1
|
Peres Emidio EC, Singulani JDL, Freitas GJC, Costa MC, Gouveia-Eufrasio L, Carmo PHF, Pedroso SHSP, Brito CB, Bastos RW, Ribeiro NQ, Oliveira LVN, Silva MF, Paixão TA, Souza DDG, Santos DA. Staphylococcus aureus triggers a protective inflammatory response against secondary Cryptococcus gattii infection in a murine model. Microbes Infect 2023; 25:105122. [PMID: 36842669 DOI: 10.1016/j.micinf.2023.105122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/05/2023] [Accepted: 02/17/2023] [Indexed: 02/28/2023]
Abstract
Prior infections can provide protection or enhance susceptibility to a subsequent infection through microorganism's interaction or host immunomodulation. Staphylococcus aureus (SA) and Cryptococcus gattii (CG) cause lungs infection, but it is unclear how they interact in vivo. This study aimed to study the effects of the primary SA lung infection on secondary cryptococcosis caused by CG in a murine model. The mice's survival, fungal burden, behavior, immune cells, cytokines, and chemokines were quantified to evaluate murine cryptococcosis under the influence of a previous SA infection. Further, fungal-bacterial in vitro interaction was studied in a culture medium and a phagocytosis assay. The primary infection with SA protects animals from the subsequent CG infection by reducing lethality, improving behavior, and impairing the fungal proliferation within the host. This phenotype was associated with the proinflammatory antifungal host response elicited by the bacteria in the early stage of cryptococcosis. There was no direct inhibition of CG by SA, although the phagocytic activity of macrophages was reduced. Identifying mechanisms involved in this protection may lead to new approaches for preventing and treating cryptococcosis.
Collapse
Affiliation(s)
- Elúzia Castro Peres Emidio
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Junya de Lacorte Singulani
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo José Cota Freitas
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marliete Carvalho Costa
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ludmila Gouveia-Eufrasio
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paulo Henrique Fonseca Carmo
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Camila Bernardo Brito
- Departamento de Microbiologia/Laboratório de Interação Microorganismo-Hospedeiro, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafael Wesley Bastos
- Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Noelly Queiroz Ribeiro
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lorena Vívien Neves Oliveira
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferreira Silva
- Departamento de Patologia/Laboratório de Patologia Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiane Alves Paixão
- Departamento de Patologia/Laboratório de Patologia Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniele da Glória Souza
- Departamento de Microbiologia/Laboratório de Interação Microorganismo-Hospedeiro, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel Assis Santos
- Departamento de Microbiologia/Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
2
|
Cong L, Chen C, Mao S, Han Z, Zhu Z, Li Y. Intestinal bacteria-a powerful weapon for fungal infections treatment. Front Cell Infect Microbiol 2023; 13:1187831. [PMID: 37333850 PMCID: PMC10272564 DOI: 10.3389/fcimb.2023.1187831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
The morbidity and mortality of invasive fungal infections are rising gradually. In recent years, fungi have quietly evolved stronger defense capabilities and increased resistance to antibiotics, posing huge challenges to maintaining physical health. Therefore, developing new drugs and strategies to combat these invasive fungi is crucial. There are a large number of microorganisms in the intestinal tract of mammals, collectively referred to as intestinal microbiota. At the same time, these native microorganisms co-evolve with their hosts in symbiotic relationship. Recent researches have shown that some probiotics and intestinal symbiotic bacteria can inhibit the invasion and colonization of fungi. In this paper, we review the mechanism of some intestinal bacteria affecting the growth and invasion of fungi by targeting the virulence factors, quorum sensing system, secreting active metabolites or regulating the host anti-fungal immune response, so as to provide new strategies for resisting invasive fungal infection.
Collapse
Affiliation(s)
- Liu Cong
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chaoqun Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shanshan Mao
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zibing Han
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zuobin Zhu
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
3
|
Meagher RB, Lewis ZA, Ambati S, Lin X. DectiSomes: C-type lectin receptor-targeted liposomes as pan-antifungal drugs. Adv Drug Deliv Rev 2023; 196:114776. [PMID: 36934519 PMCID: PMC10133202 DOI: 10.1016/j.addr.2023.114776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023]
Abstract
Combatting the ever-increasing threat from invasive fungal pathogens faces numerous fundamental challenges, including constant human exposure to large reservoirs of species in the environment, the increasing population of immunocompromised or immunosuppressed individuals, the unsatisfactory efficacy of current antifungal drugs and their associated toxicity, and the scientific and economic barriers limiting a new antifungal pipeline. DectiSomes represent a new drug delivery platform that enhances antifungal efficacy for diverse fungal pathogens and reduces host toxicity for current and future antifungals. DectiSomes employ pathogen receptor proteins - C-type lectins - to target drug-loaded liposomes to conserved fungal cognate ligands and away from host cells. DectiSomes represent one leap forward for urgently needed effective pan-antifungal therapy. Herein, we discuss the problems of battling fungal diseases and the state of DectiSome development.
Collapse
Affiliation(s)
- Richard B Meagher
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Zachary A Lewis
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Suresh Ambati
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
4
|
Yamaguchi M, Takahashi-Nakaguchi A, Uematsu K, Naito K, Sato-Okamoto M, Ishiwata K, Naraoka S, Chibana H. Electron Microscopy of Mouse Tissues by Sandwich Freezing and Freeze-Substitution. CYTOLOGIA 2022. [DOI: 10.1508/cytologia.87.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | - Kumiko Naito
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital
| | | | - Kazuki Ishiwata
- Department of Endocrinology, Hematology and Gerontology, Chiba University Hospital
| | - Sakino Naraoka
- Graduate School of Science and Engineering, Advanced Science and Engineering Biology, Chiba University
| | | |
Collapse
|
5
|
Ramírez-Granillo A, Bautista-Hernández LA, Bautista-De Lucío VM, Magaña-Guerrero FS, Domínguez-López A, Córdova-Alcántara IM, Pérez NO, Martínez-Rivera MDLA, Rodríguez-Tovar AV. Microbial Warfare on Three Fronts: Mixed Biofilm of Aspergillus fumigatus and Staphylococcus aureus on Primary Cultures of Human Limbo-Corneal Fibroblasts. Front Cell Infect Microbiol 2021; 11:646054. [PMID: 34485167 PMCID: PMC8415486 DOI: 10.3389/fcimb.2021.646054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/19/2021] [Indexed: 11/08/2022] Open
Abstract
Background Coinfections with fungi and bacteria in ocular pathologies are increasing at an alarming rate. Two of the main etiologic agents of infections on the corneal surface, such as Aspergillus fumigatus and Staphylococcus aureus, can form a biofilm. However, mixed fungal–bacterial biofilms are rarely reported in ocular infections. The implementation of cell cultures as a study model related to biofilm microbial keratitis will allow understanding the pathogenesis in the cornea. The cornea maintains a pathogen-free ocular surface in which human limbo-corneal fibroblast cells are part of its cell regeneration process. There are no reports of biofilm formation assays on limbo-corneal fibroblasts, as well as their behavior with a polymicrobial infection. Objective To determine the capacity of biofilm formation during this fungal–bacterial interaction on primary limbo-corneal fibroblast monolayers. Results The biofilm on the limbo-corneal fibroblast culture was analyzed by assessing biomass production and determining metabolic activity. Furthermore, the mixed biofilm effect on this cell culture was observed with several microscopy techniques. The single and mixed biofilm was higher on the limbo-corneal fibroblast monolayer than on abiotic surfaces. The A. fumigatus biofilm on the human limbo-corneal fibroblast culture showed a considerable decrease compared to the S. aureus biofilm on the limbo-corneal fibroblast monolayer. Moreover, the mixed biofilm had a lower density than that of the single biofilm. Antibiosis between A. fumigatus and S. aureus persisted during the challenge to limbo-corneal fibroblasts, but it seems that the fungus was more effectively inhibited. Conclusion This is the first report of mixed fungal–bacterial biofilm production and morphological characterization on the limbo-corneal fibroblast monolayer. Three antibiosis behaviors were observed between fungi, bacteria, and limbo-corneal fibroblasts. The mycophagy effect over A. fumigatus by S. aureus was exacerbated on the limbo-corneal fibroblast monolayer. During fungal–bacterial interactions, it appears that limbo-corneal fibroblasts showed some phagocytic activity, demonstrating tripartite relationships during coinfection.
Collapse
Affiliation(s)
- Adrián Ramírez-Granillo
- Medical Mycology Laboratory, National School of Biological Sciences (ENCB)-Instituto Politécnico Nacional (IPN), Department of Microbiology, Mexico City, Mexico
| | - Luis Antonio Bautista-Hernández
- Ocular Microbiology and Proteomics Laboratory, Research Unit, "Conde de Valenciana Private Assistance Foundation", Mexico City, Mexico
| | - Víctor Manuel Bautista-De Lucío
- Ocular Microbiology and Proteomics Laboratory, Research Unit, "Conde de Valenciana Private Assistance Foundation", Mexico City, Mexico
| | - Fátima Sofía Magaña-Guerrero
- Cell Biology and Amniotic Membrane Laboratory, Research Unit, "Conde de Valenciana Private Assistance Foundation", Mexico City, Mexico
| | - Alfredo Domínguez-López
- Cell Biology and Amniotic Membrane Laboratory, Research Unit, "Conde de Valenciana Private Assistance Foundation", Mexico City, Mexico
| | - Itzel Margarita Córdova-Alcántara
- Medical Mycology Laboratory, National School of Biological Sciences (ENCB)-Instituto Politécnico Nacional (IPN), Department of Microbiology, Mexico City, Mexico
| | - Néstor O Pérez
- Research and Development Department Probiomed SA de CV, Tenancingo Edo de Mex, Mexico
| | - María de Los Angeles Martínez-Rivera
- Medical Mycology Laboratory, National School of Biological Sciences (ENCB)-Instituto Politécnico Nacional (IPN), Department of Microbiology, Mexico City, Mexico
| | - Aída Verónica Rodríguez-Tovar
- Medical Mycology Laboratory, National School of Biological Sciences (ENCB)-Instituto Politécnico Nacional (IPN), Department of Microbiology, Mexico City, Mexico
| |
Collapse
|
6
|
Yamaguchi M, Taguchi M, Uematsu K, Takahashi-Nakaguchi A, Sato-Okamoto M, Chibana H. Sandwich freezing device for rapid freezing of viruses, bacteria, yeast, cultured cells and animal and human tissues in electron microscopy. Microscopy (Oxf) 2021; 70:215-223. [PMID: 33206169 DOI: 10.1093/jmicro/dfaa049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 11/14/2022] Open
Abstract
We have been using sandwich freezing of living yeast and bacteria followed by freeze-substitution for observing close-to-native ultrastructure of cells. Recently, sandwich freezing of glutaraldehyde-fixed cultured cells and human tissues have been found to give excellent preservation of ultrastructure of cells and tissues. These studies, however, have been conducted using a handmade sandwich freezing device and have been limited in a few laboratories. To spread the use of this method to other laboratories, we fabricated and commercialized a new sandwich freezing device. The new device is inexpensive, portable and sterilizable. It can be used to rapid-freeze viruses, bacteria, yeast, cultured cells and animal and human tissues to a depth of 0.2 mm if tissues are prefixed with glutaraldehyde. The commercial availability of this device will expand application of rapid freezing to wide range of biological materials.
Collapse
Affiliation(s)
- Masashi Yamaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Masaki Taguchi
- Marine Works Japan, Ltd., 3-54-1 Oppamahigashi, Yokosuka 237-0063, Japan
| | - Katsuyuki Uematsu
- Marine Works Japan, Ltd., 3-54-1 Oppamahigashi, Yokosuka 237-0063, Japan
| | | | - Michiyo Sato-Okamoto
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| |
Collapse
|
7
|
Hemmadi V, Biswas M. An overview of moonlighting proteins in Staphylococcus aureus infection. Arch Microbiol 2020; 203:481-498. [PMID: 33048189 PMCID: PMC7551524 DOI: 10.1007/s00203-020-02071-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 01/01/2023]
Abstract
Staphylococcus aureus is responsible for numerous instances of superficial, toxin-mediated, and invasive infections. The emergence of methicillin-resistant (MRSA), as well as vancomycin-resistant (VRSA) strains of S. aureus, poses a massive threat to human health. The tenacity of S. aureus to acquire resistance against numerous antibiotics in a very short duration makes the effort towards developing new antibiotics almost futile. S. aureus owes its destructive pathogenicity to the plethora of virulent factors it produces among which a majority of them are moonlighting proteins. Moonlighting proteins are the multifunctional proteins in which a single protein, with different oligomeric conformations, perform multiple independent functions in different cell compartments. Peculiarly, proteins involved in key ancestral functions and metabolic pathways typically exhibit moonlighting functions. Pathogens mainly employ those proteins as virulent factors which exhibit high structural conservation towards their host counterparts. Consequentially, the host immune system counteracts these invading bacterial virulent factors with minimal protective action. Additionally, many moonlighting proteins also play multiple roles in various stages of pathogenicity while augmenting the virulence of the bacterium. This has necessitated elaborative studies to be conducted on moonlighting proteins of S. aureus that can serve as drug targets. This review is a small effort towards understanding the role of various moonlighting proteins in the pathogenicity of S. aureus.
Collapse
Affiliation(s)
- Vijay Hemmadi
- Department of Biological Sciences, Birla Institute of Technology and Science, BITS-Pilani, K. K. Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India
| | - Malabika Biswas
- Department of Biological Sciences, Birla Institute of Technology and Science, BITS-Pilani, K. K. Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India.
| |
Collapse
|
8
|
Yamaguchi M, Wakabayashi S, Nakamura Y, Matsue H, Hirao T, Aoki S, Yamashina S, Yamada H, Mamizu N, Furukawa H, Chibana H. Good Ultrastructural Preservation of Human Tissues and Cultured Cells by Glutaraldehyde Fixation, Sandwich Freezing, and Freeze-Substitution. CYTOLOGIA 2020. [DOI: 10.1508/cytologia.85.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | - Yuumi Nakamura
- Department of Dermatology, Chiba University Graduate School of Medicine
| | - Hiroyuki Matsue
- Department of Dermatology, Chiba University Graduate School of Medicine
| | - Takuya Hirao
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
- Department of Pharmaceutical Sciences, International University of Health and Welfare
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | | | - Hiroyuki Yamada
- The Research Institute of Tuberculosis, JATA (Japan Anti-Tuberculosis Association)
| | | | | | | |
Collapse
|
9
|
Kumari A, Singh R. Medically important interactions of staphylococci with pathogenic fungi. Future Microbiol 2020; 14:1159-1170. [PMID: 31512519 DOI: 10.2217/fmb-2019-0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Staphylococci are common inhabitants at several human body sites and are also implicated in infections either as primary or opportunistic pathogens. These bacteria can thus both contribute to the host defense being a part of the commensalistic microbiota or synergize with the other microbes during the infection process. Among fungi, staphylococci interact synergistically with Candida spp. and Aspergillus fumigatus, and antagonistically with Cryptococcus neoformans and Trichosporon asahii. These interactions are highly dynamic and are orchestrated by a multitude of microbial and host factors. During such cross-talks, staphylococci can modulate the virulence, immune response or drug resistance of the coexisting microbe(s), thereby influencing the infection course, disease severity, treatment strategy and the clinical outcome.
Collapse
Affiliation(s)
- Anjna Kumari
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Rachna Singh
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
10
|
Chung KY, Brown JCS. Biology and function of exo-polysaccharides from human fungal pathogens. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020; 7:1-11. [PMID: 33042730 DOI: 10.1007/s40588-020-00137-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose of review Environmental fungi such as Cryptococcus neoformans and Aspergillus fumigatus must survive many different and changing environments as they transition from their environmental niches to human lungs and other organs. Fungi alter their cell surfaces and secreted macromolecules to respond to and manipulate their surroundings. Recent findings This review focuses on exo-polysaccharides, chains of sugars that transported out of the cell and spread to the local environment. Major exo-polysaccharides for C. neoformans and A. fumigatus are glucuronylxylomannan (GXM) and galactosaminogalactan (GAG), respectively, which accumulate at high concentrations in growth medium and infected patients. Summary Here we discuss GXM and GAG synthesis and export, their immunomodulatory properties, and their roles in biofilm formation. We also propose areas of future research to address outstanding questions in the field that could facilitate development of new disease treatments.
Collapse
Affiliation(s)
- Krystal Y Chung
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jessica C S Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
11
|
Kumari A, Tewari R, Singh R. Antagonistic Interaction of Staphylococcus aureus and Staphylococcus epidermidis with Rhizopus arrhizus Mediated by Phenol Soluble Modulins and Organic Acids. ACS Infect Dis 2019; 5:1887-1895. [PMID: 31535547 DOI: 10.1021/acsinfecdis.9b00205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rhizopus arrhizus (R. arrhizus) is a common causative agent of mucormycosis that usually enters the human body through the respiratory tract and skin. Both these sites harbor staphylococci as a part of the normal microflora, indicating the possibility of interspecies interactions. We aimed to elucidate this interaction and identify the molecular mechanisms involved. Both Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis) substantially hindered R. arrhizus radial growth, spore germination, and liquid culture biomass. Secreted components in the stationary-phase supernatant were responsible for this activity. The active components, based on molecular weight-based fractionation, mass spectrometry, and ion exclusion chromatography, were identified as a truncated version of phenol soluble modulin α2 (Δ1Δ2PSMα2) and PSMα3 in S. aureus, PSMδ in S. epidermidis, and organic acids in both the species. Exposure to the phenol soluble modulins (PSMs) extensively damaged the fungal spores and pre-existing hyphae, leading to bleb formation, shriveling, hyphal shrinkage, and cell distortion.
Collapse
Affiliation(s)
- Anjna Kumari
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Rupinder Tewari
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Rachna Singh
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
12
|
Hu J, Wei P, Seeberger PH, Yin J. Mannose-Functionalized Nanoscaffolds for Targeted Delivery in Biomedical Applications. Chem Asian J 2018; 13:3448-3459. [PMID: 30251341 DOI: 10.1002/asia.201801088] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/18/2018] [Indexed: 12/27/2022]
Abstract
Targeted drug delivery by nanomaterials has been extensively investigated as an effective strategy to surmount obstacles in the conventional treatment of cancer and infectious diseases, such as systemic toxicity, low drug efficacy, and drug resistance. Mannose-binding C-type lectins, which primarily include mannose receptor (MR, CD206) and dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), are highly expressed on various cancer cells, endothelial cells, macrophages, and dendritic cells (DCs), which make them attractive targets for therapeutic effect. Mannosylated nanomaterials hold great potential in cancer and infection treatment on account of their direct therapeutic effect on targeted cells, modulation of the tumor microenvironment, and stimulation of immune response through antigen presentation. This review presents the recent advances in mannose-based targeted delivery nanoplatforms incorporated with different therapies in the biomedical field.
Collapse
Affiliation(s)
- Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| | - Peng Wei
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jian Yin
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| |
Collapse
|
13
|
Camarillo-Márquez O, Córdova-Alcántara IM, Hernández-Rodríguez CH, García-Pérez BE, Martínez-Rivera MA, Rodríguez-Tovar AV. Antagonistic Interaction of Staphylococcus aureus Toward Candida glabrata During in vitro Biofilm Formation Is Caused by an Apoptotic Mechanism. Front Microbiol 2018; 9:2031. [PMID: 30214437 PMCID: PMC6125415 DOI: 10.3389/fmicb.2018.02031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/13/2018] [Indexed: 11/24/2022] Open
Abstract
Background: Infections caused by Candida species and Staphylococcus aureus are associated with biofilm formation. C. albicans–S. aureus interactions are synergistic due to the significant increase in mixed biofilms and improved resistance to vancomycin of S. aureus. C. glabrata and S. aureus both are nosocomial pathogens that cause opportunistic infections in similar host niches. However, there is scarce information concerning the interaction between these last microorganisms. Results: The relationship between C. glabrata and S. aureus was evaluated by estimating the viability of both microorganisms in co-culture of planktonic cells and in single and mixed biofilms. An antagonistic behavior of S. aureus and their cell-free bacterial supernatant (CFBS) toward C. glabrata, both in planktonic form and in biofilms, was demonstrated. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM) images showed yeast cells surrounded by bacteria, alterations in intracytoplasmic membranes, and non-viable blastoconidia with intact cell walls. Concomitantly, S. aureus cells remained viable and unaltered. The antagonistic activity of S. aureus toward C. glabrata was not due to cell-to-cell contact but the presence of CFBS, which causes a significant decrement in yeast viability and the formation of numerous lipid droplets (LDs), reactive oxygen species (ROS) accumulation, as well as nuclear alterations, and DNA fragmentation indicating the induction of an apoptotic mechanism. Conclusion: Our results demonstrate that the S. aureus CFBS causes cell death in C. glabrata by an apoptotic mechanism.
Collapse
Affiliation(s)
- Omar Camarillo-Márquez
- Laboratorio de Micología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Itzel M Córdova-Alcántara
- Laboratorio de Micología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Cesar H Hernández-Rodríguez
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Blanca E García-Pérez
- Laboratorio de Microbiología General, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - María A Martínez-Rivera
- Laboratorio de Micología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Aida V Rodríguez-Tovar
- Laboratorio de Micología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
14
|
Camacho E, Casadevall A. Cryptococcal Traits Mediating Adherence to Biotic and Abiotic Surfaces. J Fungi (Basel) 2018; 4:jof4030088. [PMID: 30060601 PMCID: PMC6162697 DOI: 10.3390/jof4030088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/22/2023] Open
Abstract
Several species in the genus Cryptococcus are facultative intracellular pathogens capable of causing disease associated with high mortality and morbidity in humans. These fungi interact with other organisms in the soil, and these interactions may contribute to the development of adaptation mechanisms that function in virulence by promoting fungal survival in animal hosts. Fungal adhesion molecules, also known as adhesins, have been classically considered as cell-surface or secreted proteins that play critical roles in microbial pathogenesis or in biofilm formation as structural components. Pathogenic Cryptococcus spp. differ from other pathogenic yeasts in having a polysaccharide capsule that covers the cell wall surface and precludes interactions of those structures with host cell receptors. Hence, pathogenic Cryptococcus spp. use unconventional tools for surface attachment. In this essay, we review the unique traits and mechanisms favoring adhesion of Cryptococcus spp. to biotic and abiotic surfaces. Knowledge of the traits that mediate adherence could be exploited in the development of therapeutic, biomedical, and/or industrial products.
Collapse
Affiliation(s)
- Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA.
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA.
| |
Collapse
|
15
|
Boukahil I, Czuprynski CJ. Mutual antagonism between Mannheimia haemolytica and Pasteurella multocida when forming a biofilm on bovine bronchial epithelial cells in vitro. Vet Microbiol 2018. [PMID: 29519520 DOI: 10.1016/j.vetmic.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mannheimia haemolytica and Pasteurella multocida are two bacterial species implicated in the bovine respiratory disease complex (BRDC) that is costly to the beef and dairy cattle industries. Both bacterial species are thought to occupy a similar niche as commensals in the upper respiratory tract. Many bacteria are thought to exist as biofilms in their hosts, perhaps in close proximity with other bacterial species. We previously showed that M. haemolytica forms biofilm on bovine respiratory epithelial cells in vitro. We are interested in the possibility that M. haemolytica and P. multocida co-exist as biofilms in the upper respiratory tract of cattle. In this study, we begin to explore this possibility by assessing the ability of M. haemolytica and P. multocida to form a biofilm on bovine respiratory epithelial cells in vitro. We found that M. haemolytica and P. multocida are separately able to form biofilms on bovine respiratory epithelial cells, but mutually inhibit one another when incubated together as a biofilm. Both the biofilm matrix (crystal violet stain) and bacterial numbers (CFU and PCR) were reduced when M. haemolytica and P. multocida were incubated together on fixed epithelial cells. This inhibition does not appear to result from a soluble factor, as neither conditioned medium nor separation of the two species by a transwell filter membrane reproduced the effect. We infer that when located in close proximity on the epithelial surface, M. haemolytica and P. multocida mutually regulate one another.
Collapse
Affiliation(s)
- Ismail Boukahil
- Department of Pathobiological Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53706, USA.
| | - Charles J Czuprynski
- Department of Pathobiological Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
16
|
Nagar E, Zilberman S, Sendersky E, Simkovsky R, Shimoni E, Gershtein D, Herzberg M, Golden SS, Schwarz R. Type 4 pili are dispensable for biofilm development in the cyanobacterium Synechococcus elongatus. Environ Microbiol 2017; 19:2862-2872. [PMID: 28585390 DOI: 10.1111/1462-2920.13814] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 11/30/2022]
Abstract
The hair-like cell appendages denoted as type IV pili are crucial for biofilm formation in diverse eubacteria. The protein complex responsible for type IV pilus assembly is homologous with the type II protein secretion complex. In the cyanobacterium Synechococcus elongatus PCC 7942, the gene Synpcc7942_2071 encodes an ATPase homologue of type II/type IV systems. Here, we report that inactivation of Synpcc7942_2071 strongly affected the suite of proteins present in the extracellular milieu (exo-proteome) and eliminated pili observable by electron microscopy. These results support a role for this gene product in protein secretion as well as in pili formation. As we previously reported, inactivation of Synpcc7942_2071 enables biofilm formation and suppresses the planktonic growth of S. elongatus. Thus, pili are dispensable for biofilm development in this cyanobacterium, in contrast to their biofilm-promoting function in type IV pili-producing heterotrophic bacteria. Nevertheless, pili removal is not required for biofilm formation as evident by a piliated mutant of S. elongatus that develops biofilms. We show that adhesion and timing of biofilm development differ between the piliated and non-piliated strains. The study demonstrates key differences in the process of biofilm formation between cyanobacteria and well-studied type IV pili-producing heterotrophic bacteria.
Collapse
Affiliation(s)
- Elad Nagar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002 Israel
| | - Shaul Zilberman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002 Israel
| | - Eleonora Sendersky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002 Israel
| | - Ryan Simkovsky
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eyal Shimoni
- Weizmann Institute of Science, Electron Microscopy Unit, Rehovot, 7610001 Israel
| | - Diana Gershtein
- The Department of Desalination & Water Treatment, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Be'er Sheva 84990, Israel
| | - Moshe Herzberg
- The Department of Desalination & Water Treatment, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Be'er Sheva 84990, Israel
| | - Susan S Golden
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rakefet Schwarz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002 Israel
| |
Collapse
|
17
|
Staegemann MH, Gitter B, Dernedde J, Kuehne C, Haag R, Wiehe A. Mannose-Functionalized Hyperbranched Polyglycerol Loaded with Zinc Porphyrin: Investigation of the Multivalency Effect in Antibacterial Photodynamic Therapy. Chemistry 2017; 23:3918-3930. [PMID: 28029199 DOI: 10.1002/chem.201605236] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 02/03/2023]
Abstract
The antibacterial photodynamic activity of hyperbranched polyglycerol (hPG) loaded with zinc porphyrin photosensitizers and mannose units was investigated. hPG, with a MW of 19.5 kDa, was functionalized with about 15 molecules of the photosensitizer {5,10,15-tris(3-hydroxyphenyl)-20-[4-(prop-2-yn-1-ylamino)tetrafluorophenyl]porphyrinato}-zinc(II) by using copper(I)-catalyzed 1,3-dipolar cycloaddition (CuAAC). These nanoparticle conjugates were functionalized systematically with increasing loadings of mannose in the range of approximately 20 to 110 groups. With higher mannose loadings (ca. 58-110 groups) the water-insoluble zinc porphyrin photosensitizer could thus be transferred into a water-soluble form. Targeting of the conjugates was proven in binding studies to the mannose-specific lectin concanavalin A (Con A) by using surface plasmon resonance (SPR). The antibacterial phototoxicity of the conjugates on Staphylococcus aureus (as a typical Gram-positive germ) was investigated in phosphate-buffered saline (PBS). It was shown that conjugates with approximately 70-110 mannose units exhibit significant antibacterial activity, whereas conjugates with approximately 20-60 units did not induce bacterial killing at all. These results give an insight into the multivalency effect in combination with photodynamic therapy (PDT). On addition of serum to the bacterial cultures, a quenching of this antibacterial phototoxicity was observed. In fluorescence studies with the conjugates in the presence of increasing bovine serum albumin (BSA) concentrations, protein-conjugate associations could be identified as a plausible cause for this quenching.
Collapse
Affiliation(s)
- Michael H Staegemann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Burkhard Gitter
- Biolitec research GmbH, Otto-Schott-Str. 15, 07745, Jena, Germany
| | - Jens Dernedde
- Charité-Universitätsmedizin Berlin, Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Christian Kuehne
- Charité-Universitätsmedizin Berlin, Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Arno Wiehe
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.,Biolitec research GmbH, Otto-Schott-Str. 15, 07745, Jena, Germany
| |
Collapse
|
18
|
Ikeda R, Ogasawara Y, Takatori K, Ichikawa T, Nakajima M, Harigaya K, Watanabe M, Okudaira E, Yoshikawa H, Yanagisawa K. Growth Inhibition of an Opportunistic Yeast Pathogen Trichosporon asahii by Staphylococcus epidermidis. Biol Pharm Bull 2017; 40:693-697. [DOI: 10.1248/bpb.b16-01000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Reiko Ikeda
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University
| | - Kazuhiko Takatori
- Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University
| | - Tomoe Ichikawa
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University
| | - Miki Nakajima
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University
| | - Kazuko Harigaya
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University
| | - Miho Watanabe
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University
| | - Erika Okudaira
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University
| | - Hanari Yoshikawa
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University
| | - Kazuki Yanagisawa
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University
| |
Collapse
|
19
|
Staegemann MH, Gräfe S, Haag R, Wiehe A. A toolset of functionalized porphyrins with different linker strategies for application in bioconjugation. Org Biomol Chem 2016; 14:9114-9132. [DOI: 10.1039/c6ob01551d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Polar, functionalized A3B-porphyrins are conjugated to hyperbranched polyglycerol (hPG) as an example of a biocompatible carrier system for photodynamic therapy.
Collapse
Affiliation(s)
- M. H. Staegemann
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Biolitec research GmbH
| | - S. Gräfe
- Biolitec research GmbH
- 07745 Jena
- Germany
| | - R. Haag
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - A. Wiehe
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Biolitec research GmbH
| |
Collapse
|
20
|
Ramírez Granillo A, Canales MGM, Espíndola MES, Martínez Rivera MA, de Lucio VMB, Tovar AVR. Antibiosis interaction of Staphylococccus aureus on Aspergillus fumigatus assessed in vitro by mixed biofilm formation. BMC Microbiol 2015; 15:33. [PMID: 25880740 PMCID: PMC4335557 DOI: 10.1186/s12866-015-0363-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/27/2015] [Indexed: 01/05/2023] Open
Abstract
Background Microorganisms of different species interact in several ecological niches, even causing infection. During the infectious process, a biofilm of single or multispecies can develop. Aspergillus fumigatus and Staphyloccocus aureus are etiologic agents that can cause infectious keratitis. We analyzed in vitro single A. fumigatus and S. aureus, and mixed A. fumigatus-S. aureus biofilms. Both isolates were from patients with infectious keratitis. Structure of the biofilms was analyzed through microscopic techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), confocal, and fluorescence microscopy (CLSM) in mixed biofilm as compared with the single A. fumigatus biofilm. Results To our knowledge, this is the first time that the structural characteristics of the mixed biofilm A. fumigatus-A. fumigatus were described and shown. S. aureus sharply inhibited the development of biofilm formed by A. fumigatus, regardless of the stage of biofilm formation and bacterial inoculum. Antibiosis effect of bacterium on fungus was as follows: scarce production of A. fumigatus biofilm; disorganized fungal structures; abortive hyphae; and limited hyphal growth; while conidia also were scarce, have modifications in their surface and presented lyses. Antagonist effect did not depend on bacterial concentration, which could probably be due to cell-cell contact interactions and release of bacterial products. In addition, we present images about the co-localization of polysaccharides (glucans, mannans, and chitin), and DNA that form the extracellular matrix (ECM). In contrast, single biofilms showed extremely organized structures: A. fumigatus showed abundant hyphal growth, hyphal anastomosis, and channels, as well as some conidia, and ECM. S. aureus showed microcolonies and cell-to-cell bridges and ECM. Conclusions Herein we described the antibiosis relationship of S. aureus against A. fumigatus during in vitro biofilm formation, and report the composition of the ECM formed.
Collapse
Affiliation(s)
- Adrián Ramírez Granillo
- Laboratorio de Micología Médica, Depto. de Microbiología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN). Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, 11340, Mexico City, Mexico.
| | - María Gabriela Medina Canales
- Laboratorio de Micología Médica, Depto. de Microbiología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN). Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, 11340, Mexico City, Mexico.
| | | | - María Angeles Martínez Rivera
- Laboratorio de Micología Médica, Depto. de Microbiología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN). Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, 11340, Mexico City, Mexico.
| | - Victor Manuel Bautista de Lucio
- Microbiology and Ocular Proteomics, Research Unit, Institute of Ophthalmology "Fundación de Asistencia Privada Conde de Valenciana". Chimalpopoca 14, Col. Obrera, Del. Cuauhtémoc, 06800, Mexico City, Mexico.
| | - Aída Verónica Rodríguez Tovar
- Laboratorio de Micología Médica, Depto. de Microbiología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN). Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, 11340, Mexico City, Mexico.
| |
Collapse
|
21
|
Exploiting Unique Structural and Functional Properties of Malarial Glycolytic Enzymes for Antimalarial Drug Development. Malar Res Treat 2014; 2014:451065. [PMID: 25580350 PMCID: PMC4280493 DOI: 10.1155/2014/451065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/30/2014] [Indexed: 01/10/2023] Open
Abstract
Metabolic enzymes have been known to carry out a variety of functions besides their normal housekeeping roles known as “moonlighting functions.” These functionalities arise from structural changes induced by posttranslational modifications and/or binding of interacting proteins. Glycolysis is the sole source of energy generation for malaria parasite Plasmodium falciparum, hence a potential pathway for therapeutic intervention. Crystal structures of several P. falciparum glycolytic enzymes have been solved, revealing that they exhibit unique structural differences from the respective host enzymes, which could be exploited for their selective targeting. In addition, these enzymes carry out many parasite-specific functions, which could be of potential interest to control parasite development and transmission. This review focuses on the moonlighting functions of P. falciparum glycolytic enzymes and unique structural differences and functional features of the parasite enzymes, which could be exploited for therapeutic and transmission blocking interventions against malaria.
Collapse
|
22
|
Hewitson JP, Rückerl D, Harcus Y, Murray J, Webb LM, Babayan SA, Allen JE, Kurniawan A, Maizels RM. The secreted triose phosphate isomerase of Brugia malayi is required to sustain microfilaria production in vivo. PLoS Pathog 2014; 10:e1003930. [PMID: 24586152 PMCID: PMC3937304 DOI: 10.1371/journal.ppat.1003930] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 01/02/2014] [Indexed: 12/19/2022] Open
Abstract
Human lymphatic filariasis is a major tropical disease transmitted through mosquito vectors which take up microfilarial larvae from the blood of infected subjects. Microfilariae are produced by long-lived adult parasites, which also release a suite of excretory-secretory products that have recently been subject to in-depth proteomic analysis. Surprisingly, the most abundant secreted protein of adult Brugia malayi is triose phosphate isomerase (TPI), a glycolytic enzyme usually associated with the cytosol. We now show that while TPI is a prominent target of the antibody response to infection, there is little antibody-mediated inhibition of catalytic activity by polyclonal sera. We generated a panel of twenty-three anti-TPI monoclonal antibodies and found only two were able to block TPI enzymatic activity. Immunisation of jirds with B. malayi TPI, or mice with the homologous protein from the rodent filaria Litomosoides sigmodontis, failed to induce neutralising antibodies or protective immunity. In contrast, passive transfer of neutralising monoclonal antibody to mice prior to implantation with adult B. malayi resulted in 60–70% reductions in microfilarial levels in vivo and both oocyte and microfilarial production by individual adult females. The loss of fecundity was accompanied by reduced IFNγ expression by CD4+ T cells and a higher proportion of macrophages at the site of infection. Thus, enzymatically active TPI plays an important role in the transmission cycle of B. malayi filarial parasites and is identified as a potential target for immunological and pharmacological intervention against filarial infections. Triose phosphate isomerase (TPI) is a ubiquitous and highly conserved enzyme in intracellular glucose metabolism. Surprisingly, the human lymphatic filariai nematode parasite Brugia malayi, releases TPI into the extracellular environment, suggesting a role in helminth survival in the mammalian host. We first established that B. malayi-infected humans and rodents generate TPI-specific serum antibody responses, confirming presentation of this protein to the host immune system. However, immunisation of rodents with B. malayi TPI did not induce protection against infection. Furthermore, TPI from a related parasite, Litomosoides sigmodontis, did not induce protective immunity in mice. Notably, antibodies from infected hosts did not neutralise the enzymatic activity of TPI. We then generated twenty-three anti-TPI monoclonal antibodies, of which only two inhibited enzymatic activity. Transfer of neutralising antibody to mice prior to B. malayi infection effected a 69.5% reduction in microfilarial levels in vivo and a 60% reduction in microfilariae produced by individual adult female parasites. Corresponding shifts in the host immune response included reduced Th1 cytokine production and enhanced macrophage numbers. Enzymatically active TPI therefore promotes production of the transmission stage of B. malayi filarial parasites and represents a rational target for new vaccine and drug development to protect against filarial infections.
Collapse
Affiliation(s)
- James P. Hewitson
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Dominik Rückerl
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne Harcus
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Janice Murray
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Lauren M. Webb
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon A. Babayan
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Judith E. Allen
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Agnes Kurniawan
- Department of Parasitology, University of Indonesia, Jakarta, Indonesia
| | - Rick M. Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Ikeda R, Ichikawa T. Interaction of surface molecules on Cryptococcus neoformans with plasminogen. FEMS Yeast Res 2014; 14:445-50. [PMID: 24373348 PMCID: PMC4282087 DOI: 10.1111/1567-1364.12131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 12/01/2022] Open
Abstract
Microbial pathogens are known to express molecules that interact with host proteins, leading to invasion and colonization. For example, some pathogenic microorganisms express proteins that bind to and enhance the activity of plasminogen. In this way, pathogens utilize the host fibrinolytic system to promote invasion. We found that triosephosphate isomerase (TPI), a glycolytic enzyme produced by Staphylococcus aureus, bound to mannooligosaccharides from the pathogenic capsulated fungus Cryptococcus neoformans and human plasminogen, suggesting that TPI is a moonlighting protein. Several C. neoformans surface proteins are thought to be plasminogen-binding proteins. Here, we examined the ability of surface polymers (including polysaccharides) to bind plasminogen. Heat-killed C. neoformans cells transformed plasminogen into plasmin in a dose-dependent manner in the presence of tissue plasminogen activator. Soluble polysaccharides were found to bind plasminogen based on surface plasmon resonance (SPR) analysis. Neutral polysaccharides fractionated using DEAE column chromatography bound and activated plasminogen. However, the fraction containing glucuronoxylomannan (the primary component of the capsule) did not activate plasminogen. In addition, binding between glucuronoxylomannan and plasminogen was weak. Components of the neutral polysaccharides were identified as mannose, galactose, glucose and xylose. In conclusion, neutral polysaccharides that may affect fibrinolysis were detected on the surface of C. neoformans.
Collapse
Affiliation(s)
- Reiko Ikeda
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University, Noshio, Kiyose, Tokyo, Japan
| | | |
Collapse
|
24
|
Ikeda R. [Apoptosis-like cell death of Cryptococcus neoformans mediated by Staphylococcus aureus contact]. Med Mycol J 2013; 54:49-52. [PMID: 23470955 DOI: 10.3314/mmj.54.49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Co-culture of the fungal pathogen Cryptococcus neoformans with Staphylococcus aureus results in the death of the fungus, caused by the adherence to the latter. The present study found that the molecules responsible for this adherence were capsular glucuronoxylomannan (GXM) (present on C. neoformans) and a glycolytic enzyme triosephosphate isomerase (TPI) (present on S. aureus). The mannan backbone of GXM and purified TPI interacted in vitro. GXM-bound TPI molecules were identified by immunoelectron microscopy. The death of C. neoformans was accompanied by decreased actin turnover, increased accumulation of reactive oxygen species, and DNA fragmentation. This process may also be influenced by the Rho/Rho-associated coiled-coil-forming kinase (ROCK) pathway and enhanced expression of voltage-dependent ion-selective channels. Taken together, these results suggest that Rho-ROCK signaling may play a role via the mitochondrial pathway in the induction of C. neoformans apoptosis-like cell death after its adherence to S. aureus adherence.
Collapse
Affiliation(s)
- Reiko Ikeda
- Department of Microbiology, Meiji Pharmaceutical University
| |
Collapse
|
25
|
Furuya H, Ikeda R. Interaction of triosephosphate isomerase from Staphylococcus aureus with plasminogen. Microbiol Immunol 2012; 55:855-62. [PMID: 22003920 DOI: 10.1111/j.1348-0421.2011.00392.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Triosephosphate isomerase (TPI; EC 5. 3. 1. 1) displayed on the cell surface of Staphylococcus aureus acts as an adhesion molecule that binds to the capsule of Cryptococcus neoformans, a fungal pathogen. This study investigated the function of TPI on the cell surface of S. aureus and its interactions with biological substances such as fibronectin, fibrinogen, plasminogen, and thrombin were investigated. Binding of TPI to plasminogen was demonstrated by both surface plasmon resonance analysis and Far-Western blotting. It is suggested that lysine residues contribute to this binding because the interaction was inhibited by ɛ-aminocaproic acid. Activation of plasminogen to plasmin by staphylokinase or tissue plasminogen activator decreased in the presence of TPI, whereas TPI was degraded by plasmin. In other experiments, intact S. aureus cells had the ability to both increase and decrease plasminogen activation depending on the number of cells. Several molecules expressed on the surface of S. aureus were predicted to interact with plasminogen, resulting in its increased or decreased activation. These findings indicate that S. aureus sometimes localizes and sometimes disseminates in the host, depending on the molecules expressed under various conditions.
Collapse
Affiliation(s)
- Hiromi Furuya
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | | |
Collapse
|
26
|
Henderson B, Martin A. Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun 2011; 79:3476-91. [PMID: 21646455 PMCID: PMC3165470 DOI: 10.1128/iai.00179-11] [Citation(s) in RCA: 347] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Men may not be able to multitask, but it is emerging that proteins can. This capacity of proteins to exhibit more than one function is termed protein moonlighting, and, surprisingly, many highly conserved proteins involved in metabolic regulation or the cell stress response have a range of additional biological actions which are involved in bacterial virulence. This review highlights the multiple roles exhibited by a range of bacterial proteins, such as glycolytic and other metabolic enzymes and molecular chaperones, and the role that such moonlighting activity plays in the virulence characteristics of a number of important human pathogens, including Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, Helicobacter pylori, and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Brian Henderson
- Department of Microbial Diseases, UCL-Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, United Kingdom.
| | | |
Collapse
|
27
|
Ikeda R. Possible participation of the Rho/Rho-associated coiled-coil-forming kinase pathway in the cell death of Cryptococcus neoformans caused by Staphylococcus aureus adherence. Microbiol Immunol 2011; 55:552-7. [DOI: 10.1111/j.1348-0421.2011.00356.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Henderson B, Martin A. Bacterial Moonlighting Proteins and Bacterial Virulence. Curr Top Microbiol Immunol 2011; 358:155-213. [DOI: 10.1007/82_2011_188] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Ikeda R. Cryptococcus. Med Mycol J 2011; 52:199-203. [DOI: 10.3314/mmj.52.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Yamaguchi M, Ikeda R, Nishimura M, Kawamoto S. Localization by scanning immunoelectron microscopy of triosephosphate isomerase, the molecules responsible for contact-mediated killing of Cryptococcus, on the surface of Staphylococcus. Microbiol Immunol 2010; 54:368-70. [PMID: 20536736 DOI: 10.1111/j.1348-0421.2010.00225.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
T In our previous studies, TPI were found to be the molecules responsible for contact-killing of C. neoformans by S. aureus cells. Since TPI is a glycolytic protein that functions in the cytoplasm, evidence that TPI is present on the surface of S. aureus was required. In the present study, the presence of TPI on the cell surface of S. aureus was demonstrated by agglutination test and scanning immunoelectron microscopy. Furthermore, TPI was found to be present at a lower density than protein A/G molecules on the surface of S. aureus.
Collapse
Affiliation(s)
- Masashi Yamaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan.
| | | | | | | |
Collapse
|
31
|
Ability of Candida albicans mutants to induce Staphylococcus aureus vancomycin resistance during polymicrobial biofilm formation. Antimicrob Agents Chemother 2010; 54:3746-55. [PMID: 20566760 DOI: 10.1128/aac.00573-10] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Candida albicans and Staphylococcus aureus form vigorous polymicrobial biofilms in serum, which may serve as the source of coinfection in patients. More importantly, S. aureus is highly resistant to vancomycin during polymicrobial biofilm formation, with no decreases in bacterial viability observed with up to 1,600 microg/ml drug. In these mixed-species biofilms, S. aureus preferentially associates with C. albicans hyphae, which express a variety of unique adhesins. We tested C. albicans mutants deficient in transcriptional regulators of morphogenesis (CPH1 and EFG1) and biofilm formation (BCR1) to investigate the role of hyphae in mediating polymicrobial biofilm formation. These mutants also have reduced expression of hypha-specific adhesins. The ability to form polymicrobial biofilms correlated with the ability to form hyphae in these mutants. However, only mutants that could adhere to the abiotic surface could induce S. aureus vancomycin resistance, regardless of the presence of hyphae. In examining factors that may mediate interspecies adhesion, we found that the C. albicans ALS family of adhesins (Als1 to Als7 and Als9) was not involved, and neither was the hypha-specific adhesin Hwp1. Therefore, polymicrobial biofilm formation and subsequent antibiotic resistance is a multifactorial process that may require a unique combination of fungal and/or bacterial adhesins.
Collapse
|
32
|
Meyer W, Kacza J, Schnapper A, Verspohl J, Hornickel I, Seeger J. A first report on the microbial colonisation of the equine oesophagus. Ann Anat 2009; 192:42-51. [PMID: 19942420 DOI: 10.1016/j.aanat.2009.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/06/2009] [Accepted: 10/09/2009] [Indexed: 11/26/2022]
Abstract
Based on cryo-SEM, standard and high resolution TEM, glycoconjugate histochemistry, and microbiological differentiation, the present study demonstrates the colonisation of the epithelium of the equine oesophagus with microorganisms. As particularly apparent using cryo-SEM to illustrate natural conditions, the present microbiota were clearly dominated by bacteria, forming a one-layer system, as attached to and embedded in concentrated mannose/mannan substances covering the outer stratum corneal cells. Bacterial numbers ranged from 5600 to 7200 per mm(2) in the central part of the oesophagus, the number of fungi was less than 1% of the amount of bacteria. The compact stratum corneal cells showed numerous short protrusions sometimes as part of desmosomal contacts, but mainly projecting into distinct intercellular spaces, containing a mixture of acid and neutral glycoconjugates. The outermost corneal cells exhibited intact mitochondria and cytoplasmic vesicles, and a number of short cell processes toward the oesophageal lumen; i.e. into the glycoconjugate layers on the surface of the oesophagus. The diverse spectrum of bacteria found indicated a permanent mucosal flora, predominated by facultative and obligate anaerobic species. The genera isolated most frequently and in highest numbers included streptococci, Prevotella spp., Fusobacterium spp. and Actinobacillus equuli. Only two groups of Enterobacteriaceae (Escherichia coli, Pantoea spp.) were regularly found and their abundance was lower than that of the other bacterial groups mentioned above. Yeasts were very rarely identified as the typically present fungi.
Collapse
Affiliation(s)
- Wilfried Meyer
- Institute for Anatomy, University of Veterinary Medicine Hannover Foundation, Bischofsholer Damm 15, Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Furuya H, Ikeda R. Interaction of triosephosphate isomerase from the cell surface of Staphylococcus aureus and alpha-(1->3)-mannooligosaccharides derived from glucuronoxylomannan of Cryptococcus neoformans. MICROBIOLOGY-SGM 2009; 155:2707-2713. [PMID: 19423633 PMCID: PMC2885673 DOI: 10.1099/mic.0.028068-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The glycolytic enzyme triosephosphate isomerase (TPI; EC 5.3.1.1) of Staphylococcus aureus is a candidate adhesion molecule for the interaction between the bacterium and the fungal pathogen Cryptococcus neoformans. TPI may recognize the mannan backbone of glucuronoxylomannan (GXM) of C. neoformans. We purified TPI from extracts of S. aureus surface proteins to investigate its binding by surface plasmon resonance analysis. The immobilized TPI reacted with GXM in a dose-dependent manner. Furthermore, the interactions between staphylococcal TPI and α-(1→3)-mannooligosaccharides derived from GXM were examined. The oligosaccharides exhibited binding with TPI; however, monomeric mannose did not. Differences in the slopes of the sensorgrams were observed between oligosaccharides with an even number of residues versus those with an odd number. A heterogeneous ligand-parallel reaction model revealed the existence of at least two binding sites on TPI. The enzymic activities of TPI were inhibited in a dose-dependent manner by α-(1→3)-mannooligosaccharides larger than triose. The binding of TPI and α-(1→3)-mannotriose near the substrate-binding site was predicted in silico (AutoDock 3.05). An oligosaccharide of size equal to or greater than triose could bind to the site, affecting enzymic activities. Moreover, affinities were indicated, especially for biose and tetraose, to another binding pocket, which would not affect enzymic activity. These data suggest a novel role for TPI, in addition to glycolysis, on the surface of S. aureus.
Collapse
Affiliation(s)
- Hiromi Furuya
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Reiko Ikeda
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
34
|
Tabasco R, García-Cayuela T, Peláez C, Requena T. Lactobacillus acidophilus La-5 increases lactacin B production when it senses live target bacteria. Int J Food Microbiol 2009; 132:109-16. [PMID: 19411126 DOI: 10.1016/j.ijfoodmicro.2009.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/01/2009] [Accepted: 04/05/2009] [Indexed: 10/20/2022]
Abstract
Lactobacillus acidophilus La-5 is a probiotic strain used in dairy products. Production of bacteriocin by L. acidophilus La-5 was achieved when it was grown in co-cultures with the yogurt starter species Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. However, bacteriocin induction was not observed when heat-killed cells were used as inducers. This study demonstrates that L. acidophilus La-5 produces lactacin B and that the bacteriocin expression is controlled by an auto-induction mechanism involving the secreted peptide IP_1800. The transcript level of the lactacin B gene cluster expression was investigated in co-cultures between L. acidophilus La-5 and S. thermophilus STY-31 and a remarkable increase of the bacteriocin structural gene (lbaB) transcription was observed. However, lbaB was transcribed constitutively in uninduced L. acidophilus La-5 cells, but the levels of the secreted bacteriocin were not enough to be detected by the agar diffusion assay. A new method for bacteriocin detection was formulated based on the monitoring on real time of Lactobacillus sakei subsp. sakei growth in presence of the supernatant and the cell wall extracts of pure and induced L. acidophilus La-5. These results showed that part of lactacin B secreted remains adhered to cell envelope.
Collapse
Affiliation(s)
- Raquel Tabasco
- Department of Dairy Science and Technology, Instituto del Frío (CSIC), José Antonio Nováis 10, 28040, Madrid, Spain
| | | | | | | |
Collapse
|
35
|
Tarkka MT, Sarniguet A, Frey-Klett P. Inter-kingdom encounters: recent advances in molecular bacterium-fungus interactions. Curr Genet 2009; 55:233-43. [PMID: 19337734 DOI: 10.1007/s00294-009-0241-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/04/2009] [Accepted: 03/16/2009] [Indexed: 01/20/2023]
Abstract
Interactions between bacteria and fungi are well known, but it is often underestimated how intimate and decisive such associations can be with respect to behaviour and survival of each participating organism. In this article we review recent advances in molecular bacterium-fungus interactions, combining the data of different model systems. Emphasis is given to the positive or negative consequences these interactions have on the microbe accommodating plants and animals. Intricate mechanisms of antagonism and tolerance have emerged, being as important for the biological control of plants against fungal diseases as for the human body against fungal infections. Bacterial growth promoters of fungal mycelium have been characterized, and these may as well assist plant-fungus mutualism as disease development in animals. Some of the toxins that have been previously associated with fungi are actually produced by endobacteria, and the mechanisms that lie behind the maintenance of such exquisite endosymbioses are fascinating. Bacteria do cause diseases in fungi, and a synergistic action between bacterial toxins and extracellular enzymes is the hallmark of such diseases. The molecular study of bacterium-fungus associations has expanded our view on microbial communication, and this promising field shows now great potentials in medicinal, agricultural and biotechnological applications.
Collapse
Affiliation(s)
- Mika T Tarkka
- UFZ, Department of Soil Ecology, Helmholtz Centre for Environmental Research, Halle, Germany.
| | | | | |
Collapse
|
36
|
van Asbeck EC, Hoepelman AIM, Scharringa J, Herpers BL, Verhoef J. Mannose binding lectin plays a crucial role in innate immunity against yeast by enhanced complement activation and enhanced uptake of polymorphonuclear cells. BMC Microbiol 2008; 8:229. [PMID: 19094203 PMCID: PMC2627907 DOI: 10.1186/1471-2180-8-229] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 12/18/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mannose binding lectin (MBL) is an important host defence protein against opportunistic fungal pathogens. This carbohydrate-binding protein, an opsonin and lectin pathway activator, binds through multiple lectin domains to the repeating sugar arrays displayed on the surface of a wide range of clinically relevant microbial species. We investigated the contribution of MBL to antifungal innate immunity towards C. parapsilosis in vitro. RESULTS High avidity binding was observed between MBL and C. albicans and C. parapsilosis. Addition of MBL to MBL deficient serum increased the deposition of C4 and C3b and enhanced the uptake of C. albicans, C. parapsilosis and acapsular C. neoformans by polymorphonuclear cells (PMNs). Compared to other microorganisms, such as Escherichia coli, Staphylococcus aureus and Cryptococcus neoformans, C. parapsilosis and Candida albicans were potent activators of the lectin pathway. CONCLUSION Our results suggest that MBL plays a crucial role in the innate immunity against infections caused by yeast by increasing uptake by PMN.
Collapse
Affiliation(s)
- Eveline C van Asbeck
- Eijkman-Winkler Institute for Medical & Clinical Microbiology, Utrecht University Hospital, Utrecht, the Netherlands.
| | | | | | | | | |
Collapse
|
37
|
Ikeda R, Sawamura K. Bacterial and H2O2 stress-induced apoptosis-like events in Cryptococcus neoformans. Res Microbiol 2008; 159:628-34. [DOI: 10.1016/j.resmic.2008.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 07/22/2008] [Accepted: 07/26/2008] [Indexed: 10/21/2022]
|
38
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Leveau JHJ, Preston GM. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction. THE NEW PHYTOLOGIST 2008; 177:859-876. [PMID: 18086226 DOI: 10.1111/j.1469-8137.2007.02325.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This review analyses the phenomenon of bacterial mycophagy, which we define as a set of phenotypic behaviours that enable bacteria to obtain nutrients from living fungi and thus allow the conversion of fungal into bacterial biomass. We recognize three types of bacterial strategies to derive nutrition from fungi: necrotrophy, extracellular biotrophy and endocellular biotrophy. Each is characterized by a set of uniquely sequential and differently overlapping interactions with the fungal target. We offer a detailed analysis of the nature of these interactions, as well as a comprehensive overview of methodologies for assessing and quantifying their individual contributions to the mycophagy phenotype. Furthermore, we discuss future prospects for the study and exploitation of bacterial mycophagy, including the need for appropriate tools to detect bacterial mycophagy in situ in order to be able to understand, predict and possibly manipulate the way in which mycophagous bacteria affect fungal activity, turnover, and community structure in soils and other ecosystems.
Collapse
Affiliation(s)
- Johan H J Leveau
- Netherlands Institute of Ecology (NIOO-KNAW), Heteren, the Netherlands
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|