1
|
Isenberg RY, Holschbach CS, Gao J, Mandel MJ. Functional analysis of cyclic diguanylate-modulating proteins in Vibrio fischeri. mSystems 2024; 9:e0095624. [PMID: 39436151 PMCID: PMC11575326 DOI: 10.1128/msystems.00956-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
As bacterial symbionts transition from a motile free-living state to a sessile biofilm state, they must coordinate behavior changes suitable to each lifestyle. Cyclic diguanylate (c-di-GMP) is an intracellular signaling molecule that can regulate this transition, and it is synthesized by diguanylate cyclase (DGC) enzymes and degraded by phosphodiesterase (PDE) enzymes. Generally, c-di-GMP inhibits motility and promotes biofilm formation. While c-di-GMP and the enzymes that contribute to its metabolism have been well studied in pathogens, considerably less focus has been placed on c-di-GMP regulation in beneficial symbionts. Vibrio fischeri is the sole beneficial symbiont of the Hawaiian bobtail squid (Euprymna scolopes) light organ, and the bacterium requires both motility and biofilm formation to efficiently colonize. c-di-GMP regulates swimming motility and cellulose exopolysaccharide production in V. fischeri. The genome encodes 50 DGCs and PDEs, and while a few of these proteins have been characterized, the majority have not undergone comprehensive characterization. In this study, we use protein overexpression to systematically characterize the functional potential of all 50 V. fischeri proteins. All 28 predicted DGCs and 10 of the 14 predicted PDEs displayed at least one phenotype consistent with their predicted function, and a majority of each displayed multiple phenotypes. Finally, active site mutant analysis of proteins with the potential for both DGC and PDE activities revealed potential activities for these proteins. This work presents a systems-level functional analysis of a family of signaling proteins in a tractable animal symbiont and will inform future efforts to characterize the roles of individual proteins during lifestyle transitions.IMPORTANCECyclic diguanylate (c-di-GMP) is a critical second messenger that mediates bacterial behaviors, and Vibrio fischeri colonization of its Hawaiian bobtail squid host presents a tractable model in which to interrogate the role of c-di-GMP during animal colonization. This work provides systems-level characterization of the 50 proteins predicted to modulate c-di-GMP levels. By combining multiple assays, we generated a rich understanding of which proteins have the capacity to influence c-di-GMP levels and behaviors. Our functional approach yielded insights into how proteins with domains to both synthesize and degrade c-di-GMP may impact bacterial behaviors. Finally, we integrated published data to provide a broader picture of each of the 50 proteins analyzed. This study will inform future work to define specific pathways by which c-di-GMP regulates symbiotic behaviors and transitions.
Collapse
Affiliation(s)
- Ruth Y Isenberg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chandler S Holschbach
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jing Gao
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mark J Mandel
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Gutierrez MDLP, Damron FH, Sisti F, Fernández J. BvgR is important for virulence-related phenotypes in Bordetella bronchiseptica. Microbiol Spectr 2024; 12:e0079424. [PMID: 39365045 PMCID: PMC11537037 DOI: 10.1128/spectrum.00794-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/05/2024] [Indexed: 10/05/2024] Open
Abstract
Bordetella bronchiseptica is a pathogenic bacterium that causes respiratory infections in mammals. Adhesins, toxins, and secretion systems necessary for infection are regulated by the two-component system BvgAS. When the BvgAS system is inactive, there is no transcription of virulence-activated genes, and virulence-repressed genes (vrg) are expressed. The regulation of some vrgs in B. bronchiseptica is dependent upon the virulence-activated gene bvgR. Although having a regulatory role, no DNA-binding domain is described for BvgR. Instead, it contains an EAL domain, usually found in cyclic-di-GMP (c-di-GMP)-specific phosphodiesterases. c-di-GMP is a bacterial second messenger that regulates multiple phenotypes in bacteria, including B. bronchiseptica. The current study aimed to deepen our knowledge about BvgR. We employed RNA-seq analysis to define the BvgR regulon, and then we investigated the phenotypes in which BvgR regulation might be involved such as biofilm formation, cytotoxicity, and virulence. Our result revealed that BvgR inhibits biofilm formation and flagellin expression in virulent phase. Although BvgR has long been considered a repressor protein, our results show that it also upregulates almost 100 genes. This regulation is likely indirect, as BvgR lacks a DNA-binding domain. Notably, among the upregulated genes, we identified 15 associated with the type three secretion system. Consistent with these findings, a B. bronchiseptica strain deficient in bvgR was less cytotoxic than the wild-type strain, elicited a milder immune response, and was less able to persist in the lower respiratory tract of mice.IMPORTANCEBordetella bronchiseptica is a harmful bacterium responsible for respiratory infections in mammals. Its ability to cause disease is tightly regulated by a system called BvgAS. In this study, we focused on understanding the role of a specific gene called bvgR in regulating B. bronchiseptica's virulence factors. Our findings revealed that BvgR, previously thought to primarily repress gene expression, actually plays a complex role in both activating and inhibiting various genes involved in bacterial virulence. This newfound understanding sheds light on the intricate mechanisms underlying B. bronchiseptica's ability to cause infections, providing valuable insights for developing strategies to combat these infections in humans and animals.
Collapse
Affiliation(s)
- Maria de la Paz Gutierrez
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM)-CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Federico Sisti
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM)-CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julieta Fernández
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM)-CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
3
|
Isenberg RY, Holschbach CS, Gao J, Mandel MJ. Functional analysis of cyclic diguanylate-modulating proteins in Vibrio fischeri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.24.550417. [PMID: 37546929 PMCID: PMC10402110 DOI: 10.1101/2023.07.24.550417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
As bacterial symbionts transition from a motile free-living state to a sessile biofilm state, they must coordinate behavior changes suitable to each lifestyle. Cyclic diguanylate (c-di-GMP) is an intracellular signaling molecule that can regulate this transition, and it is synthesized by diguanylate cyclase (DGC) enzymes and degraded by phosphodiesterase (PDE) enzymes. Generally, c-di-GMP inhibits motility and promotes biofilm formation. While c-di-GMP and the enzymes that contribute to its metabolism have been well-studied in pathogens, considerably less focus has been placed on c-di-GMP regulation in beneficial symbionts. Vibrio fischeri is the sole beneficial symbiont of the Hawaiian bobtail squid (Euprymna scolopes) light organ, and the bacterium requires both motility and biofilm formation to efficiently colonize. C-di-GMP regulates swimming motility and cellulose exopolysaccharide production in V. fischeri. The genome encodes 50 DGCs and PDEs, and while a few of these proteins have been characterized, the majority have not undergone comprehensive characterization. In this study, we use protein overexpression to systematically characterize the functional potential of all 50 V. fischeri proteins. All 28 predicted DGCs and 14 predicted PDEs displayed at least one phenotype consistent with their predicted function, and a majority of each displayed multiple phenotypes. Finally, active site mutant analysis of proteins with the potential for both DGC and PDE activities revealed potential activities for these proteins. This work presents a systems-level functional analysis of a family of signaling proteins in a tractable animal symbiont and will inform future efforts to characterize the roles of individual proteins during lifestyle transitions.
Collapse
Affiliation(s)
- Ruth Y. Isenberg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
- Current address: Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN USA
| | - Chandler S. Holschbach
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
| | - Jing Gao
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Mark J. Mandel
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
4
|
Harkova LG, de Dios R, Rubio-Valle A, Pérez-Pulido AJ, McCarthy RR. Cyclic AMP is a global virulence regulator governing inter and intrabacterial signalling in Acinetobacter baumannii. PLoS Pathog 2024; 20:e1012529. [PMID: 39241032 PMCID: PMC11410210 DOI: 10.1371/journal.ppat.1012529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/18/2024] [Accepted: 08/22/2024] [Indexed: 09/08/2024] Open
Abstract
Acinetobacter baumannii is an opportunistic nosocomial pathogen with high morbidity and mortality rates. Current treatment options for this pathogen are limited due to its increasing resistance to last-resort antibiotics. Despite A. baumannii's leading position in the World Health Organisations priority pathogens list, little is known about its virulence regulation. Through a high-throughput screening approach to identify novel biofilm regulators, we identified a previously uncharacterised predicted adenylate cyclase (AC), CavA, as a central regulator of this phenotype. cAMP is a crucial mediator of various aspects of bacterial physiology in other species but information about its role in A. baumannii is limited. We confirm that CavA AC is functional and synthesizes cAMP in A. baumannii. Using dRNA-seq, we verify that CavA is a negative biofilm formation regulator affecting Csu pili and exopolysaccharide production. We demonstrate for the first time that in A. baumannii, cAMP is atop of a hierarchical signalling cascade controlling inter- and intrabacterial signalling by modulating quorum sensing and cyclic di-GMP systems, ultimately governing virulence in vivo and adaptive antibiotic resistance. In contrast to the well-established paradigm in other bacteria where cAMP and cyclic di-GMP levels are inversely regulated, we uncover that the levels of these second messengers are directly proportional in A. baumannii. Overall, this study uncovers the central role of CavA and cAMP in the pathogenic success of A. baumannii and highlights this signalling cascade as a high potential target for novel therapeutic development.
Collapse
Affiliation(s)
- Lyuboslava G Harkova
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Rubén de Dios
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Alejandro Rubio-Valle
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-JA), Universidad Pablo de Olavide, Sevilla, Spain
| | - Antonio J Pérez-Pulido
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-JA), Universidad Pablo de Olavide, Sevilla, Spain
| | - Ronan R McCarthy
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
5
|
Cordery C, Craddock J, Malý M, Basavaraja K, Webb JS, Walsh MA, Tews I. Control of phosphodiesterase activity in the regulator of biofilm dispersal RbdA from Pseudomonas aeruginosa. RSC Chem Biol 2024:d4cb00113c. [PMID: 39247681 PMCID: PMC11372557 DOI: 10.1039/d4cb00113c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
The switch between planktonic and biofilm lifestyle correlates with intracellular concentration of the second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). While bacteria possess cyclase and phosphodiesterase enzymes to catalyse formation or hydrolysis of c-di-GMP, both enzymatic domains often occur in a single protein. It is tacitly assumed that one of the two enzymatic activities is dominant, and that additional domains and protein interactions enable responses to environmental conditions and control activity. Here we report the structure of the phosphodiesterase domain of the membrane protein RbdA (regulator of biofilm dispersal) in a dimeric, activated state and show that phosphodiesterase activity is controlled by the linked cyclase. The phosphodiesterase region around helices α5/α6 forms the dimer interface, providing a rationale for activation, as this region was seen in contact with the cyclase domain in an auto-inhibited structure previously described. Kinetic analysis supports this model, as the activity of the phosphodiesterase alone is lower when linked to the cyclase. Analysis of a computed model of the RbdA periplasmatic domain reveals an all-helical architecture with a large binding pocket that could accommodate putative ligands. Unravelling the regulatory circuits in multi-domain phosphodiesterases like RbdA is important to develop strategies to manipulate or disperse bacterial biofilms.
Collapse
Affiliation(s)
- Charlotte Cordery
- Biological Sciences, Institute for Life Sciences, University of Southampton Southampton SO17 1BJ UK
- National Biofilms Innovation Centre, University of Southampton Southampton SO17 1BJ UK
- Diamond Light Source, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0FA UK
| | - Jack Craddock
- Biological Sciences, Institute for Life Sciences, University of Southampton Southampton SO17 1BJ UK
- National Biofilms Innovation Centre, University of Southampton Southampton SO17 1BJ UK
| | - Martin Malý
- Biological Sciences, Institute for Life Sciences, University of Southampton Southampton SO17 1BJ UK
| | - Kieran Basavaraja
- Biological Sciences, Institute for Life Sciences, University of Southampton Southampton SO17 1BJ UK
- National Biofilms Innovation Centre, University of Southampton Southampton SO17 1BJ UK
- Diamond Light Source, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0FA UK
| | - Jeremy S Webb
- Biological Sciences, Institute for Life Sciences, University of Southampton Southampton SO17 1BJ UK
- National Biofilms Innovation Centre, University of Southampton Southampton SO17 1BJ UK
| | - Martin A Walsh
- Diamond Light Source, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0FA UK
| | - Ivo Tews
- Biological Sciences, Institute for Life Sciences, University of Southampton Southampton SO17 1BJ UK
- National Biofilms Innovation Centre, University of Southampton Southampton SO17 1BJ UK
| |
Collapse
|
6
|
Greenwich JL, Eagan JL, Feirer N, Boswinkle K, Minasov G, Shuvalova L, Inniss NL, Raghavaiah J, Ghosh AK, Satchell KJF, Allen KD, Fuqua C. Control of biofilm formation by an Agrobacterium tumefaciens pterin-binding periplasmic protein conserved among diverse Proteobacteria. Proc Natl Acad Sci U S A 2024; 121:e2319903121. [PMID: 38870058 PMCID: PMC11194511 DOI: 10.1073/pnas.2319903121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Biofilm formation and surface attachment in multiple Alphaproteobacteria is driven by unipolar polysaccharide (UPP) adhesins. The pathogen Agrobacterium tumefaciens produces a UPP adhesin, which is regulated by the intracellular second messenger cyclic diguanylate monophosphate (c-di-GMP). Prior studies revealed that DcpA, a diguanylate cyclase-phosphodiesterase, is crucial in control of UPP production and surface attachment. DcpA is regulated by PruR, a protein with distant similarity to enzymatic domains known to coordinate the molybdopterin cofactor (MoCo). Pterins are bicyclic nitrogen-rich compounds, several of which are produced via a nonessential branch of the folate biosynthesis pathway, distinct from MoCo. The pterin-binding protein PruR controls DcpA activity, fostering c-di-GMP breakdown and dampening its synthesis. Pterins are excreted, and we report here that PruR associates with these metabolites in the periplasm, promoting interaction with the DcpA periplasmic domain. The pteridine reductase PruA, which reduces specific dihydro-pterin molecules to their tetrahydro forms, imparts control over DcpA activity through PruR. Tetrahydromonapterin preferentially associates with PruR relative to other related pterins, and the PruR-DcpA interaction is decreased in a pruA mutant. PruR and DcpA are encoded in an operon with wide conservation among diverse Proteobacteria including mammalian pathogens. Crystal structures reveal that PruR and several orthologs adopt a conserved fold, with a pterin-specific binding cleft that coordinates the bicyclic pterin ring. These findings define a pterin-responsive regulatory mechanism that controls biofilm formation and related c-di-GMP-dependent phenotypes in A. tumefaciens and potentially acts more widely in multiple proteobacterial lineages.
Collapse
Affiliation(s)
| | - Justin L. Eagan
- Department of Biology, Indiana University, Bloomington, IN47405
| | - Nathan Feirer
- Department of Biology, Indiana University, Bloomington, IN47405
| | - Kaleb Boswinkle
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA24061
| | - George Minasov
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Ludmilla Shuvalova
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Nicole L. Inniss
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Jakka Raghavaiah
- Department of Chemistry, Purdue University, West Lafayette, IN47907
- Department of Medicinal Chemistry, Purdue University, West Lafayette, IN47907
| | - Arun K. Ghosh
- Department of Chemistry, Purdue University, West Lafayette, IN47907
- Department of Medicinal Chemistry, Purdue University, West Lafayette, IN47907
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Kylie D. Allen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA24061
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN47405
| |
Collapse
|
7
|
Debandi M, Carrica M, Hentschker C, Baroli C, Völker U, Rodriguez ME, Surmann K, Lamberti Y. Role of the Putative Histidine Kinase BP1092 in Bordetella pertussis Virulence Regulation and Intracellular Survival. J Proteome Res 2024; 23:1666-1678. [PMID: 38644792 DOI: 10.1021/acs.jproteome.3c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Bordetella pertussis persists inside host cells, and virulence factors are crucial for intracellular adaptation. The regulation of B. pertussis virulence factor transcription primarily occurs through the modulation of the two-component system (TCS) known as BvgAS. However, additional regulatory systems have emerged as potential contributors to virulence regulation. Here, we investigate the impact of BP1092, a putative TCS histidine kinase that shows increased levels after bacterial internalization by macrophages, on B. pertussis proteome adaptation under nonmodulating (Bvg+) and modulating (Bvg-) conditions. Using mass spectrometry, we compare B. pertussis wild-type (wt), a BP1092-deficient mutant (ΔBP1092), and a ΔBP1092 trans-complemented strain under both conditions. We find an altered abundance of 10 proteins, including five virulence factors. Specifically, under nonmodulating conditions, the mutant strain showed decreased levels of FhaB, FhaS, and Cya compared to the wt. Conversely, under modulating conditions, the mutant strain exhibited reduced levels of BvgA and BvgS compared to those of the wt. Functional assays further revealed that the deletion of BP1092 gene impaired B. pertussis ability to survive within human macrophage THP-1 cells. Taken together, our findings allow us to propose BP1092 as a novel player involved in the intricate regulation of B. pertussis virulence factors and thus in adaptation to the intracellular environment. The data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD041940.
Collapse
Affiliation(s)
- Martina Debandi
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Mariela Carrica
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Christian Hentschker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17475, Germany
| | - Carlos Baroli
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17475, Germany
| | - Maria Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17475, Germany
| | - Yanina Lamberti
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| |
Collapse
|
8
|
Eilers K, Hoong Yam JK, Liu X, Goh YF, To KN, Paracuellos P, Morton R, Brizuela J, Hui Yong AM, Givskov M, Freibert SA, Bange G, Rice SA, Steinchen W, Filloux A. The dual GGDEF/EAL domain enzyme PA0285 is a Pseudomonas species housekeeping phosphodiesterase regulating early attachment and biofilm architecture. J Biol Chem 2024; 300:105659. [PMID: 38237678 PMCID: PMC10874727 DOI: 10.1016/j.jbc.2024.105659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 02/15/2024] Open
Abstract
Bacterial lifestyles depend on conditions encountered during colonization. The transition between planktonic and biofilm growth is dependent on the intracellular second messenger c-di-GMP. High c-di-GMP levels driven by diguanylate cyclases (DGCs) activity favor biofilm formation, while low levels were maintained by phosphodiesterases (PDE) encourage planktonic lifestyle. The activity of these enzymes can be modulated by stimuli-sensing domains such as Per-ARNT-Sim (PAS). In Pseudomonas aeruginosa, more than 40 PDE/DGC are involved in c-di-GMP homeostasis, including 16 dual proteins possessing both canonical DGC and PDE motifs, that is, GGDEF and EAL, respectively. It was reported that deletion of the EAL/GGDEF dual enzyme PA0285, one of five c-di-GMP-related enzymes conserved across all Pseudomonas species, impacts biofilms. PA0285 is anchored in the membrane and carries two PAS domains. Here, we confirm that its role is conserved in various P. aeruginosa strains and in Pseudomonas putida. Deletion of PA0285 impacts the early stage of colonization, and RNA-seq analysis suggests that expression of cupA fimbrial genes is involved. We demonstrate that the C-terminal portion of PA0285 encompassing the GGDEF and EAL domains binds GTP and c-di-GMP, respectively, but only exhibits PDE activity in vitro. However, both GGDEF and EAL domains are important for PA0285 PDE activity in vivo. Complementation of the PA0285 mutant strain with a copy of the gene encoding the C-terminal GGDEF/EAL portion in trans was not as effective as complementation with the full-length gene. This suggests the N-terminal transmembrane and PAS domains influence the PDE activity in vivo, through modulating the protein conformation.
Collapse
Affiliation(s)
- Kira Eilers
- CBRB Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Joey Kuok Hoong Yam
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Xianghui Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Yu Fen Goh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Ka-Ning To
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Patricia Paracuellos
- CBRB Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Richard Morton
- CBRB Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jaime Brizuela
- CBRB Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Adeline Mei Hui Yong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Michael Givskov
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Sven-Andreas Freibert
- Philipps University Marburg, Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Gert Bange
- Philipps University Marburg, Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Scott A Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; Microbiomes for One Systems Health and Agriculture and Food, CSIRO, Westmead, New South Wales, Australia
| | - Wieland Steinchen
- Philipps University Marburg, Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| | - Alain Filloux
- CBRB Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, United Kingdom; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
9
|
Nie H, Nie L, Xiao Y, Song M, Zhou T, He J, Chen W, Huang Q. The phosphodiesterase DibA interacts with the c-di-GMP receptor LapD and specifically regulates biofilm in Pseudomonas putida. Mol Microbiol 2024; 121:1-17. [PMID: 37927230 DOI: 10.1111/mmi.15189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/30/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
The ubiquitous bacterial second messenger c-di-GMP is synthesized by diguanylate cyclase and degraded by c-di-GMP-specific phosphodiesterase. The genome of Pseudomonas putida contains dozens of genes encoding diguanylate cyclase/phosphodiesterase, but the phenotypical-genotypical correlation and functional mechanism of these genes are largely unknown. Herein, we characterize the function and mechanism of a P. putida phosphodiesterase named DibA. DibA consists of a PAS domain, a GGDEF domain, and an EAL domain. The EAL domain is active and confers DibA phosphodiesterase activity. The GGDEF domain is inactive, but it promotes the phosphodiesterase activity of the EAL domain via binding GTP. Regarding phenotypic regulation, DibA modulates the cell surface adhesin LapA level in a c-di-GMP receptor LapD-dependent manner, thereby inhibiting biofilm formation. Moreover, DibA interacts and colocalizes with LapD in the cell membrane, and the interaction between DibA and LapD promotes the PDE activity of DibA. Besides, except for interacting with DibA and LapD itself, LapD is found to interact with 11 different potential diguanylate cyclases/phosphodiesterases in P. putida, including the conserved phosphodiesterase BifA. Overall, our findings demonstrate the functional mechanism by which DibA regulates biofilm formation and expand the understanding of the LapD-mediated c-di-GMP signaling network in P. putida.
Collapse
Affiliation(s)
- Hailing Nie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Liang Nie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yujie Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Miaomiao Song
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Tiantian Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jinzhi He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Greenwich JL, Eagan JL, Feirer N, Boswinkle K, Minasov G, Shuvalova L, Inniss NL, Raghavaiah J, Ghosh AK, Satchell KJ, Allen KD, Fuqua C. Control of Biofilm Formation by an Agrobacterium tumefaciens Pterin-Binding Periplasmic Protein Conserved Among Pathogenic Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.18.567607. [PMID: 38014264 PMCID: PMC10680838 DOI: 10.1101/2023.11.18.567607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Biofilm formation and surface attachment in multiple Alphaproteobacteria is driven by unipolar polysaccharide (UPP) adhesins. The pathogen Agrobacterium tumefaciens produces a UPP adhesin, which is regulated by the intracellular second messenger cyclic diguanylate monophosphate (cdGMP). Prior studies revealed that DcpA, a diguanylate cyclase-phosphodiesterase (DGC-PDE), is crucial in control of UPP production and surface attachment. DcpA is regulated by PruR, a protein with distant similarity to enzymatic domains known to coordinate the molybdopterin cofactor (MoCo). Pterins are bicyclic nitrogen-rich compounds, several of which are formed via a non-essential branch of the folate biosynthesis pathway, distinct from MoCo. The pterin-binding protein PruR controls DcpA activity, fostering cdGMP breakdown and dampening its synthesis. Pterins are excreted and we report here that PruR associates with these metabolites in the periplasm, promoting interaction with the DcpA periplasmic domain. The pteridine reductase PruA, which reduces specific dihydro-pterin molecules to their tetrahydro forms, imparts control over DcpA activity through PruR. Tetrahydromonapterin preferentially associates with PruR relative to other related pterins, and the PruR-DcpA interaction is decreased in a pruA mutant. PruR and DcpA are encoded in an operon that is conserved amongst multiple Proteobacteria including mammalian pathogens. Crystal structures reveal that PruR and several orthologs adopt a conserved fold, with a pterin-specific binding cleft that coordinates the bicyclic pterin ring. These findings define a new pterin-responsive regulatory mechanism that controls biofilm formation and related cdGMP-dependent phenotypes in A. tumefaciens and is found in multiple additional bacterial pathogens.
Collapse
Affiliation(s)
| | - Justin L. Eagan
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
| | - Nathan Feirer
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
| | - Kaleb Boswinkle
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - George Minasov
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Ludmilla Shuvalova
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Nicole L. Inniss
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Jakka Raghavaiah
- Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, IN 47907 USA
| | - Arun K. Ghosh
- Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, IN 47907 USA
| | - Karla J.F. Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Kylie D. Allen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
| |
Collapse
|
11
|
Husťáková B, Trundová M, Adámková K, Kovaľ T, Dušková J, Dohnálek J. A highly active S1-P1 nuclease from the opportunistic pathogen Stenotrophomonas maltophilia cleaves c-di-GMP. FEBS Lett 2023; 597:2103-2118. [PMID: 37309731 DOI: 10.1002/1873-3468.14683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
A number of multidrug-resistant bacterial pathogens code for S1-P1 nucleases with a poorly understood role. We have characterized a recombinant form of S1-P1 nuclease from Stenotrophomonas maltophilia, an opportunistic pathogen. S. maltophilia nuclease 1 (SmNuc1) acts predominantly as an RNase and is active in a wide range of temperatures and pH. It retains a notable level of activity towards RNA and ssDNA at pH 5 and 9 and about 10% of activity towards RNA at 10 °C. SmNuc1 with very high catalytic rates outperforms S1 nuclease from Aspergillus oryzae and other similar nucleases on all types of substrates. SmNuc1 degrades second messenger c-di-GMP, which has potential implications for its role in the pathogenicity of S. maltophilia.
Collapse
Affiliation(s)
- Blanka Husťáková
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Biocev, Vestec, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Mária Trundová
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Biocev, Vestec, Czech Republic
| | - Kristýna Adámková
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Biocev, Vestec, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Tomáš Kovaľ
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Biocev, Vestec, Czech Republic
| | - Jarmila Dušková
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Biocev, Vestec, Czech Republic
| | - Jan Dohnálek
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Biocev, Vestec, Czech Republic
| |
Collapse
|
12
|
Sánchez-Jiménez A, Llamas MA, Marcos-Torres FJ. Transcriptional Regulators Controlling Virulence in Pseudomonas aeruginosa. Int J Mol Sci 2023; 24:11895. [PMID: 37569271 PMCID: PMC10418997 DOI: 10.3390/ijms241511895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Pseudomonas aeruginosa is a pathogen capable of colonizing virtually every human tissue. The host colonization competence and versatility of this pathogen are powered by a wide array of virulence factors necessary in different steps of the infection process. This includes factors involved in bacterial motility and attachment, biofilm formation, the production and secretion of extracellular invasive enzymes and exotoxins, the production of toxic secondary metabolites, and the acquisition of iron. Expression of these virulence factors during infection is tightly regulated, which allows their production only when they are needed. This process optimizes host colonization and virulence. In this work, we review the intricate network of transcriptional regulators that control the expression of virulence factors in P. aeruginosa, including one- and two-component systems and σ factors. Because inhibition of virulence holds promise as a target for new antimicrobials, blocking the regulators that trigger the production of virulence determinants in P. aeruginosa is a promising strategy to fight this clinically relevant pathogen.
Collapse
Affiliation(s)
| | - María A. Llamas
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain;
| | - Francisco Javier Marcos-Torres
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain;
| |
Collapse
|
13
|
Park S, Dingemans J, Sauer K. Manganese Acts as an Environmental Inhibitor of Pseudomonas aeruginosa Biofilm Development by Inducing Dispersion and Modulating c-di-GMP and Exopolysaccharide Production via RbdA. J Bacteriol 2023; 205:e0000323. [PMID: 37199658 PMCID: PMC10294637 DOI: 10.1128/jb.00003-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa causes chronic infections that involve multicellular aggregates called biofilms. Biofilm formation is modulated by the host environment and the presence of cues and/or signals, likely affecting the pool of the bacterial second messenger cyclic diguanylate monophosphate (c-di-GMP). The manganese ion Mn2+ is a divalent metal cation that is essential for pathogenic bacterial survival and replication during the infection in a host organism. In this study, we investigated how Mn2+ alters P. aeruginosa biofilm formation via the regulation of c-di-GMP levels. Exposure to Mn2+ was found to temporally enhance attachment but impair subsequent biofilm development, apparent by reduced biofilm biomass accumulation and lack of microcolony formation due to the induction of dispersion. Moreover, exposure to Mn2+ coincided with reduced production of the exopolysaccharides Psl and Pel, decreased transcriptional abundance of pel and psl, and decreased levels of c-di-GMP. To determine whether the effect of Mn2+ was linked to the activation of phosphodiesterases (PDEs), we screened several PDE mutants for Mn2+-dependent phenotypes (attachment and polysaccharide production) as well as PDE activity. The screen revealed that the PDE RbdA is activated by Mn2+ and is responsible for Mn2+-dependent attachment, inhibition of Psl production, and dispersion. Taken together, our findings suggest Mn2+ is an environmental inhibitor of P. aeruginosa biofilm development that acts through the PDE RbdA to modulate c-di-GMP levels, thereby impeding polysaccharide production and biofilm formation but enhancing dispersion. IMPORTANCE While diverse environmental conditions such as the availability of metal ions have been shown to affect biofilm development, little is known about the mechanism. Here, we demonstrate that Mn2+ affects Pseudomonas aeruginosa biofilm development by stimulating phosphodiesterase RbdA activity to reduce the signaling molecule c-di-GMP levels, thereby hindering polysaccharide production and biofilm formation but enhancing dispersion. Our findings demonstrate that Mn2+ acts as an environmental inhibitor of P. aeruginosa biofilms, further suggesting manganese to be a promising new antibiofilm factor.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Jozef Dingemans
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
14
|
A Library of Promoter- gfp Fusion Reporters for Studying Systematic Expression Pattern of Cyclic-di-GMP Metabolism-Related Genes in Pseudomonas aeruginosa. Appl Environ Microbiol 2023; 89:e0189122. [PMID: 36744921 PMCID: PMC9973039 DOI: 10.1128/aem.01891-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is an environmental microorganism and is a model organism for biofilm research. Cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that plays critical roles in biofilm formation. P. aeruginosa contains approximately 40 genes that encode enzymes that participate in the metabolism of c-di-GMP (biosynthesis or degradation), yet it lacks tools that aid investigation of the systematic expression pattern of those genes. In this study, we constructed a promoter-gfp fusion reporter library that consists of 41 reporter plasmids. Each plasmid contains a promoter of corresponding c-di-GMP metabolism-related (CMR) genes from P. aeruginosa reference strain PAO1; thus, each promoter-gfp fusion reporter can be used to detect the promoter activity as well as the transcription of corresponding gene. The promoter activity was tested in P. aeruginosa and Escherichia coli. Among the 41 genes, the promoters of 26 genes showed activity in both P. aeruginosa and E. coli. The library was applied to determine the influence of different temperatures, growth media, and subinhibitory concentrations of antibiotics on the transcriptional profile of the 41 CMR genes in P. aeruginosa. The results showed that different growth conditions did affect the transcription of different genes, while the promoter activity of a few genes was kept at the same level under several different growth conditions. In summary, we provide a promoter-gfp fusion reporter library for systematic monitoring or study of the regulation of CMR genes in P. aeruginosa. In addition, the functional promoters can also be used as a biobrick for synthetic biology studies. IMPORTANCE The opportunistic pathogen P. aeruginosa can cause acute and chronic infections in humans, and it is one of the main pathogens in nosocomial infections. Biofilm formation is one of the most important causes for P. aeruginosa persistence in hosts and evasion of immune and antibiotic attacks. c-di-GMP is a critical second messenger to control biofilm formation. In P. aeruginosa reference strain PAO1, 41 genes are predicted to participate in the making and breaking of this dinucleotide. A major missing piece of information in this field is the systematic expression profile of those genes in response to changing environment. Toward this goal, we constructed a promoter-gfp transcriptional fusion reporter library that consists of 41 reporter plasmids, each of which contains a promoter of corresponding c-di-GMP metabolism-related genes in P. aeruginosa. This library provides a helpful tool to understand the complex regulation network related to c-di-GMP and to discover potential therapeutic targets.
Collapse
|
15
|
Baek J, Yoon H. Cyclic di-GMP Modulates a Metabolic Flux for Carbon Utilization in Salmonella enterica Serovar Typhimurium. Microbiol Spectr 2023; 11:e0368522. [PMID: 36744926 PMCID: PMC10100716 DOI: 10.1128/spectrum.03685-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/16/2023] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is an enteric pathogen spreading via the fecal-oral route. Transmission across humans, animals, and environmental reservoirs has forced this pathogen to rapidly respond to changing environments and adapt to new environmental conditions. Cyclic di-GMP (c-di-GMP) is a second messenger that controls the transition between planktonic and sessile lifestyles, in response to environmental cues. Our study reveals the potential of c-di-GMP to alter the carbon metabolic pathways in S. Typhimurium. Cyclic di-GMP overproduction decreased the transcription of genes that encode components of three phosphoenolpyruvate (PEP):carbohydrate phosphotransferase systems (PTSs) allocated for the uptake of glucose (PTSGlc), mannose (PTSMan), and fructose (PTSFru). PTS gene downregulation by c-di-GMP was alleviated in the absence of the three regulators, SgrS, Mlc, and Cra, suggesting their intermediary roles between c-di-GMP and PTS regulation. Moreover, Cra was found to bind to the promoters of ptsG, manX, and fruB. In contrast, c-di-GMP increased the transcription of genes important for gluconeogenesis. However, this effect of c-di-GMP in gluconeogenesis disappeared in the absence of Cra, indicating that Cra is a pivotal regulator that coordinates the carbon flux between PTS-mediated sugar uptake and gluconeogenesis, in response to cellular c-di-GMP concentrations. Since gluconeogenesis supplies precursor sugars required for extracellular polysaccharide production, Salmonella may exploit c-di-GMP as a dual-purpose signal that rewires carbon flux from glycolysis to gluconeogenesis and promotes biofilm formation using the end products of gluconeogenesis. This study sheds light on a new role for c-di-GMP in modulating carbon flux, to coordinate bacterial behavior in response to hostile environments. IMPORTANCE Cyclic di-GMP is a central signaling molecule that determines the transition between motile and nonmotile lifestyles in many bacteria. It stimulates biofilm formation at high concentrations but leads to biofilm dispersal and planktonic status at low concentrations. This study provides new insights into the role of c-di-GMP in programming carbon metabolic pathways. An increase in c-di-GMP downregulated the expression of PTS genes important for sugar uptake, while simultaneously upregulating the transcription of genes important for bacterial gluconeogenesis. The directly opposing effects of c-di-GMP on sugar metabolism were mediated by Cra (catabolite repressor/activator), a dual transcriptional regulator that modulates the direction of carbon flow. Salmonella may potentially harness c-di-GMP to promote its survival and fitness in hostile environments via the coordination of carbon metabolic pathways and the induction of biofilm formation.
Collapse
Affiliation(s)
- Jiwon Baek
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
16
|
Chávez-Jacobo VM, Becerra-Rivera VA, Guerrero G, Dunn MF. The Sinorhizobium meliloti NspS-MbaA system affects biofilm formation, exopolysaccharide production and motility in response to specific polyamines. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001293. [PMID: 36748569 PMCID: PMC9993111 DOI: 10.1099/mic.0.001293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We previously showed that specific polyamines (PAs) present in the extracellular environment markedly affect extracellular polysaccharide (EPS) production, biofilm formation and motility in Sinorhizobium meliloti Rm8530. We hypothesized that extracellular PA signals were sensed and transduced by the NspS and MbaA proteins, respectively, which are homologs of the PA-sensing, c-di-GMP modulating NspS-MbaA proteins described in Vibrio cholerae. Here we show that the decrease in biofilm formation and EPS production in the quorum-sensing (QS)-deficient S. meliloti wild-type strain 1021 in cultures containing putrescine or spermine did not occur in a 1021 nspS mutant (1021 nspS). The transcriptional expression of nspS in strain 1021 was significantly increased in cultures containing either of these polyamines, but not by exogenous cadaverine, 1,3-diaminopropane (DAP), spermidine (Spd) or norspermidine (NSpd). Cell aggregation in liquid cultures did not differ markedly between strain 1021 and 1021 nspS in the presence or absence of PAs. The S. meliloti QS-proficient Rm8530 wild-type and nspS mutant (Rm8530 nspS) produced similar levels of biofilm under control conditions and 3.2- and 2.2-fold more biofilm, respectively, in cultures with NSpd, but these changes did not correlate with EPS production. Cells of Rm8530 nspS aggregated from two- to several-fold more than the wild-type in cultures without PAs or in those containing Spm. NSpd, Spd and DAP differently affected swimming and swarming motility in strains 1021 and Rm8530 and their respective nspS mutants. nspS transcription in strain Rm8530 was greatly reduced by exogenous Spm. Bioinformatic analysis revealed similar secondary structures and functional domains in the MbaA proteins of S. meliloti and V. cholerae, while their NspS proteins differed in some residues implicated in polyamine recognition in the latter species. NspS-MbaA homologs occur in a small subset of soil and aquatic bacterial species that commonly interact with eukaryotes. We speculate that the S. meliloti NspS-MbaA system modulates biofilm formation, EPS production and motility in response to environmental or host plant-produced PAs.
Collapse
Affiliation(s)
- Víctor M Chávez-Jacobo
- Programa en Genómica Funcional de Procariotes, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Víctor A Becerra-Rivera
- Programa en Genómica Funcional de Procariotes, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Gabriela Guerrero
- Unidad de Análisis Bioinformáticos, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Michael F Dunn
- Programa en Genómica Funcional de Procariotes, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| |
Collapse
|
17
|
The GGDEF-EAL protein CdgB from Azospirillum baldaniorum Sp245, is a dual function enzyme with potential polar localization. PLoS One 2022; 17:e0278036. [PMID: 36417483 PMCID: PMC9683572 DOI: 10.1371/journal.pone.0278036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
Azospirillum baldaniorum Sp245, a plant growth-promoting rhizobacterium, can form biofilms through a process controlled by the second messenger cyclic diguanylate monophosphate (c-di-GMP). A. baldaniorum has a variety of proteins potentially involved in controlling the turnover of c-di-GMP many of which are coupled to sensory domains that could be involved in establishing a mutualistic relationship with the host. Here, we present in silico analysis and experimental characterization of the function of CdgB (AZOBR_p410089), a predicted MHYT-PAS-GGDEF-EAL multidomain protein from A. baldaniorum Sp245. When overproduced, CdgB behaves predominantly as a c-di-GMP phosphodiesterase (PDE) in A. baldaniorum Sp245. It inhibits biofilm formation and extracellular polymeric substances production and promotes swimming motility. However, a CdgB variant with a degenerate PDE domain behaves as diguanylate cyclase (DGC). This strongly suggest that CdgB is capable of dual activity. Variants with alterations in the DGC domain and the MHYT domain negatively affects extracellular polymeric substances production and induction of swimming motility. Surprisingly, we observed that overproduction of CdgB results in increased c-di-GMP accumulation in the heterologous host Escherichia coli, suggesting under certain conditions, the WT CdgB variant can behave predominantly as a DGC. Furthermore, we also demonstrated that CdgB is anchored to the cell membrane and localizes potentially to the cell poles. This localization is dependent on the presence of the MHYT domain. In summary, our results suggest that CdgB can provide versatility to signaling modules that control motile and sessile lifestyles in response to key environmental signals in A. baldaniorum.
Collapse
|
18
|
Badhwar P, Khan SH, Taneja B. Three-dimensional structure of a mycobacterial oligoribonuclease reveals a unique C-terminal tail that stabilizes the homodimer. J Biol Chem 2022; 298:102595. [PMID: 36244449 PMCID: PMC9676404 DOI: 10.1016/j.jbc.2022.102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Oligoribonucleases (Orns) are highly conserved DnaQ-fold 3'-5' exoribonucleases that have been found to carry out the last step of cyclic-di-GMP (c-di-GMP) degradation, that is, pGpG to GMP in several bacteria. Removal of pGpG is critical for c-di-GMP homeostasis, as excess uncleaved pGpG can have feedback inhibition on phosphodiesterases, thereby perturbing cellular signaling pathways regulated by c-di-GMP. Perturbation of c-di-GMP levels not only affects survival under hypoxic, reductive stress, or nutrient-limiting conditions but also affects pathogenicity in infection models as well as antibiotic response in mycobacteria. Here, we have determined the crystal structure of MSMEG_4724, the Orn of Mycobacterium smegmatis (Ms_orn) to 1.87 Å resolution to investigate the function of its extended C-terminal tail that is unique among bacterial Orns. Ms_orn is a homodimer with the canonical RNase-H fold of exoribonucleases and conserved catalytic residues in the active site. Further examination of the substrate-binding site with a modeled pGpG emphasized the role of a phosphate cap and "3'OH cap" in constricting a 2-mer substrate in the active site. The unique C-terminal tail of Ms_orn aids dimerization by forming a handshake-like flap over the second protomer of the dimer. Our thermal and denaturant-induced unfolding experiments suggest that it helps in higher stability of Ms_orn as compared with Escherichia coli Orn or a C-terminal deletion mutant. We also show that the C-terminal tail is required for modulating response to stress agents in vivo. These results will help in further evaluating the role of signaling and regulation by c-di-GMP in mycobacteria.
Collapse
Affiliation(s)
- Pooja Badhwar
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sabab Hasan Khan
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Bhupesh Taneja
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,For correspondence: Bhupesh Taneja
| |
Collapse
|
19
|
Elongation factor P modulates Acinetobacter baumannii physiology and virulence as a cyclic dimeric guanosine monophosphate effector. Proc Natl Acad Sci U S A 2022; 119:e2209838119. [PMID: 36191190 PMCID: PMC9564936 DOI: 10.1073/pnas.2209838119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclic diguanosine monophosphate (c-di-GMP) is widely used by bacteria to control biological functions in response to diverse signals or cues. A previous study showed that potential c-di-GMP metabolic enzymes play a role in the regulation of biofilm formation and motility in Acinetobacter baumannii. However, it was unclear whether and how A. baumannii cells use c-di-GMP signaling to modulate biological functions. Here, we report that c-di-GMP is an important intracellular signal in the modulation of biofilm formation, motility, and virulence in A. baumannii. The intracellular level of c-di-GMP is principally controlled by the diguanylate cyclases (DGCs) A1S_1695, A1S_2506, and A1S_3296 and the phosphodiesterase (PDE) A1S_1254. Intriguingly, we revealed that A1S_2419 (an elongation factor P [EF-P]), is a novel c-di-GMP effector in A. baumannii. Response to a c-di-GMP signal boosted A1S_2419 activity to rescue ribosomes from stalling during synthesis of proteins containing consecutive prolines and thus regulate A. baumannii physiology and pathogenesis. Our study presents a unique and widely conserved effector that controls bacterial physiology and virulence by sensing the second messenger c-di-GMP.
Collapse
|
20
|
Lichtenberg M, Kragh KN, Fritz B, Kirkegaard JB, Tolker-Nielsen T, Bjarnsholt T. Cyclic-di-GMP signaling controls metabolic activity in Pseudomonas aeruginosa. Cell Rep 2022; 41:111515. [DOI: 10.1016/j.celrep.2022.111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/13/2022] [Accepted: 09/26/2022] [Indexed: 11/03/2022] Open
|
21
|
Sun S, Wang R, Pandelia ME. Vibrio cholerae V-cGAP3 Is an HD-GYP Phosphodiesterase with a Metal Tunable Substrate Selectivity. Biochemistry 2022; 61:1801-1809. [PMID: 35901269 DOI: 10.1021/acs.biochem.2c00269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyclic dinucleotides (CDNs) are signaling molecules involved in the immune response and virulence factor production. CDN cellular levels are fine-tuned by metal-dependent phosphodiesterases (PDEs), among which HD-GYPs make up a subclass of the larger HD-domain protein superfamily. The human pathogen Vibrio cholerae (Vc) encodes nine HD-GYPs, one of which is V-cGAP3 (or VCA0931). V-cGAP3 acts on c-di-GMP and 3'3'c-GAMP, and this activity is related to bacterial infectivity. However, the extant chemical makeup of the V-cGAP3 cofactor and steady state parameters have not been established. Employing electron paramagnetic resonance and Mössbauer spectroscopy in tandem with elemental analyses and activity assays, we demonstrate that V-cGAP3 coordinates different dimetal cofactors with variable activities. MnII and FeII afford c-di-GMP hydrolysis with the highest observed rates, while c-GAMP hydrolysis is selectively dependent on Mn. V-cGAP3 has a single functional domain, and this simple architecture allows us to examine the roles of characteristic conserved residues in catalysis. Substitution of the adjacent to the active site GYP residue triad and the specifically conserved in HD-domain PDEs fifth histidine ligand (i.e., H371 in V-cGAP3) with alanines severely compromises CDN hydrolysis but only modestly affects cofactor incorporation. Our data are consistent with V-cGAP3 being the major regulator of 3'3'c-GAMP hydrolysis in Vc and delineate the importance of specific residues in tuning activity in HD-GYPs in general. We propose that HD-GYPs exhibit diversity in their metallocofactors and substrates, which may serve to increase their functional potential in regulatory pathways or allow for PDE activity upon adaptation of the parent organism to diverse environmental niches.
Collapse
Affiliation(s)
- Sining Sun
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Richard Wang
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Maria-Eirini Pandelia
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
22
|
Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 2022; 7:199. [PMID: 35752612 PMCID: PMC9233671 DOI: 10.1038/s41392-022-01056-1] [Citation(s) in RCA: 416] [Impact Index Per Article: 138.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative opportunistic pathogen that infects patients with cystic fibrosis, burn wounds, immunodeficiency, chronic obstructive pulmonary disorder (COPD), cancer, and severe infection requiring ventilation, such as COVID-19. P. aeruginosa is also a widely-used model bacterium for all biological areas. In addition to continued, intense efforts in understanding bacterial pathogenesis of P. aeruginosa including virulence factors (LPS, quorum sensing, two-component systems, 6 type secretion systems, outer membrane vesicles (OMVs), CRISPR-Cas and their regulation), rapid progress has been made in further studying host-pathogen interaction, particularly host immune networks involving autophagy, inflammasome, non-coding RNAs, cGAS, etc. Furthermore, numerous technologic advances, such as bioinformatics, metabolomics, scRNA-seq, nanoparticles, drug screening, and phage therapy, have been used to improve our understanding of P. aeruginosa pathogenesis and host defense. Nevertheless, much remains to be uncovered about interactions between P. aeruginosa and host immune responses, including mechanisms of drug resistance by known or unannotated bacterial virulence factors as well as mammalian cell signaling pathways. The widespread use of antibiotics and the slow development of effective antimicrobials present daunting challenges and necessitate new theoretical and practical platforms to screen and develop mechanism-tested novel drugs to treat intractable infections, especially those caused by multi-drug resistance strains. Benefited from has advancing in research tools and technology, dissecting this pathogen's feature has entered into molecular and mechanistic details as well as dynamic and holistic views. Herein, we comprehensively review the progress and discuss the current status of P. aeruginosa biophysical traits, behaviors, virulence factors, invasive regulators, and host defense patterns against its infection, which point out new directions for future investigation and add to the design of novel and/or alternative therapeutics to combat this clinically significant pathogen.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanmin Zhou
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, 430071, P.R. China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haihua Liang
- College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Min Wu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| |
Collapse
|
23
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
24
|
Chen Y, Lv M, Liang Z, Liu Z, Zhou J, Zhang L. Cyclic di-GMP modulates sessile-motile phenotypes and virulence in Dickeya oryzae via two PilZ domain receptors. MOLECULAR PLANT PATHOLOGY 2022; 23:870-884. [PMID: 35254732 PMCID: PMC9104268 DOI: 10.1111/mpp.13200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 05/03/2023]
Abstract
Dickeya oryzae is a bacterial pathogen causing the severe rice stem rot disease in China and other rice-growing countries. We showed recently that the universal bacterial second messenger c-di-GMP plays an important role in modulation of bacterial motility and pathogenicity, but the mechanism of regulation remains unknown. In this study, bioinformatics analysis of the D. oryzae EC1 genome led to the identification of two proteins, YcgR and BcsA, both of which contain a conserved c-di-GMP receptor domain, known as the PilZ-domain. By deleting all the genes encoding c-di-GMP-degrading enzymes in D. oryzae EC1, the resultant mutant 7ΔPDE with high c-di-GMP levels became nonmotile, formed hyperbiofilm, and lost the ability to colonize and invade rice seeds. These phenotypes were partially reversed by deletion of ycgR in the mutant 7ΔPDE, whereas deletion of bcsA only reversed the hyperbiofilm phenotype of mutant 7ΔPDE. Significantly, double deletion of ycgR and bcsA in mutant 7ΔPDE rescued its motility, biofilm formation, and virulence to levels of wild-type EC1. In vitro biochemical experiments and in vivo phenotypic assays further validated that YcgR and BcsA proteins are the receptors for c-di-GMP, which together play a critical role in regulating the c-di-GMP-associated functionality. The findings from this study fill a gap in our understanding of how c-di-GMP modulates bacterial motility and biofilm formation, and provide useful clues for further elucidation of sophisticated virulence regulatory mechanisms in this important plant pathogen.
Collapse
Affiliation(s)
- Yufan Chen
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| | - Mingfa Lv
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| | - Zhibin Liang
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| | - Zhiqing Liu
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| | - Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| | - Lian‐Hui Zhang
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
25
|
Cutruzzolà F, Paiardini A, Scribani Rossi C, Spizzichino S, Paone A, Giardina G, Rinaldo S. A conserved scaffold with heterogeneous metal ion binding site: the multifaceted example of HD-GYP proteins. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Ducret V, Perron K, Valentini M. Role of Two-Component System Networks in Pseudomonas aeruginosa Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:371-395. [PMID: 36258080 DOI: 10.1007/978-3-031-08491-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-component systems (TCS) are the largest family of signaling systems in the bacterial kingdom. They enable bacteria to cope with a wide range of environmental conditions via the sensing of stimuli and the transduction of the signal into an appropriate cellular adaptation response. Pseudomonas aeruginosa possesses one of the richest arrays of TCSs in bacteria and they have been the subject of intense investigation for more than 20 years. Most of the P. aeruginosa TCSs characterized to date affect its pathogenesis, via the regulation of virulence factors expression, modulation of the synthesis of antibiotic/antimicrobial resistance mechanisms, and/or via linking virulence to energy metabolism. Here, we give an overview of the current knowledge on P. aeruginosa TCSs, citing key examples for each of the above-mentioned regulatory actions. We then conclude by mentioning few small molecule inhibitors of P. aeruginosa TCSs that have shown an antimicrobial action in vitro.
Collapse
Affiliation(s)
- Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Martina Valentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
27
|
Reboul A, Carlier E, Stubbe FX, Barbieux E, Demars A, Ong PTA, Gerodez A, Muraille E, De Bolle X. PdeA is required for the rod shape morphology of Brucella abortus. Mol Microbiol 2021; 116:1449-1463. [PMID: 34662460 DOI: 10.1111/mmi.14833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/28/2022]
Abstract
Cyclic-di-GMP plays crucial role in the cell cycle regulation of the α-Proteobacterium Caulobacter crescentus. Here we investigated its role in the α-Proteobacterium Brucella abortus, a zoonotic intracellular pathogen. Surprisingly, deletion of all predicted cyclic-di-GMP synthesizing or degrading enzymes did not drastically impair the growth of B. abortus, nor its ability to grow inside cell lines. As other Rhizobiales, B. abortus displays unipolar growth from the new cell pole generated by cell division. We found that the phosphodiesterase PdeA, the ortholog of the essential polar growth factor RgsP of the Rhizobiale Sinorhizobium meliloti, is required for rod shape integrity but is not essential for B. abortus growth. Indeed, the radius of the pole is increased by 31 ± 1.7% in a ΔpdeA mutant, generating a coccoid morphology. A mutation in the cyclic-di-GMP phosphodiesterase catalytic site of PdeA does not generate the coccoid morphology and the ΔpdeA mutant kept the ability to recruit markers of new and old poles. However, the presence of PdeA is required in an intra-nasal mouse model of infection. In conclusion, we propose that PdeA contributes to bacterial morphology and virulence in B. abortus, but it is not crucial for polarity and asymmetric growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Eric Muraille
- URBM, Narilis, University of Namur, Namur, Belgium.,Laboratoire de Parasitologie, Université Libre de Bruxelles and ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | | |
Collapse
|
28
|
Shibata K, Nakasone Y, Terazima M. Enzymatic activity of the blue light-regulated phosphodiesterase BlrP1 from Klebsiella pneumoniae shows a nonlinear dependence on light intensity. FEBS Lett 2021; 595:1473-1479. [PMID: 33713344 DOI: 10.1002/1873-3468.14073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/09/2022]
Abstract
The blue light-regulated phosphodiesterase BlrP1 from Klebsiella pneumoniae hydrolyzes cyclic dimeric guanosine monophosphate (GMP) in a blue light-dependent manner. It contains a photosensing BLUF domain and a functional EAL domain. Previously, it was reported that conformational changes in the dimer upon light illumination occurred only when both protomers of the dimer were excited. Based on this observation, it was proposed that BlrP1 might be a nonlinear light intensity sensor. To test this, here, the correlation between the turnover number of the hydrolysis reaction (kcat ) and the fraction of the excited protein (fred ) was measured by simultaneously monitoring the reaction rate and fred . Our results show that kcat is proportional to fred 2 . Thus, BlrP1 works as a nonlinear light intensity sensor to sense a strong light environment.
Collapse
Affiliation(s)
- Kosei Shibata
- Department of Chemistry, Graduate School of Science, Kyoto University, Japan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Japan
| |
Collapse
|
29
|
Karanja CW, Yeboah KS, Sintim HO. Identification of a Mycobacterium tuberculosis Cyclic Dinucleotide Phosphodiesterase Inhibitor. ACS Infect Dis 2021; 7:309-317. [PMID: 33492938 DOI: 10.1021/acsinfecdis.0c00444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Immune cells sense bacteria-derived c-di-GMP and c-di-AMP as well as host-derived cGAMP, which is synthesized by cGAS upon binding to the pathogen's DNA, to mount an immunological response (cytokine production) via the STING-TBK1 pathway. Successful pathogens, such as Mycobacterium tuberculosis and group B streptococcus, harbor phosphodiesterases (PDEs) that can cleave bacterial c-di-AMP as well as host-derived cGAMP to blunt the host's response to infection. Selective inhibitors of bacterial cyclic dinucleotide (CDN) PDEs are needed as tool compounds to study the role(s) of CDN PDEs during infection and they could also become bona fide antivirulence compounds, but there is a paucity of such compounds. Using a high-throughput assay, we identified six inhibitors of MTB CDN PDE (CdnP). The most potent inhibitor, C82 with an IC50 of ∼18 μM, did not inhibit the enzymatic activities of three other bacterial CDN PDEs (Yybt, RocR, and GBS-CdnP), a viral CDN PDE (poxin) or mammalian ENPP1.
Collapse
Affiliation(s)
- Caroline W. Karanja
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Kofi S. Yeboah
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Herman O. Sintim
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
- Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| |
Collapse
|
30
|
Schulze A, Mitterer F, Pombo JP, Schild S. Biofilms by bacterial human pathogens: Clinical relevance - development, composition and regulation - therapeutical strategies. MICROBIAL CELL (GRAZ, AUSTRIA) 2021; 8:28-56. [PMID: 33553418 PMCID: PMC7841849 DOI: 10.15698/mic2021.02.741] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
Notably, bacterial biofilm formation is increasingly recognized as a passive virulence factor facilitating many infectious disease processes. In this review we will focus on bacterial biofilms formed by human pathogens and highlight their relevance for diverse diseases. Along biofilm composition and regulation emphasis is laid on the intensively studied biofilms of Vibrio cholerae, Pseudomonas aeruginosa and Staphylococcus spp., which are commonly used as biofilm model organisms and therefore contribute to our general understanding of bacterial biofilm (patho-)physiology. Finally, therapeutical intervention strategies targeting biofilms will be discussed.
Collapse
Affiliation(s)
- Adina Schulze
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- A.S. and F.M. contributed equally to this work
| | - Fabian Mitterer
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- A.S. and F.M. contributed equally to this work
| | - Joao P. Pombo
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed Graz, Austria
- Field of Excellence Biohealth – University of Graz, Graz, Austria
| |
Collapse
|
31
|
Nuzzo D, Makitrynskyy R, Tsypik O, Bechthold A. Identification and Characterization of Four c-di-GMP-Metabolizing Enzymes from Streptomyces ghanaensis ATCC14672 Involved in the Regulation of Morphogenesis and Moenomycin A Biosynthesis. Microorganisms 2021; 9:microorganisms9020284. [PMID: 33573171 PMCID: PMC7911125 DOI: 10.3390/microorganisms9020284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Diguanylate cyclases (DGCs) and phosphodiesterases (PDEs) are essential enzymes deputed to maintain the intracellular homeostasis of the second messenger cyclic dimeric (3'→5') GMP (c-di-GMP). Recently, c-di-GMP has emerged as a crucial molecule for the streptomycetes life cycle, governing both morphogenesis and secondary metabolite production. Indeed, in Streptomyces ghanaensis ATCC14672 c-di-GMP was shown to be involved in the regulatory cascade of the peptidoglycan glycosytransferases inhibitor moenomycin A (MmA) biosynthesis. Here, we report the role of four c-di-GMP-metabolizing enzymes on MmA biosynthesis as well as morphological progression in S. ghanaensis. Functional characterization revealed that RmdAgh and CdgAgh are two active PDEs, while CdgEgh is a DGC. In vivo, overexpression of rmdAgh and cdgAgh led to precocious sporulation, whereas overexpression of cdgEgh and cdgDgh (encoding a predicted DGC) caused an arrest of morphological development. Furthermore, we demonstrated that individual deletion of rmdAgh, cdgAgh, and cdgDgh enhances MmA accumulation, whereas deletion of cdgEgh has no impact on antibiotic production. Conversely, an individual deletion of each studied gene does not affect morphogenesis. Altogether, our results show that manipulation of c-di-GMP-metabolizing enzymes represent a useful approach to improving MmA production titers in S. ghanaensis.
Collapse
|
32
|
Expression and function of the cdgD gene, encoding a CHASE-PAS-DGC-EAL domain protein, in Azospirillum brasilense. Sci Rep 2021; 11:520. [PMID: 33436847 PMCID: PMC7804937 DOI: 10.1038/s41598-020-80125-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
The plant growth-promoting bacterium Azospirillum brasilense contains several genes encoding proteins involved in the biosynthesis and degradation of the second messenger cyclic-di-GMP, which may control key bacterial functions, such as biofilm formation and motility. Here, we analysed the function and expression of the cdgD gene, encoding a multidomain protein that includes GGDEF-EAL domains and CHASE and PAS domains. An insertional cdgD gene mutant was constructed, and analysis of biofilm and extracellular polymeric substance production, as well as the motility phenotype indicated that cdgD encoded a functional diguanylate protein. These results were correlated with a reduced overall cellular concentration of cyclic-di-GMP in the mutant over 48 h compared with that observed in the wild-type strain, which was recovered in the complemented strain. In addition, cdgD gene expression was measured in cells growing under planktonic or biofilm conditions, and differential expression was observed when KNO3 or NH4Cl was added to the minimal medium as a nitrogen source. The transcriptional fusion of the cdgD promoter with the gene encoding the autofluorescent mCherry protein indicated that the cdgD gene was expressed both under abiotic conditions and in association with wheat roots. Reduced colonization of wheat roots was observed for the mutant compared with the wild-type strain grown in the same soil conditions. The Azospirillum-plant association begins with the motility of the bacterium towards the plant rhizosphere followed by the adsorption and adherence of these bacteria to plant roots. Therefore, it is important to study the genes that contribute to this initial interaction of the bacterium with its host plant.
Collapse
|
33
|
Abstract
Dickeya zeae is the etiological agent of bacterial foot rot disease, which can cause massive economic losses in banana and rice plantations. Genome sequence analysis showed that D. zeae strain EC1 contains multiple c-di-GMP turnover genes, but their roles and regulatory mechanisms in bacterial physiology and virulence remain vague. By generating consecutive in-frame deletion mutants of the genes encoding c-di-GMP biosynthesis and degradation, respectively, we analyzed the individual and collective impacts of these c-di-GMP metabolic genes on the c-di-GMP global pool, bacterial physiology, and virulence. The significance of our study is in identifying the mechanism of c-di-GMP signaling in strain EC1 more clearly, which expands the c-di-GMP regulating patterns in Gram-negative species. The methods and experimental designs in this research will provide a valuable reference for the exploration of the complex c-di-GMP regulation mechanisms in other bacteria. Dickeya zeae is an important and aggressive bacterial phytopathogen that can cause substantial economic losses in banana and rice plantations. We previously showed that c-di-GMP signaling proteins (cyclases/phosphodiesterases) in D. zeae strain EC1 play a significant role in the bacterial sessile-to-motile transition. To determine whether there is any synergistic effect among these c-di-GMP signaling proteins, we prepared a series of mutant strains by generating consecutive in-frame deletions of the genes encoding diguanylate cyclases (which make c-di-GMP) and phosphodiesterases (which break down c-di-GMP), respectively, using EC1 as a parental strain. The results showed that the complete deletion of all the putative diguanylate cyclases resulted in significantly increased bacterial motility and abrogated biofilm formation but did not appear to affect pathogenicity and virulence factor production. In contrast, the deletion of all the c-di-GMP phosphodiesterase genes disabled motility and prevented the invasion of EC1 into rice seeds. By measuring the c-di-GMP concentrations and swimming motility of all the mutants, we propose that c-di-GMP controlled swimming behavior through a multitiered program in a c-di-GMP concentration-dependent manner, which could be described as an L-shaped regression curve. These features are quite different from those that have been shown for other bacterial species such as Salmonella and Caulobacter crescentus. Further analysis identified three c-di-GMP signaling proteins, i.e., PDE10355, DGC14945, and PDE14950, that play dominant roles in influencing the global c-di-GMP pool of strain EC1. The findings from this study highlight the complexity and plasticity of c-di-GMP regulatory circuits in different bacterial species.
Collapse
|
34
|
Liu Y, Lee C, Li F, Trček J, Bähre H, Guo RT, Chen CC, Chernobrovkin A, Zubarev R, Römling U. A Cyclic di-GMP Network Is Present in Gram-Positive Streptococcus and Gram-Negative Proteus Species. ACS Infect Dis 2020; 6:2672-2687. [PMID: 32786278 PMCID: PMC7551669 DOI: 10.1021/acsinfecdis.0c00314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Indexed: 01/16/2023]
Abstract
The ubiquitous cyclic di-GMP (c-di-GMP) network is highly redundant with numerous GGDEF domain proteins as diguanylate cyclases and EAL domain proteins as c-di-GMP specific phosphodiesterases comprising those domains as two of the most abundant bacterial domain superfamilies. One hallmark of the c-di-GMP network is its exalted plasticity as c-di-GMP turnover proteins can rapidly vanish from species within a genus and possess an above average transmissibility. To address the evolutionary forces of c-di-GMP turnover protein maintenance, conservation, and diversity, we investigated a Gram-positive and a Gram-negative species, which preserved only one single clearly identifiable GGDEF domain protein. Species of the family Morganellaceae of the order Enterobacterales exceptionally show disappearance of the c-di-GMP signaling network, but Proteus spp. still retained one diguanylate cyclase. As another example, in species of the bovis, pyogenes, and salivarius subgroups as well as Streptococcus suis and Streptococcus henryi of the genus Streptococcus, one candidate diguanylate cyclase was frequently identified. We demonstrate that both proteins encompass PAS (Per-ARNT-Sim)-GGDEF domains, possess diguanylate cyclase catalytic activity, and are suggested to signal via a PilZ receptor domain at the C-terminus of type 2 glycosyltransferase constituting BcsA cellulose synthases and a cellulose synthase-like protein CelA, respectively. Preservation of the ancient link between production of cellulose(-like) exopolysaccharides and c-di-GMP signaling indicates that this functionality is even of high ecological importance upon maintenance of the last remnants of a c-di-GMP signaling network in some of today's free-living bacteria.
Collapse
Affiliation(s)
- Ying Liu
- Department
of Microbiology, Tumor and Cell Biology and Department of Medical Biochemistry
and Biophysics, Biomedicum, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Changhan Lee
- Department
of Microbiology, Tumor and Cell Biology and Department of Medical Biochemistry
and Biophysics, Biomedicum, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Fengyang Li
- Department
of Microbiology, Tumor and Cell Biology and Department of Medical Biochemistry
and Biophysics, Biomedicum, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Janja Trček
- Faculty
of Natural Sciences and Mathematics, Department of Biology, University
of Maribor, 2000 Maribor, Slovenia
| | - Heike Bähre
- Research
Core Unit Metabolomics, Hannover Medical
School, D-30625 Hannover, Germany
| | - Rey-Ting Guo
- State
Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative
Innovation Center for Green Transformation of Bio-Resources, Hubei
Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P.R. China
| | - Chun-Chi Chen
- State
Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative
Innovation Center for Green Transformation of Bio-Resources, Hubei
Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P.R. China
| | - Alexey Chernobrovkin
- Department
of Microbiology, Tumor and Cell Biology and Department of Medical Biochemistry
and Biophysics, Biomedicum, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Roman Zubarev
- Department
of Microbiology, Tumor and Cell Biology and Department of Medical Biochemistry
and Biophysics, Biomedicum, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Department
of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| | - Ute Römling
- Department
of Microbiology, Tumor and Cell Biology and Department of Medical Biochemistry
and Biophysics, Biomedicum, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
35
|
Wille J, Teirlinck E, Sass A, Van Nieuwerburgh F, Kaever V, Braeckmans K, Coenye T. Does the mode of dispersion determine the properties of dispersed Pseudomonas aeruginosa biofilm cells? Int J Antimicrob Agents 2020; 56:106194. [PMID: 33039591 DOI: 10.1016/j.ijantimicag.2020.106194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/30/2020] [Accepted: 09/26/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Actively dispersed Pseudomonas aeruginosa biofilm cells differ from planktonic cells, as they have a lower intracellular cyclic di-guanosine monophosphate (c-di-GMP) concentration and show increased virulence. In addition, the nature of the dispersion trigger has been shown to influence the antibiotic susceptibility of dispersed cells. However, properties of passively-dispersed cells, in which the dispersion trigger directly releases cells from the biofilm, have not been described. The present study determined c-di-GMP concentration, virulence in Galleria mellonella and antibiotic susceptibility of P. aeruginosa cells dispersed from biofilm using various triggers. MATERIALS AND METHODS P. aeruginosa biofilms grown in flow-cells were dispersed actively [exposure to the nitric oxide (NO)-donor sodium nitroprusside (SNP) or to glutamate] or passively [by stopping and restarting the flow or exposure to laser-induced vapor nanobubbles (VNB)], and properties of these dispersed cells were compared to those of spontaneously-dispersed cells. RESULTS The passively dispersed P. aeruginosa biofilm cells had significantly lower intracellular c-di-GMP levels than actively-dispersed cells. However, this did not result in differences in virulence in Galleria mellonella, nor in tobramycin and ciprofloxacin susceptibility. Passively-dispersed cells were more susceptible to colistin than actively- and spontaneously-dispersed cells. In cells dispersed by interrupting the flow, increased susceptibility to colistin was immediate, whereas this was delayed for VNB-dispersed cells. CONCLUSION Passively-dispersed P. aeruginosa biofilm cells have a decreased intracellular c-di-GMP concentration and an increased colistin susceptibility compared to actively-dispersed cells. No differences in virulence or susceptibility to tobramycin or colistin were observed.
Collapse
Affiliation(s)
- Jasper Wille
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Eline Teirlinck
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium; Centre for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | | | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium; Centre for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
36
|
Richter AM, Possling A, Malysheva N, Yousef KP, Herbst S, von Kleist M, Hengge R. Local c-di-GMP Signaling in the Control of Synthesis of the E. coli Biofilm Exopolysaccharide pEtN-Cellulose. J Mol Biol 2020; 432:4576-4595. [PMID: 32534064 PMCID: PMC7397504 DOI: 10.1016/j.jmb.2020.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/20/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
In many bacteria, the biofilm-promoting second messenger c-di-GMP is produced and degraded by multiple diguanylate cyclases (DGC) and phosphodiesterases (PDE), respectively. High target specificity of some of these enzymes has led to theoretical concepts of "local" c-di-GMP signaling. In Escherichia coli K-12, which has 12 DGCs and 13 PDEs, a single DGC, DgcC, is specifically required for the biosynthesis of the biofilm exopolysaccharide pEtN-cellulose without affecting the cellular c-di-GMP pool, but the mechanistic basis of this target specificity has remained obscure. DGC activity of membrane-associated DgcC, which is demonstrated in vitro in nanodiscs, is shown to be necessary and sufficient to specifically activate cellulose biosynthesis in vivo. DgcC and a particular PDE, PdeK (encoded right next to the cellulose operon), directly interact with cellulose synthase subunit BcsB and with each other, thus establishing physical proximity between cellulose synthase and a local source and sink of c-di-GMP. This arrangement provides a localized, yet open source of c-di-GMP right next to cellulose synthase subunit BcsA, which needs allosteric activation by c-di-GMP. Through mathematical modeling and simulation, we demonstrate that BcsA binding from the low cytosolic c-di-GMP pool in E. coli is negligible, whereas a single c-di-GMP molecule that is produced and released in direct proximity to cellulose synthase increases the probability of c-di-GMP binding to BcsA several hundred-fold. This local c-di-GMP signaling could provide a blueprint for target-specific second messenger signaling also in other bacteria where multiple second messenger producing and degrading enzymes exist.
Collapse
Affiliation(s)
- Anja M Richter
- Institute of Biology/Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Department of Materials and the Environment, Bundesanstalt für Materialforschung und -Prüfung, 12205 Berlin, Germany
| | - Alexandra Possling
- Institute of Biology/Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Nadezhda Malysheva
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany; MF1 Bioinformatics, Robert-Koch-Institut, 13353 Berlin, Germany
| | - Kaveh P Yousef
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany
| | - Susanne Herbst
- Institute of Biology/Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Max von Kleist
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany; MF1 Bioinformatics, Robert-Koch-Institut, 13353 Berlin, Germany
| | - Regine Hengge
- Institute of Biology/Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| |
Collapse
|
37
|
Cyclic di-GMP cyclase SSFG_02181 from Streptomyces ghanaensis ATCC14672 regulates antibiotic biosynthesis and morphological differentiation in streptomycetes. Sci Rep 2020; 10:12021. [PMID: 32694623 PMCID: PMC7374567 DOI: 10.1038/s41598-020-68856-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Streptomycetes are filamentous bacteria famous for their ability to produce a vast majority of clinically important secondary metabolites. Both complex morphogenesis and onset of antibiotic biosynthesis are tightly linked in streptomycetes and require series of specific signals for initiation. Cyclic dimeric 3′–5′ guanosine monophosphate, c-di-GMP, one of the well-known bacterial second messengers, has been recently shown to govern morphogenesis and natural product synthesis in Streptomyces by altering the activity of the pleiotropic regulator BldD. Here we report a role of the heme-binding diguanylate cyclase SSFG_02181 from Streptomyces ghanaensis in the regulation of the peptidoglycan glycosyltransferase inhibitor moenomycin A biosynthesis. Deletion of ssfg_02181 reduced the moenomycin A accumulation and led to a precocious sporulation, while the overexpression of the gene blocked sporogenesis and remarkably improved antibiotic titer. We also demonstrate that BldD negatively controls the expression of ssfg_02181, which stems from direct binding of BldD to the ssfg_02181 promoter. Notably, the heterologous expression of ssfg_02181 in model Streptomyces spp. arrested morphological progression at aerial mycelium level and strongly altered the production of secondary metabolites. Altogether, our work underscores the significance of c-di-GMP-mediated signaling in natural product biosynthesis and pointed to extensively applicable approach to increase antibiotic production levels in streptomycetes.
Collapse
|
38
|
Sun S, Pandelia ME. HD-[HD-GYP] Phosphodiesterases: Activities and Evolutionary Diversification within the HD-GYP Family. Biochemistry 2020; 59:2340-2350. [PMID: 32496757 DOI: 10.1021/acs.biochem.0c00257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclic dinucleotides are signaling molecules that modulate many processes, including immune response and virulence factor production. Their cellular levels in bacteria are fine-tuned by metal-dependent phosphodiesterases, namely, the EAL and HD-GYP proteins, with HD-GYPs belonging to the larger HD domain superfamily. In this study, we first focus on the catalytic properties and the range of metal ions and substrates of the HD-[HD-GYP] subfamily, consisting of two HD domains. We identified SO3491 as a homologue of VCA0681 and the second example of an HD-[HD-GYP]. Both proteins hydrolyze c-di-GMP and 3'3'c-GAMP and coordinate various metal ions, but only Fe and to a lesser extent Co support hydrolysis. The proteins are active only in the diferrous form and not in the one-electron more oxidized FeIIFeIII state. Although the C-terminal HD-GYP domain is essential for activity, the role of the N-terminal HD domain remains unknown. We show that the N-terminal site is important for protein stability, influences the individual apparent kcat and KM (but not kcat/KM), and cannot bind c-di-GMP, thus precluding its involvement in cyclic dinucleotide sensing. We proceeded to perform phylogenetic analyses to examine the distribution and functional relationships of the HD-[HD-GYP]s to the rest of the HD-GYPs. The phylogeny provides a correlation map that draws a link between the evolutionary and functional diversification of HD-GYPs, serving as a template for predicting the chemical nature of the metallocofactor, level of activity, and reaction outcome.
Collapse
Affiliation(s)
- Sining Sun
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Maria-Eirini Pandelia
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
39
|
Feng Q, Ahator SD, Zhou T, Liu Z, Lin Q, Liu Y, Huang J, Zhou J, Zhang LH. Regulation of Exopolysaccharide Production by ProE, a Cyclic-Di-GMP Phosphodiesterase in Pseudomonas aeruginosa PAO1. Front Microbiol 2020; 11:1226. [PMID: 32582123 PMCID: PMC7290235 DOI: 10.3389/fmicb.2020.01226] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/14/2020] [Indexed: 11/13/2022] Open
Abstract
The ubiquitous second messenger c-di-GMP is involved in regulation of multiple biological functions including the important extracellular matrix exopolysaccharides (EPS). But how c-di-GMP metabolic proteins influence EPS and their enzymatic properties are not fully understood. Here we showed that deletion of proE, which encodes a protein with GGDEF-EAL hybrid domains, significantly increased the transcriptional expression of the genes encoding EPS production in Pseudomonas aeruginosa PAO1 and changed the bacterial colony morphology. Our data showed that ProE is a very active phosphodiesterase (PDE), with a high enzyme activity in degradation of c-di-GMP. Interestingly, the optimal activity of ProE was found in the presence of Co2+, unlike other PDEs that commonly rely on Mg2+ or Mn2+ for best performance. Furthermore, we identified three widely conserved novel residues that are critical for the function of ProE through site-directed mutagenesis. Subsequent study showed that ProE, together with other three key PDEs, i.e., RbdA, BifA, and DipA regulate the EPS production in P. aeruginosa PAO1. Moreover, by using the GFP-fusion approach, we observed that these four EPS associated-PDEs showed a polar localization pattern in general. Taken together, our data unveil the molecular mechanisms of ProE in regulation of EPS production, and provide a new insight on its enzymatic properties in degradation of c-di-GMP.
Collapse
Affiliation(s)
- Qishun Feng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Stephen Dela Ahator
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Tian Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhiqing Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Qiqi Lin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Yang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jiahui Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
40
|
Aline Dias da P, Nathalia Marins de A, Gabriel Guarany de A, Robson Francisco de S, Cristiane Rodrigues G. The World of Cyclic Dinucleotides in Bacterial Behavior. Molecules 2020; 25:molecules25102462. [PMID: 32466317 PMCID: PMC7288161 DOI: 10.3390/molecules25102462] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
The regulation of multiple bacterial phenotypes was found to depend on different cyclic dinucleotides (CDNs) that constitute intracellular signaling second messenger systems. Most notably, c-di-GMP, along with proteins related to its synthesis, sensing, and degradation, was identified as playing a central role in the switching from biofilm to planktonic modes of growth. Recently, this research topic has been under expansion, with the discoveries of new CDNs, novel classes of CDN receptors, and the numerous functions regulated by these molecules. In this review, we comprehensively describe the three main bacterial enzymes involved in the synthesis of c-di-GMP, c-di-AMP, and cGAMP focusing on description of their three-dimensional structures and their structural similarities with other protein families, as well as the essential residues for catalysis. The diversity of CDN receptors is described in detail along with the residues important for the interaction with the ligand. Interestingly, genomic data strongly suggest that there is a tendency for bacterial cells to use both c-di-AMP and c-di-GMP signaling networks simultaneously, raising the question of whether there is crosstalk between different signaling systems. In summary, the large amount of sequence and structural data available allows a broad view of the complexity and the importance of these CDNs in the regulation of different bacterial behaviors. Nevertheless, how cells coordinate the different CDN signaling networks to ensure adaptation to changing environmental conditions is still open for much further exploration.
Collapse
|
41
|
Li Y, Ludford PT, Fin A, Rovira AR, Tor Y. Enzymatic Syntheses and Applications of Fluorescent Cyclic Dinucleotides. Chemistry 2020; 26:6076-6084. [PMID: 32157755 PMCID: PMC7220823 DOI: 10.1002/chem.202001194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 11/07/2022]
Abstract
Bacterial cyclic dinucleotides (CDNs) play important roles in regulating biofilm formation, motility and virulence. In eukaryotic cells, theses bacterial CDNs are recognized as pathogen-associated molecular patterns (PAMPs) and trigger an innate immune response. We report the photophysical analyses of a novel group of enzymatically synthesized emissive CDN analogues comprised of two families of isomorphic ribonucleotides. The highly favorable photophysical features of the CDN analogues, when compared to their non-emissive natural counterparts, are used to monitor in real time the dinucleotide cyclase-mediated synthesis and phosphodiesterase (PDE)-mediated hydrolysis of homodimeric and mixed CDNs, providing effective means to probe the activities of two classes of bacterial enzymes and insight into their biomolecular recognition and catalytic features.
Collapse
Affiliation(s)
- Yao Li
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Paul T Ludford
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Andrea Fin
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Alexander R Rovira
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| |
Collapse
|
42
|
Cai YM, Hutchin A, Craddock J, Walsh MA, Webb JS, Tews I. Differential impact on motility and biofilm dispersal of closely related phosphodiesterases in Pseudomonas aeruginosa. Sci Rep 2020; 10:6232. [PMID: 32277108 PMCID: PMC7148300 DOI: 10.1038/s41598-020-63008-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/28/2020] [Indexed: 12/31/2022] Open
Abstract
In Pseudomonas aeruginosa, the transition between planktonic and biofilm lifestyles is modulated by the intracellular secondary messenger cyclic dimeric-GMP (c-di-GMP) in response to environmental conditions. Here, we used gene deletions to investigate how the environmental stimulus nitric oxide (NO) is linked to biofilm dispersal, focusing on biofilm dispersal phenotype from proteins containing putative c-di-GMP turnover and Per-Arnt-Sim (PAS) sensory domains. We document opposed physiological roles for the genes ΔrbdA and Δpa2072 that encode proteins with identical domain structure: while ΔrbdA showed elevated c-di-GMP levels, restricted motility and promoted biofilm formation, c-di-GMP levels were decreased in Δpa2072, and biofilm formation was inhibited, compared to wild type. A second pair of genes, ΔfimX and ΔdipA, were selected on the basis of predicted impaired c-di-GMP turnover function: ΔfimX showed increased, ΔdipA decreased NO induced biofilm dispersal, and the genes effected different types of motility, with reduced twitching for ΔfimX and reduced swimming for ΔdipA. For all four deletion mutants we find that NO-induced biomass reduction correlates with increased NO-driven swarming, underlining a significant role for this motility in biofilm dispersal. Hence P. aeruginosa is able to differentiate c-di-GMP output using structurally highly related proteins that can contain degenerate c-di-GMP turnover domains.
Collapse
Affiliation(s)
- Yu-Ming Cai
- National Biofilms Innovation Centre, University of Southampton, Southampton, SO17 1BJ, UK.,Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Andrew Hutchin
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.,Structure and Function of Biological Membranes Lab, Université Libre de Bruxelles, Boulevard du Triomphe, 1050, Bruxelles, Belgium
| | - Jack Craddock
- National Biofilms Innovation Centre, University of Southampton, Southampton, SO17 1BJ, UK.,Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Martin A Walsh
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.,Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0FA, UK
| | - Jeremy S Webb
- National Biofilms Innovation Centre, University of Southampton, Southampton, SO17 1BJ, UK.,Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ivo Tews
- National Biofilms Innovation Centre, University of Southampton, Southampton, SO17 1BJ, UK. .,Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
43
|
Chen M, Xu CY, Wang X, Ren CY, Ding J, Li L. Comparative genomics analysis of c-di-GMP metabolism and regulation in Microcystis aeruginosa. BMC Genomics 2020; 21:217. [PMID: 32151246 PMCID: PMC7063779 DOI: 10.1186/s12864-020-6591-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/19/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Cyanobacteria are of special concern because they proliferate in eutrophic water bodies worldwide and affect water quality. As an ancient photosynthetic microorganism, cyanobacteria can survive in ecologically diverse habitats because of their capacity to rapidly respond to environmental changes through a web of complex signaling networks, including using second messengers to regulate physiology or metabolism. A ubiquitous second messenger, bis-(3',5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP), has been found to regulate essential behaviors in a few cyanobacteria but not Microcystis, which are the most dominant species in cyanobacterial blooms. In this study, comparative genomics analysis was performed to explore the genomic basis of c-di-GMP signaling in Microcystis aeruginosa. RESULTS Proteins involved in c-di-GMP metabolism and regulation, such as diguanylate cyclases, phosphodiesterases, and PilZ-containing proteins, were encoded in M. aeruginosa genomes. However, the number of identified protein domains involved in c-di-GMP signaling was not proportional to the size of M. aeruginosa genomes (4.97 Mb in average). Pan-genome analysis showed that genes involved in c-di-GMP metabolism and regulation are conservative in M. aeruginosa strains. Phylogenetic analysis showed good congruence between the two types of phylogenetic trees based on 31 highly conserved protein-coding genes and sensor domain-coding genes. Propensity for gene loss analysis revealed that most of genes involved in c-di-GMP signaling are stable in M. aeruginosa strains. Moreover, bioinformatics and structure analysis of c-di-GMP signal-related GGDEF and EAL domains revealed that they all possess essential conserved amino acid residues that bind the substrate. In addition, it was also found that all selected M. aeruginosa genomes encode PilZ domain containing proteins. CONCLUSIONS Comparative genomics analysis of c-di-GMP metabolism and regulation in M. aeruginosa strains helped elucidating the genetic basis of c-di-GMP signaling pathways in M. aeruginosa. Knowledge of c-di-GMP metabolism and relevant signal regulatory processes in cyanobacteria can enhance our understanding of their adaptability to various environments and bloom-forming mechanism.
Collapse
Affiliation(s)
- Meng Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Chun-Yang Xu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Xu Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Chong-Yang Ren
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Jiao Ding
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Li Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
- Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, China
| |
Collapse
|
44
|
Nie H, Xiao Y, He J, Liu H, Nie L, Chen W, Huang Q. Phenotypic-genotypic analysis of GGDEF/EAL/HD-GYP domain-encoding genes in Pseudomonas putida. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:38-48. [PMID: 31691501 DOI: 10.1111/1758-2229.12808] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Cyclic diguanylate (c-di-GMP) is a broadly conserved bacterial signalling molecule that modulates diverse cellular processes, such as biofilm formation, colony morphology and swimming motility. The intracellular level of c-di-GMP is controlled by diguanylate cyclases (DGCs) with GGDEF domain and phosphodiesterases (PDEs) with either EAL or HD-GYP domain. Pseudomonas putida KT2440 has a large group of genes on its genome encoding proteins with GGDEF/EAL/HD-GYP domains. However, phenotypic-genotypic correlation and c-di-GMP metabolism of these genes were largely unknown. Herein, by systematically constructing deletion mutants/overexpression strains of the 42 predicted c-di-GMP metabolism-related genes and analysing the phenotypes, we preliminarily revealed the role of each gene in biofilm formation, colony morphology and swimming motility. Subsequent results from protein sequence alignments and cellular c-di-GMP assessment indicated that 25 out of the 42 genes were likely to encode DGCs, nine genes were predicted to encode PDEs, four genes encoded bifunctional enzymes and the other four genes encoded enzymatically inactive proteins. This study offers a basic understanding of the roles of these 42 genes and can serve as a toolkit for investigators to further elucidate the functions of these GGDEF and EAL/HD-GYP domain-containing proteins.
Collapse
Affiliation(s)
- Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinzhi He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huizhong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
45
|
Sun Y, Liu Y, Liu X, Dang X, Dong X, Xie Z. Azorhizobium caulinodans c-di-GMP phosphodiesterase Chp1 involved in motility, EPS production, and nodulation of the host plant. Appl Microbiol Biotechnol 2020; 104:2715-2729. [PMID: 32002604 DOI: 10.1007/s00253-020-10404-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022]
Abstract
Establishment of the rhizobia-legume symbiosis is usually accompanied by hydrogen peroxide (H2O2) production by the legume host at the site of infection, a process detrimental to rhizobia. In Azorhizobium caulinodans ORS571, deletion of chp1, a gene encoding c-di-GMP phosphodiesterase, led to increased resistance against H2O2 and to elevated nodulation efficiency on its legume host Sesbania rostrata. Three domains were identified in the Chp1: a PAS domain, a degenerate GGDEF domain, and an EAL domain. An in vitro enzymatic activity assay showed that the degenerate GGDEF domain of Chp1 did not have diguanylate cyclase activity. The phosphodiesterase activity of Chp1 was attributed to its EAL domain which could hydrolyse c-di-GMP into pGpG. The PAS domain functioned as a regulatory domain by sensing oxygen. Deletion of Chp1 resulted in increased intracellular c-di-GMP level, decreased motility, increased aggregation, and increased EPS (extracellular polysaccharide) production. H2O2-sensitivity assay showed that increased EPS production could provide ORS571 with resistance against H2O2. Thus, the elevated nodulation efficiency of the ∆chp1 mutant could be correlated with a protective role of EPS in the nodulation process. These data suggest that c-di-GMP may modulate the A. caulinodans-S. rostrata nodulation process by regulating the production of EPS which could protect rhizobia against H2O2.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, People's Republic of China
| | - Yanan Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaolin Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaoxiao Dang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaoyan Dong
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | - Zhihong Xie
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China.
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China.
| |
Collapse
|
46
|
Ren X, Ren S, Xu G, Dou W, Chou SH, Chen Y, Qian G. Knockout of Diguanylate Cyclase Genes in Lysobacter enzymogenes to Improve Production of Antifungal Factor and Increase Its Application in Seed Coating. Curr Microbiol 2020; 77:1006-1015. [PMID: 32002625 DOI: 10.1007/s00284-020-01902-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/22/2020] [Indexed: 10/25/2022]
Abstract
Heat-stable antifungal factor (HSAF) is a broad-spectrum antifungal antibiotic produced by the biological control agent, Lysobacter enzymogenes. In our earlier works, we have applied HSAF to effectively control wheat and pear fungal disease. However, a major bottleneck in its practical application is the low HSAF production level; therefore, boosting its production is essential for its wide application. In the past, we find that c-di-GMP, a universal bacterial second messenger, is inhibitory to HSAF production. In this work, we further identified eight active diguanylate cyclases (DGCs) responsible for c-di-GMP synthesis in Lysobacter enzymogenes via both bioinformatics and genetic analyses. We generated a strain lacking seven active DGC genes and found that this DGC-modified strain, OH11LC, produced a higher HSAF amount in a c-di-GMP concentration-dependent manner. Subsequently, by employing OH11LC as the host fermentation strain, we could even produce a much higher HSAF amount (> 200-fold). After improving the HSAF production, we further developed a technique of seed coating method with HSAF, which turned out to be effective in fighting against the maize seed-borne filamentous pathogen, Pythium gramineacola. Overall, via combining strain modification and fermentation optimization, we demonstrated a good example of translating fundamental knowledge of bacterial c-di-GMP signaling into biological control application in which we relieved the inhibitory effect of c-di-GMP on HSAF biosynthesis by deleting a bunch of potentially active L. enzymogenes DGC genes to improve HSAF yield and to expand its usage in antifungal seed coating.
Collapse
Affiliation(s)
- Xuexiang Ren
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Shuangshuang Ren
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Gaoge Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Wen Dou
- Nanjing Foreign Language School, Nanjing, 210008, People's Republic of China
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Yu Chen
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Guoliang Qian
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
47
|
Xiao Y, Liu H, He M, Nie L, Nie H, Chen W, Huang Q. A crosstalk between c-di-GMP and cAMP in regulating transcription of GcsA, a diguanylate cyclase involved in swimming motility in Pseudomonas putida. Environ Microbiol 2019; 22:142-157. [PMID: 31631503 DOI: 10.1111/1462-2920.14832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023]
Abstract
The ubiquitous bacterial second messenger c-di-GMP is synthesized by diguanylate cyclase (DGC) and degraded by phosphodiesterase (PDE). Pseudomonas putida has dozens of DGC/PDE-encoding genes in its genome, but the phenotypical-genotypical correlation and transcriptional regulation of these genes are largely unknown. Herein, we characterize function and transcriptional regulation of a P. putida c-di-GMP-metabolizing enzyme, GcsA. GcsA consists of two per-ARNT-sim (PAS) domains, followed by a canonical conserved central sequence pattern (GGDEF) domain and a truncated EAL domain. In vitro analysis confirmed the DGC activity of GcsA. The phenotypic observation revealed that GcsA inhibited swimming motility in an FlgZ-dependent manner. In terms of transcriptional regulation, gcsA was found to be cooperatively regulated by c-di-GMP and cAMP via their effectors, FleQ and Crp respectively. The transcription of gcsA was promoted by c-di-GMP and inhibited by cAMP. In vitro binding analysis revealed that FleQ indirectly regulated the transcription of gcsA, while Crp directly regulated the transcription of gcsA by binding to its promoter. Besides, an inverse relationship between the cellular c-di-GMP and cAMP levels in P. putida was confirmed. These findings provide basic knowledge regarding the function and transcriptional regulation of GcsA and demonstrate a crosstalk between c-di-GMP and cAMP in the regulation of the expression of GcsA in P. putida.
Collapse
Affiliation(s)
- Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huizhong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meina He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
48
|
Modular Diversity of the BLUF Proteins and Their Potential for the Development of Diverse Optogenetic Tools. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Organisms can respond to varying light conditions using a wide range of sensory photoreceptors. These photoreceptors can be standalone proteins or represent a module in multidomain proteins, where one or more modules sense light as an input signal which is converted into an output response via structural rearrangements in these receptors. The output signals are utilized downstream by effector proteins or multiprotein clusters to modulate their activity, which could further affect specific interactions, gene regulation or enzymatic catalysis. The blue-light using flavin (BLUF) photosensory module is an autonomous unit that is naturally distributed among functionally distinct proteins. In this study, we identified 34 BLUF photoreceptors of prokaryotic and eukaryotic origin from available bioinformatics sequence databases. Interestingly, our analysis shows diverse BLUF-effector arrangements with a functional association that was previously unknown or thought to be rare among the BLUF class of sensory proteins, such as endonucleases, tet repressor family (tetR), regulators of G-protein signaling, GAL4 transcription family and several other previously unidentified effectors, such as RhoGEF, Phosphatidyl-Ethanolamine Binding protein (PBP), ankyrin and leucine-rich repeats. Interaction studies and the indexing of BLUF domains further show the diversity of BLUF-effector combinations. These diverse modular architectures highlight how the organism’s behaviour, cellular processes, and distinct cellular outputs are regulated by integrating BLUF sensing modules in combination with a plethora of diverse signatures. Our analysis highlights the modular diversity of BLUF containing proteins and opens the possibility of creating a rational design of novel functional chimeras using a BLUF architecture with relevant cellular effectors. Thus, the BLUF domain could be a potential candidate for the development of powerful novel optogenetic tools for its application in modulating diverse cell signaling.
Collapse
|
49
|
Advances in research on signal molecules regulating biofilms. World J Microbiol Biotechnol 2019; 35:130. [PMID: 31385043 DOI: 10.1007/s11274-019-2706-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022]
Abstract
Bacterial biofilms (BFs) are membrane-like structures formed by the secretion of extracellular polymeric substances (EPS) by bacteria. The formation of BFs contributes to bacterial survival and drug resistance. When bacteria proliferate, they produce secondary metabolites that act as signaling molecules in bacterial communities that regulate intracellular and cell-to-cell communication. This communication can directly affect the physiological behavior of bacteria, including the production and emission of light (bioluminescence), the expression of virulence factors, the resistance to antibiotics, and the shift between planktonic and biofilm lifestyles. We review the major signaling molecules that regulate BF formation, with a focus on quorum-sensing systems (QS), cyclic diguanylate (c-di-GMP), two-component systems (TCS), and small RNA (sRNA). Understanding these processes will lead to new approaches for treating chronic diseases and preventing bacterial resistance.
Collapse
|
50
|
Xin L, Zeng Y, Sheng S, Chea RA, Liu Q, Li HY, Yang L, Xu L, Chiam KH, Liang ZX. Regulation of flagellar motor switching by c-di-GMP phosphodiesterases in Pseudomonas aeruginosa. J Biol Chem 2019; 294:13789-13799. [PMID: 31350333 DOI: 10.1074/jbc.ra119.009009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
The second messenger cyclic diguanylate (c-di-GMP) plays a prominent role in regulating flagellum-dependent motility in the single-flagellated pathogenic bacterium Pseudomonas aeruginosa The c-di-GMP-mediated signaling pathways and mechanisms that control flagellar output remain to be fully unveiled. Studying surface-tethered and free-swimming P. aeruginosa PAO1 cells, we found that the overexpression of an exogenous diguanylate cyclase (DGC) raises the global cellular c-di-GMP concentration and thereby inhibits flagellar motor switching and decreases motor speed, reducing swimming speed and reversal frequency, respectively. We noted that the inhibiting effect of c-di-GMP on flagellar motor switching, but not motor speed, is exerted through the c-di-GMP-binding adaptor protein MapZ and associated chemotactic pathways. Among the 22 putative c-di-GMP phosphodiesterases, we found that three of them (DipA, NbdA, and RbdA) can significantly inhibit flagellar motor switching and swimming directional reversal in a MapZ-dependent manner. These results disclose a network of c-di-GMP-signaling proteins that regulate chemotactic responses and flagellar motor switching in P. aeruginosa and establish MapZ as a key signaling hub that integrates inputs from different c-di-GMP-signaling pathways to control flagellar output and bacterial motility. We rationalized these experimental findings by invoking a model that postulates the regulation of flagellar motor switching by subcellular c-di-GMP pools.
Collapse
Affiliation(s)
- Lingyi Xin
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Yukai Zeng
- Bioinformatics Institute (A*STAR), S138671, Singapore
| | - Shuo Sheng
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Rachel Andrea Chea
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Qiong Liu
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Hoi Yeung Li
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Liang Yang
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore.,Interdisciplinary Graduate School, Nanyang Technological University, S637551, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Linghui Xu
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China.,Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | | | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore .,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| |
Collapse
|