1
|
Winther AR, Salehian Z, Bøe CA, Nesdal M, Håvarstein LS, Kjos M, Straume D. Decreased susceptibility to viscosin in Streptococcus pneumoniae. Microbiol Spectr 2024; 12:e0062424. [PMID: 38958463 PMCID: PMC11302323 DOI: 10.1128/spectrum.00624-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024] Open
Abstract
Growing numbers of infections caused by antibiotic-resistant Streptococcus pneumoniae strains are a major concern for healthcare systems that will require new antibiotics for treatment as well as preventative measures that reduce the number of infections. Lipopeptides are antimicrobial molecules, of which some are used as antibiotics, including the last resort antibiotics daptomycin and polymyxins. Here we have studied the antimicrobial effect of the cyclic lipopeptide viscosin on S. pneumoniae growth and morphology. Most lipopeptides function as surfactants that create pores in membrane layers, which is regarded as their main antimicrobial activity. We show that viscosin can inhibit growth of S. pneumoniae without disintegration of the cytoplasmic membrane. Instead, the cells developed abnormal shapes and misplaced new division sites. The cell wall of these bacteria appeared less dense in electron microscopy images, suggesting that viscosin interfered with normal cell wall synthesis. Corroborating this observation, a luciferase reporter assay was used to show that the two-component systems LiaFSR and CiaRH, which are known to be activated upon cell wall stress, were strongly induced by viscosin. Furthermore, a mutant displaying 1.8-fold decreased susceptibility to viscosin was generated by sequential exposure to increasing concentrations of the lipopeptide. The mutant suffered from significant fitness loss and had mutations in genes involved in fatty acid synthesis, teichoic acid synthesis, and cell wall synthesis as well as transcription and translation. How these mutations might be linked to decreased viscosin susceptibility is discussed.IMPORTANCEStreptococcus pneumoniae is a leading cause of bacterial pneumonia, sepsis, and meningitis in children, and the incidence of infections caused by antibiotic-resistant strains is increasing. Development of new antibiotics is therefore necessary to treat these types of infections in the future. Here, we have studied the activity of the antimicrobial lipopeptide viscosin on S. pneumoniae and show that in addition to having the typical membrane destabilizing activity of lipopeptides, viscosin inhibits pneumococcal growth by obstructing normal cell wall synthesis. This suggests a more specific mode of action than just the surfactant activity. Furthermore, we show that S. pneumoniae does not easily acquire resistance to viscosin, which makes it a promising molecule to explore further, for example, by synthesizing less toxic derivates that can be tested for therapeutic potential.
Collapse
Affiliation(s)
- Anja Ruud Winther
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Zhian Salehian
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Malene Nesdal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Leiv Sigve Håvarstein
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Daniel Straume
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
2
|
Ravi J, Anantharaman V, Chen SZ, Brenner EP, Datta P, Aravind L, Gennaro ML. The phage shock protein (PSP) envelope stress response: discovery of novel partners and evolutionary history. mSystems 2024; 9:e0084723. [PMID: 38809013 PMCID: PMC11237479 DOI: 10.1128/msystems.00847-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/20/2024] [Indexed: 05/30/2024] Open
Abstract
Bacterial phage shock protein (PSP) systems stabilize the bacterial cell membrane and protect against envelope stress. These systems have been associated with virulence, but despite their critical roles, PSP components are not well characterized outside proteobacteria. Using comparative genomics and protein sequence-structure-function analyses, we systematically identified and analyzed PSP homologs, phyletic patterns, domain architectures, and gene neighborhoods. This approach underscored the evolutionary significance of the system, revealing that its core protein PspA (Snf7 in ESCRT outside bacteria) was present in the last universal common ancestor and that this ancestral functionality has since diversified into multiple novel, distinct PSP systems across life. Several novel partners of the PSP system were identified: (i) the Toastrack domain, likely facilitating assembly of sub-membrane stress-sensing and signaling complexes, (ii) the newly defined HTH-associated α-helical signaling domain-PadR-like transcriptional regulator pair system, and (iii) multiple independent associations with ATPase, CesT/Tir-like chaperone, and Band-7 domains in proteins thought to mediate sub-membrane dynamics. Our work also uncovered links between the PSP components and other domains, such as novel variants of SHOCT-like domains, suggesting roles in assembling membrane-associated complexes of proteins with disparate biochemical functions. Results are available at our interactive web app, https://jravilab.org/psp.IMPORTANCEPhage shock proteins (PSP) are virulence-associated, cell membrane stress-protective systems. They have mostly been characterized in Proteobacteria and Firmicutes. We now show that a minimal PSP system was present in the last universal common ancestor that evolved and diversified into newly identified functional contexts. Recognizing the conservation and evolution of PSP systems across bacterial phyla contributes to our understanding of stress response mechanisms in prokaryotes. Moreover, the newly discovered PSP modularity will likely prompt new studies of lineage-specific cell envelope structures, lifestyles, and adaptation mechanisms. Finally, our results validate the use of domain architecture and genetic context for discovery in comparative genomics.
Collapse
Affiliation(s)
- Janani Ravi
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, USA
| | - Samuel Zorn Chen
- Computer Science Engineering Undergraduate Program, Michigan State University, East Lansing, Michigan, USA
| | - Evan Pierce Brenner
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Pratik Datta
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Laura Gennaro
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
3
|
Adeniyi ET, Kruppa M, De Benedetti S, Ludwig KC, Krisilia V, Wassenberg TR, Both M, Schneider T, Müller TJJ, Kalscheuer R. Synthesis of Bisindole Alkaloids and Their Mode of Action against Methicillin-Resistant Staphylococcus Aureus. ACS Infect Dis 2024; 10:1958-1969. [PMID: 38841740 DOI: 10.1021/acsinfecdis.3c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
About 100,000 deaths are attributed annually to infections with methicillin-resistant Staphylococcus aureus (MRSA) despite concerted efforts toward vaccine development and clinical trials involving several preclinically efficacious drug candidates. This necessitates the development of alternative therapeutic options against this drug-resistant bacterial pathogen. Using the Masuda borylation-Suzuki coupling (MBSC) sequence, we previously synthesized and modified naturally occurring bisindole alkaloids, alocasin A, hyrtinadine A and scalaradine A, resulting in derivatives showing potent in vitro and in vivo antibacterial efficacy. Here, we report on a modified one-pot MBSC protocol for the synthesis of previously reported and several undescribed N-tosyl-protected bisindoles with anti-MRSA activities and moderate cytotoxicity against human monocytic and kidney cell lines. In continuation of the mode of action investigation of the previously synthesized membrane-permeabilizing hit compounds, mechanistic studies reveal that bisindoles impact the cytoplasmic membrane of Gram-positive bacteria by promiscuously interacting with lipid II and membrane phospholipids while rapidly dissipating membrane potential. The bactericidal and lipid II-interacting lead compounds 5c and 5f might be interesting starting points for drug development in the fight against MRSA.
Collapse
Affiliation(s)
- Emmanuel T Adeniyi
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical Biology and Biotechnology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Marco Kruppa
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Stefania De Benedetti
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
| | - Kevin C Ludwig
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
| | - Violetta Krisilia
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical Biology and Biotechnology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Tobias R Wassenberg
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Melissa Both
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
| | - Thomas J J Müller
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Rainer Kalscheuer
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical Biology and Biotechnology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Morris SM, Wiens L, Rose O, Fritz G, Rogers T, Gebhard S. Regulatory interactions between daptomycin- and bacitracin-responsive pathways coordinate the cell envelope antibiotic resistance response of Enterococcus faecalis. Mol Microbiol 2024; 121:1148-1163. [PMID: 38646792 DOI: 10.1111/mmi.15264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/23/2024]
Abstract
Enterococcal infections frequently show high levels of antibiotic resistance, including to cell envelope-acting antibiotics like daptomycin (DAP). While we have a good understanding of the resistance mechanisms, less is known about the control of such resistance genes in enterococci. Previous work unveiled a bacitracin resistance network, comprised of the sensory ABC transporter SapAB, the two-component system (TCS) SapRS and the resistance ABC transporter RapAB. Interestingly, components of this system have recently been implicated in DAP resistance, a role usually regulated by the TCS LiaFSR. To better understand the regulation of DAP resistance and how this relates to mutations observed in DAP-resistant clinical isolates of enterococci, we here explored the interplay between these two regulatory pathways. Our results show that SapR regulates an additional resistance operon, dltXABCD, a known DAP resistance determinant, and show that LiaFSR regulates the expression of sapRS. This regulatory structure places SapRS-target genes under dual control, where expression is directly controlled by SapRS, which itself is up-regulated through LiaFSR. The network structure described here shows how Enterococcus faecalis coordinates its response to cell envelope attack and can explain why clinical DAP resistance often emerges via mutations in regulatory components.
Collapse
Affiliation(s)
- Sali M Morris
- Life Sciences Department, Milner Centre for Evolution, University of Bath, Bath, UK
| | - Laura Wiens
- Institute of Molecular Physiology, Johannes-Gutenberg-University Mainz, Mainz, Germany
| | - Olivia Rose
- Life Sciences Department, Milner Centre for Evolution, University of Bath, Bath, UK
| | - Georg Fritz
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Tim Rogers
- Department of Mathematical Sciences, University of Bath, Bath, UK
| | - Susanne Gebhard
- Life Sciences Department, Milner Centre for Evolution, University of Bath, Bath, UK
- Institute of Molecular Physiology, Johannes-Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
5
|
Chen R, Liu N, Ren Y, Cui T. Transcriptomic and biochemical analysis of metabolic remodeling in Bacillus subtilis MSC4 under Benzo[a]pyrene stress. CHEMOSPHERE 2024; 353:141637. [PMID: 38462177 DOI: 10.1016/j.chemosphere.2024.141637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/25/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Polyaromatic benzo[a]pyrene (B[a]P) is a toxic carcinogenic environmental pollutant, and the use of microorganisms to remediate B[a]P contamination is considered to be one of the most effective strategies. However, there is still a gap in studying the metabolic remodeling of microorganisms under B[a]P stress. In this study, our systematically investigated the effects of B[a]P on the metabolism of Bacillus subtilis MSC4 based on transcriptomic, molecular and biochemical analyses. The results showed that in response to B[a]P stress, MSC4 formed more biofilm matrix and endospores, the structure of the endospores also was changed, which led to a reduction in their resistance and made them more difficult to germinate. In addition to an increase in glycolysis activity, the activities of tricarboxylic acid cycle, pentose phosphate pathway and the electron transport chain were decreased. B[a]P stress forced MSC4 to strengthen arginine synthesis, urea cycle, and urea decomposition, meanwhile, synthesize more ribonucleotides. The activity of DNA replication, transcription activities and the expression of multiple ribosomal protein genes were reduced. Moreover, all of the reported enzymes involved in B[a]P degradation showed decreased transcript abundance, and the degradation of B[a]P caused significant up-regulation of the gene expression of the acid inducible enzyme OxdC and the synthesis of acetoin. In addition, the cytotoxicity of B[a]P to bacteria was directly displayed in four aspects: increased intracellular level of reactive oxygen species (ROS), elevated cell membrane permeability, up-regulation of the cell envelope stress-sensing two-component system LiaRS, and downregulation of siderophores biosynthesis. Finally, B[a]P also caused morphological changes in the cells, with some cells exhibiting significant deformation and concavity. These findings provide effective research directions for targeted improvement the cellular activity of B[a]P-degrading strains, and is beneficial for further application of microorganisms to remediate B[a]P -contaminated soils.
Collapse
Affiliation(s)
- Rui Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Na Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Tangbing Cui
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
6
|
Zbylicki BR, Murphy CE, Petsche JA, Müh U, Dobrila HA, Ho TD, Daum MN, Pannullo AG, Weiss DS, Ellermeier CD. Identification of Clostridioides difficile mutants with increased daptomycin resistance. J Bacteriol 2024; 206:e0036823. [PMID: 38376203 PMCID: PMC10955854 DOI: 10.1128/jb.00368-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/20/2024] [Indexed: 02/21/2024] Open
Abstract
Daptomycin is a cyclic lipopeptide antibiotic used to treat infections caused by some Gram-positive bacteria. Daptomycin disrupts synthesis of the peptidoglycan (PG) cell wall by inserting into the cytoplasmic membrane and binding multiple forms of the undecaprenyl carrier lipid required for PG synthesis. Membrane insertion requires phosphatidylglycerol, so studies of daptomycin can provide insight into assembly and maintenance of the cytoplasmic membrane. Here, we studied the effects of daptomycin on Clostridioides difficile, the leading cause of healthcare-associated diarrhea. We observed that growth of C. difficile strain R20291 in the presence of sub-MIC levels of daptomycin resulted in a chaining phenotype, minicell formation, and lysis-phenotypes broadly consistent with perturbation of membranes and PG synthesis. We also selected for and characterized eight mutants with elevated daptomycin resistance. The mutations in these mutants were mapped to four genes: cdsA (cdr20291_2041), ftsH2 (cdr20291_3396), esrR (cdr20291_1187), and draS (cdr20291_2456). Of these four genes, only draS has been characterized previously. Follow-up studies indicate these mutations confer daptomycin resistance by two general mechanisms: reducing the amount of phosphatidylglycerol in the cytoplasmic membrane (cdsA) or altering the regulation of membrane processes (ftsH2, esrR, and draS). Thus, the mutants described here provide insights into phospholipid synthesis and identify signal transduction systems involved in cell envelope biogenesis and stress response in C. difficile. IMPORTANCE C. difficile is the leading cause of healthcare-associated diarrhea and is a threat to public health due to the risk of recurrent infections. Understanding biosynthesis of the atypical cell envelope of C. difficile may provide insight into novel drug targets to selectively inhibit C. difficile. Here, we identified mutations that increased daptomycin resistance and allowed us to better understand phospholipid synthesis, cell envelope biogenesis, and stress response in C. difficile.
Collapse
Affiliation(s)
- Brianne R. Zbylicki
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Claire E. Murphy
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Jennifer A. Petsche
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ute Müh
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Horia A. Dobrila
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Theresa D. Ho
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Mikaela N. Daum
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Anthony G. Pannullo
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - David S. Weiss
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
- Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
7
|
Pannullo AG, Zbylicki BR, Ellermeier CD. Identification of DraRS in Clostridioides difficile, a Two-Component Regulatory System That Responds to Lipid II-Interacting Antibiotics. J Bacteriol 2023; 205:e0016423. [PMID: 37439672 PMCID: PMC10601625 DOI: 10.1128/jb.00164-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Clostridioides difficile is a Gram-positive opportunistic pathogen that results in 220,000 infections, 12,000 deaths, and upwards of $1 billion in medical costs in the United States each year. C. difficile is highly resistant to a variety of antibiotics, but we have a poor understanding of how C. difficile senses and responds to antibiotic stress and how such sensory systems affect clinical outcomes. We have identified a spontaneous C. difficile mutant that displays increased daptomycin resistance. We performed whole-genome sequencing and found a nonsense mutation, S605*, in draS, which encodes a putative sensor histidine kinase of a two-component system (TCS). The draSS605* mutant has an ~4- to 8-fold increase in the daptomycin MIC compared to the wild type (WT). We found that the expression of constitutively active DraRD54E in the WT increases daptomycin resistance 8- to 16-fold and increases bacitracin resistance ~4-fold. We found that a selection of lipid II-inhibiting compounds leads to the increased activity of the luciferase-based reporter PdraR-slucopt, including vancomycin, bacitracin, ramoplanin, and daptomycin. Using RNA sequencing (RNA-seq), we identified the DraRS regulon. Interestingly, we found that DraRS can induce the expression of the previously identified hex locus required for the synthesis of a novel glycolipid produced in C. difficile. Our data suggest that the induction of the hex locus by DraR explains some, but not all, of the DraR-induced daptomycin and bacitracin resistance. IMPORTANCE Clostridioides difficile is a major cause of hospital-acquired diarrhea and represents an urgent concern due to the prevalence of antibiotic resistance and the rate of recurrent infections. C. difficile encodes ~50 annotated two-component systems (TCSs); however, only a few have been studied. The function of these unstudied TCSs is not known. Here, we show that the TCS DraRS plays a role in responding to a subset of lipid II-inhibiting antibiotics and mediates resistance to daptomycin and bacitracin in part by inducing the expression of the recently identified hex locus, which encodes enzymes required for the production of a novel glycolipid in C. difficile.
Collapse
Affiliation(s)
- Anthony G. Pannullo
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Brianne R. Zbylicki
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Cyanobacterial membrane dynamics in the light of eukaryotic principles. Biosci Rep 2023; 43:232406. [PMID: 36602300 PMCID: PMC9950537 DOI: 10.1042/bsr20221269] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Intracellular compartmentalization is a hallmark of eukaryotic cells. Dynamic membrane remodeling, involving membrane fission/fusion events, clearly is crucial for cell viability and function, as well as membrane stabilization and/or repair, e.g., during or after injury. In recent decades, several proteins involved in membrane stabilization and/or dynamic membrane remodeling have been identified and described in eukaryotes. Yet, while typically not having a cellular organization as complex as eukaryotes, also bacteria can contain extra internal membrane systems besides the cytoplasmic membranes (CMs). Thus, also in bacteria mechanisms must have evolved to stabilize membranes and/or trigger dynamic membrane remodeling processes. In fact, in recent years proteins, which were initially defined being eukaryotic inventions, have been recognized also in bacteria, and likely these proteins shape membranes also in these organisms. One example of a complex prokaryotic inner membrane system is the thylakoid membrane (TM) of cyanobacteria, which contains the complexes of the photosynthesis light reaction. Cyanobacteria are evolutionary closely related to chloroplasts, and extensive remodeling of the internal membrane systems has been observed in chloroplasts and cyanobacteria during membrane biogenesis and/or at changing light conditions. We here discuss common principles guiding eukaryotic and prokaryotic membrane dynamics and the proteins involved, with a special focus on the dynamics of the cyanobacterial TMs and CMs.
Collapse
|
9
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
10
|
Rosenbergová Z, Oftedal TF, Ovchinnikov KV, Thiyagarajah T, Rebroš M, Diep DB. Identification of a Novel Two-Peptide Lantibiotic from Vagococcus fluvialis. Microbiol Spectr 2022; 10:e0095422. [PMID: 35730941 PMCID: PMC9431498 DOI: 10.1128/spectrum.00954-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022] Open
Abstract
Infections caused by multiresistant pathogens have become a major problem in both human and veterinary medicine. Due to the declining efficacy of many antibiotics, new antimicrobials are needed. Promising alternatives or additions to antibiotics are bacteriocins, antimicrobial peptides of bacterial origin with activity against many pathogens, including antibiotic-resistant strains. From a sample of fermented maize, we isolated a Vagococcus fluvialis strain producing a bacteriocin with antimicrobial activity against multiresistant Enterococcus faecium. Whole-genome sequencing revealed the genes for a novel two-peptide lantibiotic. The production of the lantibiotic by the isolate was confirmed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, which revealed distinct peaks at 4,009.4 m/z and 3,181.7 m/z in separate fractions from reversed-phase chromatography. The combination of the two peptides resulted in a 1,200-fold increase in potency, confirming the two-peptide nature of the bacteriocin, named vagococcin T. The bacteriocin was demonstrated to kill sensitive cells by the formation of pores in the cell membrane, and its inhibition spectrum covers most Gram-positive bacteria, including multiresistant pathogens. To our knowledge, this is the first bacteriocin characterized from Vagococcus. IMPORTANCE Enterococci are common commensals in the intestines of humans and animals, but in recent years, they have been identified as one of the major causes of hospital-acquired infections due to their ability to quickly acquire virulence and antibiotic resistance determinants. Many hospital isolates are multiresistant, thereby making current therapeutic options critically limited. Novel antimicrobials or alternative therapeutic approaches are needed to overcome this global problem. Bacteriocins, natural ribosomally synthesized peptides produced by bacteria to eliminate other bacterial species living in a competitive environment, provide such an alternative. In this work, we purified and characterized a novel two-peptide lantibiotic produced by Vagococcus fluvialis LMGT 4216 isolated from fermented maize. The novel lantibiotic showed a broad spectrum of inhibition of Gram-positive strains, including vancomycin-resistant Enterococcus faecium, demonstrating its therapeutic potential.
Collapse
Affiliation(s)
- Zuzana Rosenbergová
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Thomas F. Oftedal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Kirill V. Ovchinnikov
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Thasanth Thiyagarajah
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Martin Rebroš
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Dzung B. Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
11
|
Revilla-Guarinos A, Popp PF, Dürr F, Lozano-Cruz T, Hartig J, de la Mata FJ, Gómez R, Mascher T. Synthesis and mechanism-of-action of a novel synthetic antibiotic based on a dendritic system with bow-tie topology. Front Microbiol 2022; 13:912536. [PMID: 36090105 PMCID: PMC9459136 DOI: 10.3389/fmicb.2022.912536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/26/2022] [Indexed: 12/05/2022] Open
Abstract
Over the course of the last decades, the continuous exposure of bacteria to antibiotics-at least in parts due to misprescription, misuse, and misdosing-has led to the widespread development of antimicrobial resistances. This development poses a threat to the available medication in losing their effectiveness in treating bacterial infections. On the drug development side, only minor advances have been made to bring forward novel therapeutics. In addition to increasing the efforts and approaches of tapping the natural sources of new antibiotics, synthetic approaches to developing novel antimicrobials are being pursued. In this study, BDTL049 was rationally designed using knowledge based on the properties of natural antibiotics. BDTL049 is a carbosilane dendritic system with bow-tie type topology, which has antimicrobial activity at concentrations comparable to clinically established natural antibiotics. In this report, we describe its mechanism of action on the Gram-positive model organism Bacillus subtilis. Exposure to BDTL049 resulted in a complex transcriptional response, which pointed toward disturbance of the cell envelope homeostasis accompanied by disruption of other central cellular processes of bacterial metabolism as the primary targets of BDTL049 treatment. By applying a combination of whole-cell biosensors, molecular staining, and voltage sensitive dyes, we demonstrate that the mode of action of BDTL049 comprises membrane depolarization concomitant with pore formation. As a result, this new molecule kills Gram-positive bacteria within minutes. Since BDTL049 attacks bacterial cells at different targets simultaneously, this might decrease the chances for the development of bacterial resistances, thereby making it a promising candidate for a future antimicrobial agent.
Collapse
Affiliation(s)
- Ainhoa Revilla-Guarinos
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Philipp F. Popp
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Franziska Dürr
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Tania Lozano-Cruz
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. Del Río” (IQAR), University de Alcalá, Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Johanna Hartig
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. Del Río” (IQAR), University de Alcalá, Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. Del Río” (IQAR), University de Alcalá, Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Thorsten Mascher
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
12
|
Phyletic Distribution and Diversification of the Phage Shock Protein Stress Response System in Bacteria and Archaea. mSystems 2022; 7:e0134821. [PMID: 35604119 PMCID: PMC9239133 DOI: 10.1128/msystems.01348-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PspA protein domain is found in all domains of life, highlighting its central role in Psp networks. To date, all insights into the core functions of Psp responses derive mainly from protein network blueprints representing only three bacterial phyla.
Collapse
|
13
|
Scholz AS, Baur SSM, Wolf D, Bramkamp M. An Stomatin, Prohibitin, Flotillin, and HflK/C-Domain Protein Required to Link the Phage-Shock Protein to the Membrane in Bacillus subtilis. Front Microbiol 2021; 12:754924. [PMID: 34777311 PMCID: PMC8581546 DOI: 10.3389/fmicb.2021.754924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
Membrane surveillance and repair is of utmost importance to maintain cellular integrity and allow cellular life. Several systems detect cell envelope stress caused by antimicrobial compounds and abiotic stresses such as solvents, pH-changes and temperature in bacteria. Proteins containing an Stomatin, Prohibitin, Flotillin, and HflK/C (SPFH)-domain, including bacterial flotillins have been shown to be involved in membrane protection and membrane fluidity regulation. Here, we characterize a bacterial SPFH-domain protein, YdjI that is part of a stress induced complex in Bacillus subtilis. We show that YdjI is required to localize the ESCRT-III homolog PspA to the membrane with the help of two membrane integral proteins, YdjG/H. In contrast to classical flotillins, YdjI resides in fluid membrane regions and does not enrich in detergent resistant membrane fractions. However, similarly to FloA and FloT from B. subtilis, deletion of YdjI decreases membrane fluidity. Our data reveal a hardwired connection between phage shock response and SPFH proteins.
Collapse
Affiliation(s)
- Abigail Savietto Scholz
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sarah S. M. Baur
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Diana Wolf
- Institute of Microbiology, Technische Universität Dresden, Dresden, Germany
| | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
14
|
Liu J, Tassinari M, Souza DP, Naskar S, Noel JK, Bohuszewicz O, Buck M, Williams TA, Baum B, Low HH. Bacterial Vipp1 and PspA are members of the ancient ESCRT-III membrane-remodeling superfamily. Cell 2021; 184:3660-3673.e18. [PMID: 34166615 PMCID: PMC8281802 DOI: 10.1016/j.cell.2021.05.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/24/2020] [Accepted: 05/25/2021] [Indexed: 12/31/2022]
Abstract
Membrane remodeling and repair are essential for all cells. Proteins that perform these functions include Vipp1/IM30 in photosynthetic plastids, PspA in bacteria, and ESCRT-III in eukaryotes. Here, using a combination of evolutionary and structural analyses, we show that these protein families are homologous and share a common ancient evolutionary origin that likely predates the last universal common ancestor. This homology is evident in cryo-electron microscopy structures of Vipp1 rings from the cyanobacterium Nostoc punctiforme presented over a range of symmetries. Each ring is assembled from rungs that stack and progressively tilt to form dome-shaped curvature. Assembly is facilitated by hinges in the Vipp1 monomer, similar to those in ESCRT-III proteins, which allow the formation of flexible polymers. Rings have an inner lumen that is able to bind and deform membranes. Collectively, these data suggest conserved mechanistic principles that underlie Vipp1, PspA, and ESCRT-III-dependent membrane remodeling across all domains of life.
Collapse
Affiliation(s)
- Jiwei Liu
- Department of Infectious Disease, Imperial College, London, UK
| | | | - Diorge P Souza
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Souvik Naskar
- Department of Infectious Disease, Imperial College, London, UK
| | - Jeffrey K Noel
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Martin Buck
- Department of Life Sciences, Imperial College, London, UK
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK; Institute for the Physics of Living Systems, University College London, London, UK.
| | - Harry H Low
- Department of Infectious Disease, Imperial College, London, UK.
| |
Collapse
|
15
|
Junglas B, Huber ST, Heidler T, Schlösser L, Mann D, Hennig R, Clarke M, Hellmann N, Schneider D, Sachse C. PspA adopts an ESCRT-III-like fold and remodels bacterial membranes. Cell 2021; 184:3674-3688.e18. [PMID: 34166616 DOI: 10.1016/j.cell.2021.05.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/01/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022]
Abstract
PspA is the main effector of the phage shock protein (Psp) system and preserves the bacterial inner membrane integrity and function. Here, we present the 3.6 Å resolution cryoelectron microscopy (cryo-EM) structure of PspA assembled in helical rods. PspA monomers adopt a canonical ESCRT-III fold in an extended open conformation. PspA rods are capable of enclosing lipids and generating positive membrane curvature. Using cryo-EM, we visualized how PspA remodels membrane vesicles into μm-sized structures and how it mediates the formation of internalized vesicular structures. Hotspots of these activities are zones derived from PspA assemblies, serving as lipid transfer platforms and linking previously separated lipid structures. These membrane fusion and fission activities are in line with the described functional properties of bacterial PspA/IM30/LiaH proteins. Our structural and functional analyses reveal that bacterial PspA belongs to the evolutionary ancestry of ESCRT-III proteins involved in membrane remodeling.
Collapse
Affiliation(s)
- Benedikt Junglas
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Stefan T Huber
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Thomas Heidler
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Lukas Schlösser
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Daniel Mann
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Raoul Hennig
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Mairi Clarke
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Nadja Hellmann
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany.
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Department of Biology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
16
|
Siebenaller C, Schlösser L, Junglas B, Schmidt-Dengler M, Jacob D, Hellmann N, Sachse C, Helm M, Schneider D. Binding and/or hydrolysis of purine-based nucleotides is not required for IM30 ring formation. FEBS Lett 2021; 595:1876-1885. [PMID: 34060653 DOI: 10.1002/1873-3468.14140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/30/2021] [Accepted: 05/20/2021] [Indexed: 11/09/2022]
Abstract
IM30, the inner membrane-associated protein of 30 kDa, is conserved in cyanobacteria and chloroplasts. Although its exact physiological function is still mysterious, IM30 is clearly essential for thylakoid membrane biogenesis and/or dynamics. Recently, a cryptic IM30 GTPase activity has been reported, albeit thus far no physiological function has been attributed to this. Yet, it is still possible that GTP binding/hydrolysis affects formation of the prototypical large homo-oligomeric IM30 ring and rod structures. Here, we show that the Synechocystis sp. PCC 6803 IM30 protein in fact is an NTPase that hydrolyzes GTP and ATP, but not CTP or UTP, with about identical rates. While IM30 forms large oligomeric ring complexes, nucleotide binding and/or hydrolysis are clearly not required for ring formation.
Collapse
Affiliation(s)
- Carmen Siebenaller
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Germany
| | - Lukas Schlösser
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Germany
| | - Benedikt Junglas
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Germany.,Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Germany
| | - Martina Schmidt-Dengler
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Germany
| | - Dominik Jacob
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Germany
| | - Nadja Hellmann
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Germany
| | - Mark Helm
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Germany.,Institute of Molecular Physiology, Johannes Gutenberg University Mainz, Germany
| |
Collapse
|
17
|
Willdigg JR, Helmann JD. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Front Mol Biosci 2021; 8:634438. [PMID: 34046426 PMCID: PMC8144471 DOI: 10.3389/fmolb.2021.634438] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Antibiotics and other agents that perturb the synthesis or integrity of the bacterial cell envelope trigger compensatory stress responses. Focusing on Bacillus subtilis as a model system, this mini-review summarizes current views of membrane structure and insights into how cell envelope stress responses remodel and protect the membrane. Altering the composition and properties of the membrane and its associated proteome can protect cells against detergents, antimicrobial peptides, and pore-forming compounds while also, indirectly, contributing to resistance against compounds that affect cell wall synthesis. Many of these regulatory responses are broadly conserved, even where the details of regulation may differ, and can be important in the emergence of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
18
|
Martínez B, Rodríguez A, Kulakauskas S, Chapot-Chartier MP. Cell wall homeostasis in lactic acid bacteria: threats and defences. FEMS Microbiol Rev 2021; 44:538-564. [PMID: 32495833 PMCID: PMC7476776 DOI: 10.1093/femsre/fuaa021] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Lactic acid bacteria (LAB) encompasses industrially relevant bacteria involved in food fermentations as well as health-promoting members of our autochthonous microbiota. In the last years, we have witnessed major progresses in the knowledge of the biology of their cell wall, the outermost macrostructure of a Gram-positive cell, which is crucial for survival. Sophisticated biochemical analyses combined with mutation strategies have been applied to unravel biosynthetic routes that sustain the inter- and intra-species cell wall diversity within LAB. Interplay with global cell metabolism has been deciphered that improved our fundamental understanding of the plasticity of the cell wall during growth. The cell wall is also decisive for the antimicrobial activity of many bacteriocins, for bacteriophage infection and for the interactions with the external environment. Therefore, genetic circuits involved in monitoring cell wall damage have been described in LAB, together with a plethora of defence mechanisms that help them to cope with external threats and adapt to harsh conditions. Since the cell wall plays a pivotal role in several technological and health-promoting traits of LAB, we anticipate that this knowledge will pave the way for the future development and extended applications of LAB.
Collapse
Affiliation(s)
- Beatriz Martínez
- DairySafe research group. Department of Technology and Biotechnology of Dairy Products. Instituto de Productos Lácteos de Asturias, IPLA-CSIC. Paseo Río Linares s/n. 33300 Villaviciosa, Spain
| | - Ana Rodríguez
- DairySafe research group. Department of Technology and Biotechnology of Dairy Products. Instituto de Productos Lácteos de Asturias, IPLA-CSIC. Paseo Río Linares s/n. 33300 Villaviciosa, Spain
| | - Saulius Kulakauskas
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
19
|
Willdigg JR, Helmann JD. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Front Mol Biosci 2021. [PMID: 34046426 DOI: 10.3389/fmolb.2021.634438/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Antibiotics and other agents that perturb the synthesis or integrity of the bacterial cell envelope trigger compensatory stress responses. Focusing on Bacillus subtilis as a model system, this mini-review summarizes current views of membrane structure and insights into how cell envelope stress responses remodel and protect the membrane. Altering the composition and properties of the membrane and its associated proteome can protect cells against detergents, antimicrobial peptides, and pore-forming compounds while also, indirectly, contributing to resistance against compounds that affect cell wall synthesis. Many of these regulatory responses are broadly conserved, even where the details of regulation may differ, and can be important in the emergence of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
- Jessica R Willdigg
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
20
|
The Cell Envelope Stress Response of Bacillus subtilis towards Laspartomycin C. Antibiotics (Basel) 2020; 9:antibiotics9110729. [PMID: 33114184 PMCID: PMC7690785 DOI: 10.3390/antibiotics9110729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 11/17/2022] Open
Abstract
Cell wall antibiotics are important tools in our fight against Gram-positive pathogens, but many strains become increasingly resistant against existing drugs. Laspartomycin C is a novel antibiotic that targets undecaprenyl phosphate (UP), a key intermediate in the lipid II cycle of cell wall biosynthesis. While laspartomycin C has been thoroughly examined biochemically, detailed knowledge about potential resistance mechanisms in bacteria is lacking. Here, we use reporter strains to monitor the activity of central resistance modules in the Bacillus subtilis cell envelope stress response network during laspartomycin C attack and determine the impact on the resistance of these modules using knock-out strains. In contrast to the closely related UP-binding antibiotic friulimicin B, which only activates ECF σ factor-controlled stress response modules, we find that laspartomycin C additionally triggers activation of stress response systems reacting to membrane perturbation and blockage of other lipid II cycle intermediates. Interestingly, none of the studied resistance genes conferred any kind of protection against laspartomycin C. While this appears promising for therapeutic use of laspartomycin C, it raises concerns that existing cell envelope stress response networks may already be poised for spontaneous development of resistance during prolonged or repeated exposure to this new antibiotic.
Collapse
|
21
|
Valenzuela-García LI, Zapata BL, Ramírez-Ramírez N, Huchin-Mian JP, Robleto EA, Ayala-García VM, Pedraza-Reyes M. Novel Biochemical Properties and Physiological Role of the Flavin Mononucleotide Oxidoreductase YhdA from Bacillus subtilis. Appl Environ Microbiol 2020; 86:e01688-20. [PMID: 32801174 PMCID: PMC7531954 DOI: 10.1128/aem.01688-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/10/2020] [Indexed: 01/06/2023] Open
Abstract
Cr(VI) is mutagenic and teratogenic and considered an environmental pollutant of increasing concern. The use of microbial enzymes that convert this ion into its less toxic reduced insoluble form, Cr(III), represents a valuable bioremediation strategy. In this study, we examined the Bacillus subtilis YhdA enzyme, which belongs to the family of NADPH-dependent flavin mononucleotide oxide reductases and possesses azo-reductase activity as a factor that upon overexpression confers protection on B. subtilis from the cytotoxic effects promoted by Cr(VI) and counteracts the mutagenic effects of the reactive oxygen species (ROS)-promoted lesion 8-OxoG. Further, our in vitro assays unveiled catalytic and biochemical properties of biotechnological relevance in YhdA; a pure recombinant His10-YhdA protein efficiently catalyzed the reduction of Cr(VI) employing NADPH as a cofactor. The activity of the pure oxidoreductase YhdA was optimal at 30°C and at pH 7.5 and displayed Km and Vmax values of 7.26 mM and 26.8 μmol·min-1·mg-1 for Cr(VI), respectively. Therefore, YhdA can be used for efficient bioremediation of Cr(VI) and counteracts the cytotoxic and genotoxic effects of oxygen radicals induced by intracellular factors and those generated during reduction of hexavalent chromium.IMPORTANCE Here, we report that the bacterial flavin mononucleotide/NADPH-dependent oxidoreductase YhdA, widely distributed among Gram-positive bacilli, conferred protection to cells from the cytotoxic effects of Cr(VI) and prevented the hypermutagenesis exhibited by a MutT/MutM/MutY-deficient strain. Additionally, a purified recombinant His10-YhdA protein displayed a strong NADPH-dependent chromate reductase activity. Therefore, we postulate that in bacterial cells, YhdA counteracts the cytotoxic and genotoxic effects of intracellular and extracellular inducers of oxygen radicals, including those caused by hexavalent chromium.
Collapse
Affiliation(s)
| | - Blanca L Zapata
- Department of Biology, University of Guanajuato, Guanajuato, Guanajuato, Mexico
| | | | - Juan P Huchin-Mian
- Department of Biology, University of Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Eduardo A Robleto
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Víctor M Ayala-García
- Faculty of Chemical Sciences, Juarez University of Durango State, Durango, Durango, Mexico
| | - Mario Pedraza-Reyes
- Department of Biology, University of Guanajuato, Guanajuato, Guanajuato, Mexico
| |
Collapse
|
22
|
Revilla-Guarinos A, Dürr F, Popp PF, Döring M, Mascher T. Amphotericin B Specifically Induces the Two-Component System LnrJK: Development of a Novel Whole-Cell Biosensor for the Detection of Amphotericin-Like Polyenes. Front Microbiol 2020; 11:2022. [PMID: 32973732 PMCID: PMC7472640 DOI: 10.3389/fmicb.2020.02022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/30/2020] [Indexed: 11/13/2022] Open
Abstract
The rise of drug-resistant fungal pathogens urges for the development of new tools for the discovery of novel antifungal compounds. Polyene antibiotics are potent agents against fungal infections in humans and animals. They inhibit the growth of fungal cells by binding to sterols in the cytoplasmic membrane that subsequently causes pore formation and eventually results in cell death. Many polyenes are produced by Streptomycetes and released into the soil environment, where they can then target fungal hyphae. While not antibacterial, these compounds could nevertheless be also perceived by bacteria sharing the same habitat and serve as signaling molecules. We therefore addressed the question of how polyenes such as amphotericin B are perceived by the soil bacterium, Bacillus subtilis. Global transcriptional profiling identified a very narrow and specific response, primarily resulting in strong upregulation of the lnrLMN operon, encoding an ABC transporter previously associated with linearmycin resistance. Its strong and specific induction prompted a detailed analysis of the lnrL promoter element and its regulation. We demonstrate that the amphotericin response strictly depends on the two-component system LnrJK and that the target of LnrK-dependent gene regulation, the lnrLMN operon, negatively affects LnrJK-dependent signal transduction. Based on this knowledge, we developed a novel whole-cell biosensor, based on a P lnrL -lux fusion reporter construct in a lnrLMN deletion mutant background. This highly sensitive and dynamic biosensor is ready to be applied for the discovery or characterization of novel amphotericin-like polyenes, hopefully helping to increase the repertoire of antimycotic and antiparasitic polyenes available to treat human and animal infections.
Collapse
Affiliation(s)
| | | | | | | | - Thorsten Mascher
- Department of General Microbiology, Institut für Mikrobiologie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
23
|
Lautenschläger N, Popp PF, Mascher T. Development of a novel heterologous β-lactam-specific whole-cell biosensor in Bacillus subtilis. J Biol Eng 2020; 14:21. [PMID: 32765644 PMCID: PMC7394692 DOI: 10.1186/s13036-020-00243-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background Whole-cell biosensors are a powerful and easy-to-use screening tool for the fast and sensitive detection of chemical compounds, such as antibiotics. β-Lactams still represent one of the most important antibiotic groups in therapeutic use. They interfere with late stages of the bacterial cell wall biosynthesis and result in irreversible perturbations of cell division and growth, ultimately leading to cell lysis. In order to simplify the detection of these antibiotics from solutions, solid media or directly from producing organisms, we aimed at developing a novel heterologous whole-cell biosensor in Bacillus subtilis, based on the β-lactam-induced regulatory system BlaR1/BlaI from Staphylococcus aureus. Results The BlaR1/BlaI system was heterologously expressed in B. subtilis and combined with the luxABCDE operon of Photorhabdus luminescens under control of the BlaR1/BlaI target promoter to measure the output of the biosensor. A combination of codon adaptation, constitutive expression of blaR1 and blaI and the allelic replacement of penP increased the inducer spectrum and dynamic range of the biosensor. β-Lactams from all four classes induced the target promoter PblaZ in a concentration-dependent manner, with a dynamic range of 7- to 53-fold. We applied our biosensor to a set of Streptomycetes soil isolates and demonstrated its potential to screen for the production of β-lactams. In addition to the successful implementation of a highly sensitive β-lactam biosensor, our results also provide the first experimental evidence to support previous suggestions that PenP functions as a β-lactamase in B. subtilis. Conclusion We have successfully established a novel heterologous whole-cell biosensor in B. subtilis that is highly sensitive for a broad spectrum of β-lactams from all four chemical classes. Therefore, it increases the detectable spectrum of compounds with respect to previous biosensor designs. Our biosensor can readily be applied for identifying β-lactams in liquid or on solid media, as well as for identifying potential β-lactam producers.
Collapse
Affiliation(s)
- Nina Lautenschläger
- Max Planck Unit for the Science of Pathogens, Berlin, Germany.,Institute of Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Philipp F Popp
- Institute of Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Thorsten Mascher
- Institute of Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| |
Collapse
|
24
|
Siebenaller C, Junglas B, Lehmann A, Hellmann N, Schneider D. Proton Leakage Is Sensed by IM30 and Activates IM30-Triggered Membrane Fusion. Int J Mol Sci 2020; 21:E4530. [PMID: 32630559 PMCID: PMC7350238 DOI: 10.3390/ijms21124530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
The inner membrane-associated protein of 30 kDa (IM30) is crucial for the development and maintenance of the thylakoid membrane system in chloroplasts and cyanobacteria. While its exact physiological function still is under debate, it has recently been suggested that IM30 has (at least) a dual function, and the protein is involved in stabilization of the thylakoid membrane as well as in Mg2+-dependent membrane fusion. IM30 binds to negatively charged membrane lipids, preferentially at stressed membrane regions where protons potentially leak out from the thylakoid lumen into the chloroplast stroma or the cyanobacterial cytoplasm, respectively. Here we show in vitro that IM30 membrane binding, as well as membrane fusion, is strongly increased in acidic environments. This enhanced activity involves a rearrangement of the protein structure. We suggest that this acid-induced transition is part of a mechanism that allows IM30 to (i) sense sites of proton leakage at the thylakoid membrane, to (ii) preferentially bind there, and to (iii) seal leaky membrane regions via membrane fusion processes.
Collapse
Affiliation(s)
| | | | | | | | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (C.S.); (B.J.); (A.L.); (N.H.)
| |
Collapse
|
25
|
Rajeev L, Garber ME, Mukhopadhyay A. Tools to map target genes of bacterial two-component system response regulators. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:267-276. [PMID: 32212247 PMCID: PMC7318608 DOI: 10.1111/1758-2229.12838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 05/05/2023]
Abstract
Studies on bacterial physiology are incomplete without knowledge of the signalling and regulatory systems that a bacterium uses to sense and respond to its environment. Two-component systems (TCSs) are among the most prevalent bacterial signalling systems, and they control essential and secondary physiological processes; however, even in model organisms, we lack a complete understanding of the signals sensed, the phosphotransfer partners and the functions regulated by these systems. In this review, we discuss several tools to map the genes targeted by transcriptionally acting TCSs. Many of these tools have been used for studying individual TCSs across diverse species, but systematic approaches to delineate entire signalling networks have been very few. Since genome sequences and high-throughput technologies are now readily available, the methods presented here can be applied to characterize the entire DNA-binding TCS signalling network in any bacterial species and are especially useful for non-model environmental bacteria.
Collapse
Affiliation(s)
- Lara Rajeev
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Megan E. Garber
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
- Department of Comparative BiochemistryUniversity of CaliforniaBerkeleyCA94720USA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
- Department of Comparative BiochemistryUniversity of CaliforniaBerkeleyCA94720USA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| |
Collapse
|
26
|
Jani S, Sterzenbach K, Adatrao V, Tajbakhsh G, Mascher T, Golemi-Kotra D. Low phosphatase activity of LiaS and strong LiaR-DNA affinity explain the unusual LiaS to LiaR in vivo stoichiometry. BMC Microbiol 2020; 20:104. [PMID: 32349670 PMCID: PMC7191749 DOI: 10.1186/s12866-020-01796-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/20/2020] [Indexed: 11/20/2022] Open
Abstract
Background LiaRS mediates Bacillus subtilis response to cell envelope perturbations. A third protein, LiaF, has an inhibitory role over LiaRS in the absence of stimulus. Together, LiaF and LiaRS form a three-component system characterized by an unusual stoichiometry, a 4:1 ratio between LiaS and LiaR, the significance of which in the signal transduction mechanism of LiaRS is not entirely understood. Results We measured, for the first time, the kinetics of the phosphorylation-dependent processes of LiaRS, the DNA-binding affinity of LiaR, and characterized the effect of phosphorylation on LiaR oligomerization state. Our study reveals that LiaS is less proficient as a phosphatase. Consequently, unspecific phosphorylation of LiaR by acetyl phosphate may be significant in vivo. This drawback is exacerbated by the strong interaction between LiaR and its own promoter, as it can drive LiaRS into losing grip over its own control in the absence of stimuli. These intrinsic, seemingly ‘disadvantageous”, attributes of LiaRS are likely overcome by the higher concentration of LiaS over LiaR in vivo, and a pro-phosphatase role of LiaF. Conclusions Overall, our study shows that despite the conservative nature of two-component systems, they are, ultimately, tailored to meet specific cell needs by modulating the dynamics of interactions among their components and the kinetics of phosphorylation-mediated processes.
Collapse
Affiliation(s)
- Shailee Jani
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | - Karen Sterzenbach
- Institute for Microbiology, Technische Universität Dresden, Dresden, Germany
| | - Vijaya Adatrao
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | - Ghazal Tajbakhsh
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | - Thorsten Mascher
- Institute for Microbiology, Technische Universität Dresden, Dresden, Germany.
| | | |
Collapse
|
27
|
Ca 2+-Daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids. Nat Commun 2020; 11:1455. [PMID: 32193379 PMCID: PMC7081307 DOI: 10.1038/s41467-020-15257-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/25/2020] [Indexed: 11/08/2022] Open
Abstract
The lipopeptide daptomycin is used as an antibiotic to treat severe infections with gram-positive pathogens, such as methicillin resistant Staphylococcus aureus (MRSA) and drug-resistant enterococci. Its precise mechanism of action is incompletely understood, and a specific molecular target has not been identified. Here we show that Ca2+-daptomycin specifically interacts with undecaprenyl-coupled cell envelope precursors in the presence of the anionic phospholipid phosphatidylglycerol, forming a tripartite complex. We use microbiological and biochemical assays, in combination with fluorescence and optical sectioning microscopy of intact staphylococcal cells and model membrane systems. Binding primarily occurs at the staphylococcal septum and interrupts cell wall biosynthesis. This is followed by delocalisation of components of the peptidoglycan biosynthesis machinery and massive membrane rearrangements, which may account for the pleiotropic cellular events previously reported. The identification of carrier-bound cell wall precursors as specific targets explains the specificity of daptomycin for bacterial cells. Our work reconciles apparently inconsistent previous results, and supports a concise model for the mode of action of daptomycin.
Collapse
|
28
|
Baindara P, Ghosh AK, Mandal SM. Coevolution of Resistance Against Antimicrobial Peptides. Microb Drug Resist 2020; 26:880-899. [PMID: 32119634 DOI: 10.1089/mdr.2019.0291] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are produced by all forms of life, ranging from eukaryotes to prokaryotes, and they are a crucial component of innate immunity, involved in clearing infection by inhibiting pathogen colonization. In the recent past, AMPs received high attention due to the increase of extensive antibiotic resistance by these pathogens. AMPs exhibit a diverse spectrum of activity against bacteria, fungi, parasites, and various types of cancer. AMPs are active against various bacterial pathogens that cause disease in animals and plants. However, because of the coevolution of host and pathogen interaction, bacteria have developed the mechanisms to sense and exhibit an adaptive response against AMPs. These resistance mechanisms are playing an important role in bacterial virulence within the host. Here, we have discussed the different resistance mechanisms used by gram-positive and gram-negative bacteria to sense and combat AMP actions. Understanding the mechanism of AMP resistance may provide directions toward the development of novel therapeutic strategies to control multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ananta K Ghosh
- Department of Biotechnology, Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Santi M Mandal
- Department of Biotechnology, Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
29
|
Popp PF, Benjdia A, Strahl H, Berteau O, Mascher T. The Epipeptide YydF Intrinsically Triggers the Cell Envelope Stress Response of Bacillus subtilis and Causes Severe Membrane Perturbations. Front Microbiol 2020; 11:151. [PMID: 32117169 PMCID: PMC7026026 DOI: 10.3389/fmicb.2020.00151] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/22/2020] [Indexed: 01/05/2023] Open
Abstract
The Gram-positive model organism and soil bacterium Bacillus subtilis naturally produces a variety of antimicrobial peptides (AMPs), including the ribosomally synthesized and post-translationally modified AMP YydF, which is encoded in the yydFGHIJ locus. The yydF gene encodes the pre-pro-peptide, which is, in a unique manner, initially modified at two amino acid positions by the radical SAM epimerase YydG. Subsequently, the membrane-anchored putative protease YydH is thought to cleave and release the mature AMP, YydF, to the environment. The AMP YydF, with two discreet epimerizations among 17 residues as sole post-translational modification, defines a novel class of ribosomally synthesized and post-translationally modified peptides (RiPPs) called epipeptides, for which the mode-of-action (MOA) is unknown. The predicted ABC transporter encoded by yydIJ was previously postulated as an autoimmunity determinant of B. subtilis against its own AMP. Here, we demonstrate that extrinsically added YydF* kills B. subtilis cells by dissipating membrane potential via membrane permeabilization. This severe membrane perturbation is accompanied by a rapid reduction of membrane fluidity, substantiated by lipid domain formation. The epipeptide triggers a narrow and highly specific cellular response. The strong induction of liaIH expression, a marker for cell envelope stress in B. subtilis, further supports the MOA described above. A subsequent mutational study demonstrates that LiaIH—and not YydIJ—represents the most efficient resistance determinant against YydF* action. Unexpectedly, none of the observed cellular effects upon YydF* treatment alone are able to trigger liaIH expression, indicating that only the unique combination of membrane permeabilization and membrane rigidification caused by the epipetide, leads to the observed cell envelope stress response.
Collapse
Affiliation(s)
- Philipp F Popp
- Institute of Microbiology, Technische Universität (TU) Dresden, Dresden, Germany
| | - Alhosna Benjdia
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | - Henrik Strahl
- Center for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Olivier Berteau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | - Thorsten Mascher
- Institute of Microbiology, Technische Universität (TU) Dresden, Dresden, Germany
| |
Collapse
|
30
|
Gray DA, Wenzel M. More Than a Pore: A Current Perspective on the In Vivo Mode of Action of the Lipopeptide Antibiotic Daptomycin. Antibiotics (Basel) 2020; 9:E17. [PMID: 31947747 PMCID: PMC7168178 DOI: 10.3390/antibiotics9010017] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022] Open
Abstract
Daptomycin is a cyclic lipopeptide antibiotic, which was discovered in 1987 and entered the market in 2003. To date, it serves as last resort antibiotic to treat complicated skin infections, bacteremia, and right-sided endocarditis caused by Gram-positive pathogens, most prominently methicillin-resistant Staphylococcus aureus. Daptomycin was the last representative of a novel antibiotic class that was introduced to the clinic. It is also one of the few membrane-active compounds that can be applied systemically. While membrane-active antibiotics have long been limited to topical applications and were generally excluded from systemic drug development, they promise slower resistance development than many classical drugs that target single proteins. The success of daptomycin together with the emergence of more and more multi-resistant superbugs attracted renewed interest in this compound class. Studying daptomycin as a pioneering systemic membrane-active compound might help to pave the way for future membrane-targeting antibiotics. However, more than 30 years after its discovery, the exact mechanism of action of daptomycin is still debated. In particular, there is a prominent discrepancy between in vivo and in vitro studies. In this review, we discuss the current knowledge on the mechanism of daptomycin against Gram-positive bacteria and try to offer explanations for these conflicting observations.
Collapse
Affiliation(s)
- Declan Alan Gray
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
31
|
Sun Z, Popp PF, Loderer C, Revilla-Guarinos A. Genetically Engineered Bacterial Biohybrid Microswimmers for Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2019; 20:E180. [PMID: 31905650 PMCID: PMC6982730 DOI: 10.3390/s20010180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Abstract
Bacterial biohybrid microswimmers aim at exploiting the inherent motion capabilities of bacteria (carriers) to transport objects (cargoes) at the microscale. One of the most desired properties of microswimmers is their ability to communicate with their immediate environment by processing the information and producing a useful response. Indeed, bacteria are naturally equipped with such communication skills. Hereby, two-component systems (TCSs) represent the key signal transducing machinery and enable bacteria to sense and respond to a variety of stimuli. We engineered a natural microswimmer based on the Gram-positive model bacterium Bacillus subtilis for the development of biohybrids with sensing abilities. B. subtilis naturally adhered to silica particles, giving rise to different motile biohybrids systems with variable ratios of carrier(s)-to-cargo(es). Genetically engineered TCS pathways allowed us to couple the binding to the inert particles with signaling the presence of antibiotics in their surroundings. Activation of the antibiotic-induced TCSs resulted in fluorescent bacterial carriers as a response readout. We demonstrate that the genetically engineered TCS-mediated signaling capabilities of B. subtilis allow for the custom design of bacterial hybrid microswimmers able to sense and signal the presence of target molecules in the environment. The generally recognized as safe (GRAS) status of B. subtilis makes it a promising candidate for human-related applications of these novel biohybrids.
Collapse
Affiliation(s)
- Zhiyong Sun
- Department of Molecular Biotechnology, Institute für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| | - Philipp F. Popp
- Department of General Microbiology, Institute für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| | - Christoph Loderer
- Department of Molecular Biotechnology, Institute für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| | - Ainhoa Revilla-Guarinos
- Department of General Microbiology, Institute für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| |
Collapse
|
32
|
Siebenaller C, Junglas B, Schneider D. Functional Implications of Multiple IM30 Oligomeric States. FRONTIERS IN PLANT SCIENCE 2019; 10:1500. [PMID: 31824532 PMCID: PMC6882379 DOI: 10.3389/fpls.2019.01500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/29/2019] [Indexed: 05/03/2023]
Abstract
The inner membrane-associated protein of 30 kDa (IM30), also known as the vesicle-inducing protein in plastids 1 (Vipp1), is essential for photo-autotrophic growth of cyanobacteria, algae and higher plants. While its exact function still remains largely elusive, it is commonly accepted that IM30 is crucially involved in thylakoid membrane biogenesis, stabilization and/or maintenance. A characteristic feature of IM30 is its intrinsic propensity to form large homo-oligomeric protein complexes. 15 years ago, it has been reported that these supercomplexes have a ring-shaped structure. However, the in vivo significance of these ring structures is not finally resolved yet and the formation of more complex assemblies has been reported. We here present and discuss research on IM30 conducted within the past 25 years with a special emphasis on the question of why we potentially need IM30 supercomplexes in vivo.
Collapse
Affiliation(s)
| | | | - Dirk Schneider
- Department of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
33
|
Tran NT, Huang X, Hong HJ, Bush MJ, Chandra G, Pinto D, Bibb MJ, Hutchings MI, Mascher T, Buttner MJ. Defining the regulon of genes controlled by σ E , a key regulator of the cell envelope stress response in Streptomyces coelicolor. Mol Microbiol 2019; 112:461-481. [PMID: 30907454 PMCID: PMC6767563 DOI: 10.1111/mmi.14250] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2019] [Indexed: 01/01/2023]
Abstract
The extracytoplasmic function (ECF) σ factor, σE , is a key regulator of the cell envelope stress response in Streptomyces coelicolor. Although its role in maintaining cell wall integrity has been known for over a decade, a comprehensive analysis of the genes under its control has not been undertaken. Here, using a combination of chromatin immunoprecipitation-sequencing (ChIP-seq), microarray transcriptional profiling and bioinformatic analysis, we attempt to define the σE regulon. Approximately half of the genes identified encode proteins implicated in cell envelope function. Seventeen novel targets were validated by S1 nuclease mapping or in vitro transcription, establishing a σE -binding consensus. Subsequently, we used bioinformatic analysis to look for conservation of the σE target promoters identified in S. coelicolor across 19 Streptomyces species. Key proteins under σE control across the genus include the actin homolog MreB, three penicillin-binding proteins, two L,D-transpeptidases, a LytR-CpsA-Psr-family protein predicted to be involved in cell wall teichoic acid deposition and a predicted MprF protein, which adds lysyl groups to phosphatidylglycerol to neutralize membrane surface charge. Taken together, these analyses provide biological insight into the σE -mediated cell envelope stress response in the genus Streptomyces.
Collapse
Affiliation(s)
- Ngat T Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Xiaoluo Huang
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,Department Biology I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Hee-Jeon Hong
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Daniela Pinto
- Department Biology I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Maureen J Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Thorsten Mascher
- Department Biology I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
34
|
Huang GL, Gosschalk JE, Kim YS, Ogorzalek Loo RR, Clubb RT. Stabilizing displayed proteins on vegetative Bacillus subtilis cells. Appl Microbiol Biotechnol 2018; 102:6547-6565. [PMID: 29796970 PMCID: PMC6289300 DOI: 10.1007/s00253-018-9062-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 10/16/2022]
Abstract
Microbes engineered to display heterologous proteins could be useful biotechnological tools for protein engineering, lignocellulose degradation, biocatalysis, bioremediation, and biosensing. Bacillus subtilis is a promising host to display proteins, as this model Gram-positive bacterium is genetically tractable and already used industrially to produce enzymes. To gain insight into the factors that affect displayed protein stability and copy number, we systematically compared the ability of different protease-deficient B. subtilis strains (WB800, BRB07, BRB08, and BRB14) to display a Cel8A-LysM reporter protein in which the Clostridium thermocellum Cel8A endoglucanase is fused to LysM cell wall binding modules. Whole-cell cellulase measurements and fractionation experiments demonstrate that genetically eliminating extracytoplasmic bacterial proteases improves Cel8A-LysM display levels. However, upon entering stationary phase, for all protease-deficient strains, the amount of displayed reporter dramatically decreases, presumably as a result of cellular autolysis. This problem can be partially overcome by adding chemical protease inhibitors, which significantly increase protein display levels. We conclude that strain BRB08 is well suited for stably displaying our reporter protein, as genetic removal of its extracellular and cell wall-associated proteases leads to the highest levels of surface-accumulated Cel8A-LysM without causing secretion stress or impairing growth. A two-step procedure is presented that enables the construction of enzyme-coated vegetative B. subtilis cells that retain stable cell-associated enzyme activity for nearly 3 days. The results of this work could aid the development of whole-cell display systems that have useful biotechnological applications.
Collapse
Affiliation(s)
- Grace L Huang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Jason E Gosschalk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Ye Seong Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Rachel R Ogorzalek Loo
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA.
| |
Collapse
|
35
|
Radeck J, Lautenschläger N, Mascher T. The Essential UPP Phosphatase Pair BcrC and UppP Connects Cell Wall Homeostasis during Growth and Sporulation with Cell Envelope Stress Response in Bacillus subtilis. Front Microbiol 2017; 8:2403. [PMID: 29259598 PMCID: PMC5723303 DOI: 10.3389/fmicb.2017.02403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/20/2017] [Indexed: 12/03/2022] Open
Abstract
The bacterial cell wall separates the cell from its surrounding and protects it from environmental stressors. Its integrity is maintained by a highly regulated process of cell wall biosynthesis. The membrane-located lipid II cycle provides cell wall building blocks that are assembled inside the cytoplasm to the outside for incorporation. Its carrier molecule, undecaprenyl phosphate (UP), is then recycled by dephosphorylation from undecaprenyl pyrophosphate (UPP). In Bacillus subtilis, this indispensable reaction is catalyzed by the UPP phosphatases BcrC and UppP. Here, we study the physiological function of both phosphatases with respect to morphology, cell wall homeostasis and the resulting cell envelope stress response (CESR). We demonstrate that uppP and bcrC represent a synthetic lethal gene pair, which encodes an essential physiological function. Accordingly, cell growth and morphology were severely impaired during exponential growth if the overall UPP phosphatase level was limiting. UppP, but not BcrC, was crucial for normal sporulation. Expression of bcrC, but not uppP, was upregulated in the presence of cell envelope stress conditions caused by bacitracin if UPP phosphatase levels were limited. This homeostatic feedback renders BcrC more important during growth than UppP, particularly in defense against cell envelope stress.
Collapse
Affiliation(s)
- Jara Radeck
- Institute of Microbiology, Technische Universität Dresden, Dresden, Germany
| | | | - Thorsten Mascher
- Institute of Microbiology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
36
|
Kleine B, Chattopadhyay A, Polen T, Pinto D, Mascher T, Bott M, Brocker M, Freudl R. The three-component system EsrISR regulates a cell envelope stress response in Corynebacterium glutamicum. Mol Microbiol 2017; 106:719-741. [PMID: 28922502 DOI: 10.1111/mmi.13839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2017] [Indexed: 02/03/2023]
Abstract
When the cell envelope integrity is compromised, bacteria trigger signaling cascades resulting in the production of proteins that counteract these extracytoplasmic stresses. Here, we show that the two-component system EsrSR regulates a cell envelope stress response in the Actinobacterium Corynebacterium glutamicum. The sensor kinase EsrS possesses an amino-terminal phage shock protein C (PspC) domain, a property that sets EsrSR apart from all other two-component systems characterized so far. An integral membrane protein, EsrI, whose gene is divergently transcribed to the esrSR gene locus and which interestingly also possesses a PspC domain, acts as an inhibitor of EsrSR under non-stress conditions. The resulting EsrISR three-component system is activated among others by antibiotics inhibiting the lipid II cycle, such as bacitracin and vancomycin, and it orchestrates a broad regulon including the esrI-esrSR gene locus itself, genes encoding heat shock proteins, ABC transporters, and several putative membrane-associated or secreted proteins of unknown function. Among those, the ABC transporter encoded by cg3322-3320 was shown to be directly involved in bacitracin resistance of C. glutamicum. Since similar esrI-esrSR loci are present in a large number of actinobacterial genomes, EsrISR represents a novel type of stress-responsive system whose components are highly conserved in the phylum Actinobacteria.
Collapse
Affiliation(s)
- Britta Kleine
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Ava Chattopadhyay
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Tino Polen
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Daniela Pinto
- Institut für Mikrobiologie, Technische Universität Dresden, Zellescher Weg 20b, Dresden D-01217, Germany
| | - Thorsten Mascher
- Institut für Mikrobiologie, Technische Universität Dresden, Zellescher Weg 20b, Dresden D-01217, Germany
| | - Michael Bott
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Melanie Brocker
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Roland Freudl
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| |
Collapse
|
37
|
Abstract
Emergence of resistance among the most important bacterial pathogens is recognized as a major public health threat affecting humans worldwide. Multidrug-resistant organisms have not only emerged in the hospital environment but are now often identified in community settings, suggesting that reservoirs of antibiotic-resistant bacteria are present outside the hospital. The bacterial response to the antibiotic "attack" is the prime example of bacterial adaptation and the pinnacle of evolution. "Survival of the fittest" is a consequence of an immense genetic plasticity of bacterial pathogens that trigger specific responses that result in mutational adaptations, acquisition of genetic material, or alteration of gene expression producing resistance to virtually all antibiotics currently available in clinical practice. Therefore, understanding the biochemical and genetic basis of resistance is of paramount importance to design strategies to curtail the emergence and spread of resistance and to devise innovative therapeutic approaches against multidrug-resistant organisms. In this chapter, we will describe in detail the major mechanisms of antibiotic resistance encountered in clinical practice, providing specific examples in relevant bacterial pathogens.
Collapse
|
38
|
Egan AJF, Cleverley RM, Peters K, Lewis RJ, Vollmer W. Regulation of bacterial cell wall growth. FEBS J 2017; 284:851-867. [PMID: 27862967 DOI: 10.1111/febs.13959] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/28/2016] [Accepted: 11/09/2016] [Indexed: 12/19/2022]
Abstract
During growth and propagation, a bacterial cell enlarges and subsequently divides its peptidoglycan (PG) sacculus, a continuous mesh-like layer that encases the cell membrane to confer mechanical strength and morphological robustness. The mechanism of sacculus growth, how it is regulated and how it is coordinated with other cellular processes is poorly understood. In this article, we will discuss briefly the current knowledge of how cell wall synthesis is regulated, on multiple levels, from both sides of the cytoplasmic membrane. According to the current knowledge, cytosolic scaffolding proteins connect PG synthases with cytoskeletal elements, and protein phosphorylation regulates cell wall growth in Gram-positive species. PG-active enzymes engage in multiple protein-protein interactions within PG synthesis multienzyme complexes, and some of the interactions modulate activities. PG synthesis is also regulated by central metabolism, and by PG maturation through the action of PG hydrolytic enzymes. Only now are we beginning to appreciate how these multiple levels of regulating PG synthesis enable the cell to propagate robustly with a defined cell shape under different and variable growth conditions.
Collapse
Affiliation(s)
- Alexander J F Egan
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Robert M Cleverley
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Katharina Peters
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Richard J Lewis
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| |
Collapse
|
39
|
A Novel Phosphodiesterase of the GdpP Family Modulates Cyclic di-AMP Levels in Response to Cell Membrane Stress in Daptomycin-Resistant Enterococci. Antimicrob Agents Chemother 2017; 61:AAC.01422-16. [PMID: 28069645 DOI: 10.1128/aac.01422-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 12/26/2016] [Indexed: 12/20/2022] Open
Abstract
Substitutions in the LiaFSR membrane stress pathway are frequently associated with the emergence of antimicrobial peptide resistance in both Enterococcus faecalis and Enterococcus faecium Cyclic di-AMP (c-di-AMP) is an important signal molecule that affects many aspects of bacterial physiology, including stress responses. We have previously identified a mutation in a gene (designated yybT) in E. faecalis that was associated with the development of daptomycin resistance, resulting in a change at position 440 (yybTI440S) in the predicted protein. Here, we show that intracellular c-di-AMP signaling is present in enterococci, and on the basis of in vitro physicochemical characterization, we show that E. faecalisyybT encodes a cyclic dinucleotide phosphodiesterase of the GdpP family that exhibits specific activity toward c-di-AMP by hydrolyzing it to 5'pApA. The E. faecalis GdpPI440S substitution reduces c-di-AMP phosphodiesterase activity more than 11-fold, leading to further increases in c-di-AMP levels. Additionally, deletions of liaR (encoding the response regulator of the LiaFSR system) that lead to daptomycin hypersusceptibility in both E. faecalis and E. faecium also resulted in increased c-di-AMP levels, suggesting that changes in the LiaFSR stress response pathway are linked to broader physiological changes. Taken together, our data show that modulation of c-di-AMP pools is strongly associated with antibiotic-induced cell membrane stress responses via changes in GdpP activity or signaling through the LiaFSR system.
Collapse
|
40
|
Thurotte A, Brüser T, Mascher T, Schneider D. Membrane chaperoning by members of the PspA/IM30 protein family. Commun Integr Biol 2017. [PMCID: PMC5333519 DOI: 10.1080/19420889.2016.1264546] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PspA, IM30 (Vipp1) and LiaH, which all belong to the PspA/IM30 protein family, form high molecular weight oligomeric structures. For all proteins membrane binding and protection of the membrane structure and integrity has been shown or postulated. Here we discuss the possible membrane chaperoning activity of PspA, IM30 and LiaH and propose that larger oligomeric structures bind to stressed membrane regions, followed by oligomer disassembly and membrane stabilization by protein monomers or smaller/different oligomeric scaffolds.
Collapse
Affiliation(s)
- Adrien Thurotte
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Thomas Brüser
- Institut für Mikrobiologie, Leibniz Universität Hannover, Hannover, Germany
| | - Thorsten Mascher
- Institut für Mikrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Dirk Schneider
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| |
Collapse
|
41
|
Manganelli R, Gennaro ML. Protecting from Envelope Stress: Variations on the Phage-Shock-Protein Theme. Trends Microbiol 2016; 25:205-216. [PMID: 27865622 DOI: 10.1016/j.tim.2016.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/16/2016] [Accepted: 10/24/2016] [Indexed: 01/03/2023]
Abstract
During envelope stress, critical inner-membrane functions are preserved by the phage-shock-protein (Psp) system, a stress response that emerged from work with Escherichia coli and other Gram-negative bacteria. Reciprocal regulatory interactions and multiple effector functions are well documented in these organisms. Searches for the Psp system across phyla reveal conservation of only one protein, PspA. However, examination of Firmicutes and Actinobacteria reveals that PspA orthologs associate with non-orthologous regulatory and effector proteins retaining functions similar to those in Gram-negative counterparts. Conservation across phyla emphasizes the long-standing importance of the Psp system in prokaryotes, while inter- and intra-phyla variations within the system indicate adaptation to different cell envelope structures, bacterial lifestyles, and/or bacterial morphogenetic strategies.
Collapse
Affiliation(s)
| | - Maria Laura Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA.
| |
Collapse
|
42
|
Miller WR, Bayer AS, Arias CA. Mechanism of Action and Resistance to Daptomycin in Staphylococcus aureus and Enterococci. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026997. [PMID: 27580748 DOI: 10.1101/cshperspect.a026997] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipopeptides are natural product antibiotics that consist of a peptide core with a lipid tail with a diverse array of target organisms and mechanisms of action. Daptomycin (DAP) is an example of these compounds with specific activity against Gram-positive organisms. DAP has become increasingly important to combat infections caused by Gram-positive bacteria because of the presence of multidrug resistance in these organisms, particularly in methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). However, emergence of resistance to DAP during therapy is a well-described phenomenon that threatens the clinical use of this antibiotic, limiting further the therapeutic options against both MRSA and VRE. This work will review the historical aspects of the development of DAP, as well as the current knowledge on its mechanism of action and pathways to resistance in a clinically relevant context.
Collapse
Affiliation(s)
- William R Miller
- University of Texas Medical School at Houston, Department of Internal Medicine, Division of Infectious Diseases, Houston, Texas 77030
| | - Arnold S Bayer
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502.,David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Cesar A Arias
- University of Texas Medical School at Houston, Department of Internal Medicine, Division of Infectious Diseases, Houston, Texas 77030.,Department of Microbiology and Molecular Genetics, Houston, Texas 77030.,Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia.,International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| |
Collapse
|
43
|
Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proc Natl Acad Sci U S A 2016; 113:E7077-E7086. [PMID: 27791134 DOI: 10.1073/pnas.1611173113] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Daptomycin is a highly efficient last-resort antibiotic that targets the bacterial cell membrane. Despite its clinical importance, the exact mechanism by which daptomycin kills bacteria is not fully understood. Different experiments have led to different models, including (i) blockage of cell wall synthesis, (ii) membrane pore formation, and (iii) the generation of altered membrane curvature leading to aberrant recruitment of proteins. To determine which model is correct, we carried out a comprehensive mode-of-action study using the model organism Bacillus subtilis and different assays, including proteomics, ionomics, and fluorescence light microscopy. We found that daptomycin causes a gradual decrease in membrane potential but does not form discrete membrane pores. Although we found no evidence for altered membrane curvature, we confirmed that daptomycin inhibits cell wall synthesis. Interestingly, using different fluorescent lipid probes, we showed that binding of daptomycin led to a drastic rearrangement of fluid lipid domains, affecting overall membrane fluidity. Importantly, these changes resulted in the rapid detachment of the membrane-associated lipid II synthase MurG and the phospholipid synthase PlsX. Both proteins preferentially colocalize with fluid membrane microdomains. Delocalization of these proteins presumably is a key reason why daptomycin blocks cell wall synthesis. Finally, clustering of fluid lipids by daptomycin likely causes hydrophobic mismatches between fluid and more rigid membrane areas. This mismatch can facilitate proton leakage and may explain the gradual membrane depolarization observed with daptomycin. Targeting of fluid lipid domains has not been described before for antibiotics and adds another dimension to our understanding of membrane-active antibiotics.
Collapse
|
44
|
Mu D, Yu X, Xu Z, Du Z, Chen G. Physiological and transcriptomic analyses reveal mechanistic insight into the adaption of marine Bacillus subtilis C01 to alumina nanoparticles. Sci Rep 2016; 6:29953. [PMID: 27440502 PMCID: PMC4954987 DOI: 10.1038/srep29953] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/24/2016] [Indexed: 12/05/2022] Open
Abstract
An increasing number of studies have investigated the effects of nanoparticles (NPs) on microbial systems; however, few existing reports have focused on the defense mechanisms of bacteria against NPs. Whether secondary metabolism biosynthesis is a response to NP stress and contributes to the adaption of bacteria to NPs is unclear. Here, a significant induction in the surfactin production and biofilm formation were detected by adding Al2O3 NPs to the B. subtilis fermentation broth. Physiological analysis showed that Al2O3 NP stress could also affect the cell and colony morphogenesis and inhibit the motility and sporulation. Exogenously adding commercial surfactin restored the swarming motility. Additionally, a suite of toxicity assays analyzing membrane damage, cellular ROS generation, electron transport activity and membrane potential was used to determine the molecular mechanisms of toxicity of Al2O3 NPs. Furthermore, whole transcriptomic analysis was used to elucidate the mechanisms of B. subtilis adaption to Al2O3 NPs. These results revealed several mechanisms by which marine B. subtilis C01 adapt to Al2O3 NPs. Additionally, this study broadens the applications of nanomaterials and describes the important effects on secondary metabolism and multicellularity regulation by using Al2O3 NPs or other nano-products.
Collapse
Affiliation(s)
- Dashuai Mu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
- College of Marine Science, Shandong University (Weihai), Weihai 264209, PR China
| | - Xiuxia Yu
- College of Marine Science, Shandong University (Weihai), Weihai 264209, PR China
| | - Zhenxing Xu
- College of Marine Science, Shandong University (Weihai), Weihai 264209, PR China
| | - Zongjun Du
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
- College of Marine Science, Shandong University (Weihai), Weihai 264209, PR China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
- College of Marine Science, Shandong University (Weihai), Weihai 264209, PR China
| |
Collapse
|
45
|
Radeck J, Fritz G, Mascher T. The cell envelope stress response of Bacillus subtilis: from static signaling devices to dynamic regulatory network. Curr Genet 2016; 63:79-90. [PMID: 27344142 DOI: 10.1007/s00294-016-0624-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 11/24/2022]
Abstract
The cell envelope stress response (CESR) encompasses all regulatory events that enable a cell to protect the integrity of its envelope, an essential structure of any bacterial cell. The underlying signaling network is particularly well understood in the Gram-positive model organism Bacillus subtilis. It consists of a number of two-component systems (2CS) and extracytoplasmic function σ factors that together regulate the production of both specific resistance determinants and general mechanisms to protect the envelope against antimicrobial peptides targeting the biogenesis of the cell wall. Here, we summarize the current picture of the B. subtilis CESR network, from the initial identification of the corresponding signaling devices to unraveling their interdependence and the underlying regulatory hierarchy within the network. In the course of detailed mechanistic studies, a number of novel signaling features could be described for the 2CSs involved in mediating CESR. This includes a novel class of so-called intramembrane-sensing histidine kinases (IM-HKs), which-instead of acting as stress sensors themselves-are activated via interprotein signal transfer. Some of these IM-HKs are involved in sensing the flux of antibiotic resistance transporters, a unique mechanism of responding to extracellular antibiotic challenge.
Collapse
Affiliation(s)
- Jara Radeck
- Institute of Microbiology, Technische Universität (TU) Dresden, Dresden, Germany
| | - Georg Fritz
- LOEWE-Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Thorsten Mascher
- Institute of Microbiology, Technische Universität (TU) Dresden, Dresden, Germany.
| |
Collapse
|
46
|
Abstract
The phage shock protein (Psp) system was identified as a response to phage infection in Escherichia coli, but rather than being a specific response to a phage, it detects and mitigates various problems that could increase inner-membrane (IM) permeability. Interest in the Psp system has increased significantly in recent years due to appreciation that Psp-like proteins are found in all three domains of life and because the bacterial Psp response has been linked to virulence and other important phenotypes. In this article, we summarize our current understanding of what the Psp system detects and how it detects it, how four core Psp proteins form a signal transduction cascade between the IM and the cytoplasm, and current ideas that explain how the Psp response keeps bacterial cells alive. Although recent studies have significantly improved our understanding of this system, it is an understanding that is still far from complete.
Collapse
Affiliation(s)
- Josué Flores-Kim
- Department of Microbiology, New York University School of Medicine, New York, NY 10016; ,
| | - Andrew J Darwin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016; ,
| |
Collapse
|
47
|
Stepanek JJ, Lukežič T, Teichert I, Petković H, Bandow JE. Dual mechanism of action of the atypical tetracycline chelocardin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:645-654. [DOI: 10.1016/j.bbapap.2016.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/27/2016] [Accepted: 03/08/2016] [Indexed: 01/18/2023]
|
48
|
Wolf D, Mascher T. The applied side of antimicrobial peptide-inducible promoters from Firmicutes bacteria: expression systems and whole-cell biosensors. Appl Microbiol Biotechnol 2016; 100:4817-29. [PMID: 27102123 DOI: 10.1007/s00253-016-7519-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 11/28/2022]
Abstract
The cell envelope is an essential bacterial structure that consists of the cytoplasmic membrane, the cell wall, and-in Gram-negative bacteria-the outer membrane. Because of its crucial functions, it represents a prime antibiotic target. Monitoring and maintaining its integrity are therefore keys to survival, especially in competitive environments where antibiotics represent one means of suppressing the growth of competitors. Resistance against external antibiotic threat, as well as auto-immunity against self-produced antibiotics, is often mediated by two-component systems (2CSs). They respond to antibiotic threat by inducing gene expression that results in the production of specific resistance determinants. The underlying transcriptional control is exhibited at the level of specific target promoters, which usually share a number of relevant features: They are tightly controlled and only induced in the presence of specific (sets of) antibiotics. This induction is dose dependent and often very sensitive, that is, it occurs well below inhibitory antibiotic concentrations. Because of these characteristics, a number of well-characterized cell envelope stress-inducible promoters have been developed for two different applied purposes: first, as whole-cell biosensors for antibiotic detection and mechanism-of-action studies, and second, as antibiotic-inducible expression systems for biotechnological purposes. The current state of research in both fields will be discussed in this review, focusing on 2CS-regulated promoters from Firmicutes bacteria that are induced to mediate resistance against antimicrobial peptides (AMPs) targeting the cell envelope.
Collapse
Affiliation(s)
- Diana Wolf
- Institute of Microbiology, Technische Universität (TU) Dresden, 01062, Dresden, Germany
| | - Thorsten Mascher
- Institute of Microbiology, Technische Universität (TU) Dresden, 01062, Dresden, Germany.
| |
Collapse
|
49
|
Role of the Gram-Negative Envelope Stress Response in the Presence of Antimicrobial Agents. Trends Microbiol 2016; 24:377-390. [PMID: 27068053 DOI: 10.1016/j.tim.2016.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 01/10/2023]
Abstract
Bacterial survival necessitates endurance of many types of antimicrobial compound. Many Gram-negative envelope stress responses, which must contend with an outer membrane and a dense periplasm containing the cell wall, have been associated with the status of protein folding, membrane homeostasis, and physiological functions such as efflux and the proton motive force (PMF). In this review, we discuss evidence that indicates an emerging role for Gram-negative envelope stress responses in enduring exposure to diverse antimicrobial substances, focusing on recent studies of the γ-proteobacterial Cpx envelope stress response.
Collapse
|
50
|
Radeck J, Gebhard S, Orchard PS, Kirchner M, Bauer S, Mascher T, Fritz G. Anatomy of the bacitracin resistance network inBacillus subtilis. Mol Microbiol 2016; 100:607-20. [DOI: 10.1111/mmi.13336] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Jara Radeck
- Technische Universität Dresden, Institute of Microbiology; Dresden Germany
- Ludwig-Maximilians-Universität Mänchen, Department Biology I; Mänchen Germany
| | - Susanne Gebhard
- University of Bath, Department of Biology and Biochemistry, Milner Centre for Evolution; Bath United Kingdom
| | | | - Marion Kirchner
- Ludwig-Maximilians-Universität Mänchen, Department Biology I; Mänchen Germany
| | - Stephanie Bauer
- Ludwig-Maximilians-Universität Mänchen, Department Biology I; Mänchen Germany
| | - Thorsten Mascher
- Technische Universität Dresden, Institute of Microbiology; Dresden Germany
| | - Georg Fritz
- Philipps-Universität Marburg, LOEWE-Center for Synthetic Microbiology (SYNMIKRO); Marburg Germany
| |
Collapse
|