1
|
Chanket W, Pipatthana M, Sangphukieo A, Harnvoravongchai P, Chankhamhaengdecha S, Janvilisri T, Phanchana M. The complete catalog of antimicrobial resistance secondary active transporters in Clostridioides difficile: evolution and drug resistance perspective. Comput Struct Biotechnol J 2024; 23:2358-2374. [PMID: 38873647 PMCID: PMC11170357 DOI: 10.1016/j.csbj.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Secondary active transporters shuttle substrates across eukaryotic and prokaryotic membranes, utilizing different electrochemical gradients. They are recognized as one of the antimicrobial efflux pumps among pathogens. While primary active transporters within the genome of C. difficile 630 have been completely cataloged, the systematical study of secondary active transporters remains incomplete. Here, we not only identify secondary active transporters but also disclose their evolution and role in drug resistance in C. difficile 630. Our analysis reveals that C. difficile 630 carries 147 secondary active transporters belonging to 27 (super)families. Notably, 50 (34%) of them potentially contribute to antimicrobial resistance (AMR). AMR-secondary active transporters are structurally classified into five (super)families: the p-aminobenzoyl-glutamate transporter (AbgT), drug/metabolite transporter (DMT) superfamily, major facilitator (MFS) superfamily, multidrug and toxic compound extrusion (MATE) family, and resistance-nodulation-division (RND) family. Surprisingly, complete RND genes found in C. difficile 630 are likely an evolutionary leftover from the common ancestor with the diderm. Through protein structure comparisons, we have potentially identified six novel AMR-secondary active transporters from DMT, MATE, and MFS (super)families. Pangenome analysis revealed that half of the AMR-secondary transporters are accessory genes, which indicates an important role in adaptive AMR function rather than innate physiological homeostasis. Gene expression profile firmly supports their ability to respond to a wide spectrum of antibiotics. Our findings highlight the evolution of AMR-secondary active transporters and their integral role in antibiotic responses. This marks AMR-secondary active transporters as interesting therapeutic targets to synergize with other antibiotic activity.
Collapse
Affiliation(s)
- Wannarat Chanket
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Methinee Pipatthana
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Apiwat Sangphukieo
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Dadole I, Blaha D, Personnic N. The macrophage-bacterium mismatch in persister formation. Trends Microbiol 2024; 32:944-956. [PMID: 38443279 DOI: 10.1016/j.tim.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Many pathogens are hard to eradicate, even in the absence of genetically detectable antimicrobial resistance mechanisms and despite proven antibiotic susceptibility. The fraction of clonal bacteria that temporarily elude effective antibiotic treatments is commonly known as 'antibiotic persisters.' Over the past decade, there has been a growing body of research highlighting the pivotal role played by the cellular host in the development of persisters. In parallel, this research has also sought to elucidate the molecular mechanisms underlying the formation of intracellular antibiotic persisters and has demonstrated a prominent role for the bacterial stress response. However, questions remain regarding the conditions leading to the formation of stress-induced persisters among a clonal population of intracellular bacteria and despite an ostensibly uniform environment. In this opinion, following a brief review of the current state of knowledge regarding intracellular antibiotic persisters, we explore the ways in which macrophage functional heterogeneity and bacterial phenotypic heterogeneity may contribute to the emergence of these persisters. We propose that the degree of mismatch between the macrophage permissiveness and the bacterial preparedness to invade and thrive intracellularly may explain the formation of stress-induced nonreplicating intracellular persisters.
Collapse
Affiliation(s)
- Iris Dadole
- CIRI - Centre International de Recherche en Infectiologie, CNRS, INSERM, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France; Group Persistence and single-cell dynamics of respiratory pathogens, CIRI, Lyon, France
| | - Didier Blaha
- CIRI - Centre International de Recherche en Infectiologie, CNRS, INSERM, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France; Group Persistence and single-cell dynamics of respiratory pathogens, CIRI, Lyon, France
| | - Nicolas Personnic
- CIRI - Centre International de Recherche en Infectiologie, CNRS, INSERM, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France; Group Persistence and single-cell dynamics of respiratory pathogens, CIRI, Lyon, France.
| |
Collapse
|
3
|
Dulya O, Mikryukov V, Shchepkin DV, Pent M, Tamm H, Guazzini M, Panagos P, Jones A, Orgiazzi A, Marroni F, Bahram M, Tedersoo L. A trait-based ecological perspective on the soil microbial antibiotic-related genetic machinery. ENVIRONMENT INTERNATIONAL 2024; 190:108917. [PMID: 39089094 DOI: 10.1016/j.envint.2024.108917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/24/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Antibiotic resistance crisis dictates the need for resistance monitoring and the search for new antibiotics. The development of monitoring protocols is hindered by the great diversity of resistance factors, while the "streetlight effect" denies the possibility of discovering novel drugs based on existing databases. In this study, we address these challenges using high-throughput environmental screening viewed from a trait-based ecological perspective. Through an in-depth analysis of the metagenomes of 658 topsoil samples spanning Europe, we explored the distribution of 241 prokaryotic and fungal genes responsible for producing metabolites with antibiotic properties and 485 antibiotic resistance genes. We analyzed the diversity of these gene collections at different levels and modeled the distribution of each gene across environmental gradients. Our analyses revealed several nonparallel distribution patterns of the genes encoding sequential steps of enzymatic pathways synthesizing large antibiotic groups, pointing to gaps in existing databases and suggesting potential for discovering new analogues of known antibiotics. We show that agricultural activity caused a continental-scale homogenization of microbial antibiotic-related machinery, emphasizing the importance of maintaining indigenous ecosystems within the landscape mosaic. Based on the relationships between the proportion of the genes in the metagenomes with the main predictors (soil pH, land cover type, climate temperature and humidity), we illustrate how the properties of chemical structures dictate the distribution of the genes responsible for their synthesis across environments. With this understanding, we propose general principles to facilitate the discovery of antibiotics, including principally new ones, establish abundance baselines for antibiotic resistance genes, and predict their dissemination.
Collapse
Affiliation(s)
- Olesya Dulya
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia; Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia.
| | - Vladimir Mikryukov
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia; Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia.
| | - Daniil V Shchepkin
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia.
| | - Mari Pent
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia.
| | - Heidi Tamm
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia.
| | - Massimo Guazzini
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy.
| | - Panos Panagos
- European Commission, Joint Research Centre (JRC), Ispra, Province of Varese 21027, Italy.
| | - Arwyn Jones
- European Commission, Joint Research Centre (JRC), Ispra, Province of Varese 21027, Italy.
| | - Alberto Orgiazzi
- European Commission, Joint Research Centre (JRC), Ispra, Province of Varese 21027, Italy; European Dynamics, Brussels B-1000, Belgium.
| | - Fabio Marroni
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy.
| | - Mohammad Bahram
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia; Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden; Department of Agroecology, Aarhus University, Forsøgsvej 1 4200, Slagelse, Denmark.
| | - Leho Tedersoo
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia.
| |
Collapse
|
4
|
Shankar G, Akhter Y. Stealing survival: Iron acquisition strategies of Mycobacteriumtuberculosis. Biochimie 2024:S0300-9084(24)00142-1. [PMID: 38901792 DOI: 10.1016/j.biochi.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), faces iron scarcity within the host due to immune defenses. This review explores the importance of iron for Mtb and its strategies to overcome iron restriction. We discuss how the host limits iron as an innate immune response and how Mtb utilizes various iron acquisition systems, particularly the siderophore-mediated pathway. The review illustrates the structure and biosynthesis of mycobactin, a key siderophore in Mtb, and the regulation of its production. We explore the potential of targeting siderophore biosynthesis and uptake as a novel therapeutic approach for TB. Finally, we summarize current knowledge on Mtb's iron acquisition and highlight promising directions for future research to exploit this pathway for developing new TB interventions.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India.
| |
Collapse
|
5
|
Abbas A, Barkhouse A, Hackenberger D, Wright GD. Antibiotic resistance: A key microbial survival mechanism that threatens public health. Cell Host Microbe 2024; 32:837-851. [PMID: 38870900 DOI: 10.1016/j.chom.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Antibiotic resistance (AMR) is a global public health threat, challenging the effectiveness of antibiotics in combating bacterial infections. AMR also represents one of the most crucial survival traits evolved by bacteria. Antibiotics emerged hundreds of millions of years ago as advantageous secondary metabolites produced by microbes. Consequently, AMR is equally ancient and hardwired into the genetic fabric of bacteria. Human use of antibiotics for disease treatment has created selection pressure that spurs the evolution of new resistance mechanisms and the mobilization of existing ones through bacterial populations in the environment, animals, and humans. This integrated web of resistance elements is genetically complex and mechanistically diverse. Addressing this mode of bacterial survival requires innovation and investment to ensure continued use of antibiotics in the future. Strategies ranging from developing new therapies to applying artificial intelligence in monitoring AMR and discovering new drugs are being applied to manage the growing AMR crisis.
Collapse
Affiliation(s)
- Amna Abbas
- David Braley Center for Antibiotic Discovery, Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Alexandra Barkhouse
- David Braley Center for Antibiotic Discovery, Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Dirk Hackenberger
- David Braley Center for Antibiotic Discovery, Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Gerard D Wright
- David Braley Center for Antibiotic Discovery, Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
6
|
Bing C, Mengjuan A, Xinyu M, Chixin Z, Xinyao T, Yan S, Zhi L. Efflux pump inhibitor chlorpromazine effectively increases the susceptibility of Escherichia coli to antimicrobial peptide Brevinin-2CE. Future Microbiol 2024; 19:771-782. [PMID: 38683168 PMCID: PMC11290751 DOI: 10.2217/fmb-2023-0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/21/2024] [Indexed: 05/01/2024] Open
Abstract
Aim: The response of E. coli ATCC8739 to Brevinin-2CE (B2CE) was evaluated as a strategy to prevent the development of antimicrobial peptide (AMP)-resistant bacteria. Methods: Gene expression levels were detected by transcriptome sequencing and RT-PCR. Target genes were knocked out using CRISPR-Cas9. MIC was measured to evaluate strain resistance. Results: Expression of acrZ and sugE were increased with B2CE stimulation. ATCC8739ΔacrZ and ATCC8739ΔsugE showed twofold and fourfold increased sensitivity, respectively. The survival rate of ATCC8739 was reduced in the presence of B2CE/chlorpromazine (CPZ). Combinations of other AMPs with CPZ also showed antibacterial effects. Conclusion: The results indicate that combinations of AMPs/efflux pump inhibitors (EPIs) may be a potential approach to combat resistant bacteria.
Collapse
Affiliation(s)
- Cao Bing
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, PR China
| | - An Mengjuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Ma Xinyu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Zhu Chixin
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Tan Xinyao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Sun Yan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Li Zhi
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, PR China
| |
Collapse
|
7
|
Laborda P, Molin S, Johansen HK, Martínez JL, Hernando-Amado S. Role of bacterial multidrug efflux pumps during infection. World J Microbiol Biotechnol 2024; 40:226. [PMID: 38822187 DOI: 10.1007/s11274-024-04042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Multidrug efflux pumps are protein complexes located in the cell envelope that enable bacteria to expel, not only antibiotics, but also a wide array of molecules relevant for infection. Hence, they are important players in microbial pathogenesis. On the one hand, efflux pumps can extrude exogenous compounds, including host-produced antimicrobial molecules. Through this extrusion, pathogens can resist antimicrobial agents and evade host defenses. On the other hand, efflux pumps also have a role in the extrusion of endogenous compounds, such as bacterial intercommunication signaling molecules, virulence factors or metabolites. Therefore, efflux pumps are involved in the modulation of bacterial behavior and virulence, as well as in the maintenance of the bacterial homeostasis under different stresses found within the host. This review delves into the multifaceted roles that efflux pumps have, shedding light on their impact on bacterial virulence and their contribution to bacterial infection. These observations suggest that strategies targeting bacterial efflux pumps could both reinvigorate the efficacy of existing antibiotics and modulate the bacterial pathogenicity to the host. Thus, a comprehensive understanding of bacterial efflux pumps can be pivotal for the development of new effective strategies for the management of infectious diseases.
Collapse
Affiliation(s)
- Pablo Laborda
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, 9301, Denmark.
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, 9301, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
8
|
Zhu S, Alexander MK, Paiva TO, Rachwalski K, Miu A, Xu Y, Verma V, Reichelt M, Dufrêne YF, Brown ED, Cox G. The inactivation of tolC sensitizes Escherichia coli to perturbations in lipopolysaccharide transport. iScience 2024; 27:109592. [PMID: 38628966 PMCID: PMC11019271 DOI: 10.1016/j.isci.2024.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/02/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
The Escherichia coli outer membrane channel TolC complexes with several inner membrane efflux pumps to export compounds across the cell envelope. All components of these complexes are essential for robust efflux activity, yet E. coli is more sensitive to antimicrobial compounds when tolC is inactivated compared to the inactivation of genes encoding the inner membrane drug efflux pumps. While investigating these susceptibility differences, we identified a distinct class of inhibitors targeting the core-lipopolysaccharide translocase, MsbA. We show that tolC null mutants are sensitized to structurally unrelated MsbA inhibitors and msbA knockdown, highlighting a synthetic-sick interaction. Phenotypic profiling revealed that tolC inactivation induced cell envelope softening and increased outer membrane permeability. Overall, this work identified a chemical probe of MsbA, revealed that tolC is associated with cell envelope mechanics and integrity, and highlighted that these findings should be considered when using tolC null mutants to study efflux deficiency.
Collapse
Affiliation(s)
- Shawna Zhu
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| | | | - Telmo O. Paiva
- Institute of Life Sciences, UCLouvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Kenneth Rachwalski
- Biochemistry and Biomedical Sciences and Degroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Anh Miu
- Genentech Inc, Biochemical and Cellular Pharmacology, South San Francisco, CA, USA
| | - Yiming Xu
- Genentech Inc, Infectious Diseases, South San Francisco, CA, USA
| | - Vishal Verma
- Genentech Inc, Discovery Chemistry, South San Francisco, CA, USA
| | - Mike Reichelt
- Genentech Inc, Pathology, South San Francisco, CA, USA
| | - Yves F. Dufrêne
- Institute of Life Sciences, UCLouvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Eric D. Brown
- Biochemistry and Biomedical Sciences and Degroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
9
|
Wang C, Yang J, Xu Z, Lv L, Chen S, Hong M, Liu JH. Promoter regulatory mode evolution enhances the high multidrug resistance of tmexCD1-toprJ1. mBio 2024; 15:e0021824. [PMID: 38564664 PMCID: PMC11077950 DOI: 10.1128/mbio.00218-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
Antibiotic resistance could rapidly emerge from acquiring the mobile antibiotic resistance genes, which are commonly evolved from an intrinsic gene. The emergence of the plasmid-borne mobilized efflux pump gene cluster tmexCD1-toprJ1 renders the last-resort antibiotic tigecycline ineffective, although its evolutionary mechanism remains unclear. In this study, we investigate the regulatory mechanisms of the progenitor NfxB-MexCD-OprJ, a chromosomally encoded operon that does not mediate antibiotic resistance in the wild-type version, and its homologs, TNfxB1-TMexCD1-TOprJ1 mediating high-level tigecycline resistance, and TNfxB3-TMexCD3-TOprJ1. Mechanistic studies demonstrated that in nfxB-mexCD-oprJ, MexCD expression was under a weaker promoter, PmexC and inhibited by a strong repressor NfxB. For tmexCD1-toprJ1, TMexCD1 was highly expressed owing to the presence of a strong promoter, PtmexC1, and an inactive suppressor, TNfxB1, with a T39R mutation that rendered it unable to bind to promoter DNA. In tnfxB3-tmexCD3-toprJ1b, TMexCD3 expression was intermediate because of the local regulator TNfxB3, which binds to two inverted repeat sequences of PtmexC. Additionally, TNfxB3 exhibited lower protein expression and weaker DNA binding affinity than its ancestor NfxB, together with their promoter activities difference explaining the different expression levels of tmexCD-toprJ homologs. Distinct fitness burdens on these homologs-carrying bacteria were observed due to the corresponding expression level, which might be associated with their global prevalence. In summary, our data depict the mechanisms underlying the evolution and dissemination of an important mobile antibiotic resistance gene from an intrinsic chromosomal gene.IMPORTANCEAs antibiotic resistance seriously challenges global health, tigecycline is one of the few effective drugs in the pipeline against infections caused by multidrug-resistant pathogens. Our previous work identified a novel tigecycline resistance efflux pump gene cluster tmexCD1-toprJ1 in animals and humans, together with its various variants, a rising clinical concern. Herein, this study focused on how the local regulation modes of tmexCD1-toprJ1 evolved to a highly expressed efflux pump. Through comparative analysis between three tnfxB-tmexCD-toprJ homologs and their progenitor nfxB-mexCD-oprJ, modes, we demonstrated the evolutionary dynamics from a chromosomal silent gene to an active state. We found the de-repression of the local regulator and an increase of the promoter activity work together to promote a high production of drug efflux machines and enhance multidrug resistance. Our findings revealed that TMexCD1-TOprJ1 adopts a distinct evolutionary path to achieve higher multidrug resistance, urgently needing tight surveillance.
Collapse
Affiliation(s)
- Chengzhen Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| | - Jun Yang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| | - Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Luchao Lv
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Ramnarine SDBJ, Jayaraman J, Ramsubhag A. Crucifer Lesion-Associated Xanthomonas Strains Show Multi-Resistance to Heavy Metals and Antibiotics. Curr Microbiol 2024; 81:136. [PMID: 38598029 DOI: 10.1007/s00284-024-03646-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 04/11/2024]
Abstract
Copper resistance in phytopathogens is a major challenge to crop production globally and is known to be driven by excessive use of copper-based pesticides. However, recent studies have shown co-selection of multiple heavy metal and antibiotic resistance genes in bacteria exposed to heavy metal and xenobiotics, which may impact the epidemiology of plant, animal, and human diseases. In this study, multi-resistance to heavy metals and antibiotics were evaluated in local Xanthomonas campestris pv. campestris (Xcc) and co-isolated Xanthomonas melonis (Xmel) strains from infected crucifer plants in Trinidad. Resistance to cobalt, cadmium, zinc, copper, and arsenic (V) was observed in both Xanthomonas species up to 25 mM. Heavy metal resistance (HMR) genes were found on a small plasmid-derived locus with ~ 90% similarity to a Stenotrophomonas spp. chromosomal locus and a X. perforans pLH3.1 plasmid. The co-occurrence of mobile elements in these regions implies their organization on a composite transposon-like structure. HMR genes in Xcc strains showed the lowest similarity to references, and the cus and ars operons appear to be unique among Xanthomonads. Overall, the similarity of HMR genes to Stenotrophomonas sp. chromosomal genomes suggest their origin in this genus or a related organism and subsequent spread through lateral gene transfer events. Further resistome characterization revealed the presence of small multidrug resistance (SMR), multidrug resistance (MDR) efflux pumps, and bla (Xcc) genes for broad biocide resistance in both species. Concurrently, resistance to antibiotics (streptomycin, kanamycin, tetracycline, chloramphenicol, and ampicillin) up to 1000 µg/mL was confirmed.
Collapse
Affiliation(s)
- Stephen D B Jr Ramnarine
- Department of Life Sciences, Faculty of Science and Technology, The University of The West Indies, St. Augustine, Trinidad and Tobago
| | - Jayaraj Jayaraman
- Department of Life Sciences, Faculty of Science and Technology, The University of The West Indies, St. Augustine, Trinidad and Tobago
| | - Adesh Ramsubhag
- Department of Life Sciences, Faculty of Science and Technology, The University of The West Indies, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
11
|
Sykes EME, Mateo-Estrada V, Engelberg R, Muzaleva A, Zhanel G, Dettman J, Chapados J, Gerdis S, Akineden Ö, Khan IUH, Castillo-Ramírez S, Kumar A. Phylogenomic and phenotypic analyses highlight the diversity of antibiotic resistance and virulence in both human and non-human Acinetobacter baumannii. mSphere 2024; 9:e0074123. [PMID: 38440986 PMCID: PMC10964423 DOI: 10.1128/msphere.00741-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024] Open
Abstract
Acinetobacter baumannii is a Gram-negative, opportunistic pathogen that causes infections in the immunocompromised. With a high incidence of muti-drug resistance, carbapenem-resistant A. baumannii is designated as a priority 1 pathogen by the WHO. The current literature has expertly characterized clinical isolates of A. baumannii. As the challenge of these infections has recently been classified as a One Health issue, we set out to explore the diversity of isolates from human and non-clinical sources, such as agricultural surface water, urban streams, various effluents from wastewater treatment plants, and food (tank milk); and, importantly, these isolates came from a wide geographic distribution. Phylogenomic analysis considering almost 200 isolates showed that our diverse set is well-differentiated from the main international clones of A. baumannii. We discovered novel sequence types in both hospital and non-clinical settings and five strains that overexpress the resistance-nodulation-division efflux pump adeIJK without changes in susceptibility reflected by this overexpression. Furthermore, we detected a bla ADC-79 in a non-human isolate despite its sensitivity to all antibiotics. There was no significant differentiation between the virulence profiles of clinical and non-clinical isolates in the Galleria mellonella insect model of virulence, suggesting that virulence is neither dependent on geographic origin nor isolation source. The detection of antibiotic resistance and virulence genes in non-human strains suggests that these isolates may act as a genetic reservoir for clinical strains. This endorses the notion that in order to combat multi-drug-resistant infection caused by A. baumannii, a One Health approach is required, and a deeper understanding of non-clinical strains must be achieved.IMPORTANCEThe global crisis of antibiotic resistance is a silent one. More and more bacteria are becoming resistant to all antibiotics available for treatment, leaving no options remaining. This includes Acinetobacter baumannii. This Gram-negative, opportunistic pathogen shows a high frequency of multi-drug resistance, and many strains are resistant to the last-resort drugs carbapenem and colistin. Research has focused on strains of clinical origin, but there is a knowledge gap regarding virulence traits, particularly how A. baumannii became the notorious pathogen of today. Antibiotic resistance and virulence genes have been detected in strains from animals and environmental locations such as grass and soil. As such, A. baumannii is a One Health concern, which includes the health of humans, animals, and the environment. Thus, in order to truly combat the antibiotic resistance crisis, we need to understand the antibiotic resistance and virulence gene reservoirs of this pathogen under the One Health continuum.
Collapse
Affiliation(s)
- Ellen M. E. Sykes
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Valeria Mateo-Estrada
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Raelene Engelberg
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anna Muzaleva
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - George Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jeremy Dettman
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Julie Chapados
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Suzanne Gerdis
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Ömer Akineden
- Dairy Sciences, Institute of Veterinary Food Science, Justus-Liebig, University of Giessen, Giessen, Germany
| | - Izhar U. H. Khan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
Ramnarine SDB, Ali O, Jayaraman J, Ramsubhag A. Early transcriptional changes of heavy metal resistance and multiple efflux genes in Xanthomonas campestris pv. campestris under copper and heavy metal ion stress. BMC Microbiol 2024; 24:81. [PMID: 38461228 PMCID: PMC10924375 DOI: 10.1186/s12866-024-03206-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/28/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Copper-induced gene expression in Xanthomonas campestris pv. campestris (Xcc) is typically evaluated using targeted approaches involving qPCR. The global response to copper stress in Xcc and resistance to metal induced damage is not well understood. However, homologs of heavy metal efflux genes from the related Stenotrophomonas genus are found in Xanthomonas which suggests that metal related efflux may also be present. METHODS AND RESULTS Gene expression in Xcc strain BrA1 exposed to 0.8 mM CuSO4.5H2O for 15 minutes was captured using RNA-seq analysis. Changes in expression was noted for genes related to general stress responses and oxidoreductases, biofilm formation, protein folding chaperones, heat-shock proteins, membrane lipid profile, multiple drug and efflux (MDR) transporters, and DNA repair were documented. At this timepoint only the cohL (copper homeostasis/tolerance) gene was upregulated as well as a chromosomal czcCBA efflux operon. An additional screen up to 4 hrs using qPCR was conducted using a wider range of heavy metals. Target genes included a cop-containing heavy metal resistance island and putative metal efflux genes. Several efflux pumps, including a copper resistance associated homolog from S. maltophilia, were upregulated under toxic copper stress. However, these pumps were also upregulated in response to other toxic heavy metals. Additionally, the temporal expression of the coh and cop operons was also observed, demonstrating co-expression of tolerance responses and later activation of part of the cop operon. CONCLUSIONS Overall, initial transcriptional responses focused on combating oxidative stress, mitigating protein damage and potentially increasing resistance to heavy metals and other biocides. A putative copper responsive efflux gene and others which might play a role in broader heavy metal resistance were also identified. Furthermore, the expression patterns of the cop operon in conjunction with other copper responsive genes allowed for a better understanding of the fate of copper ions in Xanthomonas. This work provides useful evidence for further evaluating MDR and other efflux pumps in metal-specific homeostasis and tolerance phenotypes in the Xanthomonas genus. Furthermore, non-canonical copper tolerance and resistance efflux pumps were potentially identified. These findings have implications for interpreting MIC differences among strains with homologous copLAB resistance genes, understanding survival under copper stress, and resistance in disease management.
Collapse
Affiliation(s)
- Stephen D B Ramnarine
- Department of Life Sciences, Faculty of Science and Technology, The University of The West Indies, St. Augustine campus, St. Augustine, Trinidad and Tobago, W. I
| | - Omar Ali
- Department of Life Sciences, Faculty of Science and Technology, The University of The West Indies, St. Augustine campus, St. Augustine, Trinidad and Tobago, W. I
| | - Jayaraj Jayaraman
- Department of Life Sciences, Faculty of Science and Technology, The University of The West Indies, St. Augustine campus, St. Augustine, Trinidad and Tobago, W. I
| | - Adesh Ramsubhag
- Department of Life Sciences, Faculty of Science and Technology, The University of The West Indies, St. Augustine campus, St. Augustine, Trinidad and Tobago, W. I.
| |
Collapse
|
13
|
Behera DU, Gaur M, Sahoo M, Subudhi E, Subudhi BB. Development of pharmacophore models for AcrB protein and the identification of potential adjuvant candidates for overcoming efflux-mediated colistin resistance. RSC Med Chem 2024; 15:127-138. [PMID: 38283226 PMCID: PMC10809322 DOI: 10.1039/d3md00483j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/26/2023] [Indexed: 01/30/2024] Open
Abstract
Growing multi-drug resistance (MDR) among ESKAPE pathogens is a huge challenge. Increased resistance to last-resort antibiotics, like colistin, has further aggravated this. Efflux is identified as a major route of colistin resistance. So, finding an FDA-approved efflux inhibitor for potential application as an adjuvant to colistin was the primary objective of this study. E. coli-AcrB pump inhibitors and substrates were used to develop and validate the pharmacophoric model. Drugs confirming this pharmacophore were subjected to molecular docking to identify hits for the AcrB binding pocket. The efflux inhibition potential of the top hit was validated through the in vitro evaluation of the minimum inhibitory concentration (MIC) in combination with colistin. The checkerboard assay was done to demonstrate synergism, which was further corroborated by the Time-kill assay. Ten common pharmacophore hypotheses were successfully generated using substrate/inhibitors. Following enrichment analysis, AHHNR.100 was identified as the top-ranked hypothesis, and 207 unique compounds were found to conform to this hypothesis. The multi-step docking of these compounds against the AcrB protein revealed argatroban as the top non-antibiotic hit. This significantly inhibited the efflux activity of colistin-resistant clinical isolates K. pneumoniae (n = 1) and M. morganii (n = 2). Further, their combination with colistin enhanced the susceptibility of these isolates, and the effect was found to be synergistic. Accordingly, the time-kill assay of this combination showed 8-log and 2-log reductions against K. pneumoniae and M. morganii, respectively. In conclusion, this study found argatroban as a bacterial efflux inhibitor that can be potentially used to overcome efflux-mediated resistance.
Collapse
Affiliation(s)
- Dibyajyoti Uttameswar Behera
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Kalinga Nagar, Ghatikia Bhubaneswar-751003 Odisha India +91 9861075829
| | - Mahendra Gaur
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Kalinga Nagar, Ghatikia Bhubaneswar-751003 Odisha India +91 7978085389
- Department of Biotechnology & Food Technology, Punjabi University Patiala 147002 India
| | - Maheswata Sahoo
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Kalinga Nagar, Ghatikia Bhubaneswar-751003 Odisha India +91 9861075829
| | - Enketeswara Subudhi
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Kalinga Nagar, Ghatikia Bhubaneswar-751003 Odisha India +91 9861075829
| | - Bharat Bhusan Subudhi
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Kalinga Nagar, Ghatikia Bhubaneswar-751003 Odisha India +91 7978085389
| |
Collapse
|
14
|
He W, Jiang M, Li Y, Ge X. Identification of the Major Facilitator Superfamily Efflux Pump KpsrMFS in Klebsiella pneumoniae That Is Down-Regulated in the Presence of Multi-Stress Factors. Int J Mol Sci 2024; 25:1466. [PMID: 38338743 PMCID: PMC10855805 DOI: 10.3390/ijms25031466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Efflux pumps play important roles in bacterial detoxification and some of them are stress-response elements that are up-regulated when the host is treated with antibiotics. However, efflux pumps that are down-regulated by stimulations are rarely discovered. Herein, we analyzed multiple transcriptome data and discovered a special (Major Facilitator Superfamily) MFS efflux pump, KpsrMFS, from Klebsiella pneumoniae, which was down-regulated when treated with antibiotics or extra carbon sources. Interestingly, overexpression of kpsrmfs resulted in halted cell growth in normal conditions, while the viable cells were rarely affected. The function of KpsrMFS was further analyzed and this efflux pump was determined to be a proton-driven transporter that can reduce the intracellular tetracycline concentration. In normal conditions, the expression of kpsrmfs was at a low level, while artificial overexpression of it led to increased endogenous reactive oxygen species (ROS) production. Moreover, by comparing the functions of adjacent genes of kpsrmfs, we further discovered another four genes that can confer similar phenotypes, indicating a special regulon that regulates cell growth. Our work provides new insights into the roles of efflux pumps and suggests a possible regulon that may regulate cell growth and endogenous ROS levels.
Collapse
Affiliation(s)
| | | | - Ying Li
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| | | |
Collapse
|
15
|
Schumacher K, Brameyer S, Jung K. Bacterial acid stress response: from cellular changes to antibiotic tolerance and phenotypic heterogeneity. Curr Opin Microbiol 2023; 75:102367. [PMID: 37633223 DOI: 10.1016/j.mib.2023.102367] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/28/2023]
Abstract
Most bacteria are neutralophiles but can survive fluctuations in pH in their environment. Herein, we provide an overview of the adaptation of several human, soil, and food bacteria to acid stress, mainly based on next-generation sequencing studies, highlighting common and specific strategies. We also discuss the interplay between acid stress response and antibiotic tolerance, as well as the response of individual cells.
Collapse
Affiliation(s)
- Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany.
| |
Collapse
|
16
|
Schelz Z, Muddather HF, Zupkó I. Repositioning of HMG-CoA Reductase Inhibitors as Adjuvants in the Modulation of Efflux Pump-Mediated Bacterial and Tumor Resistance. Antibiotics (Basel) 2023; 12:1468. [PMID: 37760764 PMCID: PMC10525194 DOI: 10.3390/antibiotics12091468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Efflux pump (EP)-mediated multidrug resistance (MDR) seems ubiquitous in bacterial infections and neoplastic diseases. The diversity and lack of specificity of these efflux mechanisms raise a great obstacle in developing drugs that modulate efflux pumps. Since developing novel chemotherapeutic drugs requires large investments, drug repurposing offers a new approach that can provide alternatives as adjuvants in treating resistant microbial infections and progressive cancerous diseases. Hydroxy-methyl-glutaryl coenzyme-A (HMG-CoA) reductase inhibitors, also known as statins, are promising agents in this respect. Originally, statins were used in the therapy of dyslipidemia and for the prevention of cardiovascular diseases; however, extensive research has recently been performed to elucidate the functions of statins in bacterial infections and cancers. The mevalonate pathway is essential in the posttranslational modification of proteins related to vital eukaryotic cell functions. In this article, a comparative review is given about the possible role of HMG-CoA reductase inhibitors in managing diseases of bacterial and neoplastic origin. Molecular research and clinical studies have proven the justification of statins in this field. Further well-designed clinical trials are urged to clarify the significance of the contribution of statins to the lower risk of disease progression in bacterial infections and cancerous diseases.
Collapse
Affiliation(s)
| | | | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary; (Z.S.); (H.F.M.)
| |
Collapse
|
17
|
Abstract
The metabolism of a bacterial cell stretches beyond its boundaries, often connecting with the metabolism of other cells to form extended metabolic networks that stretch across communities, and even the globe. Among the least intuitive metabolic connections are those involving cross-feeding of canonically intracellular metabolites. How and why are these intracellular metabolites externalized? Are bacteria simply leaky? Here I consider what it means for a bacterium to be leaky, and I review mechanisms of metabolite externalization from the context of cross-feeding. Despite common claims, diffusion of most intracellular metabolites across a membrane is unlikely. Instead, passive and active transporters are likely involved, possibly purging excess metabolites as part of homeostasis. Re-acquisition of metabolites by a producer limits the opportunities for cross-feeding. However, a competitive recipient can stimulate metabolite externalization and initiate a positive-feedback loop of reciprocal cross-feeding.
Collapse
Affiliation(s)
- James B McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA;
| |
Collapse
|
18
|
Buthasane P, Roytrakul S, Phaonakrop N, Tunsagool P, Buthasane W, Am-in N, Suriyaphol G. Metaproteomic Analysis of Gut Resistome in the Cecal Microbiota of Fattening Pigs Raised without Antibiotics. Microbiol Spectr 2023; 11:e0222323. [PMID: 37439677 PMCID: PMC10433946 DOI: 10.1128/spectrum.02223-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023] Open
Abstract
Improper use of antibiotics in swine could reduce commensal bacteria and possibly increase pathogen infections via the gut resistome. This study aimed to compare the metaproteomic profiles of the gut resistome and related metabolism in the cecal microbiota of fattening pigs raised under antibiotic-free (ABF) conditions with those of ordinary industrial pigs (controls [CTRL]). The top three relatively abundant microbes in both groups were Escherichia coli, Ruminococcus, and Lactobacillus, followed by Bacteroides and Bifidobacterium. E. coli, Lactobacillus, and Bacteroides were found to be increased in the CTRL group, whereas Ruminococcus and Clostridium were greater in the ABF group. The highest abundances of antibiotic resistance proteins (log2 expression levels [ELs] of >10) were found to be for tetracycline resistance (Tetr) and aminoglycoside resistance (AMGr) proteins found in Bacteroides, with a significant increase in the CTRL group. High Tetr (ELs of 5.32) was found in Ruminococcus in the CTRL group, although pigs in both groups had never received tetracycline, possibly reflecting the influence of environments in farms. In E. coli, AMGr and β-lactamase family proteins were observed in both groups (ELs of 3 to 6), whereas multidrug resistance protein MdtL was significantly expressed in the CTRL group (ELs of around 3). In the ABF group, CRISPR-associated endonucleases Cas1 and Cas9, which function to defend against viruses, were markedly observed in Ruminococcus and Lactobacillus, respectively, with ELs of 8.6 and 4.15, respectively. In conclusion, this study demonstrated that CRISPR-associated endonucleases were markedly observed in the ABF group, whereas higher levels of Tetr, AMGr, and multidrug resistance protein MdtL was markedly observed in dominant bacterial species in the CTRL group. IMPORTANCE In order to control and reduce antibiotic use in animals, the Department of Livestock Development, Thailand, has launched a campaign for antibiotic-free livestock production. The present study has shown for the first time that CRISPR-associated endonucleases Cas1 and Cas9, which function to defend against viruses, were markedly observed in Ruminococcus and Lactobacillus, respectively, in ceca of pigs raised without antibiotics (ABF). The highest abundances of antibiotic resistance proteins were for tetracycline (Tetr) and aminoglycoside resistance (AMGr) proteins found in Bacteroides, with a significant increase in the controls. In E. coli, the microbe with the highest relative abundance, AMGr and β-lactamase family proteins were observed in both groups, whereas multidrug resistance protein MdtL was significantly expressed in the controls. Pigs in both ABF and control groups had never received tetracycline, possibly reflecting the influence of farm environments. We suggest that pigs raised without antibiotics may have more beneficial microorganisms for the gut than pigs raised with antibiotics.
Collapse
Affiliation(s)
- Pamornya Buthasane
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Paiboon Tunsagool
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Wannapol Buthasane
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nutthee Am-in
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Gunnaporn Suriyaphol
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
19
|
Avakh A, Grant GD, Cheesman MJ, Kalkundri T, Hall S. The Art of War with Pseudomonas aeruginosa: Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy. Antibiotics (Basel) 2023; 12:1304. [PMID: 37627724 PMCID: PMC10451789 DOI: 10.3390/antibiotics12081304] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) poses a grave clinical challenge due to its multidrug resistance (MDR) phenotype, leading to severe and life-threatening infections. This bacterium exhibits both intrinsic resistance to various antipseudomonal agents and acquired resistance against nearly all available antibiotics, contributing to its MDR phenotype. Multiple mechanisms, including enzyme production, loss of outer membrane proteins, target mutations, and multidrug efflux systems, contribute to its antimicrobial resistance. The clinical importance of addressing MDR in P. aeruginosa is paramount, and one pivotal determinant is the resistance-nodulation-division (RND) family of drug/proton antiporters, notably the Mex efflux pumps. These pumps function as crucial defenders, reinforcing the emergence of extensively drug-resistant (XDR) and pandrug-resistant (PDR) strains, which underscores the urgency of the situation. Overcoming this challenge necessitates the exploration and development of potent efflux pump inhibitors (EPIs) to restore the efficacy of existing antipseudomonal drugs. By effectively countering or bypassing efflux activities, EPIs hold tremendous potential for restoring the antibacterial activity against P. aeruginosa and other Gram-negative pathogens. This review focuses on concurrent MDR, highlighting the clinical significance of efflux pumps, particularly the Mex efflux pumps, in driving MDR. It explores promising EPIs and delves into the structural characteristics of the MexB subunit and its substrate binding sites.
Collapse
Affiliation(s)
| | | | | | | | - Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia; (A.A.); (G.D.G.); (M.J.C.); (T.K.)
| |
Collapse
|
20
|
Ramnarine SDBJ, Jayaraman J, Ramsubhag A. copLAB gene prevalence and diversity among Trinidadian Xanthomonas spp. black-rot lesion isolates with variable copper resistance profiles. PeerJ 2023; 11:e15657. [PMID: 37397015 PMCID: PMC10312155 DOI: 10.7717/peerj.15657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Background There has been limited exploration of copLAB genotypes and associated copper resistance phenotypes in Xanthomonas spp. in the southern Caribbean region. An earlier study highlighted a variant copLAB gene cluster found in one Trinidadian Xanthomonas campestris pv. campestris (Xcc) strain (BrA1), with <90% similarity to previously reported Xanthomonas copLAB genes. With only one report describing this copper resistance genotype, the current study investigated the distribution of the BrA1 variant copLAB gene cluster and previously reported forms of copper resistance genes in local Xanthomonas spp. Methods Xanthomonas spp. were isolated from black-rot infected lesions on leaf tissue from crucifer crops at intensively farmed sites with high agrochemical usage in Trinidad. The identity of morphologically identified isolates were confirmed using a paired primer PCR based screen and 16s rRNA partial gene sequencing. MGY agar amended with CuSO4.5H2O up to 2.4 mM was used to establish MIC's for confirmed isolates and group strains as sensitive, tolerant, or resistant to copper. Separate primer pairs targeting the BrA1 variant copLAB genes and those predicted to target multiple homologs found in Xanthomonas and Stenotrophomonas spp. were used to screen copper resistant isolates. Select amplicons were sanger sequenced and evolutionary relationships inferred from global reference sequences using a ML approach. Results Only four copper sensitive/tolerant Xanthomonas sp. strains were isolated, with 35 others classed as copper-resistant from a total population of 45 isolates. PCR detection of copLAB genes revealed two PCR negative copper-resistant resistant strains. Variant copLAB genes were only found in Xcc from the original source location of the BrA1 strain, Aranguez. Other copper-resistant strains contained other copLAB homologs that clustered into three distinct clades. These groups were more similar to genes from X. perforans plasmids and Stenotrophomonas spp. chromosomal homologs than reference Xcc sequences. This study highlights the localisation of the BrA1 variant copLAB genes to one agricultural community and the presence of three distinct copLAB gene groupings in Xcc and related Xanthomonas spp. with defined CuSO4.5H2O MIC. Further characterisation of these gene groups and copper resistance gene exchange dynamics on and within leaf tissue between Xcc and other Xanthomonas species are needed as similar gene clusters showed variable copper sensitivity profiles. This work will serve as a baseline for copper resistance gene characterisation in Trinidad and the wider Caribbean region and can be used to boost already lacking resistant phytopathogen management in the region.
Collapse
|
21
|
Huang Q, Liu Z, Guo Y, Li B, Yang Z, Liu X, Ni J, Li X, Zhang X, Zhou N, Yin H, Jiang C, Hao L. Coal-source acid mine drainage reduced the soil multidrug-dominated antibiotic resistome but increased the heavy metal(loid) resistome and energy production-related metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162330. [PMID: 36813198 DOI: 10.1016/j.scitotenv.2023.162330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
A recent global scale study found that mining-impacted environments have multi-antibiotic resistance gene (ARG)-dominated resistomes with an abundance similar to urban sewage but much higher than freshwater sediment. These findings raised concern that mining may increase the risk of ARG environmental proliferation. The current study assessed how typical multimetal(loid)-enriched coal-source acid mine drainage (AMD) contamination affects soil resistomes by comparing with background soils unaffected by AMD. Both contaminated and background soils have multidrug-dominated antibiotic resistomes attributed to the acidic environment. AMD-contaminated soils had a lower relative abundance of ARGs (47.45 ± 23.34 ×/Gb) than background soils (85.47 ± 19.71 ×/Gb) but held high-level heavy metal(loid) resistance genes (MRGs, 133.29 ± 29.36 ×/Gb) and transposase- and insertion sequence-dominated mobile genetic elements (MGEs, 188.51 ± 21.81 ×/Gb), which was 56.26 % and 412.12 % higher than background soils, respectively. Procrustes analysis showed that the microbial community and MGEs exerted more influence on driving heavy metal(loid) resistome variation than antibiotic resistome. The microbial community increased energy production-related metabolism to fulfill the increasing energy needs required by acid and heavy metal(loid) resistance. Horizontal gene transfer (HGT) events primarily exchanged energy- and information-related genes to adapt to the harsh AMD environment. These findings provide new insight into the risk of ARG proliferation in mining environments.
Collapse
Affiliation(s)
- Qiang Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Zhenghua Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, PR China
| | - Yuan Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Bao Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhenni Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jianmei Ni
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Xiutong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xi Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Nan Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, PR China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, PR China.
| |
Collapse
|
22
|
Coluccia M, Béranger A, Trirocco R, Fanelli G, Zanzi F, Colonna B, Grossi M, Prosseda G, Pasqua M. Role of the MDR Efflux Pump AcrAB in Epithelial Cell Invasion by Shigella flexneri. Biomolecules 2023; 13:biom13050823. [PMID: 37238693 DOI: 10.3390/biom13050823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The tripartite complex AcrAB-TolC is the major RND pump in Escherichia coli and other Enterobacteriaceae, including Shigella, the etiological agent of bacillary dysentery. In addition to conferring resistance to many classes of antibiotics, AcrAB plays a role in the pathogenesis and virulence of several bacterial pathogens. Here, we report data demonstrating that AcrAB specifically contributes to Shigella flexneri invasion of epithelial cells. We found that deletion of both acrA and acrB genes causes reduced survival of S. flexneri M90T strain within Caco-2 epithelial cells and prevents cell-to-cell spread of the bacteria. Infections with single deletion mutant strains indicate that both AcrA and AcrB favor the viability of the intracellular bacteria. Finally, we were able to further confirm the requirement of the AcrB transporter activity for intraepithelial survival by using a specific EP inhibitor. Overall, the data from the present study expand the role of the AcrAB pump to an important human pathogen, such as Shigella, and add insights into the mechanism governing the Shigella infection process.
Collapse
Affiliation(s)
- Marco Coluccia
- Istituto Pasteur Italy, Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Aude Béranger
- Istituto Pasteur Italy, Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Rita Trirocco
- Istituto Pasteur Italy, Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia Fanelli
- Istituto Pasteur Italy, Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Zanzi
- Istituto Pasteur Italy, Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Bianca Colonna
- Istituto Pasteur Italy, Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Milena Grossi
- Istituto Pasteur Italy, Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Gianni Prosseda
- Istituto Pasteur Italy, Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Martina Pasqua
- Istituto Pasteur Italy, Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
23
|
Mallick S, Das S. Acid-tolerant bacteria and prospects in industrial and environmental applications. Appl Microbiol Biotechnol 2023; 107:3355-3374. [PMID: 37093306 DOI: 10.1007/s00253-023-12529-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Acid-tolerant bacteria such as Streptococcus mutans, Acidobacterium capsulatum, Escherichia coli, and Propionibacterium acidipropionici have developed several survival mechanisms to sustain themselves in various acid stress conditions. Some bacteria survive by minor changes in the environmental pH. In contrast, few others adapt different acid tolerance mechanisms, including amino acid decarboxylase acid resistance systems, mainly glutamate-dependent acid resistance (GDAR) and arginine-dependent acid resistance (ADAR) systems. The cellular mechanisms of acid tolerance include cell membrane alteration in Acidithiobacillus thioxidans, proton elimination by F1-F0-ATPase in Streptococcus pyogenes, biofilm formation in Pseudomonas aeruginosa, cytoplasmic urease activity in Streptococcus mutans, synthesis of the protective cloud of ammonia, and protection or repair of macromolecules in Bacillus caldontenax. Apart from cellular mechanisms, there are several acid-tolerant genes such as gadA, gadB, adiA, adiC, cadA, cadB, cadC, speF, and potE that help the bacteria to tolerate the acidic environment. This acid tolerance behavior provides new and broad prospects for different industrial applications and the bioremediation of environmental pollutants. The development of engineered strains with acid-tolerant genes may improve the efficiency of the transgenic bacteria in the treatment of acidic industrial effluents. KEY POINTS: • Bacteria tolerate the acidic stress by methylating unsaturated phospholipid tail • The activity of decarboxylase systems for acid tolerance depends on pH • Genetic manipulation of acid-tolerant genes improves acid tolerance by the bacteria.
Collapse
Affiliation(s)
- Souradip Mallick
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
24
|
Huang Q, Huang Y, Li B, Li X, Guo Y, Jiang Z, Liu X, Yang Z, Ning Z, Xiao T, Jiang C, Hao L. Metagenomic analysis characterizes resistomes of an acidic, multimetal(loid)-enriched coal source mine drainage treatment system. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130898. [PMID: 36731323 DOI: 10.1016/j.jhazmat.2023.130898] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/07/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal(loid) contaminations caused by mine activities are potential hot spots of antibiotic resistance genes (ARGs) because of heavy metal(loid)-induced co-selection of ARGs and heavy metal(loid) resistance genes (MRGs). This study used high-throughput metagenomic sequencing to analyze the resistome characteristics of a coal source acid mine drainage passive treatment system. The multidrug efflux mechanism dominated the antibiotic resistome, and a highly diverse heavy metal(loid) resistome was dominated by mercury-, iron-, and arsenic--associated resistance. Correlation analysis indicated that mobile gene elements had a greater influence on the dynamic of MRGs than ARGs. Among the metagenome-assembled genomes, six potential pathogens carrying multiple resistance genes resistant to several antibiotics and heavy metal(loid)s were recovered. Pseudomonas spp. contained the highest numbers of resistance genes, with resistance to two types of antibiotics and 12 types of heavy metal(loid)s. Thus, high contents of heavy metal(loid)s drove the co-selection of ARGs and MRGs. The occurrence of potential pathogens containing multiple resistance genes might increase the risk of ARG dissemination in the environment.
Collapse
Affiliation(s)
- Qiang Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Ye Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bao Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiutong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuan Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Zhen Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Zhenni Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Tangfu Xiao
- Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, PR China.
| |
Collapse
|
25
|
Moore-Machacek A, Gloe A, O'Leary N, Reen FJ. Efflux, Signaling and Warfare in a Polymicrobial World. Antibiotics (Basel) 2023; 12:antibiotics12040731. [PMID: 37107093 PMCID: PMC10135244 DOI: 10.3390/antibiotics12040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The discovery void of antimicrobial development has occurred at a time when the world has seen a rapid emergence and spread of antimicrobial resistance, the 'perfect storm' as it has often been described. While the discovery and development of new antibiotics has continued in the research sphere, the pipeline to clinic has largely been fed by derivatives of existing classes of antibiotics, each prone to pre-existing resistance mechanisms. A novel approach to infection management has come from the ecological perspective whereby microbial networks and evolved communities already possess small molecular capabilities for pathogen control. The spatiotemporal nature of microbial interactions is such that mutualism and parasitism are often two ends of the same stick. Small molecule efflux inhibitors can directly target antibiotic efflux, a primary resistance mechanism adopted by many species of bacteria and fungi. However, a much broader anti-infective capability resides within the action of these inhibitors, borne from the role of efflux in key physiological and virulence processes, including biofilm formation, toxin efflux, and stress management. Understanding how these behaviors manifest within complex polymicrobial communities is key to unlocking the full potential of the advanced repertoires of efflux inhibitors.
Collapse
Affiliation(s)
| | - Antje Gloe
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- Institute for Pharmaceutical Microbiology, University of Bonn, D-53113 Bonn, Germany
| | - Niall O'Leary
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| | - F Jerry Reen
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- Synthesis and Solid-State Pharmaceutical Centre, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
26
|
Pugh HL, Connor C, Siasat P, McNally A, Blair JMA. E. coli ST11 (O157:H7) does not encode a functional AcrF efflux pump. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001324. [PMID: 37074150 PMCID: PMC10202319 DOI: 10.1099/mic.0.001324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/23/2023] [Indexed: 04/20/2023]
Abstract
Escherichia coli is a facultative anaerobe found in a wide range of environments. Commonly described as the laboratory workhorse, E. coli is one of the best characterized bacterial species to date, however much of our understanding comes from studies involving the laboratory strain E. coli K-12. Resistance-nodulation-division efflux pumps are found in Gram-negative bacteria and can export a diverse range of substrates, including antibiotics. E. coli K-12 has six RND pumps; AcrB, AcrD, AcrF, CusA, MdtBC and MdtF, and it is frequently reported that all E. coli strains possess these six pumps. However, this is not true of E. coli ST11, a lineage of E. coli, which is primarily composed of the highly virulent important human pathogen, E. coli O157:H7. Here we show that acrF is absent from the pangenome of ST11 and that this lineage of E. coli has a highly conserved insertion within the acrF gene, which when translated encodes 13 amino acids and two stop codons. This insertion was found to be present in 97.59 % of 1787 ST11 genome assemblies. Non-function of AcrF in ST11 was confirmed in the laboratory as complementation with acrF from ST11 was unable to restore AcrF function in E. coli K-12 substr. MG1655 ΔacrB ΔacrF. This shows that the complement of RND efflux pumps present in laboratory bacterial strains may not reflect the situation in virulent strains of bacterial pathogens.
Collapse
Affiliation(s)
- Hannah L. Pugh
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Christopher Connor
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Pauline Siasat
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jessica M. A. Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
27
|
Chauviat A, Meyer T, Favre-Bonté S. Versatility of Stenotrophomonas maltophilia: Ecological roles of RND efflux pumps. Heliyon 2023; 9:e14639. [PMID: 37089375 PMCID: PMC10113797 DOI: 10.1016/j.heliyon.2023.e14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
S. maltophilia is a widely distributed bacterium found in natural, anthropized and clinical environments. The genome of this opportunistic pathogen of environmental origin includes a large number of genes encoding RND efflux pumps independently of the clinical or environmental origin of the strains. These pumps have been historically associated with the uptake of antibiotics and clinically relevant molecules because they confer resistance to many antibiotics. However, considering the environmental origin of S. maltophilia, the ecological role of these pumps needs to be clarified. RND efflux systems are highly conserved within bacteria and encountered both in pathogenic and non-pathogenic species. Moreover, their evolutionary origin, conservation and multiple copies in bacterial genomes suggest a primordial role in cellular functions and environmental adaptation. This review is aimed at elucidating the ecological role of S. maltophilia RND efflux pumps in the environmental context and providing an exhaustive description of the environmental niches of S. maltophilia. By looking at the substrates and functions of the pumps, we propose different involvements and roles according to the adaptation of the bacterium to various niches. We highlight that i°) regulatory mechanisms and inducer molecules help to understand the conditions leading to their expression, and ii°) association and functional redundancy of RND pumps and other efflux systems demonstrate their complex role within S. maltophilia cells. These observations emphasize that RND efflux pumps play a role in the versatility of S. maltophilia.
Collapse
|
28
|
Lima MDC, Magnani M, Lima MDS, Macarisin D, de Sousa CP, Dubreuil JD, de Souza EL. Exploring the antimicrobial effects of a phenolic-rich extract from jabuticaba depulping waste against enterotoxigenic Escherichia coli. Lett Appl Microbiol 2023; 76:6991430. [PMID: 36715328 DOI: 10.1093/lambio/ovad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/19/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
This study evaluated the effects of a phenolic-rich extract from jabuticaba [Myrciaria jaboticaba (Vell.) Berg] depulping waste (PEJ) on the survival, antibiotic susceptibility, virulence, and cellular functions of various enterotoxigenic Escherichia coli (ETEC) strains. The minimum inhibitory concentration of PEJ against the five tested ETEC strains was 125 mg mL-1. PEJ at 125 and 250 mg mL-1 caused reductions in viable cell counts of ≥ 3 and ≥ 5 log CFU mL-1 in ETEC over 24 h, respectively. PEJ at subinhibitory concentrations (31.25 and 62.5 mg mL-1) reduced the viable cell counts of ETEC when exposed to in vitro gastrointestinal conditions, besides decreasing the biofilm formation, cell surface hydrophobicity, mucin adhesion, and swimming and swarming motility. PEJ (31.25 and 62.5 mg mL-1) increased the susceptibility of the tested ETEC strains to various clinically relevant antibiotics. The exposure to PEJ (62.5 and 125 mg mL-1) impaired the membrane permeability and enzymatic and efflux pump activities in ETEC cells. PEJ effectively reduces survival, increases antibiotic susceptibility, and attenuates virulence in ETEC. These effects could be linked to a PEJ multi-target action disturbing various cellular functions in ETEC cells. PEJ could be a candidate for developing innovative solutions to prevent and treat ETEC infections.
Collapse
Affiliation(s)
- Maiara da Costa Lima
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa, PB 58051-900,Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology,Federal Institute of Sertão de Pernambuco,Petrolina, PE 56316-686,Brazil
| | - Dumitru Macarisin
- Center for Food Safety and Applied Nutrition, Division of Microbiology, Food and Drug Administration, College Park, MD HFS-009, USA
| | - Cristina Paiva de Sousa
- Department of Morphology and Pathology, Center of Biological Sciences and Health, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil.,Biotechnology Graduation Program, Center of Exact Sciences and Technologies, Federal University of São Carlos,São Carlos, SP 13565-905,Brazil
| | - J Daniel Dubreuil
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa, PB 58051-900,Brazil
| |
Collapse
|
29
|
Jánosity A, Baranyi J, Surányi BB, Možina SS, Taczman-Brückner A, Kiskó G, Klančnik A. Estimating the optimal efflux inhibitor concentration of carvacrol as a function of the bacterial physiological state. Front Microbiol 2023; 14:1073798. [PMID: 36760502 PMCID: PMC9905641 DOI: 10.3389/fmicb.2023.1073798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Our aim was to find the optimal efflux inhibitor concentration of a natural component, carvacrol, as a function of the physiological state of Escherichia coli. Using fluorescence-based measurements with two strains of E. coli, the effect of carvacrol was assessed at 17 sub-inhibitory concentrations, at which the bacterial efflux mechanism was compromised. The efficacy of carvacrol, as an efflux inhibitor, was compared to synthetic inhibitors and we found carvacrol the most efficient one. We considered the accumulation of Ethidium Bromide (EtBr) as a proxy for drugs spreading in the cell, thus measuring the efflux activity indirectly. The change in membrane integrity caused by the exposure to carvacrol was monitored using the LIVE/DEAD BacLight Bacterial Viability kit. To find the optimal inhibitory concentration of carvacrol, we used predictive microbiology methods. This optimum varied with the bacterial physiological state, as non-growing cultures were less susceptible to the effect of carvacrol than growing cultures were. Moreover, we point out, for the first time, that the efflux-mediated resistance of untreated cultures was also stronger in the non-growing than in the growing phase at population level.
Collapse
Affiliation(s)
- Anna Jánosity
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - József Baranyi
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Botond Bendegúz Surányi
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andrea Taczman-Brückner
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Gabriella Kiskó
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia,*Correspondence: Anja Klančnik, ✉
| |
Collapse
|
30
|
Ma K, Wang H, Lv Z, Hu Y, Wang H, Shu F, Zhu C, Xue T. The Two-Component System CpxRA Affects Antibiotic Susceptibility and Biofilm Formation in Avian Pathogenic Escherichia coli. Animals (Basel) 2023; 13:ani13030383. [PMID: 36766272 PMCID: PMC9913434 DOI: 10.3390/ani13030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is one of the common extraintestinal infectious disease pathogens in chickens, geese, and other birds. It can cause a variety of infections, and even the death of poultry, causing enormous economic losses. However, the misuse and abuse of antibiotics in the poultry industry have led to the development of drug resistance in the gut microbes, posing a challenge for the treatment of APEC infections. It has been reported that the CpxRA two-component system has an effect on bacterial drug resistance, but the specific regulatory mechanism remains unclear. In this study, the regulatory mechanism of CpxRA on APEC biofilm formation and EmrKY efflux pump was investigated. The cpxRA knockout strain of E. coli APEC40 was constructed, and the molecular regulatory mechanism of CpxR on biofilms and efflux pump-coding genes were identified by biofilm formation assays, drug susceptibility test, real-time reverse transcription quantitative PCR, and electrophoretic mobility shift assay (EMSA). The results indicated that CpxR can directly bind to the promoter region of emrKY and negatively regulate the sensitivity of bacteria to ofloxacin and erythromycin. These results confirm the important regulatory role of the CpxRA two-component system under antibiotic stress in APEC.
Collapse
|
31
|
TCA and SSRI Antidepressants Exert Selection Pressure for Efflux-Dependent Antibiotic Resistance Mechanisms in Escherichia coli. mBio 2022; 13:e0219122. [PMID: 36374097 PMCID: PMC9765716 DOI: 10.1128/mbio.02191-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microbial diversity is reduced in the gut microbiota of animals and humans treated with selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs). The mechanisms driving the changes in microbial composition, while largely unknown, is critical to understand considering that the gut microbiota plays important roles in drug metabolism and brain function. Using Escherichia coli, we show that the SSRI fluoxetine and the TCA amitriptyline exert strong selection pressure for enhanced efflux activity of the AcrAB-TolC pump, a member of the resistance-nodulation-cell division (RND) superfamily of transporters. Sequencing spontaneous fluoxetine- and amitriptyline-resistant mutants revealed mutations in marR and lon, negative regulators of AcrAB-TolC expression. In line with the broad specificity of AcrAB-TolC pumps these mutants conferred resistance to several classes of antibiotics. We show that the converse also occurs, as spontaneous chloramphenicol-resistant mutants displayed cross-resistance to SSRIs and TCAs. Chemical-genomic screens identified deletions in marR and lon, confirming the results observed for the spontaneous resistant mutants. In addition, deletions in 35 genes with no known role in drug resistance were identified that conferred cross-resistance to antibiotics and several displayed enhanced efflux activities. These results indicate that combinations of specific antidepressants and antibiotics may have important effects when both are used simultaneously or successively as they can impose selection for common mechanisms of resistance. Our work suggests that selection for enhanced efflux activities is an important factor to consider in understanding the microbial diversity changes associated with antidepressant treatments. IMPORTANCE Antidepressants are prescribed broadly for psychiatric conditions to alter neuronal levels of synaptic neurotransmitters such as serotonin and norepinephrine. Two categories of antidepressants are selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs); both are among the most prescribed drugs in the United States. While it is well-established that antidepressants inhibit reuptake of neurotransmitters there is evidence that they also impact microbial diversity in the gastrointestinal tract. However, the mechanisms and therefore biological and clinical effects remain obscure. We demonstrate antidepressants may influence microbial diversity through strong selection for mutant bacteria with increased AcrAB-TolC activity, an efflux pump that removes antibiotics from cells. Furthermore, we identify a new group of genes that contribute to cross-resistance between antidepressants and antibiotics, several act by regulating efflux activity, underscoring overlapping mechanisms. Overall, this work provides new insights into bacterial responses to antidepressants important for understanding antidepressant treatment effects.
Collapse
|
32
|
Geurtsen J, de Been M, Weerdenburg E, Zomer A, McNally A, Poolman J. Genomics and pathotypes of the many faces of Escherichia coli. FEMS Microbiol Rev 2022; 46:fuac031. [PMID: 35749579 PMCID: PMC9629502 DOI: 10.1093/femsre/fuac031] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Escherichia coli is the most researched microbial organism in the world. Its varied impact on human health, consisting of commensalism, gastrointestinal disease, or extraintestinal pathologies, has generated a separation of the species into at least eleven pathotypes (also known as pathovars). These are broadly split into two groups, intestinal pathogenic E. coli (InPEC) and extraintestinal pathogenic E. coli (ExPEC). However, components of E. coli's infinite open accessory genome are horizontally transferred with substantial frequency, creating pathogenic hybrid strains that defy a clear pathotype designation. Here, we take a birds-eye view of the E. coli species, characterizing it from historical, clinical, and genetic perspectives. We examine the wide spectrum of human disease caused by E. coli, the genome content of the bacterium, and its propensity to acquire, exchange, and maintain antibiotic resistance genes and virulence traits. Our portrayal of the species also discusses elements that have shaped its overall population structure and summarizes the current state of vaccine development targeted at the most frequent E. coli pathovars. In our conclusions, we advocate streamlining efforts for clinical reporting of ExPEC, and emphasize the pathogenic potential that exists throughout the entire species.
Collapse
Affiliation(s)
- Jeroen Geurtsen
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | - Mark de Been
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | | | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, the Netherlands
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Jan Poolman
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| |
Collapse
|
33
|
Goetz JA, Kuehfuss NM, Botschner AJ, Zhu S, Thompson LK, Cox G. Exploring functional interplay amongst Escherichia coli efflux pumps. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36318669 DOI: 10.1099/mic.0.001261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacterial efflux pumps exhibit functional interplay that can translate to additive or multiplicative effects on resistance to antimicrobial compounds. In diderm bacteria, two different efflux pump structural types - single-component inner membrane efflux pumps and cell envelope-spanning multicomponent systems - cooperatively export antimicrobials with cytoplasmic targets from the cell. Harnessing our recently developed efflux platform, which is built upon an extensively efflux-deficient strain of Escherichia coli, here we explore interplay amongst a panel of diverse E. coli efflux pumps. Specifically, we assessed the effect of simultaneously expressing two efflux pump-encoding genes on drug resistance, including single-component inner membrane efflux pumps (MdfA, MdtK and EmrE), tripartite complexes (AcrAB, AcrAD, MdtEF and AcrEF), and the acquired TetA(C) tetracycline resistance pump. Overall, the expression of two efflux pump-encoding genes from the same structural type did not enhance resistance levels regardless of the antimicrobial compound or efflux pump under investigation. In contrast, a combination of the tripartite efflux systems with single-component pumps sharing common substrates provided multiplicative increases to antimicrobial resistance levels. In some instances, resistance was increased beyond the product of resistance provided by the two pumps individually. In summary, the developed efflux platform enables the isolation of efflux pump function, facilitating the identification of interactions between efflux pumps.
Collapse
Affiliation(s)
- James A Goetz
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | - Noah M Kuehfuss
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | - Alexander J Botschner
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | - Shawna Zhu
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | - Laura K Thompson
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
34
|
A genetic platform to investigate the functions of bacterial drug efflux pumps. Nat Chem Biol 2022; 18:1399-1409. [PMID: 36065018 DOI: 10.1038/s41589-022-01119-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Efflux pumps are a serious challenge for the development of antibacterial agents. Overcoming efflux requires an in-depth understanding of efflux pump functions, specificities and the development of inhibitors. However, the complexities of efflux networks have limited such studies. To address these challenges, we generated Efflux KnockOut-35 (EKO-35), a highly susceptible Escherichia coli strain lacking 35 efflux pumps. We demonstrate the use of this strain by constructing an efflux platform comprising EKO-35 strains individually producing efflux pumps forming tripartite complexes with TolC. This platform was profiled against a curated diverse compound collection, which enabled us to define physicochemical properties that contribute to transport. We also show the E. coli drug efflux network is conditionally essential for growth, and that the platform can be used to investigate efflux pump inhibitor specificities and efflux pump interplay. We believe EKO-35 and the efflux platform will have widespread application for the study of drug efflux.
Collapse
|
35
|
Gaur M, Dey S, Sahu A, Dixit S, Sarathbabu S, Zothanzama J, Sahoo RK, Behera DU, Subudhi E. Characterization and Comparative Genomic Analysis of a Highly Colistin-Resistant Chryseobacterium gallinarum: a Rare, Uncommon Pathogen. Front Cell Infect Microbiol 2022; 12:933006. [PMID: 35909954 PMCID: PMC9329510 DOI: 10.3389/fcimb.2022.933006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
For the first time, we describe the whole genome of a yellow-pigmented, capsule-producing, pathogenic, and colistin-resistant Chryseobacterium gallinarum strain MGC42 isolated from a patient with urinary tract infection in India. VITEK 2 automated system initially identified this isolate as C. indologenes. However, 16S rRNA gene sequencing revealed that MGC42 shared 99.67% sequence identity with C. gallinarum–type strain DSM 27622. The draft genome of the strain MGC42 was 4,455,926 bp long with 37.08% Guanine-Cytosine (GC) content and was devoid of any plasmid. Antibiotic resistance, virulence, and toxin genes were predicted by implementing a machine learning classifier. Potential homologs of 340 virulence genes including hemolysin secretion protein D, metalloprotease, catalase peroxidases and autotransporter adhesins, type VI secretion system (T6SS) spike proteins, and 27 toxin factors including a novel toxin domain Ntox23 were identified in the genome. Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs of 110 transporter proteins were predicted that were in agreement with moderate efflux activity. Twelve antibiotic resistance genes including two potentially novel putative β-lactamase genes sharing low similarity with known β-lactamase genes were also identified in the genome of this strain. The strain MGC42 was also resistant to several classes of antibiotics along with carbapenems and polymyxin. We also identified mutations in the orthologs of pmrB (M384T) and lpxD (I66V) that might be responsible for colistin resistance. The MGC42 strain shared 683 core genes with other environmental and clinical strains of Chryseobacterium species. Our findings suggest that the strain MGC42 is a multidrug-resistant, virulent pathogen and recommend 16S rRNA gene sequencing to identify clinical specimens of Chryseobacterium species.
Collapse
Affiliation(s)
- Mahendra Gaur
- Department of Biotechnology, Punjabi University, Patiala, India
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Suchanda Dey
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Anshuman Sahu
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Sangita Dixit
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, India
| | - S. Sarathbabu
- Department of Biotechnology, Mizoram University, Aizawl, India
| | - John Zothanzama
- Department of Biotechnology, Mizoram University, Aizawl, India
| | - Rajesh Kumar Sahoo
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Dibyajyoti Uttameswar Behera
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Enketeswara Subudhi
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, India
- *Correspondence: Monika, ; Enketeswara Subudhi,
| |
Collapse
|
36
|
Hou F, Feng D, Xian M, Huang W. De Novo Biosynthesis and Whole-Cell Catalytic Production of 2-Acetamidophenol in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:238-246. [PMID: 34965133 DOI: 10.1021/acs.jafc.1c06910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
2-Acetamidophenol (AAP) is an aromatic product with promising activities in agricultural applications and medical research. At present, AAP is synthesized by chemical methods from nonrenewable fossil fuel resources, which cause environmental pollution and the reaction conditions are harsh. In this study, we constructed the artificial biosynthetic pathway of AAP with five different expressed proteins in Escherichia coli for the first time. By introducing the hydrogen peroxide degrading enzyme catalase and improving cell tolerance to toxic intermediates or products, the yield of AAP reached 33.54 mg/L using shaking-flask culture. The best-engineered strain could produce 568.57 mg/L AAP by fed-batch fermentation from glucose and precursor (2-aminophenol, 2-AP) addition. Furthermore, a one-pot whole-cell cascade biocatalytic pathway to AAP and analogues was developed and optimized. This method can efficiently produce 1.8 g/L AAP using the methyl anthranilate hydrolysis product as the substrate. This study provides not only the de novo artificial biosynthetic pathway of AAP in E. coli but also a promising sustainable and efficient strategy to enable the synthesis of AAP on a gram scale.
Collapse
Affiliation(s)
- Feifei Hou
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Dexin Feng
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Mo Xian
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Wei Huang
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
37
|
Clinical Status of Efflux Resistance Mechanisms in Gram-Negative Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10091117. [PMID: 34572699 PMCID: PMC8467137 DOI: 10.3390/antibiotics10091117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 01/25/2023] Open
Abstract
Antibiotic efflux is a mechanism that is well-documented in the phenotype of multidrug resistance in bacteria. Efflux is considered as an early facilitating mechanism in the bacterial adaptation face to the concentration of antibiotics at the infectious site, which is involved in the acquirement of complementary efficient mechanisms, such as enzymatic resistance or target mutation. Various efflux pumps have been described in the Gram-negative bacteria most often encountered in infectious diseases and, in healthcare-associated infections. Some are more often involved than others and expel virtually all families of antibiotics and antibacterials. Numerous studies report the contribution of these pumps in resistant strains previously identified from their phenotypes. The authors characterize the pumps involved, the facilitating antibiotics and those mainly concerned by the efflux. However, today no study describes a process for the real-time quantification of efflux in resistant clinical strains. It is currently necessary to have at hospital level a reliable and easy method to quantify the efflux in routine and contribute to a rational choice of antibiotics. This review provides a recent overview of the prevalence of the main efflux pumps observed in clinical practice and provides an idea of the prevalence of this mechanism in the multidrug resistant Gram-negative bacteria. The development of a routine diagnostic tool is now an emergency need for the proper application of current recommendations regarding a rational use of antibiotics.
Collapse
|
38
|
Schaffner SH, Lee AV, Pham MTN, Kassaye BB, Li H, Tallada S, Lis C, Lang M, Liu Y, Ahmed N, Galbraith LG, Moore JP, Bischof KM, Menke CC, Slonczewski JL. Extreme Acid Modulates Fitness Trade-Offs of Multidrug Efflux Pumps MdtEF-TolC and AcrAB-TolC in Escherichia coli K-12. Appl Environ Microbiol 2021; 87:e0072421. [PMID: 34085861 PMCID: PMC8315180 DOI: 10.1128/aem.00724-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/29/2021] [Indexed: 12/26/2022] Open
Abstract
Bacterial genomes encode various multidrug efflux pumps (MDR) whose specific conditions for fitness advantage are unknown. We show that the efflux pump MdtEF-TolC, in Escherichia coli, confers a fitness advantage during exposure to extreme acid (pH 2). Our flow cytometry method revealed pH-dependent fitness trade-offs between bile acids (a major pump substrate) and salicylic acid, a membrane-permeant aromatic acid that induces a drug resistance regulon but depletes proton motive force (PMF). The PMF drives MdtEF-TolC and related pumps such as AcrAB-TolC. Deletion of mdtE (with loss of the pump MdtEF-TolC) increased the strain's relative fitness during growth with or without salicylate or bile acids. However, when the growth cycle included a 2-h incubation at pH 2 (below the pH growth range), MdtEF-TolC conferred a fitness advantage. The fitness advantage required bile salts but was decreased by the presence of salicylate, whose uptake is amplified by acid. For comparison, AcrAB-TolC, the primary efflux pump for bile acids, conferred a PMF-dependent fitness advantage with or without acid exposure in the growth cycle. A different MDR pump, EmrAB-TolC, conferred no selective benefit during growth in the presence of bile acids. Without bile acids, all three MDR pumps incurred a large fitness cost with salicylate when exposed at pH 2. These results are consistent with the increased uptake of salicylate at low pH. Overall, we showed that MdtEF-TolC is an MDR pump adapted for transient extreme-acid exposure and that low pH amplifies the salicylate-dependent fitness cost for drug pumps. IMPORTANCE Antibiotics and other drugs that reach the gut must pass through stomach acid. However, little is known of how extreme acid modulates the effect of drugs on gut bacteria. We find that extreme-acid exposure leads to a fitness advantage for a multidrug pump that otherwise incurs a fitness cost. At the same time, extreme acid amplifies the effect of salicylate selection against multidrug pumps. Thus, organic acids and stomach acid could play important roles in regulating multidrug resistance in the gut microbiome. Our flow cytometry assay provides a way to measure the fitness effects of extreme-acid exposure to various membrane-soluble organic acids, including plant-derived nutrients and pharmaceutical agents. Therapeutic acids might be devised to control the prevalence of multidrug pumps in environmental and host-associated habitats.
Collapse
Affiliation(s)
| | - Abigail V. Lee
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | - Haofan Li
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | - Cassandra Lis
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Mark Lang
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Yangyang Liu
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Nafeez Ahmed
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | | | | | | |
Collapse
|
39
|
Pasqua M, Bonaccorsi di Patti MC, Fanelli G, Utsumi R, Eguchi Y, Trirocco R, Prosseda G, Grossi M, Colonna B. Host - Bacterial Pathogen Communication: The Wily Role of the Multidrug Efflux Pumps of the MFS Family. Front Mol Biosci 2021; 8:723274. [PMID: 34381818 PMCID: PMC8350985 DOI: 10.3389/fmolb.2021.723274] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022] Open
Abstract
Bacterial pathogens are able to survive within diverse habitats. The dynamic adaptation to the surroundings depends on their ability to sense environmental variations and to respond in an appropriate manner. This involves, among others, the activation of various cell-to-cell communication strategies. The capability of the bacterial cells to rapidly and co-ordinately set up an interplay with the host cells and/or with other bacteria facilitates their survival in the new niche. Efflux pumps are ubiquitous transmembrane transporters, able to extrude a large set of different molecules. They are strongly implicated in antibiotic resistance since they are able to efficiently expel most of the clinically relevant antibiotics from the bacterial cytoplasm. Besides antibiotic resistance, multidrug efflux pumps take part in several important processes of bacterial cell physiology, including cell to cell communication, and contribute to increase the virulence potential of several bacterial pathogens. Here, we focus on the structural and functional role of multidrug efflux pumps belonging to the Major Facilitator Superfamily (MFS), the largest family of transporters, highlighting their involvement in the colonization of host cells, in virulence and in biofilm formation. We will offer an overview on how MFS multidrug transporters contribute to bacterial survival, adaptation and pathogenicity through the export of diverse molecules. This will be done by presenting the functions of several relevant MFS multidrug efflux pumps in human life-threatening bacterial pathogens as Staphylococcus aureus, Listeria monocytogenes, Klebsiella pneumoniae, Shigella/E. coli, Acinetobacter baumannii.
Collapse
Affiliation(s)
- Martina Pasqua
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | | | - Giulia Fanelli
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | - Ryutaro Utsumi
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan
| | - Yoko Eguchi
- Department of Science and Technology on Food Safety, Kindai University, Kinokawa, Japan
| | - Rita Trirocco
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | - Gianni Prosseda
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | - Milena Grossi
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | - Bianca Colonna
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
40
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
41
|
Dong Y, Li Q, Geng J, Cao Q, Zhao D, Jiang M, Li S, Lu C, Liu Y. The TonB system in Aeromonas hydrophila NJ-35 is essential for MacA 2B 2 efflux pump-mediated macrolide resistance. Vet Res 2021; 52:63. [PMID: 33926565 PMCID: PMC8082627 DOI: 10.1186/s13567-021-00934-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
The TonB system is generally considered as an energy transporting device for the absorption of nutrients. Our recent study showed that deletion of this system caused a significantly increased sensitivity of Aeromonas hydrophila to the macrolides erythromycin and roxithromycin, but had no effect on other classes of antibiotics. In this study, we found the sensitivity of ΔtonB123 to all macrolides tested revealed a 8- to 16-fold increase compared with the wild-type (WT) strain, but this increase was not related with iron deprivation caused by tonB123 deletion. Further study demonstrated that the deletion of tonB123 did not damage the integrity of the bacterial membrane but did hinder the function of macrolide efflux. Compared with the WT strain, deletion of macA2B2, one of two ATP-binding cassette (ABC) types of the macrolide efflux pump, enhanced the sensitivity to the same levels as those of ΔtonB123. Interestingly, the deletion of macA2B2 in the ΔtonB123 mutant did not cause further increase in sensitivity to macrolide resistance, indicating that the macrolide resistance afforded by the MacA2B2 pump was completely abrogated by tonB123 deletion. In addition, macA2B2 expression was not altered in the ΔtonB123 mutant, indicating that any influence of TonB on MacA2B2-mediated macrolide resistance was at the pump activity level. In conclusion, inactivation of the TonB system significantly compromises the resistance of A. hydrophila to macrolides, and the mechanism of action is related to the function of MacA2B2-mediated macrolide efflux.
Collapse
Affiliation(s)
- Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qing Li
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinzhu Geng
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qing Cao
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dan Zhao
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Shougang Li
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
42
|
Metabolomics Reveal Potential Natural Substrates of AcrB in Escherichia coli and Salmonella enterica Serovar Typhimurium. mBio 2021; 12:mBio.00109-21. [PMID: 33785633 PMCID: PMC8092203 DOI: 10.1128/mbio.00109-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multidrug-resistant Gram-negative bacteria pose a global threat to human health. The AcrB efflux pump confers inherent and evolved drug resistance to Enterobacterales, including Escherichia coli and Salmonella enterica serovar Typhimurium. In the fight against antibiotic resistance, drugs that target resistance mechanisms in bacteria can be used to restore the therapeutic effectiveness of antibiotics. The multidrug resistance efflux complex AcrAB-TolC is the most clinically relevant efflux pump in Enterobacterales and is a target for drug discovery. Inhibition of the pump protein AcrB allows the intracellular accumulation of a wide variety of antibiotics, effectively restoring their therapeutic potency. To facilitate the development of AcrB efflux inhibitors, it is desirable to discover the native substrates of the pump, as these could be chemically modified to become inhibitors. We analyzed the native substrate profile of AcrB in Escherichia coli MG1655 and Salmonella enterica serovar Typhimurium SL1344 using an untargeted metabolomics approach. We analyzed the endo- and exometabolome of the wild-type strain and their respective AcrB loss-of-function mutants (AcrB D408A) to determine the metabolites that are native substrates of AcrB. Although there is 95% homology between the AcrB proteins of S. Typhimurium and E. coli, we observed mostly different metabolic responses in the exometabolomes of the S. Typhimurium and E. coli AcrB D408A mutants relative to those in the wild type, potentially indicating a differential metabolic adaptation to the same mutation in these two species. Additionally, we uncovered metabolite classes that could be involved in virulence of S. Typhimurium and a potential natural substrate of AcrB common to both species.
Collapse
|
43
|
Henderson PJF, Maher C, Elbourne LDH, Eijkelkamp BA, Paulsen IT, Hassan KA. Physiological Functions of Bacterial "Multidrug" Efflux Pumps. Chem Rev 2021; 121:5417-5478. [PMID: 33761243 DOI: 10.1021/acs.chemrev.0c01226] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial multidrug efflux pumps have come to prominence in human and veterinary pathogenesis because they help bacteria protect themselves against the antimicrobials used to overcome their infections. However, it is increasingly realized that many, probably most, such pumps have physiological roles that are distinct from protection of bacteria against antimicrobials administered by humans. Here we undertake a broad survey of the proteins involved, allied to detailed examples of their evolution, energetics, structures, chemical recognition, and molecular mechanisms, together with the experimental strategies that enable rapid and economical progress in understanding their true physiological roles. Once these roles are established, the knowledge can be harnessed to design more effective drugs, improve existing microbial production of drugs for clinical practice and of feedstocks for commercial exploitation, and even develop more sustainable biological processes that avoid, for example, utilization of petroleum.
Collapse
Affiliation(s)
- Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Claire Maher
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Liam D H Elbourne
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Ian T Paulsen
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| |
Collapse
|
44
|
Yan Y, Li X, Zhang C, Lv L, Gao B, Li M. Research Progress on Antibacterial Activities and Mechanisms of Natural Alkaloids: A Review. Antibiotics (Basel) 2021; 10:antibiotics10030318. [PMID: 33808601 PMCID: PMC8003525 DOI: 10.3390/antibiotics10030318] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/29/2022] Open
Abstract
Alkaloids are nitrogen-containing heterocyclic compounds typically isolated from plants. They represent one of the most important types of natural products because of their large number and structural diversity and complexity. Based on their chemical core structures, alkaloids are classified as isoquinolines, quinolines, indoles, piperidine alkaloids, etc. In-depth analyses of alkaloids have revealed their antibacterial activities. To date, due to the widespread use of antibiotics, the problem of drug-resistant bacterial infections has been gradually increasing, which severely affects the clinical efficacy of antibacterial therapies and patient safety. Therefore, significant research efforts are focused on alkaloids because they represent a potentially new type of natural antibiotic with a wide antibacterial spectrum, rare adverse reactions, and a low tendency to produce drug resistance. Their main antibacterial mechanisms include inhibition of bacterial cell wall synthesis, change in cell membrane permeability, inhibition of bacterial metabolism, and inhibition of nucleic acid and protein synthesis. This article reviews recent reports about the chemical structures and the antibacterial activities and mechanisms of alkaloids. The purpose is to solve the problem of bacterial resistance and to provide a certain theoretical basis and research ideas for the development of new antibacterial drugs.
Collapse
Affiliation(s)
- Yumei Yan
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (Y.Y.); (X.L.); (C.Z.)
| | - Xing Li
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (Y.Y.); (X.L.); (C.Z.)
| | - Chunhong Zhang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (Y.Y.); (X.L.); (C.Z.)
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014040, China
- Inner Mongolia Engineering Research Center of the Planting and Development of Astragalus Membranaceus of the Geoherbs, Baotou Medical College, Baotou 014040, China
| | - Lijuan Lv
- Department of Basic Science, Tianjin Agricultural University, Tianjin 300384, China;
| | - Bing Gao
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (Y.Y.); (X.L.); (C.Z.)
- Correspondence: (B.G.); (M.L.)
| | - Minhui Li
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (Y.Y.); (X.L.); (C.Z.)
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014040, China
- Inner Mongolia Engineering Research Center of the Planting and Development of Astragalus Membranaceus of the Geoherbs, Baotou Medical College, Baotou 014040, China
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot 010020, China
- Correspondence: (B.G.); (M.L.)
| |
Collapse
|
45
|
Genome Informatics and Machine Learning-Based Identification of Antimicrobial Resistance-Encoding Features and Virulence Attributes in Escherichia coli Genomes Representing Globally Prevalent Lineages, Including High-Risk Clonal Complexes. mBio 2021; 13:e0379621. [PMID: 35164570 PMCID: PMC8844930 DOI: 10.1128/mbio.03796-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Escherichia coli, a ubiquitous commensal/pathogenic member from the Enterobacteriaceae family, accounts for high infection burden, morbidity, and mortality throughout the world. With emerging multidrug resistance (MDR) on a massive scale, E. coli has been listed as one of the Global Antimicrobial Resistance and Use Surveillance System (GLASS) priority pathogens. Understanding the resistance mechanisms and underlying genomic features appears to be of utmost importance to tackle further spread of these multidrug-resistant superbugs. While a few of the globally prevalent sequence types (STs) of E. coli, such as ST131, ST69, ST405, and ST648, have been previously reported to be highly virulent and harboring MDR, there is no clarity if certain ST lineages have a greater propensity to acquire MDR. In this study, large-scale comparative genomics of a total of 5,653 E. coli genomes from 19 ST lineages revealed ST-wide prevalence patterns of genomic features, such as antimicrobial resistance (AMR)-encoding genes/mutations, virulence genes, integrons, and transposons. Interpretation of the importance of these features using a Random Forest Classifier trained with 11,988 genomic features from whole-genome sequence data identified ST-specific or phylogroup-specific signature proteins mostly belonging to different protein superfamilies, including the toxin-antitoxin systems. Our study provides a comprehensive understanding of a myriad of genomic features, ST-specific proteins, and resistance mechanisms entailing different lineages of E. coli at the level of genomes; this could be of significant downstream importance in understanding the mechanisms of AMR, in clinical discovery, in epidemiology, and in devising control strategies. IMPORTANCE With the leap in whole-genome data being generated, the application of relevant methods to mine biologically significant information from microbial genomes is of utmost importance to public health genomics. Machine-learning methods have been used not only to mine, curate, or classify the data but also to identify the relevant features that could be linked to a particular class/target. This is perhaps one of the pioneering studies that has attempted to classify a large repertoire of E. coli genome data sets (5,653 genomes) belonging to 19 different STs (including well-studied as well as understudied STs) using machine learning approaches. Important features identified by these approaches have revealed ST-specific signature proteins, which could be further studied to predict possible associations with the phenotypic profiles, thereby providing a better understanding of virulence and the resistance mechanisms among different clonal lineages of E. coli.
Collapse
|
46
|
Grund ME, Choi SJ, McNitt DH, Barbier M, Hu G, LaSala PR, Cote CK, Berisio R, Lukomski S. Burkholderia collagen-like protein 8, Bucl8, is a unique outer membrane component of a putative tetrapartite efflux pump in Burkholderia pseudomallei and Burkholderia mallei. PLoS One 2020; 15:e0242593. [PMID: 33227031 PMCID: PMC7682875 DOI: 10.1371/journal.pone.0242593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022] Open
Abstract
Bacterial efflux pumps are an important pathogenicity trait because they extrude a variety of xenobiotics. Our laboratory previously identified in silico Burkholderia collagen-like protein 8 (Bucl8) in the hazardous pathogens Burkholderia pseudomallei and Burkholderia mallei. We hypothesize that Bucl8, which contains two predicted tandem outer membrane efflux pump domains, is a component of a putative efflux pump. Unique to Bucl8, as compared to other outer membrane proteins, is the presence of an extended extracellular region containing a collagen-like (CL) domain and a non-collagenous C-terminus (Ct). Molecular modeling and circular dichroism spectroscopy with a recombinant protein, corresponding to this extracellular CL-Ct portion of Bucl8, demonstrated that it adopts a collagen triple helix, whereas functional assays screening for Bucl8 ligands identified binding to fibrinogen. Bioinformatic analysis of the bucl8 gene locus revealed it resembles a classical efflux-pump operon. The bucl8 gene is co-localized with downstream fusCDE genes encoding fusaric acid (FA) resistance, and with an upstream gene, designated as fusR, encoding a LysR-type transcriptional regulator. Using reverse transcriptase (RT)-qPCR, we defined the boundaries and transcriptional organization of the fusR-bucl8-fusCDE operon. We found exogenous FA induced bucl8 transcription over 80-fold in B. pseudomallei, while deletion of the entire bucl8 locus decreased the minimum inhibitory concentration of FA 4-fold in its isogenic mutant. We furthermore showed that the putative Bucl8-associated pump expressed in the heterologous Escherichia coli host confers FA resistance. On the contrary, the Bucl8-associated pump did not confer resistance to a panel of clinically-relevant antimicrobials in Burkholderia and E. coli. We finally demonstrated that deletion of the bucl8-locus drastically affects the growth of the mutant in L-broth. We determined that Bucl8 is a component of a novel tetrapartite efflux pump, which confers FA resistance, fibrinogen binding, and optimal growth.
Collapse
Affiliation(s)
- Megan E. Grund
- Department of Microbiology, Immunology and Cell Biology, School of
Medicine, West Virginia University, Morgantown, WV, United States of
America
| | - Soo J. Choi
- Department of Microbiology, Immunology and Cell Biology, School of
Medicine, West Virginia University, Morgantown, WV, United States of
America
| | - Dudley H. McNitt
- Department of Microbiology, Immunology and Cell Biology, School of
Medicine, West Virginia University, Morgantown, WV, United States of
America
| | - Mariette Barbier
- Department of Microbiology, Immunology and Cell Biology, School of
Medicine, West Virginia University, Morgantown, WV, United States of
America
| | - Gangqing Hu
- Department of Microbiology, Immunology and Cell Biology, School of
Medicine, West Virginia University, Morgantown, WV, United States of
America
- Cancer Center, West Virginia University, Morgantown, WV, United States of
America
- Bioinformatics Core, West Virginia University, Morgantown, WV, United
States of America
| | - P. Rocco LaSala
- Department of Pathology, West Virginia University, Morgantown, WV, United
States of America
| | - Christopher K. Cote
- Bacteriology Division, The United States Army Medical Research Institute
of Infectious Diseases (USAMRIID), Frederick, MD, United States of
America
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council,
Naples, Italy
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, School of
Medicine, West Virginia University, Morgantown, WV, United States of
America
- Cancer Center, West Virginia University, Morgantown, WV, United States of
America
| |
Collapse
|