs displaying Ag85B to antigen-presenting cells in vitro results in processing and presentation of an epitope that is functionally recognized by Ag85B-specific T cell hybridomas. In conclusion, the Hbp platform mediates efficient display of (multiple) heterologous antigens, individually or combined within one molecule, at the surface of OMVs. Detection of antigen-specific immune responses upon vesicle-mediated delivery demonstrated the potential of our system for vaccine development.
Collapse
|
35
|
Freches D, Korf H, Denis O, Havaux X, Huygen K, Romano M. Mice genetically inactivated in interleukin-17A receptor are defective in long-term control of Mycobacterium tuberculosis infection. Immunology 2013; 140:220-31. [PMID: 23721367 DOI: 10.1111/imm.12130] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/24/2013] [Accepted: 05/24/2013] [Indexed: 12/14/2022] Open
Abstract
Interleukin-17A (IL-17A), a pro-inflammatory cytokine acting on neutrophil recruitment, is known to play an important role during Mycobacterium tuberculosis infection, but the role of IL-17A receptor signalling in immune defence against this intracellular pathogen remains poorly documented. Here we have analysed this signalling using C57BL/6 mice genetically inactivated in the IL-17 receptor A subunit (IL-17RA(-/-) ). Although early after infection bacterial growth was controlled to the same extent as in wild-type mice, IL-17RA(-/-) mice were defective in exerting long-term control of M. tuberculosis infection, as demonstrated by a progressively increasing pulmonary bacterial burden and shortened survival time. Compared with infected wild-type mice, IL-17RA(-/-) mice showed impaired recruitment of neutrophils to the lungs at the early but not the late stage of infection. Pulmonary tumour necrosis factor-α, IL-6 and particularly IL-10 levels were decreased in the absence of IL-17RA signalling, whereas IL-1β was increased. CD4(+) -mediated and γδ-mediated IL-17A production was dramatically increased in IL-17RA(-/-) mice (confirming part of their phenotype), whereas production of interferon-γ and expression of the bactericidal enzyme inducible nitric oxide synthase were not affected. Collectively, our data suggest that early but not late neutrophil recruitment is essential for IL-17A-mediated long-term control of M. tuberculosis infection and that a functional interferon-γ response is not sufficient to control M. tuberculosis growth when the IL-17RA pathway is deficient. As treatment of auto-immune diseases with anti-IL-17A antibodies is actually being tested in clinical studies, our data suggest that caution should be taken with respect to possible reactivation of tuberculosis.
Collapse
Affiliation(s)
- Danielle Freches
- Service Immunology, Scientific Institute of Public Health WIV-ISP (Site Ukkel), Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
36
|
Lu M, Xia ZY, Bao L. Enhancement of antimycobacterial Th1-cell responses by a Mycobacterium bovis BCG prime-protein boost vaccination strategy. Cell Immunol 2013; 285:111-7. [PMID: 24177251 DOI: 10.1016/j.cellimm.2013.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/07/2013] [Accepted: 10/01/2013] [Indexed: 02/04/2023]
Abstract
Tuberculosis is a major global health problem, and the only available vaccine Bacille Calmette-Guérin (BCG) is not sufficiently effective against the disease. It is extremely urgent to develop novel vaccine approaches. Previous research demonstrated that there were several Regions of Difference (RD1-16) between the substrains of BCG and Mycobacterium tuberculosis or Mycobacterium bovis. The ORFs Rv1769 and Rv1772 are located in the RD14 deletions and have not been major targets of study. However, some studies have demonstrated that the two genes (Rv1769 and Rv1772) are excellent T cell antigens, which might induce an immune response. What kind of role these ORFs might play in anti-mycobacterial immunity, however, is still unknown. In our research we used the BCG prime-protein boost strategy to immunize BALB/c mice and evaluated its immunogenicity. Our data suggest that our novel BCG-P+PRO69 vaccine could elicit the most long-lasting and strongest Th1 type cellular immune responses. This response is characterized by a strong antibody response, the proliferation rate of splenocytes, a high percentage of CD4+ and CD8+ T cells and high levels of IFN-γ in antigen-stimulated splenocyte cultures. These results indicate that prime-boost is a potent strategy and the protein of gene Rv1769 is a potential antigen or subunit vaccine to TB for further study.
Collapse
Affiliation(s)
- Miao Lu
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Center of Medical Sciences, Sichuan University, Chengdu, China
| | | | | |
Collapse
|
37
|
Induction of protective immunity against Mycobacterium tuberculosis by delivery of ESX antigens into airway dendritic cells. Mucosal Immunol 2013; 6:522-34. [PMID: 23032790 DOI: 10.1038/mi.2012.92] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As the Bacillus Calmette-Guérin (BCG) vaccine does not confer long-lasting protection against lung Mycobacterium tuberculosis infection, the development of more efficient vaccines is greatly needed. Here, we used mycobacterial low-molecular weight proteins of the 6-kDa Early Secreted Antigenic Target (ESAT-6) protein family (ESX) antigens for the evaluation of a novel vaccine delivery strategy that enables versatile in vivo targeting of antigens into specialized dendritic cell (DC) subsets. ESX antigens were genetically fused to the tetramerizing core of streptavidin (SA) to form high-affinity complexes with biotin (biot)-conjugated antibodies recognizing DC surface receptors. When directed through the CD11b or CD11c β2-integrins or diverse C-type lectins, the ESX-SA:biot-antibody complexes were efficiently captured and presented on major histocompatibility complex molecules of DCs to specific T-cell receptors. Robust ESX-specific T-cell responses were induced by immunization with as little as several picomoles of ESX-SA targeted to DC subsets. Moreover, directing of TB10.4-SA to airway CD205(+) cells enabled the induction of mucosal T-cell responses and provided significant protection against virulent M. tuberculosis.
Collapse
|
38
|
García-Arévalo C, Bermejo-Martín JF, Rico L, Iglesias V, Martín L, Rodríguez-Cabello JC, Arias FJ. Immunomodulatory Nanoparticles from Elastin-Like Recombinamers: Single-Molecules for Tuberculosis Vaccine Development. Mol Pharm 2013; 10:586-97. [DOI: 10.1021/mp300325v] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Carmen García-Arévalo
- Bioforge Group, University of Valladolid, CIBER-BBN, Paseo de Belén
11, 47011 Valladolid, Spain
| | - Jesús F. Bermejo-Martín
- Infection and Immunity Medical Research Unit (IMI), Microbiology
Department, Hospital Clínico Universitario-IECSCYL, Ramón y Cajal 3, 47005 Valladolid, Spain
| | - Lucia Rico
- Infection and Immunity Medical Research Unit (IMI), Microbiology
Department, Hospital Clínico Universitario-IECSCYL, Ramón y Cajal 3, 47005 Valladolid, Spain
| | - Verónica Iglesias
- Infection and Immunity Medical Research Unit (IMI), Microbiology
Department, Hospital Clínico Universitario-IECSCYL, Ramón y Cajal 3, 47005 Valladolid, Spain
| | - Laura Martín
- Bioforge Group, University of Valladolid, CIBER-BBN, Paseo de Belén
11, 47011 Valladolid, Spain
| | | | - F. Javier Arias
- Bioforge Group, University of Valladolid, CIBER-BBN, Paseo de Belén
11, 47011 Valladolid, Spain
| |
Collapse
|
39
|
Pitt JM, Blankley S, McShane H, O'Garra A. Vaccination against tuberculosis: how can we better BCG? Microb Pathog 2012; 58:2-16. [PMID: 23257069 DOI: 10.1016/j.micpath.2012.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 01/01/2023]
Abstract
Tuberculosis remains one of the most significant human diseases of the developing world, accounting for 3800 worldwide deaths per day. Although we currently have a vaccine for tuberculosis, BCG, this is insufficient at protecting from adult pulmonary tuberculosis in the parts of the world where a good vaccine is most needed. This has prompted the search for new vaccination strategies that can protect better than BCG, or can boost BCG-induced immunity. We discuss these subjects in line with what is known of the immune responses to BCG and Mycobacterium tuberculosis - the etiological agent of the disease, as well as the particular difficulties facing development of new vaccines against tuberculosis. A greater understanding of the factors constituting optimal protection against Mycobacterium tuberculosis infection, as well as which pathogenic factors facilitate active disease, will accelerate the delivery of safe vaccines able to restrict active tuberculosis and thus impede contagion.
Collapse
Affiliation(s)
- Jonathan M Pitt
- Division of Immunoregulation, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | |
Collapse
|
40
|
Stanek O, Linhartova I, Majlessi L, Leclerc C, Sebo P. Complexes of streptavidin-fused antigens with biotinylated antibodies targeting receptors on dendritic cell surface: a novel tool for induction of specific T-cell immune responses. Mol Biotechnol 2012; 51:221-32. [PMID: 22006508 DOI: 10.1007/s12033-011-9459-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The choice of tools that enable efficient targeting of exogenous antigens (Ag) for processing and presentation by professional Ag-presenting cells (APC) remains limited. This represents, indeed, a bottleneck in development of vaccines inducing specific T-cell responses. Here, we describe a novel strategy of Ag delivery into APCs. The Ag of choice is fused to the N- or C-terminus of streptavidin (SA) and tetrameric Ag-SA or SA-Ag fusion proteins are produced in E. coli and purified by 2-Iminobiotin-Agarose affinity chromatography. Alternatively, Ag-SA proteins are purified from urea extracts of E. coli inclusion bodies and refolded in vitro into functional tetramers. Complexes with biotinylated antibodies targeting cell surface receptors are formed and used to deliver the Ags of choice for processing and presentation by APCs and induction of Ag-specific CD4+ and CD8+ T-cell responses in vitro and in vivo.
Collapse
Affiliation(s)
- Ondrej Stanek
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the ASCR, Videnska 1083, 14220 Prague, Czech Republic
| | | | | | | | | |
Collapse
|
41
|
Lin PL, Rutledge T, Green AM, Bigbee M, Fuhrman C, Klein E, Flynn JL. CD4 T cell depletion exacerbates acute Mycobacterium tuberculosis while reactivation of latent infection is dependent on severity of tissue depletion in cynomolgus macaques. AIDS Res Hum Retroviruses 2012; 28:1693-702. [PMID: 22480184 DOI: 10.1089/aid.2012.0028] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CD4 T cells are believed to be important in protection against Mycobacterium tuberculosis, but the relative contribution to control of initial or latent infection is not known. Antibody-mediated depletion of CD4 T cells in M. tuberculosis-infected cynomolgus macaques was used to study the role of CD4 T cells during acute and latent infection. Anti-CD4 antibody severely reduced levels of CD4 T cells in blood, airways, and lymph nodes. Increased pathology and bacterial burden were observed in CD4-depleted monkeys during the first 8 weeks of infection compared to controls. CD4-depleted monkeys had greater interferon (IFN)-γ expression and altered expression of CD8 T cell activation markers. During latent infection, CD4 depletion resulted in clinical reactivation in only three of six monkeys. Reactivation was associated with lower CD4 T cells in the hilar lymph nodes. During both acute and latent infection, CD4 depletion was associated with reduced percentages of CXCR3(+) expressing CD8 T cells, reported to be involved in T cell recruitment, regulatory function, and effector and memory T cell maturation. CXCR3(+) CD8 T cells from hilar lymph nodes had more mycobacteria-specific cytokine expression and greater coexpression of multiple cytokines compared to CXCR3(-) CD8 T cells. CD4 T cells are required for protection against acute infection but reactivation from latent infection is dependent on the severity of depletion in the draining lymph nodes. CD4 depletion influences CD8 T cell function. This study has important implications for human HIV-M. tuberculosis coinfection.
Collapse
Affiliation(s)
- Philana Ling Lin
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Tara Rutledge
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Angela M. Green
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Matthew Bigbee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Carl Fuhrman
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Edwin Klein
- Division of Laboratory Animal Resources, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Pitt JM, Stavropoulos E, Redford PS, Beebe AM, Bancroft GJ, Young DB, O’Garra A. Blockade of IL-10 signaling during bacillus Calmette-Guérin vaccination enhances and sustains Th1, Th17, and innate lymphoid IFN-γ and IL-17 responses and increases protection to Mycobacterium tuberculosis infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:4079-87. [PMID: 22972927 PMCID: PMC3467194 DOI: 10.4049/jimmunol.1201061] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vaccination with Mycobacterium bovis bacillus Calmette-Guérin (BCG) remains the only prophylactic vaccine against tuberculosis, caused by Mycobacterium tuberculosis, but gives variable protection against pulmonary disease. The generation of host Th1 responses following BCG vaccination is accepted as the major mechanism of protection against M. tuberculosis infection. Early production of IL-17 in the lungs following M. tuberculosis challenge of mice previously vaccinated with M. tuberculosis peptides in adjuvant has been shown to be required for efficient Th1 cell recruitment. IL-10 regulates various processes involved in generation of Th1 and Th17 responses. Previous studies have shown IL-10 as a negative regulator of the immune response to primary M. tuberculosis infection, with Il10(-/-) mice having reduced lung bacterial loads. In this study we show that inhibition of IL-10 signaling during BCG vaccination enhances host-generated Ag-specific IFN-γ and IL-17A responses, and that this regimen gives significantly greater protection against aerogenic M. tuberculosis challenge in both susceptible and relatively resistant strains of mice. In M. tuberculosis-susceptible CBA/J mice, Ab blockade of IL-10R specifically during BCG vaccination resulted in additional protection against M. tuberculosis challenge of >1-log(10) compared with equivalent isotype-treated controls. The protection observed following BCG vaccination concurrent with anti-IL-10R mAb treatment was sustained through chronic M. tuberculosis infection and correlated with enhanced lung Th1 and Th17 responses and increased IFN-γ and IL-17A production by γδ T cells and an innate-like Thy1.2(+)CD3(-) lymphoid population. We show that IL-10 inhibits optimal BCG-elicited protection, therefore suggesting that antagonists of IL-10 may be of great benefit as adjuvants in preventive vaccination against tuberculosis.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/administration & dosage
- BCG Vaccine/administration & dosage
- BCG Vaccine/immunology
- Benzamides
- Cells, Cultured
- Female
- Imatinib Mesylate
- Immunity, Innate
- Interferon-gamma/biosynthesis
- Interleukin-10/antagonists & inhibitors
- Interleukin-10/metabolism
- Interleukin-10/physiology
- Interleukin-17/biosynthesis
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Piperazines/administration & dosage
- Pyrimidines/administration & dosage
- Receptors, Interleukin-10/antagonists & inhibitors
- Receptors, Interleukin-10/immunology
- Receptors, Interleukin-10/metabolism
- Signal Transduction/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/microbiology
- Th1 Cells/immunology
- Th1 Cells/microbiology
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Th17 Cells/microbiology
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/prevention & control
Collapse
Affiliation(s)
- Jonathan M. Pitt
- Division of Immunoregulation, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | - Evangelos Stavropoulos
- Division of Immunoregulation, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | - Paul S. Redford
- Division of Immunoregulation, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | | | - Gregory J. Bancroft
- Department of Immunology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Douglas B. Young
- Division of Mycobacterial Research, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | - Anne O’Garra
- Division of Immunoregulation, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| |
Collapse
|
43
|
Sayes F, Sun L, Di Luca M, Simeone R, Degaiffier N, Fiette L, Esin S, Brosch R, Bottai D, Leclerc C, Majlessi L. Strong immunogenicity and cross-reactivity of Mycobacterium tuberculosis ESX-5 type VII secretion: encoded PE-PPE proteins predicts vaccine potential. Cell Host Microbe 2012; 11:352-63. [PMID: 22520463 DOI: 10.1016/j.chom.2012.03.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/23/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
Abstract
The genome of Mycobacterium tuberculosis (Mtb) encodes five type VII secretion systems, ESX-1 to ESX-5, most of which are associated with genes encoding PE/PPE proteins, named after their N-terminal Pro-Glu (PE) or Pro-Pro-Glu (PPE) motifs. Here, we describe the strong T cell immunogenicity of the ESX-5-encoded PE/PPE proteins, which share a large panel of cross-reactive CD4(+) epitopes with substantial numbers of their ESX-5-nonassociated PE/PPE homologs. The immunogenicity of these numerous PE/PPE proteins is dependent on their export by a functional EccD(5), the predicted transmembrane channel of the ESX-5 secretion apparatus. The Mtb Δppe25-pe19 mutant deleted for all ESX-5-associated pe and ppe genes, although highly attenuated in immunocompetent mice, remains able to induce immunity against the ESX-5-associated PE/PPE virulence factors, via cross-reactivity with their numerous homologs, and against the ESX-1 virulence factors ESAT-6/CFP-10. The Δppe25-pe19 strain is strongly protective against Mtb infection in mice and represents a potential antituberculosis vaccine candidate.
Collapse
Affiliation(s)
- Fadel Sayes
- Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Borges M, Barreira-Silva P, Flórido M, Jordan MB, Correia-Neves M, Appelberg R. Molecular and cellular mechanisms of Mycobacterium avium-induced thymic atrophy. THE JOURNAL OF IMMUNOLOGY 2012; 189:3600-8. [PMID: 22922815 DOI: 10.4049/jimmunol.1201525] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thymic atrophy has been described as a consequence of infection by several pathogens and shown to be induced through diverse mechanisms. Using the mouse model of Mycobacterium avium infection, we show in this study that the production of NO from IFN-γ-activated macrophages plays a major role in mycobacterial infection-induced thymic atrophy. Our results show that disseminated infection with a highly virulent strain of M. avium, but not with a low-virulence strain, led to a progressive thymic atrophy. Thymic involution was prevented in genetically manipulated mice unable to produce IFN-γ or the inducible NO synthase. In addition, mice with a selective impairment of IFN-γ signaling in macrophages were similarly protected from infection-induced thymic atrophy. A slight increase in the concentration of corticosterone was found in mice infected with the highly virulent strain, and thymocytes presented an increased susceptibility to dexamethasone-induced death during disseminated infection. The administration of an antagonist of glucocorticoid receptors partially reverted the infection-induced thymic atrophy. We observed a reduction in all thymocyte populations analyzed, including the earliest thymic precursors, suggesting a defect during thymic colonization by T cell precursors and/or during the differentiation of these cells in the bone marrow in addition to local demise of thymic cells. Our data suggest a complex picture underlying thymic atrophy during infection by M. avium with the participation of locally produced NO, endogenous corticosteroid activity, and reduced bone marrow seeding.
Collapse
Affiliation(s)
- Margarida Borges
- Institute for Molecular and Cell Biology, University of Porto, 4150-180 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
45
|
Reduced frequency of memory T cells and increased Th17 responses in patients with active tuberculosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1667-76. [PMID: 22914361 DOI: 10.1128/cvi.00390-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phenotypic and functional alterations in Mycobacterium tuberculosis T cell subsets have been reported in patients with active tuberculosis. A better understanding of these alterations will increase the knowledge about immunopathogenesis and also may contribute to the development of new diagnostics and prophylactic strategies. Here, the ex vivo phenotype of CD4(+) and CD8(+) T cells and the frequency and phenotype of gamma interferon (IFN-γ)- and interleukin 17 (IL-17)-producing cells elicited in short-term and long-term cultures following CFP-10 and purified protein derivative (PPD) stimulation were determined in noninfected persons (non-TBi), latently infected persons (LTBi), and patients with active tuberculosis (ATB). Phenotypic characterization of T cells was done based on the expression of CD45RO and CD27. Results show that ATB had a reduced frequency of circulating CD4(+) CD45RO(+) CD27(+) T cells and an increased frequency of CD4(+) CD45RO(-) CD27(+) T cells. ATB also had a higher frequency of circulating IL-17-producing CD4(+) T cells than did LTBi after PPD stimulation, whereas LTBi had more IFN-γ-producing CD4(+) T cells than did non-TBi. The phenotype of IFN-γ-producing cells at 24 h differs from the phenotype of IL-17-producing cells with no differences between LTBi and ATB. At 144 h, IFN-γ- and IL-17-producing cells were mainly CD45RO(+) CD27(+) T cells and they were more frequent in ATB. These results suggest that M. tuberculosis infection induces alterations in T cells which interfere with an adequate specific immune response.
Collapse
|
46
|
Smith SG, Lecher S, Blitz R, Locht C, Dockrell HM. Broad heparin-binding haemagglutinin-specific cytokine and chemokine response in infants following Mycobacterium bovis BCG vaccination. Eur J Immunol 2012; 42:2511-22. [PMID: 22653733 DOI: 10.1002/eji.201142297] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/13/2012] [Accepted: 05/04/2012] [Indexed: 12/21/2022]
Abstract
Heparin-binding haemagglutinin (HBHA)-specific immune responses have been linked to protection against tuberculosis (TB). We investigated the hypothesis that BCG vaccination of human infants primes an HBHA-specific response, using multiplex to measure secreted cytokines and chemokines following HBHA and Mycobacterium tuberculosis purified protein derivative (PPD) stimulation of diluted whole blood samples from BCG-vaccinated or -unvaccinated infants. Of 42 analytes measured, 24 and 32 significant, BCG-associated increases were detected in response to HBHA and PPD, respectively. Both response profiles included Th-1, Th-2, Th-17 and inflammatory cytokines and chemokines (e.g. IFN-γ, TNF-α, IL-5, IL-10, IL-13, IL-17, MIP-1α and MIP-1β). We also found that six of the seven responses most closely correlated with IFN-γ were common to both HBHA and PPD. Notably, all HBHA-specific secretion of cytokines and chemokines from infant samples was dependent on previous BCG vaccination. Also, long-term persistence of HBHA-specific responses was found in adolescents with evidence of infant BCG vaccination. This study demonstrates for the first time BCG priming of an HBHA-specific immune response in infants that is characterised by a broad cytokine and chemokine signature. It also suggests a number of BCG vaccination associated, HBHA-induced responses that should be useful for future studies of biomarkers of protection against TB.
Collapse
Affiliation(s)
- Steven G Smith
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK.
| | | | | | | | | |
Collapse
|
47
|
Immune markers and correlates of protection for vaccine induced immune responses. Vaccine 2012; 30:4907-20. [PMID: 22658928 DOI: 10.1016/j.vaccine.2012.05.049] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/15/2012] [Accepted: 05/19/2012] [Indexed: 12/15/2022]
Abstract
Vaccines have been a major innovation in the history of mankind and still have the potential to address the challenges posed by chronic intracellular infections including tuberculosis, HIV and malaria which are leading causes of high morbidity and mortality across the world. Markers of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against chronic infections in neither human nor veterinary medicine. Technological and conceptual advancements within cell-mediated immunology have led to a number of new immunological read-outs with the potential to emerge as correlates of vaccine induced protection. For T(H)1 type responses, antigen-specific production of interferon-gamma (IFN-γ) has been promoted as a quantitative marker of protective cell-mediated immune responses over the past couple of decades. More recently, however, evidence from several infections has pointed towards the quality of the immune response, measured through increased levels of antigen-specific polyfunctional T cells capable of producing a triad of relevant cytokines, as a better correlate of sustained protective immunity against this type of infections. Also the possibilities to measure antigen-specific cytotoxic T cells (CTL) during infection or in response to vaccination, through recombinant major histocompatibility complex (MHC) class I tetramers loaded with relevant peptides, has opened a new vista to include CTL responses in the evaluation of protective immune responses. Here, we review different immune markers and new candidates for correlates of a protective vaccine induced immune response against chronic infections and how successful they have been in defining the protective immunity in human and veterinary medicine.
Collapse
|
48
|
Brennan MJ, Clagett B, Fitzgerald H, Chen V, Williams A, Izzo AA, Barker LF. Preclinical evidence for implementing a prime-boost vaccine strategy for tuberculosis. Vaccine 2012; 30:2811-23. [PMID: 22387630 DOI: 10.1016/j.vaccine.2012.02.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/07/2012] [Accepted: 02/13/2012] [Indexed: 12/23/2022]
Abstract
In this review, published peer-reviewed preclinical studies using prime-boost tuberculosis (TB) vaccine regimens in animal challenge models for tuberculosis have been evaluated. These studies have been divided into groups that describe prime-boost vaccine combinations that performed better than, equivalent to, or worse than the currently used BCG vaccine. Review of the data has revealed interesting findings, including that more than half of the published studies using BCG as a prime combined with a novel boost vaccine give better efficacy than BCG alone and that the greatest reduction in Mycobacterium tuberculosis (M.tb.) colonization of animal tissues is provided by viral vectored vaccines delivered intranasally. Careful evaluation of these data should assist in defining the value of prime-boost regimens for advancement into human TB vaccine trials and stimulate the development of criteria for choosing which vaccine candidates should be studied further.
Collapse
|
49
|
Delivery of large heterologous polypeptides across the cytoplasmic membrane of antigen-presenting cells by the Bordetella RTX hemolysin moiety lacking the adenylyl cyclase domain. Infect Immun 2012; 80:1181-92. [PMID: 22215742 DOI: 10.1128/iai.05711-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Bordetella adenylate cyclase toxin-hemolysin (CyaA; also called ACT or AC-Hly) targets CD11b-expressing phagocytes and translocates into their cytosol an adenylyl cyclase (AC) that hijacks cellular signaling by conversion of ATP to cyclic AMP (cAMP). Intriguingly, insertion of large passenger peptides removes the enzymatic activity but not the cell-invasive capacity of the AC domain. This has repeatedly been exploited for delivery of heterologous antigens into the cytosolic pathway of CD11b-expressing dendritic cells by CyaA/AC(-) toxoids, thus enabling their processing and presentation on major histocompatibility complex (MHC) class I molecules to cytotoxic CD8(+) T lymphocytes (CTLs). We produced a set of toxoids with overlapping deletions within the first 371 residues of CyaA and showed that the structure of the AC enzyme does not contain any sequences indispensable for its translocation across target cell membrane. Moreover, replacement of the AC domain (residues 1 to 371) with heterologous polypeptides of 40, 146, or 203 residues yielded CyaAΔAC constructs that delivered passenger CTL epitopes into antigen-presenting cells (APCs) and induced strong antigen-specific CD8(+) CTL responses in vivo in mice and ex vivo in human peripheral blood mononuclear cell cultures. This shows that the RTX (repeats in toxin) hemolysin moiety, consisting of residues 374 to 1706 of CyaA, harbors all structural information involved in translocation of the N-terminal AC domain across target cell membranes. These results decipher the extraordinary capacity of the AC domain of CyaA to transport large heterologous cargo polypeptides into the cytosol of CD11b(+) target cells and pave the way for the construction of CyaAΔAC-based polyvalent immunotherapeutic T cell vaccines.
Collapse
|
50
|
Chatterjee S, Dwivedi VP, Singh Y, Siddiqui I, Sharma P, Van Kaer L, Chattopadhyay D, Das G. Early secreted antigen ESAT-6 of Mycobacterium tuberculosis promotes protective T helper 17 cell responses in a toll-like receptor-2-dependent manner. PLoS Pathog 2011; 7:e1002378. [PMID: 22102818 PMCID: PMC3213116 DOI: 10.1371/journal.ppat.1002378] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 09/29/2011] [Indexed: 12/22/2022] Open
Abstract
Despite its relatively poor efficacy, Bacillus Calmette-Guérin (BCG) has been used as a tuberculosis (TB) vaccine since its development in 1921. BCG induces robust T helper 1 (Th1) immune responses but, for many individuals, this is not sufficient for host resistance against Mycobacterium tuberculosis (M. tb) infection. Here we provide evidence that early secreted antigenic target protein 6 (ESAT-6), expressed by the virulent M. tb strain H37Rv but not by BCG, promotes vaccine-enhancing Th17 cell responses. These activities of ESAT-6 were dependent on TLR-2/MyD88 signalling and involved IL-6 and TGF-β production by dendritic cells. Thus, animals that were previously infected with H37Rv or recombinant BCG containing the RD1 region (BCG::RD1) exhibited improved protection upon re-challenge with virulent H37Rv compared with mice previously infected with BCG or RD1-deficient H37Rv (H37RvΔRD1). However, TLR-2 knockout (TLR-2⁻/⁻) animals neither showed Th17 responses nor exhibited improved protection in response to immunization with H37Rv. Furthermore, H37Rv and BCG::RD1 infection had little effect on the expression of the anti-inflammatory microRNA-146a (miR146a) in dendritic cells (DCs), whereas BCG and H37RvΔRD1 profoundly induced its expression in DCs. Consistent with these findings, ESAT-6 had no effect on miR146a expression in uninfected DCs, but dramatically inhibited its upregulation in BCG-infected or LPS-treated DCs. Collectively, our findings indicate that, in addition to Th1 immunity induced by BCG, RD1/ESAT-6-induced Th17 immune responses are essential for optimal vaccine efficacy.
Collapse
Affiliation(s)
- Samit Chatterjee
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ved Prakash Dwivedi
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Yogesh Singh
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Imran Siddiqui
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Pawan Sharma
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Luc Van Kaer
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | | | - Gobardhan Das
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|