1
|
Sánchez-Peña A, Winans JB, Nadell CD, Limoli DH. Pseudomonas aeruginosa surface motility and invasion into competing communities enhance interspecies antagonism. mBio 2024; 15:e0095624. [PMID: 39105585 PMCID: PMC11389416 DOI: 10.1128/mbio.00956-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are prevalent, difficult to eradicate, and associated with poor health outcomes. Therefore, understanding interactions between these pathogens is important to inform improved treatment development. We previously demonstrated that P. aeruginosa is attracted to S. aureus using type IV pili (TFP)-mediated chemotaxis, but the impact of attraction on S. aureus growth and physiology remained unknown. Using live single-cell confocal imaging to visualize microcolony structure, spatial organization, and survival of S. aureus during coculture, we found that interspecies chemotaxis provides P. aeruginosa a competitive advantage by promoting invasion into and disruption of S. aureus microcolonies. This behavior renders S. aureus susceptible to P. aeruginosa antimicrobials. Conversely, in the absence of TFP motility, P. aeruginosa cells exhibit reduced invasion of S. aureus colonies. Instead, P. aeruginosa builds a cellular barrier adjacent to S. aureus and secretes diffusible, bacteriostatic antimicrobials like 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) into the S. aureus colonies. Reduced invasion leads to the formation of denser and thicker S. aureus colonies with increased HQNO-mediated lactic acid fermentation, a physiological change that could complicate treatment strategies. Finally, we show that P. aeruginosa motility modifications of spatial structure enhance competition against S. aureus. Overall, these studies expand our understanding of how P. aeruginosa TFP-mediated interspecies chemotaxis facilitates polymicrobial interactions, highlighting the importance of spatial positioning in mixed-species communities. IMPORTANCE The polymicrobial nature of many chronic infections makes their eradication challenging. Particularly, coisolation of Pseudomonas aeruginosa and Staphylococcus aureus from airways of people with cystic fibrosis and chronic wound infections is common and associated with severe clinical outcomes. The complex interplay between these pathogens is not fully understood, highlighting the need for continued research to improve management of chronic infections. Our study unveils that P. aeruginosa is attracted to S. aureus, invades into neighboring colonies, and secretes anti-staphylococcal factors into the interior of the colony. Upon inhibition of P. aeruginosa motility and thus invasion, S. aureus colony architecture changes dramatically, whereby S. aureus is protected from P. aeruginosa antagonism and responds through physiological alterations that may further hamper treatment. These studies reinforce accumulating evidence that spatial structuring can dictate community resilience and reveal that motility and chemotaxis are critical drivers of interspecies competition.
Collapse
Affiliation(s)
- Andrea Sánchez-Peña
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - James B. Winans
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Dominique H. Limoli
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
2
|
Blais L, Couture L, Laforest-Lapointe I, Côté JP. Lactobacilli decrease the susceptibility of Salmonella Typhimurium to azithromycin. Microbiol Spectr 2024; 12:e0349723. [PMID: 38916329 PMCID: PMC11302071 DOI: 10.1128/spectrum.03497-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Bacteria are involved in numerous interactions during infection and among host-associated microbial populations. Salmonella enterica serovar Typhimurium is a foodborne pathogen of great importance as well as a model organism to study interactions within a microbial community. In this study, we found that S. Typhimurium becomes tolerant to azithromycin when co-cultured with lactobacilli strains. Similarly, acidified media, from cell-free supernatant of lactobacilli cultures for instance, also induced the tolerance of S. Typhimurium to azithromycin. The addition of membrane disruptors restored the normal sensitivity to azithromycin in acidified media, but not when lactobacilli were present. These results suggested that the acidification of the media led to modification in envelope homeostasis, but that a different mechanism promoted the tolerance to azithromycin in the presence of lactobacilli strains. To further understand how lactobacilli strains modify the sensitivity of S. Typhimurium to azithromycin, a high-throughput assay was performed using the single-gene deletion collection of the S. Typhimurium (1) in co-culture with Lacticaseibacillus rhamnosus and (2) in sterile acidic conditions (pH 5.5 media only). As expected, both screens identified genes involved in envelope homeostasis and membrane permeability. Our results also suggest that changes in the metabolism of S. Typhimurium induce the tolerance observed in the presence of L. rhamnosus. Our results thus highlight two different mechanisms by which lactobacilli induce the tolerance of S. Typhimurium to azithromycin.IMPORTANCEThis study provides valuable insights into the intricate interactions between bacteria during infections and within host-associated microbial communities. Specifically, it sheds light on the significant role of lactobacilli in inducing antibiotic tolerance in Salmonella enterica serovar Typhimurium, a critical foodborne pathogen and model organism for microbial community studies. The findings not only uncover the mechanisms underlying this antibiotic tolerance but also reveal two distinct pathways through which strains of lactobacilli might influence Salmonella's response to antibiotics. Understanding these mechanisms has the potential to enhance our knowledge of bacterial infections and may have implications for the development of strategies to combat antibiotic resistance in pathogens, such as Salmonella. Furthermore, our results underscore the necessity to explore beyond the direct antimicrobial effects of antibiotics, emphasizing the broader microbial community context.
Collapse
Affiliation(s)
- Lya Blais
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Laurence Couture
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Jean-Philippe Côté
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
3
|
Smith NM, Kaur H, Kaur R, Minoza T, Kent M, Barekat A, Lenhard JR. Influence of β-lactam pharmacodynamics on the systems microbiology of gram-positive and gram-negative polymicrobial communities. Front Pharmacol 2024; 15:1339858. [PMID: 38895629 PMCID: PMC11183306 DOI: 10.3389/fphar.2024.1339858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Objectives We sought to evaluate the pharmacodynamics of β-lactam antibacterials against polymicrobial communities of clinically relevant gram-positive and gram-negative pathogens. Methods Two Enterococcus faecalis isolates, two Staphylococcus aureus isolates, and three Escherichia coli isolates with varying β-lactamase production were evaluated in static time-killing experiments. Each gram-positive isolate was exposed to a concentration array of ampicillin (E. faecalis) or cefazolin (S. aureus) alone and during co-culture with an E. coli isolate that was β-lactamase-deficient, produced TEM-1, or produced KPC-3/TEM-1B. The results of the time-killing experiments were summarized using an integrated pharmacokinetic/pharmacodynamics analysis as well as mathematical modelling to fully characterize the antibacterial pharmacodynamics. Results In the integrated analysis, the maximum killing of ampicillin (Emax) against both E. faecalis isolates was ≥ 4.11 during monoculture experiments or co-culture with β-lactamase-deficient E. coli, whereas the Emax was reduced to ≤ 1.54 during co-culture with β-lactamase-producing E. coli. In comparison to monoculture experiments, culturing S. aureus with KPC-producing E. coli resulted in reductions of the cefazolin Emax from 3.25 and 3.71 down to 2.02 and 2.98, respectively. Two mathematical models were created to describe the interactions between E. coli and either E. faecalis or S. aureus. When in co-culture with E. coli, S. aureus experienced a reduction in its cefazolin Kmax by 24.8% (23.1%RSE). Similarly, β-lactamase-producing E. coli preferentially protected the ampicillin-resistant E. faecalis subpopulation, reducing Kmax,r by 90.1% (14%RSE). Discussion β-lactamase-producing E. coli were capable of protecting S. aureus and E. faecalis from exposure to β-lactam antibacterials.
Collapse
Affiliation(s)
- Nicholas M. Smith
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Harpreet Kaur
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| | - Ravneet Kaur
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| | - Trisha Minoza
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| | - Michael Kent
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| | - Ayeh Barekat
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| | - Justin R. Lenhard
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| |
Collapse
|
4
|
O’Toole GA. We have a community problem. J Bacteriol 2024; 206:e0007324. [PMID: 38529952 PMCID: PMC11025320 DOI: 10.1128/jb.00073-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Affiliation(s)
- George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
5
|
Sánchez-Peña A, Winans JB, Nadell CD, Limoli DH. Pseudomonas aeruginosa surface motility and invasion into competing communities enhances interspecies antagonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.588010. [PMID: 38617332 PMCID: PMC11014535 DOI: 10.1101/2024.04.03.588010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are prevalent, difficult to eradicate, and associated with poor health outcomes. Therefore, understanding interactions between these pathogens is important to inform improved treatment development. We previously demonstrated that P. aeruginosa is attracted to S. aureus using type IV pili-mediated chemotaxis, but the impact of attraction on S. aureus growth and physiology remained unknown. Using live single-cell confocal imaging to visualize microcolony structure, spatial organization, and survival of S. aureus during coculture, we found that interspecies chemotaxis provides P. aeruginosa a competitive advantage by promoting invasion into and disruption of S. aureus microcolonies. This behavior renders S. aureus susceptible to P. aeruginosa antimicrobials. Conversely, in the absence of type IV pilus motility, P. aeruginosa cells exhibit reduced invasion of S. aureus colonies. Instead, P. aeruginosa builds a cellular barrier adjacent to S. aureus and secretes diffusible, bacteriostatic antimicrobials like 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) into the S. aureus colonies. P. aeruginosa reduced invasion leads to the formation of denser and thicker S. aureus colonies with significantly increased HQNO-mediated lactic acid fermentation, a physiological change that could complicate the effective treatment of infections. Finally, we show that P. aeruginosa motility modifications of spatial structure enhance competition against S. aureus. Overall, these studies build on our understanding of how P. aeruginosa type IV pili-mediated interspecies chemotaxis mediates polymicrobial interactions, highlighting the importance of spatial positioning in mixed-species communities.
Collapse
Affiliation(s)
- Andrea Sánchez-Peña
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - James B Winans
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Dominique H Limoli
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
6
|
Truong-Bolduc QC, Yonker LM, Wang Y, Lawton BG, Hooper DC. NorA efflux pump mediates Staphylococcus aureus response to Pseudomonas aeruginosa pyocyanin toxicity. Antimicrob Agents Chemother 2024; 68:e0100123. [PMID: 38231535 PMCID: PMC10848749 DOI: 10.1128/aac.01001-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024] Open
Abstract
Endogenous transporters protect Staphylococcus aureus against antibiotics and also contribute to bacterial defense from environmental toxins. We evaluated the effect of overexpression of four efflux pumps, NorA, NorB, NorC, and Tet38, on S. aureus survival following exposure to pyocyanin (PYO) of Pseudomonas aeruginosa, using a well diffusion assay. We measured the PYO-created inhibition zone and found that only an overexpression of NorA reduced S. aureus susceptibility to pyocyanin killing. The MICPYO of the NorA overexpressor increased threefold compared to that of wild-type RN6390 and was reduced 2.5-fold with reserpine, suggesting that increased NorA efflux caused PYO resistance. The PYO-created inhibition zone of a ΔnorA mutant was consistently larger than that of a plasmid-borne NorA overexpressor. PYO also produced a modest increase in norA expression (1.8-fold at 0.25 µg/mL PYO) that gradually decreased with increasing PYO concentrations. Well diffusion assays carried out using P. aeruginosa showed that ΔnorA mutant was less susceptible to killing by PYO-deficient mutants PA14phzM and PA14phzS than to killing by PA14. NorA overexpression led to reduced killing by all tested P. aeruginosa. We evaluated the NorA-PYO interaction using a collection of 22 clinical isolates from adult and pediatric cystic fibrosis (CF) patients, which included both S. aureus (CF-SA) and P. aeruginosa (CF-PA). We found that when isolated alone, CF-PA and CF-SA expressed varying levels of PYO and norA transcripts, but all four CF-PA/CF-SA pairs isolated concurrently from CF patients produced a low level of PYO and low norA transcript levels, respectively, suggesting a partial adaptation of the two bacteria in circumstances of persistent co-colonization.
Collapse
Affiliation(s)
- Q. C. Truong-Bolduc
- Infectious Diseases Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - L. M. Yonker
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Y. Wang
- Infectious Diseases Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - B. G. Lawton
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - D. C. Hooper
- Infectious Diseases Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Yarrington KD, Shendruk TN, Limoli DH. The type IV pilus chemoreceptor PilJ controls chemotaxis of one bacterial species towards another. PLoS Biol 2024; 22:e3002488. [PMID: 38349934 PMCID: PMC10896506 DOI: 10.1371/journal.pbio.3002488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/26/2024] [Accepted: 01/05/2024] [Indexed: 02/15/2024] Open
Abstract
Bacteria live in social communities, where the ability to sense and respond to interspecies and environmental signals is critical for survival. We previously showed the pathogen Pseudomonas aeruginosa detects secreted peptides from bacterial competitors and navigates through interspecies signal gradients using pilus-based motility. Yet, it was unknown whether P. aeruginosa utilizes a designated chemosensory system for this behavior. Here, we performed a systematic genetic analysis of a putative pilus chemosensory system, followed by high-speed live-imaging and single-cell tracking, to reveal behaviors of mutants that retain motility but are blind to interspecies signals. The enzymes predicted to methylate (PilK) and demethylate (ChpB) the putative pilus chemoreceptor, PilJ, are necessary for cells to control the direction of migration. While these findings implicate PilJ as a bona fide chemoreceptor, such function had yet to be experimentally defined, as full-length PilJ is essential for motility. Thus, we constructed systematic genetic modifications of PilJ and found that without the predicted ligand binding domains or predicted methylation sites, cells lose the ability to detect competitor gradients, despite retaining pilus-mediated motility. Chemotaxis trajectory analysis revealed that increased probability and size of P. aeruginosa pilus-mediated steps towards S. aureus peptides, versus steps away, determines motility bias in wild type cells. However, PilJ mutants blind to interspecies signals take less frequent steps towards S. aureus or steps of equal size towards and away. Collectively, this work uncovers the chemosensory nature of PilJ, provides insight into how cell movements are biased during pilus-based chemotaxis, and identifies chemotactic interactions necessary for bacterial survival in polymicrobial communities, revealing putative pathways where therapeutic intervention might disrupt bacterial communication.
Collapse
Affiliation(s)
- Kaitlin D. Yarrington
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Tyler N. Shendruk
- School of Physics and Astronomy, The University of Edinburgh, Edinburgh, United Kingdom
| | - Dominique H. Limoli
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
8
|
Coenye T. Biofilm antimicrobial susceptibility testing: where are we and where could we be going? Clin Microbiol Rev 2023; 36:e0002423. [PMID: 37812003 PMCID: PMC10732061 DOI: 10.1128/cmr.00024-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/27/2023] [Indexed: 10/10/2023] Open
Abstract
Our knowledge about the fundamental aspects of biofilm biology, including the mechanisms behind the reduced antimicrobial susceptibility of biofilms, has increased drastically over the last decades. However, this knowledge has so far not been translated into major changes in clinical practice. While the biofilm concept is increasingly on the radar of clinical microbiologists, physicians, and healthcare professionals in general, the standardized tools to study biofilms in the clinical microbiology laboratory are still lacking; one area in which this is particularly obvious is that of antimicrobial susceptibility testing (AST). It is generally accepted that the biofilm lifestyle has a tremendous impact on antibiotic susceptibility, yet AST is typically still carried out with planktonic cells. On top of that, the microenvironment at the site of infection is an important driver for microbial physiology and hence susceptibility; but this is poorly reflected in current AST methods. The goal of this review is to provide an overview of the state of the art concerning biofilm AST and highlight the knowledge gaps in this area. Subsequently, potential ways to improve biofilm-based AST will be discussed. Finally, bottlenecks currently preventing the use of biofilm AST in clinical practice, as well as the steps needed to get past these bottlenecks, will be discussed.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Alio I, Moll R, Hoffmann T, Mamat U, Schaible UE, Pappenfort K, Alawi M, Schie M, Thünauer R, Stamm J, Rohde H, Streit WR. Stenotrophomonas maltophilia affects the gene expression profiles of the major pathogens Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro multispecies biofilm model. Microbiol Spectr 2023; 11:e0085923. [PMID: 37819084 PMCID: PMC10714729 DOI: 10.1128/spectrum.00859-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE In the past, studies have focused on bacterial pathogenicity in mono-species infections, in part ignoring the clinical relevance of diseases caused by more than one pathogen (i.e., polymicrobial infections). However, it is now common knowledge that multiple bacteria species are often involved in the course of an infection. For treatment of such infections, it is absolutely important to understand the dynamics of species interactions at possible infection sites and the molecular mechanisms behind these interactions. Here, we studied the impact of Stenotrophomonas maltophilia on its commensals Pseudomonas aeruginosa and Staphylococcus aureus in multispecies biofilms. We analyzed the 3D structural architectures of dual- and triple-species biofilms, niche formation within the biofilms, and the interspecies interactions on a molecular level. RNAseq data identified key genes involved in multispecies biofilm formation and interaction as potential drug targets for the clinical combat of multispecies infection with these major pathogens.
Collapse
Affiliation(s)
- Ifey Alio
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| | - Raphael Moll
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| | - Tim Hoffmann
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| | - Uwe Mamat
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center,Leibniz Research Alliance Infection , Borstel Gemany, Borstel, Germany
| | - Ulrich E. Schaible
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center,Leibniz Research Alliance Infection , Borstel Gemany, Borstel, Germany
| | - Kai Pappenfort
- Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| | - Malik Alawi
- Bioinformatics Core, UKE Hamburg, Hamburg, Germany
| | - Marcel Schie
- LIV, Leibniz Institute of Experimental Virology, Hamburg, Germany
| | - Roland Thünauer
- LIV, Leibniz Institute of Experimental Virology, Hamburg, Germany
| | - Johanna Stamm
- Institute for Medical Microbiology, Virology and Hygiene, UKE, Eppendorf, Hamburg, Germany
| | - Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, UKE, Eppendorf, Hamburg, Germany
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| |
Collapse
|
10
|
Phan S, Feng CH, Huang R, Lee ZX, Moua Y, Phung OJ, Lenhard JR. Relative Abundance and Detection of Pseudomonas aeruginosa from Chronic Wound Infections Globally. Microorganisms 2023; 11:1210. [PMID: 37317184 DOI: 10.3390/microorganisms11051210] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 06/16/2023] Open
Abstract
Pseudomonas aeruginosa is a difficult-to-treat pathogen that is frequently involved with chronic wound infections. Here, we conducted a literature search of world-wide studies published between 2005 and 2022 that described the microbiological profiles of chronic wound infections. For each continent, a hierarchy of pathogens was created to define the organisms that were most frequently isolated in each region. Except for South America, P. aeruginosa was the second most common organism in each major continent, with Staphylococcus aureus being the most abundant pathogen overall. When individual countries were evaluated, P. aeruginosa was the most frequently isolated organism in several Southeast Asia nations including India and Malaysia. P. aeruginosa was less commonly isolated from diabetic foot infections in North America, Europe, and Africa in comparison to other types of chronic wound infections. Additionally, the Levine wound swab technique may be a quick and painless way to isolate P. aeruginosa from wound infections, but the isolation of P. aeruginosa does not seem to be an informative predictor of the patient's clinical course. A multivariate risk assessment that accounts for the regional frequency of P. aeruginosa isolation may be an appropriate way to guide empiric management of chronic wound infections.
Collapse
Affiliation(s)
- Sang Phan
- College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Cafrey He Feng
- College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Raymond Huang
- College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Zeng X Lee
- College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Yer Moua
- College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Olivia J Phung
- College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Justin R Lenhard
- College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| |
Collapse
|
11
|
Al-Wrafy FA, Alariqi R, Noman EA, Al-Gheethi AA, Mutahar M. Pseudomonas aeruginosa behaviour in polymicrobial communities: The competitive and cooperative interactions conducting to the exacerbation of infections. Microbiol Res 2023; 268:127298. [PMID: 36610273 DOI: 10.1016/j.micres.2022.127298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
Pseudomonas aeruginosa is mostly associated with persistent infections and antibiotic resistance as a result of several factors, biofilms one of them. Microorganisms within the polymicrobial biofilm (PMB) reveal various transcriptional profiles and affect each other which might influence their pathogenicity and antibiotic tolerance and subsequent worsening of the biofilm infection. P. aeruginosa within PMB exhibits various behaviours toward other microorganisms, which may enhance or repress the virulence of these microbes. Microbial neighbours, in turn, may affect P. aeruginosa's virulence either positively or negatively. Such interactions among microorganisms lead to emerging persistent and antibiotic-resistant infections. This review highlights the relationship between P. aeruginosa and its microbial neighbours within the PMB in an attempt to better understand the mechanisms of polymicrobial interaction and the correlation between increased exacerbations of infection and the P. aeruginosa-microbe interaction. Researching in the literature that was carried out in vitro either in co-cultures or in the models to simulate the environment at the site of infection suggested that the interplay between P. aeruginosa and other microorganisms is one main reason for the worsening of the infection and which in turn requires a treatment approach different from that followed with P. aeruginosa mono-infection.
Collapse
Affiliation(s)
- Fairoz Ali Al-Wrafy
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, 6350 Taiz, Yemen.
| | - Reem Alariqi
- Microbiology Department, Faculty of Medicine and Health Sciences, Sana'a University, 1247 Sana'a, Yemen
| | - Efaq Ali Noman
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, 6350 Taiz, Yemen
| | - Adel Ali Al-Gheethi
- Civil Department, Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia
| | - Mahdi Mutahar
- Faculty of Science & Health, University of Portsmouth Dental Academy, PO1 2QG Portsmouth, United Kingdom
| |
Collapse
|
12
|
Jean-Pierre F, Hampton TH, Schultz D, Hogan DA, Groleau MC, Déziel E, O'Toole GA. Community composition shapes microbial-specific phenotypes in a cystic fibrosis polymicrobial model system. eLife 2023; 12:81604. [PMID: 36661299 PMCID: PMC9897730 DOI: 10.7554/elife.81604] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
Interspecies interactions can drive the emergence of unexpected microbial phenotypes that are not observed when studying monocultures. The cystic fibrosis (CF) lung consists of a complex environment where microbes, living as polymicrobial biofilm-like communities, are associated with negative clinical outcomes for persons with CF (pwCF). However, the current lack of in vitro models integrating the microbial diversity observed in the CF airway hampers our understanding of why polymicrobial communities are recalcitrant to therapy in this disease. Here, integrating computational approaches informed by clinical data, we built a mixed community of clinical relevance to the CF lung composed of Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus sanguinis, and Prevotella melaninogenica. We developed and validated this model biofilm community with multiple isolates of these four genera. When challenged with tobramycin, a front-line antimicrobial used to treat pwCF, the microorganisms in the polymicrobial community show altered sensitivity to this antibiotic compared to monospecies biofilms. We observed that wild-type P. aeruginosa is sensitized to tobramycin in a mixed community versus monoculture, and this observation holds across a range of community relative abundances. We also report that LasR loss-of-function, a variant frequently detected in the CF airway, drives tolerance of P. aeruginosa to tobramycin specifically in the mixed community. Our data suggest that the molecular basis of this community-specific recalcitrance to tobramycin for the P. aeruginosa lasR mutant is increased production of phenazines. Our work supports the importance of studying a clinically relevant model of polymicrobial biofilms to understand community-specific traits relevant to infections.
Collapse
Affiliation(s)
- Fabrice Jean-Pierre
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Daniel Schultz
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche ScientifiqueLavalCanada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche ScientifiqueLavalCanada
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| |
Collapse
|
13
|
Jean-Pierre V, Boudet A, Sorlin P, Menetrey Q, Chiron R, Lavigne JP, Marchandin H. Biofilm Formation by Staphylococcus aureus in the Specific Context of Cystic Fibrosis. Int J Mol Sci 2022; 24:ijms24010597. [PMID: 36614040 PMCID: PMC9820612 DOI: 10.3390/ijms24010597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen whose characteristics support its success in various clinical settings including Cystic Fibrosis (CF). In CF, S. aureus is indeed the most commonly identified opportunistic pathogen in children and the overall population. S. aureus colonization/infection, either by methicillin-susceptible or methicillin-resistant strains, will become chronic in about one third of CF patients. The persistence of S. aureus in CF patients' lungs, despite various eradication strategies, is favored by several traits in both host and pathogen. Among the latter, living in biofilm is a highly protective way to survive despite deleterious environmental conditions, and is a common characteristic shared by the main pathogens identified in CF. This is why CF has earned the status of a biofilm-associated disease for several years now. Biofilm formation by S. aureus, and the molecular mechanisms governing and regulating it, have been extensively studied but have received less attention in the specific context of CF lungs. Here, we review the current knowledge on S. aureus biofilm in this very context, i.e., the importance, study methods, molecular data published on mono- and multi-species biofilm and anti-biofilm strategies. This focus on studies including clinical isolates from CF patients shows that they are still under-represented in the literature compared with studies based on reference strains, and underlines the need for such studies. Indeed, CF clinical strains display specific characteristics that may not be extrapolated from results obtained on laboratory strains.
Collapse
Affiliation(s)
- Vincent Jean-Pierre
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 34093 Montpellier, France
| | - Agathe Boudet
- VBIC—Virulence Bactérienne et Infections Chroniques, Université de Montpellier, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France
| | - Pauline Sorlin
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, 34093 Montpellier, France
| | - Quentin Menetrey
- INFINITE—Institute for Translational Research in Inflammation, Université de Lille, INSERM U1286, CHU Lille, 59000 Lille, France
| | - Raphaël Chiron
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Centre de Ressources et de Compétences de la Mucoviscidose, CHU Montpellier, 34295 Montpellier, France
| | - Jean-Philippe Lavigne
- VBIC—Virulence Bactérienne et Infections Chroniques, Université de Montpellier, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France
| | - Hélène Marchandin
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 34093 Montpellier, France
- Correspondence:
| |
Collapse
|
14
|
Tetz G, Tetz V. Overcoming Antibiotic Resistance with Novel Paradigms of Antibiotic Selection. Microorganisms 2022; 10:2383. [PMID: 36557636 PMCID: PMC9781420 DOI: 10.3390/microorganisms10122383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Conventional antimicrobial susceptibility tests, including phenotypic and genotypic methods, are insufficiently accurate and frequently fail to identify effective antibiotics. These methods predominantly select therapies based on the antibiotic response of only the lead bacterial pathogen within pure bacterial culture. However, this neglects the fact that, in the majority of human infections, the lead bacterial pathogens are present as a part of multispecies communities that modulate the response of these lead pathogens to antibiotics and that multiple pathogens can contribute to the infection simultaneously. This discrepancy is a major cause of the failure of antimicrobial susceptibility tests to detect antibiotics that are effective in vivo. This review article provides a comprehensive overview of the factors that are missed by conventional antimicrobial susceptibility tests and it explains how accounting for these methods can aid the development of novel diagnostic approaches.
Collapse
Affiliation(s)
- George Tetz
- Human Microbiology Institute, New York, NY 100141, USA
| | | |
Collapse
|
15
|
Yarmola E, Ishkov IP, di Cologna NM, Menashe M, Whitener RL, Long JR, Abranches J, Hagen SJ, Brady LJ. Amyloid Aggregates Are Localized to the Nonadherent Detached Fraction of Aging Streptococcus mutans Biofilms. Microbiol Spectr 2022; 10:e0166122. [PMID: 35950854 PMCID: PMC9431626 DOI: 10.1128/spectrum.01661-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
The number of bacterial species recognized to utilize purposeful amyloid aggregation within biofilms continues to grow. The oral pathogen Streptococcus mutans produces several amyloidogenic proteins, including adhesins P1 (also known as AgI/II, PAc) and WapA, whose truncation products, namely, AgII and AgA, respectively, represent the amyloidogenic moieties. Amyloids demonstrate common biophysical properties, including recognition by Thioflavin T (ThT) and Congo red (CR) dyes that bind to the cross β-sheet quaternary structure of amyloid aggregates. Previously, we observed amyloid formation to occur only after 60 h or more of S. mutans biofilm growth. Here, we extend those findings to investigate where amyloid is detected within 1- and 5-day-old biofilms, including within tightly adherent compared with those in nonadherent fractions. CR birefringence and ThT uptake demonstrated amyloid within nonadherent material removed from 5-day-old cultures but not within 1-day-old or adherent samples. These experiments were done in conjunction with confocal microscopy and immunofluorescence staining with AgII- and AgA-reactive antibodies, including monoclonal reagents shown to discriminate between monomeric protein and amyloid aggregates. These results also localized amyloid primarily to the nonadherent fraction of biofilms. Lastly, we show that the C-terminal region of P1 loses adhesive function following amyloidogenesis and is no longer able to competitively inhibit binding of S. mutans to its physiologic substrate, salivary agglutinin. Taken together, our results provide new evidence that amyloid aggregation negatively impacts the functional activity of a widely studied S. mutans adhesin and are consistent with a model in which amyloidogenesis of adhesive proteins facilitates the detachment of aging biofilms. IMPORTANCE Streptococcus mutans is a keystone pathogen and causative agent of human dental caries, commonly known as tooth decay, the most prevalent infectious disease in the world. Like many pathogens, S. mutans causes disease in biofilms, which for dental decay begins with bacterial attachment to the salivary pellicle coating the tooth surface. Some strains of S. mutans are also associated with bacterial endocarditis. Amyloid aggregation was initially thought to represent only a consequence of protein mal-folding, but now, many microorganisms are known to produce functional amyloids with biofilm environments. In this study, we learned that amyloid formation diminishes the activity of a known S. mutans adhesin and that amyloid is found within the nonadherent fraction of older biofilms. This finding suggests that the transition from adhesin monomer to amyloid facilitates biofilm detachment. Knowing where and when S. mutans produces amyloid will help in developing therapeutic strategies to control tooth decay and other biofilm-related diseases.
Collapse
Affiliation(s)
- Elena Yarmola
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Ivan P. Ishkov
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | | | - Megan Menashe
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Robert L. Whitener
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Joanna R. Long
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | | | - Stephen J. Hagen
- Department of Physics, University of Florida, Gainesville, Florida, USA
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
16
|
O'Brien TJ, Figueroa W, Welch M. Decreased efficacy of antimicrobial agents in a polymicrobial environment. THE ISME JOURNAL 2022; 16:1694-1704. [PMID: 35304578 PMCID: PMC9213441 DOI: 10.1038/s41396-022-01218-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022]
Abstract
The airways of people with cystic fibrosis (CF) often harbour diverse polymicrobial communities. These airway infections can be impossible to resolve through antibiotic intervention, even though isolates of the individual species present are susceptible to the treatment when tested in vitro. In this work, we investigate how polymicrobial cultures comprised of key CF-associated pathogens respond to challenge with species-specific antimicrobial agents; colistin (targets Pseudomonas aeruginosa), fusidic acid (targets Staphylococcus aureus), and fluconazole (targets Candida albicans). We found that growth in a polymicrobial environment protects the target microorganism (sometimes by several orders of magnitude) from the effect(s) of the antimicrobial agent. This decreased antimicrobial efficacy was found to have both non-heritable (physiological) and heritable (genetic) components. Whole-genome sequencing of the colistin-resistant P. aeruginosa isolates revealed single nucleotide polymorphisms and indels in genes encoding lipopolysaccharide (LPS) biosynthesis and/or pilus biogenesis, indicating that a previously undescribed colistin resistance mechanism was in operation. This was subsequently confirmed through further genetic analyses. Our findings indicate that the polymicrobial nature of the CF airways is likely to have a significant impact on the clinical response to antimicrobial therapy.
Collapse
Affiliation(s)
| | - Wendy Figueroa
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
17
|
Evaluation of the Use of Antibiofilmogram Technology in the Clinical Evolution of Foot Ulcers Infected by Staphylococcus aureus in Persons Living with Diabetes: A Pilot Study. J Clin Med 2021; 10:jcm10245928. [PMID: 34945223 PMCID: PMC8705769 DOI: 10.3390/jcm10245928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 01/22/2023] Open
Abstract
Infected diabetic foot ulcers (DFUs) represent a serious threat to public health because of their frequency and the severity of their consequences. DFUs are frequently infected by bacteria in biofilms, obstructing antibiotic action. Antibiofilmogram was developed to assess the impact of antibiotics to inhibit biofilm formation. This pilot study aimed to determine the benefits of this technology in predicting antibiotic activity on the outcome of 28 patients with Grade 2 DFUs that were infected by a monomicrobial Staphylococcus aureus. Patients with diabetes were followed during the antibiotic treatment (day 14) and the follow-up period of the study (day 45). The contribution of Antibiofilmogram was compared between patients with non-concordant results (n = 13) between antibiogram and Antibiofilmogram versus concordant results (n = 15). The clinical improvement of wounds (80.0% vs. 38.5%, p = 0.0245) and the absence of exudates (0% vs. 33.3%, p = 0.0282) were observed in concordant vs. discordant groups. This pilot study provides promising results for the interest of Antibiofilmogram in the prescription of antibiotics to prevent biofilm formation in infected DFUs.
Collapse
|
18
|
Chen X, Lorenzen J, Xu Y, Jonikaite M, Thaarup IC, Bjarnsholt T, Kirketerp-Møller K, Thomsen TR. A novel chronic wound biofilm model sustaining coexistence of Pseudomonas aeruginosa and Staphylococcus aureus suitable for testing of antibiofilm effect of antimicrobial solutions and wound dressings. Wound Repair Regen 2021; 29:820-829. [PMID: 34105845 PMCID: PMC8453894 DOI: 10.1111/wrr.12944] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 01/20/2023]
Abstract
Chronic wounds are a large burden to patients and healthcare systems. Biofilm infections in chronic wounds are crucial factors leading to non‐healing of wounds. It is important to study biofilm in wounds and to develop effective interventions against wound biofilm. This study presents a novel in vitro biofilm model mimicking infected chronic wounds. The novel layered chronic wound biofilm model uses woundlike media and includes both Pseudomonas aeruginosa and Staphylococcus aureus, which have been identified as the most important pathogens in wounds. The model sustains their coexistence for at least 96 h. Microscopy of the model revealed microbial growth in non‐surface attached microcolonies as previously observed in vivo. The model was used to determine log10‐reduction for the use of an antimicrobial solution and antimicrobial dressings (containing silver or honey) showing moderate‐to‐low antibiofilm effect, which indicates better concordance with the observed clinical performance of this type of treatment than other widely used standard tests.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Center for Microbial Communities, Aalborg University, Aalborg East, Denmark
| | - Jan Lorenzen
- Environmental Technology, Danish Technology Institute, Aarhus, Denmark
| | - Yijuan Xu
- Center for Microbial Communities, Aalborg University, Aalborg East, Denmark.,Environmental Technology, Danish Technology Institute, Aarhus, Denmark
| | - Monika Jonikaite
- Center for Microbial Communities, Aalborg University, Aalborg East, Denmark
| | | | - Thomas Bjarnsholt
- Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Klaus Kirketerp-Møller
- Department of Dermatology and Wounds, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Trine Rolighed Thomsen
- Center for Microbial Communities, Aalborg University, Aalborg East, Denmark.,Environmental Technology, Danish Technology Institute, Aarhus, Denmark
| |
Collapse
|
19
|
Abstract
Culture-independent studies have revealed that chronic lung infections in persons with cystic fibrosis (pwCF) are rarely limited to one microbial species. Interactions among bacterial members of these polymicrobial communities in the airways of pwCF have been reported to modulate clinically relevant phenotypes. Furthermore, it is clear that a single polymicrobial community in the context of CF airway infections cannot explain the diversity of clinical outcomes. While large 16S rRNA gene-based studies have allowed us to gain insight into the microbial composition and predicted functional capacities of communities found in the CF lung, here we argue that in silico approaches can help build clinically relevant in vitro models of polymicrobial communities that can in turn be used to experimentally test and validate computationally generated hypotheses. Furthermore, we posit that combining computational and experimental approaches will enhance our understanding of mechanisms that drive microbial community function and identify new therapeutics to target polymicrobial infections.
Collapse
|
20
|
Camus L, Briaud P, Vandenesch F, Moreau K. How Bacterial Adaptation to Cystic Fibrosis Environment Shapes Interactions Between Pseudomonas aeruginosa and Staphylococcus aureus. Front Microbiol 2021; 12:617784. [PMID: 33746915 PMCID: PMC7966511 DOI: 10.3389/fmicb.2021.617784] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are the two most prevalent bacteria species in the lungs of cystic fibrosis (CF) patients and are associated with poor clinical outcomes. Co-infection by the two species is a frequent situation that promotes their interaction. The ability of P. aeruginosa to outperform S. aureus has been widely described, and this competitive interaction was, for a long time, the only one considered. More recently, several studies have described that the two species are able to coexist. This change in relationship is linked to the evolution of bacterial strains in the lungs. This review attempts to decipher how bacterial adaptation to the CF environment can induce a change in the type of interaction and promote coexisting interaction between P. aeruginosa and S. aureus. The impact of coexistence on the establishment and maintenance of a chronic infection will also be presented, by considering the latest research on the subject.
Collapse
Affiliation(s)
- Laura Camus
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France
| | - Paul Briaud
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France.,Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France.,Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Karen Moreau
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France
| |
Collapse
|
21
|
Jean-Pierre F, Henson MA, O’Toole GA. Metabolic Modeling to Interrogate Microbial Disease: A Tale for Experimentalists. Front Mol Biosci 2021; 8:634479. [PMID: 33681294 PMCID: PMC7930556 DOI: 10.3389/fmolb.2021.634479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
The explosion of microbiome analyses has helped identify individual microorganisms and microbial communities driving human health and disease, but how these communities function is still an open question. For example, the role for the incredibly complex metabolic interactions among microbial species cannot easily be resolved by current experimental approaches such as 16S rRNA gene sequencing, metagenomics and/or metabolomics. Resolving such metabolic interactions is particularly challenging in the context of polymicrobial communities where metabolite exchange has been reported to impact key bacterial traits such as virulence and antibiotic treatment efficacy. As novel approaches are needed to pinpoint microbial determinants responsible for impacting community function in the context of human health and to facilitate the development of novel anti-infective and antimicrobial drugs, here we review, from the viewpoint of experimentalists, the latest advances in metabolic modeling, a computational method capable of predicting metabolic capabilities and interactions from individual microorganisms to complex ecological systems. We use selected examples from the literature to illustrate how metabolic modeling has been utilized, in combination with experiments, to better understand microbial community function. Finally, we propose how such combined, cross-disciplinary efforts can be utilized to drive laboratory work and drug discovery moving forward.
Collapse
Affiliation(s)
- Fabrice Jean-Pierre
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Michael A. Henson
- Department of Chemical Engineering and Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, United States
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| |
Collapse
|
22
|
Rocha-Granados MC, Zenick B, Englander HE, Mok WWK. The social network: Impact of host and microbial interactions on bacterial antibiotic tolerance and persistence. Cell Signal 2020; 75:109750. [PMID: 32846197 DOI: 10.1016/j.cellsig.2020.109750] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Antibiotics have vastly improved our quality of life since their discovery and introduction into modern medicine. Yet, widespread use and misuse have compromised the efficacy of these compounds and put our ability to cure infectious diseases in jeopardy. To defend themselves against antibiotics, bacteria have evolved an arsenal of survival strategies. In addition to acquiring mutations and genetic determinants that confer antibiotic resistance, bacteria can respond to environmental cues and adopt reversible phenotypic changes that transiently enhance their ability to survive adverse conditions, including those brought on by antibiotics. These antibiotic tolerant and persistent bacteria, which are prevalent in biofilms and can survive antimicrobial therapy without inheriting resistance, are thought to underlie treatment failure and infection relapse. At infection sites, bacteria encounter a range of signals originating from host immunity and the local microbiota that can induce transcriptomic and metabolic reprogramming. In this review, we will focus on the impact of host factors and microbial interactions on antibiotic tolerance and persistence. We will also outline current efforts in leveraging the knowledge of host-microbe and microbe-microbe interactions in designing therapies that potentiate antibiotic activity and reduce the burden caused by recurrent infections.
Collapse
Affiliation(s)
| | - Blesing Zenick
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, CT, 06032, USA
| | - Hanna E Englander
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, CT, 06032, USA; Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269-3156, United States of America
| | - Wendy W K Mok
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, CT, 06032, USA.
| |
Collapse
|