1
|
Lam LN, Sedra A, Kajfasz J, Berges A, Saengpet IS, Adams G, Fairman J, Lemos JA. Trivalent immunization with metal-binding proteins confers protection against enterococci in a mouse infection model. FEMS MICROBES 2024; 5:xtae031. [PMID: 39524556 PMCID: PMC11549557 DOI: 10.1093/femsmc/xtae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
Enterococcus faecalis is ranked among the top five bacterial pathogens responsible for catheter-associated urinary tract infections, wound infections, secondary root canal infections, and infective endocarditis. Previously, we showed that inactivation of either the manganese- and iron-binding (EfaA) or zinc-binding (AdcA and AdcAII) lipoproteins significantly reduced E. faecalis virulence. Here, we explored whether immunization using a multi-valent approach induces protective immunity against systemic enterococcal infections. We found that multi-antigen antisera raised against EfaA, AdcA, and AdcAII displayed similar capacities to initiate neutrophil-mediated opsonization, like their single-antigen counterparts. Further, these antigen-specific antibodies worked synergistically with calprotectin, a divalent host metal chelator, to inhibit the growth of E. faecalis in laboratory media as well as in human sera. Using the Galleria mellonella invertebrate model and mouse peritonitis model, we showed that passive immunization with multi-antigen antisera conferred robust protection against E. faecalis infection, while the protective effects of single antigen antisera were negligible in G. mellonella, and negligible-to-moderate in the mouse model. Lastly, active immunization with the 3-antigen (trivalent) cocktail significantly protected mice against either lethal or non-lethal E. faecalis infections, with this protection appearing to be far-reaching based on immunization results obtained with contemporary strains of E. faecalis and closely related Enterococcus faecium.
Collapse
Affiliation(s)
- Ling Ning Lam
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States
| | - Angie Sedra
- Vaxcyte, Inc., San Carlos, CA 94070, United States
| | - Jessica Kajfasz
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States
| | - Aym Berges
- Vaxcyte, Inc., San Carlos, CA 94070, United States
| | - Irene S Saengpet
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States
| | - Grace Adams
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States
| | | | - José A Lemos
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States
| |
Collapse
|
2
|
Colomer-Winter C, Yong AMH, Chong KKL, Veleba M, Choo PY, Gao IH, Matysik A, Ho FK, Chen SL, Kline KA. The HtrA chaperone monitors sortase-assembled pilus biogenesis in Enterococcus faecalis. PLoS Genet 2024; 20:e1011071. [PMID: 39102428 PMCID: PMC11326707 DOI: 10.1371/journal.pgen.1011071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/15/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Sortase-assembled pili contribute to virulence in many Gram-positive bacteria. In Enterococcus faecalis, the endocarditis and biofilm-associated pilus (Ebp) is polymerized on the membrane by sortase C (SrtC) and attached to the cell wall by sortase A (SrtA). In the absence of SrtA, polymerized pili remain anchored to the membrane (i.e. off-pathway). Here we show that the high temperature requirement A (HtrA) bifunctional chaperone/protease of E. faecalis is a quality control system that clears aberrant off-pathway pili from the cell membrane. In the absence of HtrA and SrtA, accumulation of membrane-bound pili leads to cell envelope stress and partially induces the regulon of the ceftriaxone resistance-associated CroRS two-component system, which in turn causes hyper-piliation and cell morphology alterations. Inactivation of croR in the OG1RF ΔsrtAΔhtrA background partially restores the observed defects of the ΔsrtAΔhtrA strain, supporting a role for CroRS in the response to membrane perturbations. Moreover, absence of SrtA and HtrA decreases basal resistance of E. faecalis against cephalosporins and daptomycin. The link between HtrA, pilus biogenesis and the CroRS two-component system provides new insights into the E. faecalis response to endogenous membrane perturbations.
Collapse
Affiliation(s)
- Cristina Colomer-Winter
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Adeline M. H. Yong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kelvin K. L. Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mark Veleba
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Pei Yi Choo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Iris Hanxing Gao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Artur Matysik
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Foo Kiong Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Swaine L. Chen
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Genome #02–01, Singapore, Singapore
| | - Kimberly A. Kline
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
3
|
Boreak N, Al Mahde RZ, Otayn WA, Alamer AY, Alrajhi T, Jafri S, Sharwani A, Swaidi E, Abozoah S, Mowkly AAM. Exploring Plant-Based Compounds as Alternatives for Targeting Enterococcus faecalis in Endodontic Therapy: A Molecular Docking Approach. Int J Mol Sci 2024; 25:7727. [PMID: 39062969 PMCID: PMC11276846 DOI: 10.3390/ijms25147727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Endodontic infections pose significant challenges in dental practice due to their persistence and potential complications. Among the causative agents, Enterococcus faecalis stands out for its ability to form biofilms and develop resistance to conventional antibiotics, leading to treatment failures and recurrent infections. The urgent need for alternative treatments arises from the growing concern over antibiotic resistance and the limitations of current therapeutic options in combating E. faecalis-associated endodontic infections. Plant-based natural compounds offer a promising avenue for exploration, given their diverse bioactive properties and potential as sources of novel antimicrobial agents. In this study, molecular docking and dynamics simulations are employed to explore the interactions between SrtA, a key enzyme in E. faecalis, and plant-based natural compounds. Analysis of phytocompounds through molecular docking unveiled several candidates with binding energies surpassing that of the control drug, ampicillin, with pinocembrin emerging as the lead compound due to its strong interactions with key residues of SrtA. Comparative analysis with ampicillin underscored varying degrees of structural similarity among the study compounds. Molecular dynamics simulations provided deeper insights into the dynamic behavior and stability of protein-ligand complexes, with pinocembrin demonstrating minimal conformational changes and effective stabilization of the N-terminal region. Free energy landscape analysis supported pinocembrin's stabilizing effects, further corroborated by hydrogen bond analysis. Additionally, physicochemical properties analysis highlighted the drug-likeness of pinocembrin and glabridin. Overall, this study elucidates the potential anti-bacterial properties of selected phytocompounds against E. faecalis infections, with pinocembrin emerging as a promising lead compound for further drug development efforts, offering new avenues for combating bacterial infections and advancing therapeutic interventions in endodontic practice.
Collapse
Affiliation(s)
- Nezar Boreak
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (R.Z.A.M.); (A.Y.A.); (T.A.); (S.J.); (A.S.)
| | - Rahf Zuhair Al Mahde
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (R.Z.A.M.); (A.Y.A.); (T.A.); (S.J.); (A.S.)
| | - Waseem Ahmed Otayn
- Specialized Dental Canter, Ministry of Health, Jazan 45142, Saudi Arabia; (W.A.O.)
| | - Amwaj Yahya Alamer
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (R.Z.A.M.); (A.Y.A.); (T.A.); (S.J.); (A.S.)
| | - Taif Alrajhi
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (R.Z.A.M.); (A.Y.A.); (T.A.); (S.J.); (A.S.)
| | - Shatha Jafri
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (R.Z.A.M.); (A.Y.A.); (T.A.); (S.J.); (A.S.)
| | - Amnah Sharwani
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (R.Z.A.M.); (A.Y.A.); (T.A.); (S.J.); (A.S.)
| | - Entesar Swaidi
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (R.Z.A.M.); (A.Y.A.); (T.A.); (S.J.); (A.S.)
| | - Shahad Abozoah
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (R.Z.A.M.); (A.Y.A.); (T.A.); (S.J.); (A.S.)
| | | |
Collapse
|
4
|
Rubilar-Huenchuman M, Ortega-Villanueva C, González IA, Palavecino CE. The Effect of Photodynamic Therapy on Enterococcus spp. and Its Application in Dentistry: A Scoping Review. Pharmaceutics 2024; 16:825. [PMID: 38931945 PMCID: PMC11207625 DOI: 10.3390/pharmaceutics16060825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Enterococci spp. are Gram-positive bacteria that cause mild to severe infections, many associated with the oral cavity, such as periapical infections and healthcare-associated infections (HAIs). Many of these infections become serious diseases that are difficult to resolve, specifically when multidrug-resistant (MDR) strains cause them. In recent years, the number of MDR strains of Enterococcus spp. has increased significantly. This increased prevalence of MDR strains produces significant pressure to generate more antimicrobial therapies, but there is a decline in the production of new antibiotics, driving the development of complementary therapies, such as photodynamic therapy (PDT). PDT combines a photosensitizer agent (PS), light, and oxygen to cause photooxidative stress in bacterial cells. PDT can eradicate Enterococcus spp. contaminations, improve the classic cleaning processes, and eradicate the bacteria in dental pieces. PDT's effectiveness can be improved with nanoparticles that function as carriers. Our work aims to describe the advances in PDT against Enterococcus spp. as a complement to antibiotic therapy, focusing on infections by Enterococcus faecium and Enterococcus faecalis, dental hygiene, and using nanoparticles to improve the antimicrobial effect. A systematic bibliographic search without a meta-analysis was conducted on various databases, using inclusion and exclusion criteria to identify the most relevant research. Of the 193 non-redundant articles found, 65 were selected for a systematic review, from which a summary table was created and a manual description was made. Photodynamic therapy for treating E. faecium and E. faecalis is a widely studied area, with promising results concerning bactericidal effectiveness and reductions in biofilm formation, particularly in regard to dental hygiene. Because most of the studies were conducted in vitro or ex vivo, the results indicated that there were not sufficient data to initiate clinical trials for safety and efficacy studies on humans.
Collapse
Affiliation(s)
- Mariaignacia Rubilar-Huenchuman
- Laboratorio de Microbiología Celular, Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, Santiago 8330546, Chile; (M.R.-H.); (C.O.-V.)
| | - Camilo Ortega-Villanueva
- Laboratorio de Microbiología Celular, Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, Santiago 8330546, Chile; (M.R.-H.); (C.O.-V.)
| | - Iván A. González
- Departamento de Química, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile;
| | - Christian Erick Palavecino
- Laboratorio de Microbiología Celular, Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, Santiago 8330546, Chile; (M.R.-H.); (C.O.-V.)
| |
Collapse
|
5
|
Sivaramalingam SS, Jothivel D, Govindarajan DK, Kadirvelu L, Sivaramakrishnan M, Chithiraiselvan DD, Kandaswamy K. Structural and functional insights of sortases and their interactions with antivirulence compounds. Curr Res Struct Biol 2024; 8:100152. [PMID: 38989133 PMCID: PMC11231552 DOI: 10.1016/j.crstbi.2024.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/18/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Sortase proteins play a crucial role as integral membrane proteins in anchoring bacterial surface proteins by recognizing them through a Cell-Wall Sorting (CWS) motif and cleaving them at specific sites before initiating pilus assembly. Both sortases and their substrate proteins are major virulence factors in numerous Gram-positive pathogens, making them attractive targets for antimicrobial intervention. Recognizing the significance of virulence proteins, a comprehensive exploration of their structural and functional characteristics is essential to enhance our understanding of pilus assembly in diverse Gram-positive bacteria. Therefore, this review article discusses the structural features of different classes of sortases and pilin proteins, primarily serving as substrates for sortase-assembled pili. Moreover, it thoroughly examines the molecular-level interactions between sortases and their inhibitors, providing insights from both structural and functional perspectives. In essence, this review article will provide a contemporary and complete understanding of both sortase pathways and various strategies to target them effectively to counteract the virulence.
Collapse
Affiliation(s)
- Sowmiya Sri Sivaramalingam
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Deepsikha Jothivel
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Deenadayalan Karaiyagowder Govindarajan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
| | - Lohita Kadirvelu
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Muthusaravanan Sivaramakrishnan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
- Department of Biotechnology, Mepco Schlenk Engineering College, Tamil Nadu, India
| | - Dhivia Dharshika Chithiraiselvan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| |
Collapse
|
6
|
Gager C, Flores-Mireles AL. Blunted blades: new CRISPR-derived technologies to dissect microbial multi-drug resistance and biofilm formation. mSphere 2024; 9:e0064223. [PMID: 38511958 PMCID: PMC11036814 DOI: 10.1128/msphere.00642-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
The spread of multi-drug-resistant (MDR) pathogens has rapidly outpaced the development of effective treatments. Diverse resistance mechanisms further limit the effectiveness of our best treatments, including multi-drug regimens and last line-of-defense antimicrobials. Biofilm formation is a powerful component of microbial pathogenesis, providing a scaffold for efficient colonization and shielding against anti-microbials, which further complicates drug resistance studies. Early genetic knockout tools didn't allow the study of essential genes, but clustered regularly interspaced palindromic repeat inference (CRISPRi) technologies have overcome this challenge via genetic silencing. These tools rapidly evolved to meet new demands and exploit native CRISPR systems. Modern tools range from the creation of massive CRISPRi libraries to tunable modulation of gene expression with CRISPR activation (CRISPRa). This review discusses the rapid expansion of CRISPRi/a-based technologies, their use in investigating MDR and biofilm formation, and how this drives further development of a potent tool to comprehensively examine multi-drug resistance.
Collapse
Affiliation(s)
- Christopher Gager
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
7
|
Sacramento AG, Fuga B, Fontana H, Cardoso B, Esposito F, Vivas R, Malta JAO, Sellera FP, Lincopan N. Successful expansion of hospital-associated clone of vanA-positive vancomycin-resistant Enterococcus faecalis ST9 to an anthropogenically polluted mangrove in Brazil. MARINE POLLUTION BULLETIN 2024; 198:115844. [PMID: 38056291 DOI: 10.1016/j.marpolbul.2023.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
Mangrove ecosystems are hotspots of biodiversity, but have been threatened by anthropogenic activities. Vancomycin-resistant enterococci (VRE) are nosocomial bacteria classified as high priority by the World Health Organization (WHO). Herein, we describe the identification and genomic characteristics of a vancomycin-resistant Enterococcus faecalis strain isolated from a highly impacted mangrove ecosystem of the northeastern Brazilian, in 2021. Genomic analysis confirmed the existence of the transposon Tn1546-vanA and clinically relevant antimicrobial resistance genes, such as streptogramins, tetracycline, phenicols, and fluoroquinolones. Virulome analysis identified several genes associated to adherence, immune modulation, biofilm, and exoenzymes production. The UFSEfl strain was assigned to sequence type (ST9), whereas phylogenomic analysis with publicly available genomes from a worldwide confirmed clonal relatedness with a hospital-associated Brazilian clone. Our findings highlight the successful expansion of hospital-associated VRE in a mangrove area and shed light on the need for strengthening genomic surveillance of WHO priority pathogens in these vital ecosystems.
Collapse
Affiliation(s)
- Andrey G Sacramento
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Bruna Fuga
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Brenda Cardoso
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Roberto Vivas
- Microbiology Laboratory, Sergipe Urgent Care Hospital (HUSE), Aracaju, Brazil
| | - Judson A O Malta
- Postgraduate Program in Development and Environment (PRODEMA), Federal University of Sergipe, São Cristóvão, Brazil
| | - Fábio P Sellera
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil; Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Chi J, Li Y, Zhang N, Liu H, Chen Z, Li J, Huang X. Fosfomycin Enhances the Inhibition Ability of Linezolid Against Biofilms of Vancomycin-Resistant Enterococcus faecium in vitro. Infect Drug Resist 2023; 16:7707-7719. [PMID: 38144225 PMCID: PMC10748582 DOI: 10.2147/idr.s428485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023] Open
Abstract
Purpose We explored the inhibition ability of linezolid/fosfomycin combination against biofilms of vancomycin-resistant Enterococcus faecium (VREfm) and tried to provide a theoretical basis for the treatment of VREfm biofilm-associated infections. Methods Four clinical isolates of VREfm (No.2, No.4, No.5, and No.6) were used for this study, which were collected from the First Affiliated Hospital of Anhui Medical University. The checkerboard method was used to assess the synergistic effect of linezolid and fosfomycin. The inhibition ability of biofilm biomass was evaluated by crystal violet staining, and the metabolic activity was tested by an Alamar blue cell viability assay. Changes in biofilm formation-related genes of the strains after incubating with drugs were investigated via the quantitative real-time polymerase chain reaction (RT-qPCR). Results The fractional inhibitory concentration index (FICI) showed that linezolid combined with fosfomycin had a synergistic effect on all four VREfm isolates. Compared with linezolid monotherapy, linezolid combined with fosfomycin led to a significant decrease in biofilm biomass and metabolic activity, especially in the mature biofilm. The results of RT-qPCR showed linezolid combined with fosfomycin inhibition biofilm formation through the inhibition of cylA, ebpA, and gelE transcription in VREfm in the initial and mature stages. To the mature biofilm, the combination also reduced the expression of asa1, atlA, and esp. Conclusion The combination of linezolid and fosfomycin represented stronger inhibitory effect on the biofilm formation of VREfm than linezolid alone.
Collapse
Affiliation(s)
- Jie Chi
- Department of Pharmacy, Tongling Municipal Hospital, Tongling, Anhui, People’s Republic of China
| | - Yaowen Li
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Na Zhang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Huiping Liu
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Zhifeng Chen
- Department of Pharmacy, Tongling Municipal Hospital, Tongling, Anhui, People’s Republic of China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaohui Huang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
9
|
Kumar L, Bisen M, Harjai K, Chhibber S, Azizov S, Lalhlenmawia H, Kumar D. Advances in Nanotechnology for Biofilm Inhibition. ACS OMEGA 2023; 8:21391-21409. [PMID: 37360468 PMCID: PMC10286099 DOI: 10.1021/acsomega.3c02239] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Biofilm-associated infections have emerged as a significant public health challenge due to their persistent nature and increased resistance to conventional treatment methods. The indiscriminate usage of antibiotics has made us susceptible to a range of multidrug-resistant pathogens. These pathogens show reduced susceptibility to antibiotics and increased intracellular survival. However, current methods for treating biofilms, such as smart materials and targeted drug delivery systems, have not been found effective in preventing biofilm formation. To address this challenge, nanotechnology has provided innovative solutions for preventing and treating biofilm formation by clinically relevant pathogens. Recent advances in nanotechnological strategies, including metallic nanoparticles, functionalized metallic nanoparticles, dendrimers, polymeric nanoparticles, cyclodextrin-based delivery, solid lipid nanoparticles, polymer drug conjugates, and liposomes, may provide valuable technological solutions against infectious diseases. Therefore, it is imperative to conduct a comprehensive review to summarize the recent advancements and limitations of advanced nanotechnologies. The present Review encompasses a summary of infectious agents, the mechanisms that lead to biofilm formation, and the impact of pathogens on human health. In a nutshell, this Review offers a comprehensive survey of the advanced nanotechnological solutions for managing infections. A detailed presentation has been made as to how these strategies may improve biofilm control and prevent infections. The key objective of this Review is to summarize the mechanisms, applications, and prospects of advanced nanotechnologies to provide a better understanding of their impact on biofilm formation by clinically relevant pathogens.
Collapse
Affiliation(s)
- Lokender Kumar
- School
of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229, India
- Cancer
Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Monish Bisen
- School
of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Kusum Harjai
- Department
of Microbiology, Panjab University, Chandigarh 160014, India
| | - Sanjay Chhibber
- Department
of Microbiology, Panjab University, Chandigarh 160014, India
| | - Shavkatjon Azizov
- Laboratory
of Biological Active Macromolecular Systems, Institute of Bioorganic
Chemistry, Academy of Sciences Uzbekistan, Tashkent 100125, Uzbekistan
- Faculty
of Life Sciences, Pharmaceutical Technical
University, Tashkent 100084, Uzbekistan
| | - Hauzel Lalhlenmawia
- Department
of Pharmacy, Regional Institute of Paramedical
and Nursing Sciences, Zemabawk, Aizawl, Mizoram 796017, India
| | - Deepak Kumar
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh173229, India
| |
Collapse
|
10
|
Choo PY, Wang CY, VanNieuwenhze MS, Kline KA. Spatial and temporal localization of cell wall associated pili in Enterococcus faecalis. Mol Microbiol 2023; 119:1-18. [PMID: 36420961 PMCID: PMC10107303 DOI: 10.1111/mmi.15008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Enterococcus faecalis virulence requires cell wall-associated proteins, including the sortase-assembled endocarditis and biofilm associated pilus (Ebp), important for biofilm formation in vitro and in vivo. The current paradigm for sortase-assembled pilus biogenesis in Gram-positive bacteria is that sortases attach substrates to lipid II peptidoglycan (PG) precursors, prior to their incorporation into the growing cell wall. Contrary to prevailing dogma, by following the distribution of Ebp and PG throughout the E. faecalis cell cycle, we found that cell surface Ebp do not co-localize with newly synthesized PG. Instead, surface-exposed Ebp are localized to the older cell hemisphere and excluded from sites of new PG synthesis at the septum. Moreover, Ebp deposition on the younger hemisphere of the E. faecalis diplococcus appear as foci adjacent to the nascent septum. We propose a new model whereby sortase substrate deposition can occur on older PG rather than at sites of new cell wall synthesis. Consistent with this model, we demonstrate that sequestering lipid II to block PG synthesis via ramoplanin, does not impact new Ebp deposition at the cell surface. These data support an alternative paradigm for sortase substrate deposition in E. faecalis, in which Ebp are anchored directly onto uncrosslinked cell wall, independent of new PG synthesis.
Collapse
Affiliation(s)
- Pei Yi Choo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Charles Y Wang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Kimberly A Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Govindarajan DK, Kandaswamy K. Virulence factors of uropathogens and their role in host pathogen interactions. Cell Surf 2022; 8:100075. [PMID: 35198842 PMCID: PMC8841375 DOI: 10.1016/j.tcsw.2022.100075] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 12/26/2022] Open
Abstract
Gram-positive and Gram-negative bacterial pathogens are commonly found in Urinary Tract Infection (UTI), particularly infected in females like pregnant women, elder people, sexually active, or individuals prone to other risk factors for UTI. In this article, we review the expression of virulence surface proteins and their interaction with host cells for the most frequently isolated uropathogens: Escherichia coli, Enterococcus faecalis, Proteus mirabilis, Klebsiella pneumoniae, and Staphylococcus saprophyticus. In addition to the host cell interaction, surface protein regulation was also discussed in this article. The surface protein regulation serves as a key tool in differentiating the pathogen isotypes. Furthermore, it might provide insights on novel diagnostic methods to detect uropathogen that are otherwise easily overlooked due to limited culture-based assays. In essence, this review shall provide an in-depth understanding on secretion of virulence factors of various uropathogens and their role in host-pathogen interaction, this knowledge might be useful in the development of therapeutics against uropathogens.
Collapse
Affiliation(s)
| | - Kumaravel Kandaswamy
- Corresponding author at: Department of Biotechnology, Kumaraguru College of Technology (KCT), Chinnavedampatti, Coimbatore 641049, Tamil Nadu, India.
| |
Collapse
|
12
|
Shanmugasundarasamy T, Karaiyagowder Govindarajan D, Kandaswamy K. A review on pilus assembly mechanisms in Gram-positive and Gram-negative bacteria. Cell Surf 2022; 8:100077. [PMID: 35493982 PMCID: PMC9046445 DOI: 10.1016/j.tcsw.2022.100077] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022] Open
Abstract
The surface of Gram-positive and Gram-negative bacteria contains long hair-like proteinaceous protrusion known as pili or fimbriae. Historically, pilin proteins were considered to play a major role in the transfer of genetic material during bacterial conjugation. Recent findings however elucidate their importance in virulence, biofilm formation, phage transduction, and motility. Therefore, it is crucial to gain mechanistic insights on the subcellular assembly of pili and the localization patterns of their subunit proteins (major and minor pilins) that aid the macromolecular pilus assembly at the bacterial surface. In this article, we review the current knowledge of pilus assembly mechanisms in a wide range of Gram-positive and Gram-negative bacteria, including subcellular localization patterns of a few pilin subunit proteins and their role in virulence and pathogenesis.
Collapse
|
13
|
A conserved signal-peptidase antagonist modulates membrane homeostasis of actinobacterial sortase critical for surface morphogenesis. Proc Natl Acad Sci U S A 2022; 119:e2203114119. [PMID: 35787040 PMCID: PMC9282373 DOI: 10.1073/pnas.2203114119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell wall anchoring of surface proteins in Gram-positive bacteria requires a sortase enzyme. Here, we unveiled the hitherto unknown function of an evolutionarily conserved small transmembrane protein, named SafA, genetically linked to the housekeeping sortase in Actinobacteria. We show that Actinomyces oris SafA interacts with the housekeeping sortase SrtA via the conserved FPW motif and prevents SrtA cleavage by the signal peptidase LepB2, hence maintaining membrane homeostasis of SrtA. This function is conserved as ectopic expression of SafA from Corynebacterium diphtheriae and Corynebacterium matruchotii in the A. oris safA mutant rescues its defects in cell morphology, pilus assembly, surface protein localization, and polymicrobial interactions. Thus, SafA represents an archetypal antagonist of signal peptidase that modulates surface assembly in Actinobacteria. Most Actinobacteria encode a small transmembrane protein, whose gene lies immediately downstream of the housekeeping sortase coding for a transpeptidase that anchors many extracellular proteins to the Gram-positive bacterial cell wall. Here, we uncover the hitherto unknown function of this class of conserved proteins, which we name SafA, as a topological modulator of sortase in the oral Actinobacterium Actinomyces oris. Genetic deletion of safA induces cleavage and excretion of the otherwise predominantly membrane-bound SrtA in wild-type cells. Strikingly, the safA mutant, although viable, exhibits severe abnormalities in cell morphology, pilus assembly, surface protein localization, and polymicrobial interactions—the phenotypes that are mirrored by srtA depletion. The pleiotropic defect of the safA mutant is rescued by ectopic expression of safA from not only A. oris, but also Corynebacterium diphtheriae or Corynebacterium matruchotii. Importantly, the SrtA N terminus harbors a tripartite-domain feature typical of a bacterial signal peptide, including a cleavage motif AXA, mutations in which prevent SrtA cleavage mediated by the signal peptidase LepB2. Bacterial two-hybrid analysis demonstrates that SafA and SrtA directly interact. This interaction involves a conserved motif FPW within the exoplasmic face of SafA, since mutations of this motif abrogate SafA-SrtA interaction and induce SrtA cleavage and excretion as observed in the safA mutant. Evidently, SafA is a membrane-imbedded antagonist of signal peptidase that safeguards and maintains membrane homeostasis of the housekeeping sortase SrtA, a central player of cell surface assembly.
Collapse
|
14
|
Kundra S, Lam LN, Kajfasz JK, Casella LG, Andersen MJ, Abranches J, Flores-Mireles AL, Lemos JA. c-di-AMP Is Essential for the Virulence of Enterococcus faecalis. Infect Immun 2021; 89:e0036521. [PMID: 34424750 PMCID: PMC8519298 DOI: 10.1128/iai.00365-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Second messenger nucleotides are produced by bacteria in response to environmental stimuli and play a major role in the regulation of processes associated with bacterial fitness, including but not limited to osmoregulation, envelope homeostasis, central metabolism, and biofilm formation. In this study, we uncovered the biological significance of c-di-AMP in the opportunistic pathogen Enterococcus faecalis by isolating and characterizing strains lacking genes responsible for c-di-AMP synthesis (cdaA) and degradation (dhhP and gdpP). Using complementary approaches, we demonstrated that either complete loss of c-di-AMP (ΔcdaA strain) or c-di-AMP accumulation (ΔdhhP, ΔgdpP, and ΔdhhP ΔgdpP strains) drastically impaired general cell fitness and virulence of E. faecalis. In particular, the ΔcdaA strain was highly sensitive to envelope-targeting antibiotics, was unable to multiply and quickly lost viability in human serum or urine ex vivo, and was virtually avirulent in an invertebrate (Galleria mellonella) and in two catheter-associated mouse infection models that recapitulate key aspects of enterococcal infections in humans. In addition to evidence linking these phenotypes to altered activity of metabolite and peptide transporters and inability to maintain osmobalance, we found that the attenuated virulence of the ΔcdaA strain also could be attributed to a defect in Ebp pilus production and activity that severely impaired biofilm formation under both in vitro and in vivo conditions. Collectively, these results demonstrate that c-di-AMP signaling is essential for E. faecalis pathogenesis and a desirable target for drug development.
Collapse
Affiliation(s)
- Shivani Kundra
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Ling Ning Lam
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Jessica K. Kajfasz
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Leila G. Casella
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Marissa J. Andersen
- Department of Biological Sciences, University of Norte Dame, Notre Dame, Indiana, USA
| | - Jacqueline Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Norte Dame, Notre Dame, Indiana, USA
| | - José A. Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| |
Collapse
|
15
|
Susmitha A, Bajaj H, Madhavan Nampoothiri K. The divergent roles of sortase in the biology of Gram-positive bacteria. ACTA ACUST UNITED AC 2021; 7:100055. [PMID: 34195501 PMCID: PMC8225981 DOI: 10.1016/j.tcsw.2021.100055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
The bacterial cell wall contains numerous surface-exposed proteins, which are covalently anchored and assembled by a sortase family of transpeptidase enzymes. The sortase are cysteine transpeptidases that catalyzes the covalent attachment of surface protein to the cell wall peptidoglycan. Among the reported six classes of sortases, each distinct class of sortase plays a unique biological role in anchoring a variety of surface proteins to the peptidoglycan of both pathogenic and non-pathogenic Gram-positive bacteria. Sortases not only exhibit virulence and pathogenesis properties to host cells, but also possess a significant role in gut retention and immunomodulation in probiotic microbes. The two main distinct functions are to attach proteins directly to the cell wall or assemble pili on the microbial surface. This review provides a compendium of the distribution of different classes of sortases present in both pathogenic and non-pathogenic Gram-positive bacteria and also the noteworthy role played by them in bacterial cell wall assembly which enables each microbe to effectively interact with its environment.
Collapse
Affiliation(s)
- Aliyath Susmitha
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
| | - Kesavan Madhavan Nampoothiri
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Hu P, Lv B, Yang K, Lu Z, Ma J. Discovery of myricetin as an inhibitor against Streptococcus mutans and an anti-adhesion approach to biofilm formation. Int J Med Microbiol 2021; 311:151512. [PMID: 33971542 DOI: 10.1016/j.ijmm.2021.151512] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Streptococcus mutans (S. mutans) are cariogenic microorganisms. Sortase A (SrtA) is a transpeptidase that attaches Pac to the cell surface. The biofilm formation of S. mutans is promoted by SrtA regulated Pac. Myricetin (Myr) has a variety of pharmacological properties, including inhibiting SrtA activity of Staphylococcus aureus. The purpose of this research was to investigate the inhibitory effect of Myr on SrtA of S. mutans and its subsequent influence on the biofilm formation. Here, Myr was discovered as a potent inhibitor of S. mutans SrtA, with an IC50 of 48.66 ± 1.48 μM, which was lower than the minimum inhibitory concentration (MIC) of 512 ug/mL. Additionally, immunoblot and biofilm assays demonstrated that Myr at a sub-MIC level could reduce adhesion and biofilm formation of S. mutans. The reduction of biofilm was possibly caused by the decreased amount of Pac on the cells' surface by releasing Pac into the medium via inhibiting SrtA activity. Molecular dynamics simulations and mutagenesis assays suggested that Met123, Ile191, and Arg213 of SrtA were pivotal for the interaction of SrtA and Myr. Our findings indicate that Myr is a promising candidate for the control of dental caries by modulating Pac-involved adhesive mechanisms without developing drug resistance to S.mutans.
Collapse
Affiliation(s)
- Ping Hu
- Center of Stomatology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, Hubei, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Bibo Lv
- Pediatric Department of Stomatology, Affiliated Xiangyang Stomatological Hospital of Hubei University of Arts and Science, No. 6, Jianhua Road, Xiangyang, Hubei, People's Republic of China
| | - Kongxi Yang
- Center of Stomatology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, Hubei, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zimin Lu
- Department of Medicinal Chemistry, School of Pharmacy, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Jingzhi Ma
- Center of Stomatology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, Hubei, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
17
|
Kalfopoulou E, Huebner J. Advances and Prospects in Vaccine Development against Enterococci. Cells 2020; 9:cells9112397. [PMID: 33147722 PMCID: PMC7692742 DOI: 10.3390/cells9112397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
Enterococci are the second most common Gram-positive pathogen responsible for nosocomial infections. Due to the limited number of new antibiotics that reach the medical practice and the resistance of enterococci to the current antibiotic options, passive and active immunotherapies have emerged as a potential prevention and/or treatment strategy against this opportunistic pathogen. In this review, we explore the pathogenicity of these bacteria and their interaction with the host immune response. We provide an overview of the capsular polysaccharides and surface-associated proteins that have been described as potential antigens in anti-enterococcal vaccine formulations. In addition, we describe the current status in vaccine development against enterococci and address the importance and the current advances toward the development of well-defined vaccines with broad coverage against enterococci.
Collapse
Affiliation(s)
- Ermioni Kalfopoulou
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany;
| | - Johannes Huebner
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, 80337 Munich, Germany
- Correspondence: ; Tel.: +49-89-44005-7970
| |
Collapse
|
18
|
Multiplex CRISPRi System Enables the Study of Stage-Specific Biofilm Genetic Requirements in Enterococcus faecalis. mBio 2020; 11:mBio.01101-20. [PMID: 33082254 PMCID: PMC7587440 DOI: 10.1128/mbio.01101-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Enterococcus faecalis causes multidrug-resistant life-threatening infections and is often coisolated with other pathogenic bacteria from polymicrobial biofilm-associated infections. Genetic tools to dissect complex interactions in mixed microbial communities are largely limited to transposon mutagenesis and traditional time- and labor-intensive allelic-exchange methods. Built upon streptococcal dCas9, we developed an easily modifiable, inducible CRISPRi system for E. faecalis that can efficiently silence single and multiple genes. This system can silence genes involved in biofilm formation and antibiotic resistance and can be used to interrogate gene essentiality. Uniquely, this tool is optimized to study genes important for biofilm initiation, maturation, and maintenance and can be used to perturb preformed biofilms. This system will be valuable to rapidly and efficiently investigate a wide range of aspects of complex enterococcal biology. Enterococcus faecalis is an opportunistic pathogen, which can cause multidrug-resistant life-threatening infections. Gaining a complete understanding of enterococcal pathogenesis is a crucial step in identifying a strategy to effectively treat enterococcal infections. However, bacterial pathogenesis is a complex process often involving a combination of genes and multilevel regulation. Compared to established knockout methodologies, CRISPR interference (CRISPRi) approaches enable the rapid and efficient silencing of genes to interrogate gene products and pathways involved in pathogenesis. As opposed to traditional gene inactivation approaches, CRISPRi can also be quickly repurposed for multiplexing or used to study essential genes. Here, we have developed a novel dual-vector nisin-inducible CRISPRi system in E. faecalis that can efficiently silence via both nontemplate and template strand targeting. Since the nisin-controlled gene expression system is functional in various Gram-positive bacteria, the developed CRISPRi tool can be extended to other genera. This system can be applied to study essential genes, genes involved in antimicrobial resistance, and genes involved in biofilm formation and persistence. The system is robust and can be scaled up for high-throughput screens or combinatorial targeting. This tool substantially enhances our ability to study enterococcal biology and pathogenesis, host-bacterium interactions, and interspecies communication.
Collapse
|
19
|
Ramirez NA, Das A, Ton-That H. New Paradigms of Pilus Assembly Mechanisms in Gram-Positive Actinobacteria. Trends Microbiol 2020; 28:999-1009. [PMID: 32499101 DOI: 10.1016/j.tim.2020.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
Adhesive pili in Gram-positive bacteria represent a variety of extracellular multiprotein polymers that mediate bacterial colonization of specific host tissues and associated pathogenesis. Pili are assembled in two distinct but coupled steps, an orderly crosslinking of pilin monomers and subsequent anchoring of the polymer to peptidoglycan, catalyzed by two transpeptidase enzymes - the pilus-specific sortase and the housekeeping sortase. Here, we review this biphasic assembly mechanism based on studies of two prototypical models, the heterotrimeric pili in Corynebacterium diphtheriae and the heterodimeric pili in Actinomyces oris, highlighting some newly emerged basic paradigms. The disparate mechanisms of protein ligation mediated by the pilus-specific sortase and the spatial positioning of adhesive pili on the cell surface modulated by the housekeeping sortase are among the notable highlights.
Collapse
Affiliation(s)
- Nicholas A Ramirez
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, CT, USA
| | - Hung Ton-That
- Molecular Biology Institute, University of California, Los Angeles, CA, USA; Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Parducho KR, Beadell B, Ybarra TK, Bush M, Escalera E, Trejos AT, Chieng A, Mendez M, Anderson C, Park H, Wang Y, Lu W, Porter E. The Antimicrobial Peptide Human Beta-Defensin 2 Inhibits Biofilm Production of Pseudomonas aeruginosa Without Compromising Metabolic Activity. Front Immunol 2020; 11:805. [PMID: 32457749 PMCID: PMC7225314 DOI: 10.3389/fimmu.2020.00805] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Biofilm production is a key virulence factor that facilitates bacterial colonization on host surfaces and is regulated by complex pathways, including quorum sensing, that also control pigment production, among others. To limit colonization, epithelial cells, as part of the first line of defense, utilize a variety of antimicrobial peptides (AMPs) including defensins. Pore formation is the best investigated mechanism for the bactericidal activity of AMPs. Considering the induction of human beta-defensin 2 (HBD2) secretion to the epithelial surface in response to bacteria and the importance of biofilm in microbial infection, we hypothesized that HBD2 has biofilm inhibitory activity. We assessed the viability and biofilm formation of a pyorubin-producing Pseudomonas aeruginosa strain in the presence and absence of HBD2 in comparison to the highly bactericidal HBD3. At nanomolar concentrations, HBD2 - independent of its chiral state - significantly reduced biofilm formation but not metabolic activity, unlike HBD3, which reduced biofilm and metabolic activity to the same degree. A similar discrepancy between biofilm inhibition and maintenance of metabolic activity was also observed in HBD2 treated Acinetobacter baumannii, another Gram-negative bacterium. There was no evidence for HBD2 interference with the regulation of biofilm production. The expression of biofilm-related genes and the extracellular accumulation of pyorubin pigment, another quorum sensing controlled product, did not differ significantly between HBD2 treated and control bacteria, and in silico modeling did not support direct binding of HBD2 to quorum sensing molecules. However, alterations in the outer membrane protein profile accompanied by surface topology changes, documented by atomic force microscopy, was observed after HBD2 treatment. This suggests that HBD2 induces structural changes that interfere with the transport of biofilm precursors into the extracellular space. Taken together, these data support a novel mechanism of biofilm inhibition by nanomolar concentrations of HBD2 that is independent of biofilm regulatory pathways.
Collapse
Affiliation(s)
- Kevin R. Parducho
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, United States
| | - Brent Beadell
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| | - Tiffany K. Ybarra
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| | - Mabel Bush
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| | - Erick Escalera
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| | - Aldo T. Trejos
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| | - Andy Chieng
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, United States
| | - Marlon Mendez
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| | - Chance Anderson
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| | - Hyunsook Park
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| | - Yixian Wang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, United States
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Edith Porter
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
21
|
Walker JN, Pinkner CL, Lynch AJL, Ortbal S, Pinkner JS, Hultgren SJ, Myckatyn TM. Deposition of Host Matrix Proteins on Breast Implant Surfaces Facilitates Staphylococcus Epidermidis Biofilm Formation: In Vitro Analysis. Aesthet Surg J 2020; 40:281-295. [PMID: 30953053 DOI: 10.1093/asj/sjz099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Staphylococcus epidermidis is a primary cause of breast implant-associated infection. S epidermidis possesses several virulence factors that enable it to bind both abiotic surfaces and host factors to form a biofilm. In addition S epidermidis colocalizes with matrix proteins coating explanted human breast implants. OBJECTIVES The authors sought to identify matrix proteins that S epidermidis may exploit to infect various breast implant surfaces in vitro. METHODS A combination of in vitro assays was used to characterize S epidermidis strains isolated from human breast implants to gain a better understanding of how these bacteria colonize breast implant surfaces. These included determining the (1) minimum inhibitory and bactericidal concentrations for irrigation solutions commonly used to prevent breast implant contamination; (2) expression and carriage of polysaccharide intercellular adhesin and serine-aspartate repeat proteins, which bind fibrinogen (SdrG) and collagen (SdrF), respectively; and (3) biofilm formation on varying implant surface characteristics, in different growth media, and supplemented with fibrinogen and Types I and III collagen. Scanning electron microscopy and immunofluorescence staining analyses were performed to corroborate findings from these assays. RESULTS Textured breast implant surfaces support greater bacterial biofilm formation at baseline, and the addition of collagen significantly increases biomass on all surfaces tested. We found that S epidermidis isolated from breast implants all encoded SdrF. Consistent with this finding, these strains had a clear affinity for Type I collagen, forming dense, highly structured biofilms in its presence. CONCLUSIONS The authors found that S epidermidis may utilize SdrF to interact with Type I collagen to form biofilm on breast implant surfaces. LEVEL OF EVIDENCE: 5
Collapse
Affiliation(s)
| | | | | | - Sarah Ortbal
- Washington University School of Medicine, St. Louis, MO
| | | | | | | |
Collapse
|
22
|
Chang C, Wu C, Osipiuk J, Siegel SD, Zhu S, Liu X, Joachimiak A, Clubb RT, Das A, Ton-That H. Cell-to-cell interaction requires optimal positioning of a pilus tip adhesin modulated by gram-positive transpeptidase enzymes. Proc Natl Acad Sci U S A 2019; 116:18041-18049. [PMID: 31427528 PMCID: PMC6731673 DOI: 10.1073/pnas.1907733116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Assembly of pili on the gram-positive bacterial cell wall involves 2 conserved transpeptidase enzymes named sortases: One for polymerization of pilin subunits and another for anchoring pili to peptidoglycan. How this machine controls pilus length and whether pilus length is critical for cell-to-cell interactions remain unknown. We report here in Actinomyces oris, a key colonizer in the development of oral biofilms, that genetic disruption of its housekeeping sortase SrtA generates exceedingly long pili, catalyzed by its pilus-specific sortase SrtC2 that possesses both pilus polymerization and cell wall anchoring functions. Remarkably, the srtA-deficient mutant fails to mediate interspecies interactions, or coaggregation, even though the coaggregation factor CafA is present at the pilus tip. Increasing ectopic expression of srtA in the mutant progressively shortens pilus length and restores coaggregation accordingly, while elevated levels of shaft pilins and SrtC2 produce long pili and block coaggregation by SrtA+ bacteria. With structural studies, we uncovered 2 key structural elements in SrtA that partake in recognition of pilin substrates and regulate pilus length by inducing the capture and transfer of pilus polymers to the cell wall. Evidently, coaggregation requires proper positioning of the tip adhesin CafA via modulation of pilus length by the housekeeping sortase SrtA.
Collapse
Affiliation(s)
- Chungyu Chang
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA 90095;
| | - Chenggang Wu
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX 77030
| | - Jerzy Osipiuk
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637
- Structural Biology Center, Argonne National Laboratory, Lemont, IL 60439
| | - Sara D Siegel
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX 77030
| | - Shiwei Zhu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510
| | - Xiangan Liu
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX 77030
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637
- Structural Biology Center, Argonne National Laboratory, Lemont, IL 60439
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles-Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, CT 06030
| | - Hung Ton-That
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA 90095;
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
23
|
Chong KKL, Tay WH, Janela B, Yong AMH, Liew TH, Madden L, Keogh D, Barkham TMS, Ginhoux F, Becker DL, Kline KA. Enterococcus faecalis Modulates Immune Activation and Slows Healing During Wound Infection. J Infect Dis 2019; 216:1644-1654. [PMID: 29045678 PMCID: PMC5854026 DOI: 10.1093/infdis/jix541] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/13/2017] [Indexed: 01/13/2023] Open
Abstract
Enterococcus faecalis is one of the most frequently isolated bacterial species in wounds yet little is known about its pathogenic mechanisms in this setting. Here, we used a mouse wound excisional model to characterize the infection dynamics of E faecalis and show that infected wounds result in 2 different states depending on the initial inoculum. Low-dose inocula were associated with short-term, low-titer colonization whereas high-dose inocula were associated with acute bacterial replication and long-term persistence. High-dose infection and persistence were also associated with immune cell infiltration, despite suppression of some inflammatory cytokines and delayed wound healing. During high-dose infection, the multiple peptide resistance factor, which is involved in resisting immune clearance, contributes to E faecalis fitness. These results comprehensively describe a mouse model for investigating E faecalis wound infection determinants, and suggest that both immune modulation and resistance contribute to persistent, nonhealing wounds.
Collapse
Affiliation(s)
- Kelvin Kian Long Chong
- Singapore Centre for Environmental Life Sciences Engineering, Singapore.,Nanyang Technological University Institute for Health Technologies, Singapore
| | - Wei Hong Tay
- Singapore Centre for Environmental Life Sciences Engineering, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Baptiste Janela
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Adeline Mei Hui Yong
- Singapore Centre for Environmental Life Sciences Engineering, Singapore.,School of Biological Sciences, Singapore
| | - Tze Horng Liew
- Singapore Centre for Environmental Life Sciences Engineering, Singapore
| | - Leigh Madden
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Damien Keogh
- Singapore Centre for Environmental Life Sciences Engineering, Singapore
| | | | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | | | - Kimberly A Kline
- Singapore Centre for Environmental Life Sciences Engineering, Singapore.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| |
Collapse
|
24
|
Flores-Mireles A, Hreha TN, Hunstad DA. Pathophysiology, Treatment, and Prevention of Catheter-Associated Urinary Tract Infection. Top Spinal Cord Inj Rehabil 2019; 25:228-240. [PMID: 31548790 PMCID: PMC6743745 DOI: 10.1310/sci2503-228] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Urinary tract infections (UTIs) are among the most common microbial infections in humans and represent a substantial burden on the health care system. UTIs can be uncomplicated, as when affecting healthy individuals, or complicated, when affecting individuals with compromised urodynamics and/or host defenses, such as those with a urinary catheter. There are clear differences between uncomplicated UTI and catheter-associated UTI (CAUTI) in clinical manifestations, causative organisms, and pathophysiology. Therefore, uncomplicated UTI and CAUTI cannot be approached similarly, or the risk of complications and treatment failure may increase. It is imperative to understand the key aspects of each condition to develop successful treatment options and improve patient outcomes. Here, we will review the epidemiology, pathogen prevalence, differential mechanisms used by uropathogens, and treatment and prevention of uncomplicated UTI and CAUTI.
Collapse
Affiliation(s)
| | - Teri N. Hreha
- Washington University School of Medicine, Saint Louis, Missouri
| | | |
Collapse
|
25
|
Planktonic Interference and Biofilm Alliance between Aggregation Substance and Endocarditis- and Biofilm-Associated Pili in Enterococcus faecalis. J Bacteriol 2018; 200:JB.00361-18. [PMID: 30249706 PMCID: PMC6256026 DOI: 10.1128/jb.00361-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
Most bacteria express multiple adhesins that contribute to surface attachment and colonization. However, the network and relationships between the various adhesins of a single bacterial species are less well understood. Here, we examined two well-characterized adhesins in Enterococcus faecalis, aggregation substance and endocarditis- and biofilm-associated pili, and found that they exhibit distinct functional contributions depending on the growth stage of the bacterial community. Pili interfere with aggregation substance-mediated clumping and plasmid transfer under planktonic conditions, whereas the two adhesins structurally complement one another during biofilm development. This study advances our understanding of how E. faecalis, a ubiquitous member of the human gut microbiome and an opportunistic pathogen, uses multiple surface structures to evolve and thrive. Like many bacteria, Enterococcus faecalis encodes a number of adhesins involved in colonization or infection of different niches. Two well-studied E. faecalis adhesins, aggregation substance (AS) and endocarditis- and biofilm-associated pili (Ebp), both contribute to biofilm formation on abiotic surfaces and in endocarditis, suggesting that they may be expressed at the same time. Because different regulatory pathways have been reported for AS and Ebp, here, we examined if they are coexpressed on the same cells and what is the functional impact of coexpression on individual cells and within a population. We found that while Ebp are only expressed on a subset of cells, when Ebp and AS are expressed on the same cells, pili interfere with AS-mediated clumping and impede AS-mediated conjugative plasmid transfer during planktonic growth. However, when the population density increases, horizontal gene transfer rates normalize and are no longer affected by pilus expression. Instead, at higher cell densities during biofilm formation, Ebp and AS differentially contribute to biofilm development and structure, synergizing to promote maximal biofilm formation. IMPORTANCE Most bacteria express multiple adhesins that contribute to surface attachment and colonization. However, the network and relationships between the various adhesins of a single bacterial species are less well understood. Here, we examined two well-characterized adhesins in Enterococcus faecalis, aggregation substance and endocarditis- and biofilm-associated pili, and found that they exhibit distinct functional contributions depending on the growth stage of the bacterial community. Pili interfere with aggregation substance-mediated clumping and plasmid transfer under planktonic conditions, whereas the two adhesins structurally complement one another during biofilm development. This study advances our understanding of how E. faecalis, a ubiquitous member of the human gut microbiome and an opportunistic pathogen, uses multiple surface structures to evolve and thrive.
Collapse
|
26
|
Ch’ng JH, Chong KKL, Lam LN, Wong JJ, Kline KA. Biofilm-associated infection by enterococci. Nat Rev Microbiol 2018; 17:82-94. [DOI: 10.1038/s41579-018-0107-z] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Identification of potential inhibitors of sortase A: Binding studies, in-silico docking and protein-protein interaction studies of sortase A from Enterococcus faecalis. Int J Biol Macromol 2018; 120:1906-1916. [PMID: 30268755 DOI: 10.1016/j.ijbiomac.2018.09.174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 12/16/2022]
Abstract
Enterococcus faecalis (Ef) is a Gram positive multidrug resistant (MDR) bacterium contributing about 70% of total enterococcal infections. In Ef, a membrane anchored transpeptidase Sortase A plays a major role in biofilm formation. Therefore, it has been recognized as an ideal drug target against Ef. In this regard to identify the potential inhibitors of Ef Sortase A (EfSrtA∆59), we have cloned, expressed and purified EfSrtA∆59. We have also done the in-silico docking studies to identify lead molecules interacting with EfSrtA∆59. Furthermore, the binding studies of these identified lead molecules were performed with EfSrtA∆59 using fluorescence and CD spectroscopic studies. We also identified the interaction partner of EfSrtA∆59 using STRING. Protein-protein docking studies were also performed. Docking experiment revealed that benzylpenicillin, cefotaxime, pantoprazole and valsartan were bound to same site on the protein with similar interactions. Binding studies using fluorescence spectroscopic studies confirmed the binding of all the ligands to EfSrtA∆59, which was further validated by far and near-UV CD experiments. Thermo stability experiments validate the stability-activity trade-off hypothesis. Sequence based interaction studies identified that EfSrtA∆59 interact with the Ef_1091, Ef_1093 and Ef_2658 proteins. Homology model of Ef_1091 and Ef_1093 was docked with modeled EfSrtA∆59 and their interactions are also discussed.
Collapse
|
28
|
Goh HMS, Yong MHA, Chong KKL, Kline KA. Model systems for the study of Enterococcal colonization and infection. Virulence 2017; 8:1525-1562. [PMID: 28102784 PMCID: PMC5810481 DOI: 10.1080/21505594.2017.1279766] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 02/07/2023] Open
Abstract
Enterococcus faecalis and Enterococcus faecium are common inhabitants of the human gastrointestinal tract, as well as frequent opportunistic pathogens. Enterococci cause a range of infections including, most frequently, infections of the urinary tract, catheterized urinary tract, bloodstream, wounds and surgical sites, and heart valves in endocarditis. Enterococcal infections are often biofilm-associated, polymicrobial in nature, and resistant to antibiotics of last resort. Understanding Enterococcal mechanisms of colonization and pathogenesis are important for identifying new ways to manage and intervene with these infections. We review vertebrate and invertebrate model systems applied to study the most common E. faecalis and E. faecium infections, with emphasis on recent findings examining Enterococcal-host interactions using these models. We discuss strengths and shortcomings of each model, propose future animal models not yet applied to study mono- and polymicrobial infections involving E. faecalis and E. faecium, and comment on the significance of anti-virulence strategies derived from a fundamental understanding of host-pathogen interactions in model systems.
Collapse
Affiliation(s)
- H. M. Sharon Goh
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - M. H. Adeline Yong
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kelvin Kian Long Chong
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, Singapore
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
29
|
Xu W, Flores-Mireles AL, Cusumano ZT, Takagi E, Hultgren SJ, Caparon MG. Host and bacterial proteases influence biofilm formation and virulence in a murine model of enterococcal catheter-associated urinary tract infection. NPJ Biofilms Microbiomes 2017; 3:28. [PMID: 29134108 PMCID: PMC5673934 DOI: 10.1038/s41522-017-0036-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 12/19/2022] Open
Abstract
Enterococcus faecalis is a leading causative agent of catheter-associated urinary tract infection (CAUTI), the most common hospital-acquired infection. Its ability to grow and form catheter biofilm is dependent upon host fibrinogen (Fg). Examined here are how bacterial and host proteases interact with Fg and contribute to virulence. Analysis of mutants affecting the two major secreted proteases of E. faecalis OG1RF (GelE, SprE) revealed that while the loss of either had no effect on virulence in a murine CAUTI model or for formation of Fg-dependent biofilm in urine, the loss of both resulted in CAUTI attenuation and defective biofilm formation. GelE−, but not SprE− mutants, lost the ability to degrade Fg in medium, while paradoxically, both could degrade Fg in urine. The finding that SprE was activated independently of GelE in urine by a host trypsin-like protease resolved this paradox. Treatment of catheter-implanted mice with inhibitors of both host-derived and bacterial-derived proteases dramatically reduced catheter-induced inflammation, significantly inhibited dissemination from bladder to kidney and revealed an essential role for a host cysteine protease in promoting pathogenesis. These data show that both bacterial and host proteases contribute to CAUTI, that host proteases promote dissemination and suggest new strategies for therapeutic intervention. Identifying bacterial and host enzymes that support biofilm formation may help prevent urinary tract infections caused by catheters. Enterococcus faecalis bacteria is a leading cause of catheter-associated urinary tract infections, the most common type of hospital-acquired infections. Michael Caparon and colleagues at Washington University School of Medicine in Missouri, USA, studied these infections in mice. They examined the effects of two protein-degrading enzymes, both from the bacterium and one can be activated by urine trypsin-like protease from the animals. Mutations that impaired either one of the enzymes had no effect on the infection, but when both the bacterial enzymes were impaired by mutation the formation of biofilms was significantly reduced. Treating the mice with chemicals that inhibited both bacterial and host enzymes dramatically reduced catheter-induced inflammation and related problems. This suggests drugs targeting these enzymes could be useful in clinical care.
Collapse
Affiliation(s)
- Wei Xu
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, Saint Louis, MO 63110-1093 USA
| | - Ana L Flores-Mireles
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, Saint Louis, MO 63110-1093 USA
| | - Zachary T Cusumano
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, Saint Louis, MO 63110-1093 USA.,Present Address: NextCure Inc., Beltsville, MD USA
| | - Enzo Takagi
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, Saint Louis, MO 63110-1093 USA
| | - Scott J Hultgren
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, Saint Louis, MO 63110-1093 USA
| | - Michael G Caparon
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, Saint Louis, MO 63110-1093 USA
| |
Collapse
|
30
|
Keogh D, Tay WH, Ho YY, Dale JL, Chen S, Umashankar S, Williams RBH, Chen SL, Dunny GM, Kline KA. Enterococcal Metabolite Cues Facilitate Interspecies Niche Modulation and Polymicrobial Infection. Cell Host Microbe 2017; 20:493-503. [PMID: 27736645 DOI: 10.1016/j.chom.2016.09.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/25/2016] [Accepted: 09/07/2016] [Indexed: 01/04/2023]
Abstract
Enterococcus faecalis is frequently associated with polymicrobial infections of the urinary tract, indwelling catheters, and surgical wound sites. E. faecalis co-exists with Escherichia coli and other pathogens in wound infections, but mechanisms that govern polymicrobial colonization and pathogenesis are poorly defined. During infection, bacteria must overcome multiple host defenses, including nutrient iron limitation, to persist and cause disease. In this study, we investigated the contribution of E. faecalis to mixed-species infection when iron availability is restricted. We show that E. faecalis significantly augments E. coli biofilm growth and survival in vitro and in vivo by exporting L-ornithine. This metabolic cue facilitates E. coli biosynthesis of the enterobactin siderophore, allowing E. coli growth and biofilm formation in iron-limiting conditions that would otherwise restrict its growth. Thus, E. faecalis modulates its local environment by contributing growth-promoting cues that allow co-infecting organisms to overcome iron limitation and promotes polymicrobial infections.
Collapse
Affiliation(s)
- Damien Keogh
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Wei Hong Tay
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yao Yong Ho
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jennifer L Dale
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Siyi Chen
- Division of Infectious Diseases, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 10, Singapore 119074, Singapore
| | - Shivshankar Umashankar
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 28 Medical Drive, Singapore 114756, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 28 Medical Drive, Singapore 114756, Singapore
| | - Swaine L Chen
- Division of Infectious Diseases, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 10, Singapore 119074, Singapore; GERMS and Infectious Disease Group, Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore 138672, Singapore
| | - Gary M Dunny
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kimberly A Kline
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
31
|
Miller WR, Murray BE, Rice LB, Arias CA. Vancomycin-Resistant Enterococci: Therapeutic Challenges in the 21st Century. Infect Dis Clin North Am 2017; 30:415-439. [PMID: 27208766 DOI: 10.1016/j.idc.2016.02.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vancomycin-resistant enterococci are serious health threats due in part to their ability to persist in rugged environments and their propensity to acquire antibiotic resistance determinants. Enterococci have now established a home in our hospitals and possess mechanisms to defeat most currently available antimicrobials. This article reviews the history of the struggle with this pathogen, what is known about the traits associated with its rise in the modern medical environment, and the current understanding of therapeutic approaches in severe infections caused by these microorganisms. As the 21st century progresses, vancomycin-resistant enterococci continue to pose a daunting clinical challenge.
Collapse
Affiliation(s)
- William R Miller
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Barbara E Murray
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA; Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Louis B Rice
- Departments of Medicine, Microbiology and Immunology, Warren Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | - Cesar A Arias
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA; Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA; Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Avenue Cra 9 No. 131 A - 02, Bogotá, Colombia.
| |
Collapse
|
32
|
Anchoring of LPXTG-Like Proteins to the Gram-Positive Cell Wall Envelope. Curr Top Microbiol Immunol 2017; 404:159-175. [PMID: 27097813 DOI: 10.1007/82_2016_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Gram-positive bacteria, protein precursors with a signal peptide and a cell wall sorting signal (CWSS)-which begins with an LPXTG motif, followed by a hydrophobic domain and a tail of positively charged residues-are targeted to the cell envelope by a transpeptidase enzyme call sortase. Evolution and selective pressure gave rise to six classes of sortase, i.e., SrtA-F. Only class C sortases are capable of polymerizing substrates harboring the pilin motif and CWSS into protein polymers known as pili or fimbriae, whereas the others perform cell wall anchoring functions. Regardless of the products generated from these sortases, the basic principle of sortase-catalyzed transpeptidation is the same. It begins with the cleavage of the LPXTG motif, followed by the cross-linking of this cleaved product at the threonine residue to a nucleophile, i.e., an active amino group of the peptidoglycan stem peptide or the lysine residue of the pilin motif. This chapter will summarize the efforts to identify and characterize sortases and their associated pathways with emphasis on the cell wall anchoring function.
Collapse
|
33
|
Innovative Solutions to Sticky Situations: Antiadhesive Strategies for Treating Bacterial Infections. Microbiol Spectr 2017; 4. [PMID: 27227305 DOI: 10.1128/microbiolspec.vmbf-0023-2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial adherence to host tissue is an essential process in pathogenesis, necessary for invasion and colonization and often required for the efficient delivery of toxins and other bacterial effectors. As existing treatment options for common bacterial infections dwindle, we find ourselves rapidly approaching a tipping point in our confrontation with antibiotic-resistant strains and in desperate need of new treatment options. Bacterial strains defective in adherence are typically avirulent and unable to cause infection in animal models. The importance of this initial binding event in the pathogenic cascade highlights its potential as a novel therapeutic target. This article seeks to highlight a variety of strategies being employed to treat and prevent infection by targeting the mechanisms of bacterial adhesion. Advancements in this area include the development of novel antivirulence therapies using small molecules, vaccines, and peptides to target a variety of bacterial infections. These therapies target bacterial adhesion through a number of mechanisms, including inhibition of pathogen receptor biogenesis, competition-based strategies with receptor and adhesin analogs, and the inhibition of binding through neutralizing antibodies. While this article is not an exhaustive description of every advancement in the field, we hope it will highlight several promising examples of the therapeutic potential of antiadhesive strategies.
Collapse
|
34
|
Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract. Microbiol Spectr 2017; 4. [PMID: 27227294 DOI: 10.1128/microbiolspec.uti-0012-2012] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gram-positive bacteria are a common cause of urinary-tract infection (UTI), particularly among individuals who are elderly, pregnant, or who have other risk factors for UTI. Here we review the epidemiology, virulence mechanisms, and host response to the most frequently isolated Gram-positive uropathogens: Staphylococcus saprophyticus, Enterococcus faecalis, and Streptococcus agalactiae. We also review several emerging, rare, misclassified, and otherwise underreported Gram-positive pathogens of the urinary tract including Aerococcus, Corynebacterium, Actinobaculum, and Gardnerella. The literature strongly suggests that urologic diseases involving Gram-positive bacteria may be easily overlooked due to limited culture-based assays typically utilized for urine in hospital microbiology laboratories. Some UTIs are polymicrobial in nature, often involving one or more Gram-positive bacteria. We herein review the risk factors and recent evidence for mechanisms of bacterial synergy in experimental models of polymicrobial UTI. Recent experimental data has demonstrated that, despite being cleared quickly from the bladder, some Gram-positive bacteria can impact pathogenic outcomes of co-infecting organisms. When taken together, the available evidence argues that Gram-positive bacteria are important uropathogens in their own right, but that some can be easily overlooked because they are missed by routine diagnostic methods. Finally, a growing body of evidence demonstrates that a surprising variety of fastidious Gram-positive bacteria may either reside in or be regularly exposed to the urinary tract and further suggests that their presence is widespread among women, as well as men. Experimental studies in this area are needed; however, there is a growing appreciation that the composition of bacteria found in the bladder could be a potentially important determinant in urologic disease, including susceptibility to UTI.
Collapse
|
35
|
The Enterococcus faecalis virulence factor ElrA interacts with the human Four-and-a-Half LIM Domains Protein 2. Sci Rep 2017; 7:4581. [PMID: 28676674 PMCID: PMC5496941 DOI: 10.1038/s41598-017-04875-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022] Open
Abstract
The commensal bacterium Enterococcus faecalis is a common cause of nosocomial infections worldwide. The increasing prevalence of multi-antibiotic resistant E. faecalis strains reinforces this public health concern. Despite numerous studies highlighting several pathology-related genetic traits, the molecular mechanisms of E. faecalis virulence remain poorly understood. In this work, we studied 23 bacterial proteins that could be considered as virulence factors or involved in the Enterococcus interaction with the host. We systematically tested their interactions with human proteins using the Human ORFeome library, a set of 12,212 human ORFs, in yeast. Among the thousands of tested interactions, one involving the E. faecalis virulence factor ElrA and the human protein FHL2 was evidenced by yeast two-hybrid and biochemically confirmed. Further molecular characterizations allowed defining an FHL2-interacting domain (FID) of ElrA. Deletion of the FID led to an attenuated in vivo phenotype of the mutated strain clearly indicating that this interaction is likely to contribute to the multifactorial virulence of this opportunistic pathogen. Altogether, our results show that FHL2 is the first host cellular protein directly targeted by an E. faecalis virulence factor and that this interaction is involved in Enterococcus pathogenicity.
Collapse
|
36
|
Woods SE, Lieberman MT, Lebreton F, Trowel E, de la Fuente-Núñez C, Dzink-Fox J, Gilmore MS, Fox JG. Characterization of Multi-Drug Resistant Enterococcus faecalis Isolated from Cephalic Recording Chambers in Research Macaques (Macaca spp.). PLoS One 2017; 12:e0169293. [PMID: 28081148 PMCID: PMC5231353 DOI: 10.1371/journal.pone.0169293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/14/2016] [Indexed: 11/19/2022] Open
Abstract
Nonhuman primates are commonly used for cognitive neuroscience research and often surgically implanted with cephalic recording chambers for electrophysiological recording. Aerobic bacterial cultures from 25 macaques identified 72 bacterial isolates, including 15 Enterococcus faecalis isolates. The E. faecalis isolates displayed multi-drug resistant phenotypes, with resistance to ciprofloxacin, enrofloxacin, trimethoprim-sulfamethoxazole, tetracycline, chloramphenicol, bacitracin, and erythromycin, as well as high-level aminoglycoside resistance. Multi-locus sequence typing showed that most belonged to two E. faecalis sequence types (ST): ST 4 and ST 55. The genomes of three representative isolates were sequenced to identify genes encoding antimicrobial resistances and other traits. Antimicrobial resistance genes identified included aac(6’)-aph(2”), aph(3’)-III, str, ant(6)-Ia, tetM, tetS, tetL, ermB, bcrABR, cat, and dfrG, and polymorphisms in parC (S80I) and gyrA (S83I) were observed. These isolates also harbored virulence factors including the cytolysin toxin genes in ST 4 isolates, as well as multiple biofilm-associated genes (esp, agg, ace, SrtA, gelE, ebpABC), hyaluronidases (hylA, hylB), and other survival genes (ElrA, tpx). Crystal violet biofilm assays confirmed that ST 4 isolates produced more biofilm than ST 55 isolates. The abundance of antimicrobial resistance and virulence factor genes in the ST 4 isolates likely relates to the loss of CRISPR-cas. This macaque colony represents a unique model for studying E. faecalis infection associated with indwelling devices, and provides an opportunity to understand the basis of persistence of this pathogen in a healthcare setting.
Collapse
Affiliation(s)
- Stephanie E. Woods
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Mia T. Lieberman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Francois Lebreton
- Departments of Ophthalmology, and Microbiology and Immunobiology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston Massachusetts, United States of America
| | - Elise Trowel
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - César de la Fuente-Núñez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge Massachusetts, United States of America
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Biophysics Program, Harvard University, Boston, Massachusetts, United States of America
- The Center for Microbiome Informatics and Therapeutics, Cambridge, Massachusetts, United States of America
| | - Joanne Dzink-Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Michael S. Gilmore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
37
|
Abstract
Urinary tract infections (UTI) are among the most common bacterial infections in humans, affecting millions of people every year. UTI cause significant morbidity in women throughout their lifespan, in infant boys, in older men, in individuals with underlying urinary tract abnormalities, and in those that require long-term urethral catheterization, such as patients with spinal cord injuries or incapacitated individuals living in nursing homes. Serious sequelae include frequent recurrences, pyelonephritis with sepsis, renal damage in young children, pre-term birth, and complications of frequent antimicrobial use including high-level antibiotic resistance and Clostridium difficile colitis. Uropathogenic E. coli (UPEC) cause the vast majority of UTI, but less common pathogens such as Enterococcus faecalis and other enterococci frequently take advantage of an abnormal or catheterized urinary tract to cause opportunistic infections. While antibiotic therapy has historically been very successful in controlling UTI, the high rate of recurrence remains a major problem, and many individuals suffer from chronically recurring UTI, requiring long-term prophylactic antibiotic regimens to prevent recurrent UTI. Furthermore, the global emergence of multi-drug resistant UPEC in the past ten years spotlights the need for alternative therapeutic and preventative strategies to combat UTI, including anti-infective drug therapies and vaccines. In this chapter, we review recent advances in the field of UTI pathogenesis, with an emphasis on the identification of promising drug and vaccine targets. We then discuss the development of new UTI drugs and vaccines, highlighting the challenges these approaches face and the need for a greater understanding of urinary tract mucosal immunity.
Collapse
|
38
|
Shaik MM, Lombardi C, Maragno Trindade D, Fenel D, Schoehn G, Di Guilmi AM, Dessen A. A structural snapshot of type II pilus formation in Streptococcus pneumoniae. J Biol Chem 2015. [PMID: 26198632 DOI: 10.1074/jbc.m115.647834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pili are fibrous appendages expressed on the surface of a vast number of bacterial species, and their role in surface adhesion is important for processes such as infection, colonization, andbiofilm formation. The human pathogen Streptococcus pneumoniae expresses two different types of pili, PI-1 and PI-2, both of which require the concerted action of structural proteins and sortases for their polymerization. The type PI-1 streptococcal pilus is a complex, well studied structure, but the PI-2 type, present in a number of invasive pneumococcal serotypes, has to date remained less well understood. The PI-2 pilus consists of repeated units of a single protein, PitB, whose covalent association is catalyzed by cognate sortase SrtG-1 and partner protein SipA. Here we report the high resolution crystal structures of PitB and SrtG1 and use molecular modeling to visualize a "trapped" 1:1 complex between the two molecules. X-ray crystallography and electron microscopy reveal that the pneumococcal PI-2 backbone fiber is formed by PitB monomers associated in head-to-tail fashion and that short, flexible fibers can be formed even in the absence of coadjuvant proteins. These observations, obtained with a simple pilus biosynthetic system, are likely to be applicable to other fiber formation processes in a variety of Gram-positive organisms.
Collapse
Affiliation(s)
- Md Munan Shaik
- From the Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France, CNRS, IBS, 38044 Grenoble, France, Commissariat à l'Energie Atomique, IBS, Grenoble, France, and
| | - Charlotte Lombardi
- From the Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France, CNRS, IBS, 38044 Grenoble, France, Commissariat à l'Energie Atomique, IBS, Grenoble, France, and
| | - Daniel Maragno Trindade
- Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, 13083 São Paulo, Brazil
| | - Daphna Fenel
- From the Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France, CNRS, IBS, 38044 Grenoble, France, Commissariat à l'Energie Atomique, IBS, Grenoble, France, and
| | - Guy Schoehn
- From the Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France, CNRS, IBS, 38044 Grenoble, France, Commissariat à l'Energie Atomique, IBS, Grenoble, France, and
| | - Anne Marie Di Guilmi
- From the Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France, CNRS, IBS, 38044 Grenoble, France, Commissariat à l'Energie Atomique, IBS, Grenoble, France, and
| | - Andréa Dessen
- From the Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38044 Grenoble, France, CNRS, IBS, 38044 Grenoble, France, Commissariat à l'Energie Atomique, IBS, Grenoble, France, and Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, 13083 São Paulo, Brazil
| |
Collapse
|
39
|
Flores-Mireles AL, Pinkner JS, Caparon MG, Hultgren SJ. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. Sci Transl Med 2015; 6:254ra127. [PMID: 25232179 DOI: 10.1126/scitranslmed.3009384] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Enterococci bacteria are a frequent cause of catheter-associated urinary tract infections, the most common type of hospital-acquired infection. Treatment has become increasingly challenging because of the emergence of multiantibiotic-resistant enterococcal strains and their ability to form biofilms on catheters. We identified and targeted a critical step in biofilm formation and developed a vaccine that prevents catheter-associated urinary tract infections in mice. In the murine model, formation of catheter-associated biofilms by Enterococcus faecalis depends on EbpA, which is the minor subunit at the tip of a heteropolymeric surface fiber known as the endocarditis- and biofilm-associated pilus (Ebp). We show that EbpA is an adhesin that mediates bacterial attachment to host fibrinogen, which is released and deposited on catheters after introduction of the catheter into the mouse bladder. Fibrinogen-binding activity resides in the amino-terminal domain of EbpA (EbpA(NTD)), and vaccination with EbpA and EbpA(NTD), but not its carboxyl-terminal domain or other Ebp subunits, inhibited biofilm formation in vivo and protected against catheter-associated urinary tract infection. Analyses in vitro demonstrated that protection was associated with a serum antibody response that blocked EbpA binding to fibrinogen and the formation of a fibrinogen-dependent biofilm on catheters. This approach may provide a new strategy for the prevention of catheter-associated urinary tract infections.
Collapse
Affiliation(s)
- Ana L Flores-Mireles
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Jerome S Pinkner
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Michael G Caparon
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093, USA.
| | - Scott J Hultgren
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093, USA.
| |
Collapse
|
40
|
The Enterococcus faecalis EbpA Pilus Protein: Attenuation of Expression, Biofilm Formation, and Adherence to Fibrinogen Start with the Rare Initiation Codon ATT. mBio 2015; 6:e00467-15. [PMID: 26015496 PMCID: PMC4447247 DOI: 10.1128/mbio.00467-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The endocarditis and biofilm-associated pili (Ebp) are important in Enterococcus faecalis pathogenesis, and the pilus tip, EbpA, has been shown to play a major role in pilus biogenesis, biofilm formation, and experimental infections. Based on in silico analyses, we previously predicted that ATT is the EbpA translational start codon, not the ATG codon, 120 bp downstream of ATT, which is annotated as the translational start. ATT is rarely used to initiate protein synthesis, leading to our hypothesis that this codon participates in translational regulation of Ebp production. To investigate this possibility, site-directed mutagenesis was used to introduce consecutive stop codons in place of two lysines at positions 5 and 6 from the ATT, to replace the ATT codon in situ with ATG, and then to revert this ATG to ATT; translational fusions of ebpA to lacZ were also constructed to investigate the effect of these start codons on translation. Our results showed that the annotated ATG does not start translation of EbpA, implicating ATT as the start codon; moreover, the presence of ATT, compared to the engineered ATG, resulted in significantly decreased EbpA surface display, attenuated biofilm, and reduced adherence to fibrinogen. Corroborating these findings, the translational fusion with the native ATT as the initiation codon showed significantly decreased expression of β-galactosidase compared to the construct with ATG in place of ATT. Thus, these results demonstrate that the rare initiation codon of EbpA negatively regulates EbpA surface display and negatively affects Ebp-associated functions, including biofilm and adherence to fibrinogen. IMPORTANCE Enterococcus faecalis is among the leading causes of serious infections in the hospital setting, and the endocarditis and biofilm-associated pili (Ebp) have been shown to play significant roles in E. faecalis pathogenesis. Understanding the regulation of virulence is important for the development of new approaches to counteract multidrug-resistant pathogens. We previously predicted that ATT, which has been reported to start protein synthesis only in rare instances, is the most likely translational start codon of EbpA in E. faecalis. Here, we demonstrate that ATT is the initiation codon of EbpA and, relative to a constructed ATG start codon, results in smaller amounts of EbpA on the surface of the cells, attenuating biofilm formation and fibrinogen adherence, phenotypes associated with the ability of E. faecalis to cause infections. This provides the first example of pilus regulation through the use of an ATT initiation codon.
Collapse
|
41
|
Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 2015; 13:269-84. [PMID: 25853778 DOI: 10.1038/nrmicro3432] [Citation(s) in RCA: 1980] [Impact Index Per Article: 220.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Urinary tract infections (UTIs) are a severe public health problem and are caused by a range of pathogens, but most commonly by Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecalis and Staphylococcus saprophyticus. High recurrence rates and increasing antimicrobial resistance among uropathogens threaten to greatly increase the economic burden of these infections. In this Review, we discuss how basic science studies are elucidating the molecular details of the crosstalk that occurs at the host-pathogen interface, as well as the consequences of these interactions for the pathophysiology of UTIs. We also describe current efforts to translate this knowledge into new clinical treatments for UTIs.
Collapse
|
42
|
Abstract
Pili of Gram-positive bacteria are unique structures on the bacterial surface, assembled from covalently linked polypeptide subunits. Pilus assembly proceeds by transpeptidation reactions catalyzed by sortases, followed by covalent anchoring of the filament in the peptidoglycan layer. Another distinctive property is the presence of intramolecular isopeptide bonds, conferring extraordinary chemical and mechanical stability to these elongated structures. Besides their function in cell adhesion and biofilm formation, this section discusses possible application of pilus constituents as vaccine components against Gram-positive pathogens.
Collapse
|
43
|
Cascioferro S, Cusimano MG, Schillaci D. Antiadhesion agents against Gram-positive pathogens. Future Microbiol 2014; 9:1209-20. [DOI: 10.2217/fmb.14.56] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
ABSTRACT A fundamental step of Gram-positive pathogenesis is the bacterial adhesion to the host tissue involving interaction between bacterial surface molecules and host ligands. This review is focused on antivirulence compounds that target Gram-positive adhesins and on their potential development as therapeutic agents alternative or complementary to conventional antibiotics in the contrast of pathogens. In particular, compounds that target the sortase A, wall theicoic acid inhibitors, carbohydrates able to bind bacterial proteins and proteins capable of influencing the bacterial adhesion, were described. We further discuss the advantages and disadvantages of this strategy in the development of novel antimicrobials and the future perspective of this research field still at its first steps.
Collapse
Affiliation(s)
- Stella Cascioferro
- Department of Biological, Chemical & Pharmaceutical Science & Technology (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo, Italy
| | - Maria Grazia Cusimano
- Department of Biological, Chemical & Pharmaceutical Science & Technology (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo, Italy
| | - Domenico Schillaci
- Department of Biological, Chemical & Pharmaceutical Science & Technology (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo, Italy
| |
Collapse
|
44
|
Wu C, Huang IH, Chang C, Reardon-Robinson ME, Das A, Ton-That H. Lethality of sortase depletion in Actinomyces oris caused by excessive membrane accumulation of a surface glycoprotein. Mol Microbiol 2014; 94:1227-41. [PMID: 25230351 DOI: 10.1111/mmi.12780] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2014] [Indexed: 01/03/2023]
Abstract
Sortase, a cysteine-transpeptidase conserved in Gram-positive bacteria, anchors on the cell wall many surface proteins that facilitate bacterial pathogenesis and fitness. Genetic disruption of the housekeeping sortase in several Gram-positive pathogens reported thus far attenuates virulence, but not bacterial growth. Paradoxically, we discovered that depletion of the housekeeping sortase SrtA was lethal for Actinomyces oris; yet, all of its predicted cell wall-anchored protein substrates (AcaA-N) were individually dispensable for cell viability. Using Tn5-transposon mutagenesis to identify factors that upend lethality of srtA deletion, we uncovered a set of genetic suppressors harbouring transposon insertions within genes of a locus encoding AcaC and a LytR-CpsA-Psr (LCP)-like protein. AcaC was shown to be highly glycosylated and dependent on LCP for its glycosylation. Upon SrtA depletion, the glycosylated form of AcaC, hereby renamed GspA, was accumulated in the membrane. Overexpression of GspA in a mutant lacking gspA and srtA was lethal; conversely, cells overexpressing a GspA mutant missing a membrane-localization domain were viable. The results reveal a unique glycosylation pathway in A. oris that is coupled to cell wall anchoring catalysed by sortase SrtA. Significantly, this novel phenomenon of glyco-stress provides convenient cell-based assays for developing a new class of inhibitors against Gram-positive pathogens.
Collapse
Affiliation(s)
- Chenggang Wu
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
45
|
Antiinfective therapy with a small molecule inhibitor of Staphylococcus aureus sortase. Proc Natl Acad Sci U S A 2014; 111:13517-22. [PMID: 25197057 DOI: 10.1073/pnas.1408601111] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is the most frequent cause of hospital-acquired infection, which manifests as surgical site infections, bacteremia, and sepsis. Due to drug-resistance, prophylaxis of MRSA infection with antibiotics frequently fails or incites nosocomial diseases such as Clostridium difficile infection. Sortase A is a transpeptidase that anchors surface proteins in the envelope of S. aureus, and sortase mutants are unable to cause bacteremia or sepsis in mice. Here we used virtual screening and optimization of inhibitor structure to identify 3-(4-pyridinyl)-6-(2-sodiumsulfonatephenyl)[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole and related compounds, which block sortase activity in vitro and in vivo. Sortase inhibitors do not affect in vitro staphylococcal growth yet protect mice against lethal S. aureus bacteremia. Thus, sortase inhibitors may be useful as antiinfective therapy to prevent hospital-acquired S. aureus infection in high-risk patients without the side effects of antibiotics.
Collapse
|
46
|
Abstract
Bioorthogonal, chemoselective ligation methods are an essential part of the tools utilized to investigate biochemical pathways. Specifically enzymatic approaches are valuable methods in this context due to the inherent specificity of the deployed enzymes and the mild conditions of the modification reactions. One of the most common strategies is based on the transpeptidation catalyzed by sortase A derived from Staphylococcus aureus. The procedure is well established and a wide variety of applications have been published to date. Here, implementations of sortase A, which range from protein labeling using fluorescence dyes and the preparation of cyclic proteins to the modification of entire cells, are summarized. Furthermore, there is a focus on the optimization approaches established to solve the drawbacks of sortase-mediated transpeptidation.
Collapse
Affiliation(s)
- Markus Ritzefeld
- Bielefeld University, Department of Chemistry, Organic and Bioorganic Chemistry (OCIII), Universitätsstrasse 25, 33615 Bielefeld (Germany).
| |
Collapse
|
47
|
Abstract
Passive protection, the administration of antibodies to prevent infection, has garnered significant interest in recent years as a potential prophylactic countermeasure to decrease the prevalence of hospital-acquired infections. Pili, polymerized protein structures covalently anchored to the peptidoglycan wall of many Gram-positive pathogens, are ideal targets for antibody intervention, given their importance in establishing infection and their accessibility to antibody interactions. In this work, we demonstrated that a monoclonal antibody to the major component of Enterococcus faecalis pili, EbpC, labels polymerized pilus structures, diminishes biofilm formation, and significantly prevents the establishment of a rat endocarditis infection. The effectiveness of this anti-EbpC monoclonal provides strong evidence in support of its potential as a preventative. In addition, after radiolabeling, this monoclonal identified the site of enterococcal infection, providing a rare example of molecularly specific imaging of an established bacterial infection and demonstrating the versatility of this agent for use in future diagnostic and therapeutic applications.
Collapse
|