1
|
Alqahtani S, DiMaggio DA, Brinsmade SR. CodY controls the SaeR/S two-component system by modulating branched-chain fatty acid synthesis in Staphylococcus aureus. J Bacteriol 2024:e0019124. [PMID: 39382300 DOI: 10.1128/jb.00191-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/27/2024] [Indexed: 10/10/2024] Open
Abstract
Staphylococcus aureus is a Gram-positive, opportunistic human pathogen that is a leading cause of skin and soft tissue infections and invasive disease worldwide. Virulence in this bacterium is tightly controlled by a network of regulatory factors. One such factor is the global regulatory protein CodY. CodY links branched-chain amino acid sufficiency to the production of surface-associated and secreted factors that facilitate immune evasion and subversion. Our previous work revealed that CodY regulates virulence factor gene expression indirectly in part by controlling the activity of the SaeRS two-component system (TCS). While this is correlated with an increase in membrane anteiso-15:0 and -17:0 branched-chain fatty acids (BCFAs) derived from isoleucine, the true mechanism of control has remained elusive. Herein, we report that CodY-dependent regulation of SaeS sensor kinase activity requires BCFA synthesis. During periods of nutrient sufficiency, BCFA synthesis and Sae TCS activity are kept relatively low by CodY-dependent repression of the ilv-leu operon and the isoleucine-specific permease gene brnQ2. In a codY null mutant, which simulates extreme nutrient limitation, de-repression of ilv-leu and brnQ2 directs the synthesis of enzymes in redundant de novo and import pathways to upregulate production of BCFA precursors. Overexpression of brnQ2, independent of CodY, is sufficient to increase membrane anteiso BCFAs, Sae-dependent promoter activity, and SaeR ~P levels. Our results further clarify the molecular mechanisms by which CodY controls virulence in S. aureus.IMPORTANCEExpression of bacterial virulence genes often correlates with the exhaustion of nutrients, but how the signaling of nutrient availability and the resulting physiological responses are coordinated is unclear. In S. aureus, CodY controls the activity of two major regulators of virulence-the Agr and Sae two-component systems (TCSs)-by unknown mechanisms. This work identifies a mechanism by which CodY controls the activity of the sensor kinase SaeS by modulating the levels of anteiso branched-chain amino acids that are incorporated into the membrane. Understanding the mechanism adds to our understanding of how bacterial physiology and metabolism are linked to virulence and underscores the role virulence in maintaining homeostasis. Understanding the mechanism also opens potential avenues for targeted therapeutic strategies against S. aureus infections.
Collapse
Affiliation(s)
- Shahad Alqahtani
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | | |
Collapse
|
2
|
Sekar S, Schwarzbach S, Nega M, Bloes DA, Smeds E, Kretschmer D, Foster TJ, Heilbronner S. SLUSH peptides of the PSMβ family enable Staphylococcus lugdunensis to use erythrocytes as a sole source of nutrient iron. FASEB J 2024; 38:e23881. [PMID: 39166718 DOI: 10.1096/fj.202400335r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
During infection, the host employs nutritional immunity to restrict access to iron. Staphylococcus lugdunensis has been recognized for its ability to utilize host-derived heme to overcome iron restriction. However, the mechanism behind this process involves the release of hemoglobin from erythrocytes, and the hemolytic factors of S. lugdunensis remain poorly understood. S. lugdunensis encodes four phenol-soluble modulins (PSMs), short peptides with hemolytic activity. The peptides SLUSH A, SLUSH B, and SLUSH C are β-type PSMs, and OrfX is an α-type PSM. Our study shows the SLUSH locus to be essential for the hemolytic phenotype of S. lugdunensis. All four peptides individually exhibited hemolytic activity against human and sheep erythrocytes, but synergism with sphingomyelinase was observed exclusively against sheep erythrocytes. Furthermore, our findings demonstrate that SLUSH is crucial for allowing the utilization of erythrocytes as the sole source of nutritional iron and confirm the transcriptional regulation of SLUSH by Agr. Additionally, our study reveals that SLUSH peptides stimulate the human immune system. Our analysis identifies SLUSH as a pivotal hemolytic factor of S. lugdunensis and demonstrates its concerted action with heme acquisition systems to overcome iron limitation in the presence of host erythrocytes.
Collapse
Affiliation(s)
- Sharmila Sekar
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, Tübingen, Germany
| | - Selina Schwarzbach
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, Tübingen, Germany
| | - Mulugeta Nega
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Dominik Alexander Bloes
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, Tübingen, Germany
| | - Emanuel Smeds
- Lund Protein Production Platform, Department of Biology, Lund University, Lund, Sweden
| | - Dorothee Kretschmer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, Tübingen, Germany
| | - Timothy J Foster
- Trinity College Dublin, The Moyne Institute of Preventive Medicine, Dublin, Ireland
| | - Simon Heilbronner
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Tübingen, Germany
- Faculty of Biology, Microbiology, Ludwig Maximilians Universität München, Martinsried, Germany
| |
Collapse
|
3
|
Ahator SD, Wenzl K, Hegstad K, Lentz CS, Johannessen M. Comprehensive virulence profiling and evolutionary analysis of specificity determinants in Staphylococcus aureus two-component systems. mSystems 2024; 9:e0013024. [PMID: 38470253 PMCID: PMC11019936 DOI: 10.1128/msystems.00130-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
In the Staphylococcus aureus genome, a set of highly conserved two-component systems (TCSs) composed of histidine kinases (HKs) and their cognate response regulators (RRs) sense and respond to environmental stimuli, which drive the adaptation of the bacteria. This study investigates the complex interplay between TCSs in S. aureus USA300, a predominant methicillin-resistant S. aureus strain, revealing shared and unique virulence regulatory pathways and genetic variations mediating signal specificity within TCSs. Using TCS-related mutants from the Nebraska Transposon Mutant Library, we analyzed the effects of inactivated TCS HKs and RRs on the production of various virulence factors, in vitro infection abilities, and adhesion assays. We found that the TCSs' influence on virulence determinants was not associated with their phylogenetic relationship, indicating divergent functional evolution. Using the co-crystallized structure of the DesK-DesR from Bacillus subtilis and the modeled structures of the four NarL TCSs in S. aureus, we identified interacting residues, revealing specificity determinants and conservation within the same TCS, even from different strain backgrounds. The interacting residues were highly conserved within strains but varied between species due to selection pressures and the coevolution of cognate pairs. This study unveils the complex interplay and divergent functional evolution of TCSs, highlighting their potential for future experimental exploration of phosphotransfer between cognate and non-cognate recombinant HK and RRs.IMPORTANCEGiven the widespread conservation of two-component systems (TCSs) in bacteria and their pivotal role in regulating metabolic and virulence pathways, they present a compelling target for anti-microbial agents, especially in the face of rising multi-drug-resistant infections. Harnessing TCSs therapeutically necessitates a profound understanding of their evolutionary trajectory in signal transduction, as this underlies their unique or shared virulence regulatory pathways. Such insights are critical for effectively targeting TCS components, ensuring an optimized impact on bacterial virulence, and mitigating the risk of resistance emergence via the evolution of alternative pathways. Our research offers an in-depth exploration of virulence determinants controlled by TCSs in S. aureus, shedding light on the evolving specificity determinants that orchestrate interactions between their cognate pairs.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Karoline Wenzl
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Kristin Hegstad
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Christian S. Lentz
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
4
|
Anderson EE, Ilmain JK, Torres VJ. SarS and Rot are necessary for the repression of lukED and lukSF-PV in Staphylococcus aureus. Microbiol Spectr 2023; 11:e0165623. [PMID: 37800956 PMCID: PMC10715151 DOI: 10.1128/spectrum.01656-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE The leukocidins play an important role in disarming the host immune system and promoting infection. While both SarS and Rot have been established as repressors of leukocidins, the importance of each repressor in infection is unclear. Here, we demonstrate that repression by SarS and Rot is not additive and show that in addition to upregulating expression of each other, they are also able to bind concurrently to the leukocidin promoters. These findings suggest that both repressors are necessary for maximal repression of lukED and lukSF-PV and illuminate another complex relationship among Staphylococcus aureus virulence regulators.
Collapse
Affiliation(s)
- Exene E. Anderson
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Juliana K. Ilmain
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
5
|
Francis D, Veeramanickathadathil Hari G, Koonthanmala Subash A, Bhairaddy A, Joy A. The biofilm proteome of Staphylococcus aureus and its implications for therapeutic interventions to biofilm-associated infections. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:327-400. [PMID: 38220430 DOI: 10.1016/bs.apcsb.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Staphylococcus aureus is a major healthcare concern due to its ability to inflict life-threatening infections and evolve antibiotic resistance at an alarming pace. It is frequently associated with hospital-acquired infections, especially device-associated infections. Systemic infections due to S. aureus are difficult to treat and are associated with significant mortality and morbidity. The situation is worsened by the ability of S. aureus to form social associations called biofilms. Biofilms embed a community of cells with the ability to communicate with each other and share resources within a polysaccharide or protein matrix. S. aureus establish biofilms on tissues and conditioned abiotic surfaces. Biofilms are hyper-tolerant to antibiotics and help evade host immune responses. Biofilms exacerbate the severity and recalcitrance of device-associated infections. The development of a biofilm involves various biomolecules, such as polysaccharides, proteins and nucleic acids, contributing to different structural and functional roles. Interconnected signaling pathways and regulatory molecules modulate the expression of these molecules. A comprehensive understanding of the molecular biology of biofilm development would help to devise effective anti-biofilm therapeutics. Although bactericidal agents, antimicrobial peptides, bacteriophages and nano-conjugated anti-biofilm agents have been employed with varying levels of success, there is still a requirement for effective and clinically viable anti-biofilm therapeutics. Proteins that are expressed and utilized during biofilm formation, constituting the biofilm proteome, are a particularly attractive target for anti-biofilm strategies. The proteome can be explored to identify potential anti-biofilm drug targets and utilized for rational drug discovery. With the aim of uncovering the biofilm proteome, this chapter explores the mechanism of biofilm formation and its regulation. Furthermore, it explores the antibiofilm therapeutics targeted against the biofilm proteome.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, India.
| | | | | | - Anusha Bhairaddy
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, India
| | - Atheene Joy
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, India
| |
Collapse
|
6
|
Jiang F, Chen Y, Yu J, Zhang F, Liu Q, He L, Musha H, Du J, Wang B, Han P, Chen X, Tang J, Li M, Shen H. Repurposed Fenoprofen Targeting SaeR Attenuates Staphylococcus aureus Virulence in Implant-Associated Infections. ACS CENTRAL SCIENCE 2023; 9:1354-1373. [PMID: 37521790 PMCID: PMC10375895 DOI: 10.1021/acscentsci.3c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 08/01/2023]
Abstract
Implant-associated infections (IAIs) caused by S. aureus can result in serious challenges after orthopedic surgery. Due to biofilm formation and antibiotic resistance, this refractory infection is highly prevalent, and finding drugs to attenuate bacterial virulence is becoming a rational alternative strategy. In S. aureus, the SaeRS two-component system (TCS) plays a key role in the production of over 20 virulence factors and the pathogenesis of the bacterium. Here, by conducting a structure-based virtual screening against SaeR, we identified that fenoprofen, a USA Food and Drug Administration (FDA)-approved nonsteroid anti-inflammatory drug (NSAID), had excellent inhibitory potency against the response regulator SaeR protein. We showed that fenoprofen attenuated the virulence of S. aureus without drug resistance. In addition, it was helpful in relieving osteolysis and restoring the walking ability of mice in vitro and in implant-associated infection models. More importantly, fenoprofen treatment suppressed biofilm formation and changed the biofilm structure, which caused S. aureus to form loose and porous biofilms that were more vulnerable to infiltration and elimination by leukocytes. Our results reveal that fenoprofen is a potent antivirulence agent with potential value in clinical applications and that SaeR is a drug target against S. aureus implant-associated infections.
Collapse
Affiliation(s)
- Feng Jiang
- Department
of Orthopedics, Shanghai Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Yingjia Chen
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese
Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Department
of Pharmacy, University of Chinese Academy
of Sciences, No.19A Yuan
Road, Beijing 100049, China
| | - Jinlong Yu
- Department
of Orthopedics, Shanghai Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Feiyang Zhang
- Department
of Orthopedics, Shanghai Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Qian Liu
- Department
of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Lei He
- Department
of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Hamushan Musha
- Department
of Orthopedics, Shanghai Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Jiafei Du
- Department
of Orthopedics, Shanghai Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Boyong Wang
- Department
of Orthopedics, Shanghai Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Pei Han
- Department
of Orthopedics, Shanghai Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Xiaohua Chen
- Department
of Infectious Diseases, Shanghai Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Jin Tang
- Department
of Clinical Laboratory, Shanghai Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Min Li
- Department
of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
- Faculty of
Medical Laboratory Science, Shanghai Jiaotong
University School of Medicine, Shanghai 200025, China
| | - Hao Shen
- Department
of Orthopedics, Shanghai Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| |
Collapse
|
7
|
Wittekind MA, Briaud P, Smith JL, Tennant JR, Carroll RK. The Small Protein ScrA Influences Staphylococcus aureus Virulence-Related Processes via the SaeRS System. Microbiol Spectr 2023; 11:e0525522. [PMID: 37154710 PMCID: PMC10269730 DOI: 10.1128/spectrum.05255-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive commensal and opportunistic pathogen able to cause diseases ranging from mild skin infections to life-threatening endocarditis and toxic shock syndrome. The ability to cause such an array of diseases is due to the complex S. aureus regulatory network controlling an assortment of virulence factors, including adhesins, hemolysins, proteases, and lipases. This regulatory network is controlled by both protein and RNA elements. We previously identified a novel regulatory protein called ScrA, which, when overexpressed, leads to the increased activity and expression of the SaeRS regulon. In this study, we further explore the role of ScrA and examine the consequences to the bacterial cell of scrA gene disruption. These results demonstrate that scrA is required for several virulence-related processes, and in many cases, the phenotypes of the scrA mutant are inverse to those observed in cells overexpressing ScrA. Interestingly, while the majority of ScrA-mediated phenotypes appear to rely on the SaeRS system, our results also indicate that ScrA may also act independently of SaeRS when regulating hemolytic activity. Finally, using a murine model of infection, we demonstrate that scrA is required for virulence, potentially in an organ-specific manner. IMPORTANCE Staphylococcus aureus is the cause of several potentially life-threatening infections. An assortment of toxins and virulence factors allows such a wide range of infections. However, an assortment of toxins or virulence factors requires complex regulation to control expression under all of the different conditions encountered by the bacterium. Understanding the intricate web of regulatory systems allows the development of novel approaches to combat S. aureus infections. Here, we have shown that the small protein ScrA, which was previously identified by our laboratory, influences several virulence-related functions through the SaeRS global regulatory system. These findings add ScrA to the growing list of virulence regulators in S. aureus.
Collapse
Affiliation(s)
| | - Paul Briaud
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Jayanna L. Smith
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Julia R. Tennant
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Ronan K. Carroll
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| |
Collapse
|
8
|
Cheng S, Su R, Song L, Bai X, Yang H, Li Z, Li Z, Zhan X, Xia X, Lü X, Shi C. Citral and trans-cinnamaldehyde, two plant-derived antimicrobial agents can induce Staphylococcus aureus into VBNC state with different characteristics. Food Microbiol 2023; 112:104241. [PMID: 36906323 DOI: 10.1016/j.fm.2023.104241] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Viable but nonculturable (VBNC) state bacteria are difficult to detect in the food industry due to their nonculturable nature and their recovery characteristics pose a potential threat to human health. The results of this study indicated that S. aureus was found to enter the VBNC state completely after induced by citral (1 and 2 mg/mL) for 2 h, and after induced by trans-cinnamaldehyde (0.5 and 1 mg/mL) for 1 h and 3 h, respectively. Except for VBNC state cells induced by 2 mg/mL citral, the VBNC state cells induced by the other three conditions (1 mg/mL citral, 0.5 and 1 mg/mL trans-cinnamaldehyde) were able to be resuscitated in TSB media. In the VBNC state cells induced by citral and trans-cinnamaldehyde, the ATP concentration was reduced, the hemolysin-producing ability was significantly decreased, but the intracellular ROS level was elevated. The results of heat and simulated gastric fluid experiments showed different environment resistance on VBNC state cells induced by citral and trans-cinnamaldehyde. In addition, by observing the VBNC state cells showed that irregular folds on the surface, increased electron density inside and vacuoles in the nuclear region. What's more, S. aureus was found to enter the VBNC state completely after induced by meat-based broth containing citral (1 and 2 mg/mL) for 7 h and 5 h, after induced by meat-based broth containing trans-cinnamaldehyde (0.5 and 1 mg/mL) for 8 h and 7 h. In summary, citral and trans-cinnamaldehyde can induce S. aureus into VBNC state and food industry needs to comprehensively evaluate the antibacterial capacity of these two plant-derived antimicrobial agents.
Collapse
Affiliation(s)
- Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhuo Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhenye Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116304, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
9
|
Tao Z, Wang H, Ke K, Shi D, Zhu L. Flavone inhibits Staphylococcus aureus virulence via inhibiting the sae two component system. Microb Pathog 2023; 180:106128. [PMID: 37148922 DOI: 10.1016/j.micpath.2023.106128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/08/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
The rising prevalence of antibiotic resistance in Staphylococcus aureus calls for the development of innovative antimicrobial agents targeting novel pathways. S. aureus generates various virulence factors that compromise host defense mechanisms. Flavone, a core structure of flavonoids, has been shown to diminish the production of staphyloxanthin and alpha-hemolysin. Nonetheless, the influence of flavone on the majority of other virulence factors in S. aureus and its underlying molecular mechanism remain elusive. In this study, we examined the impact of flavone on the transcriptional profile of S. aureus using transcriptome sequencing. Our findings revealed that flavone substantially downregulated the expression of over 30 virulence factors implicated in immune evasion by the pathogen. Gene set enrichment analysis of the fold change-ranked gene list in relation to the Sae regulon indicated a robust association between flavone-induced downregulation and membership in the Sae regulon. Through the analysis of Sae target promoter-gfp fusion expression patterns, we observed a dose-dependent inhibition of Sae target promoter activity by flavone. Moreover, we discovered that flavone protected human neutrophils from S. aureus-mediated killing. Flavone also decreased the expression of alpha-hemolysin and other hemolytic toxins, resulting in a reduction in S. aureus' hemolytic capacity. Additionally, our data suggested that the inhibitory effect of flavone on the Sae system operates independently of its capacity to lower staphyloxanthin levels. In conclusion, our study proposes that flavone exhibits a broad inhibitory action on multiple virulence factors of S. aureus by targeting the Sae system, consequently diminishing the bacterium's pathogenicity.
Collapse
Affiliation(s)
- Zhanhua Tao
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530003, Guangxi, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Nanning, 530003, Guangxi, China.
| | - Haoren Wang
- The First Affiliated Hospital of Jiamusi University, Jiamusi, 154002, Heilongjiang, China.
| | - Ke Ke
- Guangxi Academy of Sciences, Nanning, 530003, Guangxi, China.
| | - Deqiang Shi
- Guangxi Academy of Sciences, Nanning, 530003, Guangxi, China.
| | - Libo Zhu
- Guangxi Academy of Sciences, Nanning, 530003, Guangxi, China.
| |
Collapse
|
10
|
Anderson EE, Dyzenhaus S, Ilmain JK, Sullivan MJ, van Bakel H, Torres VJ. SarS Is a Repressor of Staphylococcus aureus Bicomponent Pore-Forming Leukocidins. Infect Immun 2023; 91:e0053222. [PMID: 36939325 PMCID: PMC10112191 DOI: 10.1128/iai.00532-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/20/2023] [Indexed: 03/21/2023] Open
Abstract
Staphylococcus aureus is a successful pathogen that produces a wide range of virulence factors that it uses to subvert and suppress the immune system. These include the bicomponent pore-forming leukocidins. How the expression of these toxins is regulated is not completely understood. Here, we describe a screen to identify transcription factors involved in the regulation of leukocidins. The most prominent discovery from this screen is that SarS, a known transcription factor which had previously been described as a repressor of alpha-toxin expression, was found to be a potent repressor of leukocidins LukED and LukSF-PV. We found that inactivating sarS resulted in increased virulence both in an ex vivo model using primary human neutrophils and in an in vivo infection model in mice. Further experimentation revealed that SarS represses leukocidins by serving as an activator of Rot, a critical repressor of toxins, as well as by directly binding and repressing the leukocidin promoters. By studying contemporary clinical isolates, we identified naturally occurring mutations in the sarS promoter that resulted in overexpression of sarS and increased repression of leukocidins in USA300 bloodstream clinical isolates. Overall, these data establish SarS as an important repressor of leukocidins and expand our understanding of how these virulence factors are being regulated in vitro and in vivo by S. aureus.
Collapse
Affiliation(s)
- Exene E. Anderson
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Sophie Dyzenhaus
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Juliana K. Ilmain
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Mitchell J. Sullivan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
11
|
Haag AF, Liljeroos L, Donato P, Pozzi C, Brignoli T, Bottomley MJ, Bagnoli F, Delany I. In Vivo Gene Expression Profiling of Staphylococcus aureus during Infection Informs Design of Stemless Leukocidins LukE and -D as Detoxified Vaccine Candidates. Microbiol Spectr 2023; 11:e0257422. [PMID: 36688711 PMCID: PMC9927290 DOI: 10.1128/spectrum.02574-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
Staphylococcus aureus is a clinically important bacterial pathogen that has become resistant to treatment with most routinely used antibiotics. Alternative strategies, such as vaccination and phage therapy, are therefore actively being investigated to prevent or combat staphylococcal infections. Vaccination requires that vaccine targets are expressed at sufficient quantities during infection so that they can be targeted by the host's immune system. While our knowledge of in vitro expression levels of putative vaccine candidates is comprehensive, crucial in vivo expression data are scarce and promising vaccine candidates during in vitro assessment often prove ineffective in preventing S. aureus infection. Here, we show how a newly developed high-throughput quantitative reverse transcription-PCR (qRT-PCR) assay monitoring the expression of 84 staphylococcal genes encoding mostly virulence factors can inform the selection and design of effective vaccine candidates against staphylococcal infections. We show that this assay can accurately quantify mRNA expression levels of these genes in several host organs relying only on very limited amounts of bacterial mRNA in each sample. We selected two highly expressed genes, lukE and lukD, encoding pore-forming leukotoxins, to inform the design of detoxified recombinant proteins and showed that immunization with recombinant genetically detoxified LukED antigens conferred protection against staphylococcal skin infection in mice. Consequently, knowledge of in vivo-expressed virulence determinants can be successfully deployed to identify and select promising candidates for optimized design of effective vaccine antigens against S. aureus. Notably, this approach should be broadly applicable to numerous other pathogens. IMPORTANCE Vaccination is an attractive strategy for preventing bacterial infections in an age of increased antimicrobial resistance. However, vaccine development frequently suffers significant setbacks when candidate antigens that show promising results in in vitro experimentation fail to protect from disease. An alluring strategy is to focus resources on developing bacterial virulence factors that are expressed during disease establishment or maintenance and are critical for bacterial in-host survival as vaccine targets. While expression profiles of many virulence factors have been characterized in detail in vitro, our knowledge of their in vivo expression profiles is still scarce. Here, using a high-throughput qRT-PCR approach, we identified two highly expressed leukotoxins in a murine infection model and showed that genetically detoxified derivatives of these elicited a protective immune response in a murine skin infection model. Therefore, in vivo gene expression can inform the selection of promising candidates for the design of effective vaccine antigens.
Collapse
Affiliation(s)
- Andreas F. Haag
- GSK, Siena, Italy
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | | | | | | | - Tarcisio Brignoli
- GSK, Siena, Italy
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | | | | |
Collapse
|
12
|
Seffer MT, Weinert M, Molinari G, Rohde M, Gröbe L, Kielstein JT, Engelmann S. Staphylococcus aureus binding to Seraph® 100 Microbind® Affinity Filter: Effects of surface protein expression and treatment duration. PLoS One 2023; 18:e0283304. [PMID: 36930680 PMCID: PMC10022791 DOI: 10.1371/journal.pone.0283304] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/05/2023] [Indexed: 03/18/2023] Open
Abstract
INTRODUCTION Extracorporeal blood purification systems represent a promising alternative for treatment of blood stream infections with multiresistant bacteria. OBJECTIVES The aim of this study was to analyse the binding activity of S. aureus to Seraph affinity filters based on heparin coated beads and to identify effectors influencing this binding activity. RESULTS To test the binding activity, we used gfp-expressing S. aureus Newman strains inoculated either in 0.9% NaCl or in blood plasma and determined the number of unbound bacteria by FACS analyses after passing through Seraph affinity filters. The binding activity of S. aureus was clearly impaired in human plasma: while a percent removal of 42% was observed in 0.9% NaCl (p-value 0.0472) using Seraph mini columns, a percent removal of only 10% was achieved in human plasma (p-value 0.0934). The different composition of surface proteins in S. aureus caused by the loss of SarA, SigB, Lgt, and SaeS had no significant influence on its binding activity. In a clinically relevant approach using the Seraph® 100 Microbind® Affinity Filter and 1000 ml of human blood plasma from four different donors, the duration of treatment was shown to have a critical effect on the rate of bacterial reduction. Within the first four hours, the number of bacteria decreased continuously and the reduction in bacteria reached statistical significance after two hours of treatment (percentage reduction 64%, p-value 0.01165). The final reduction after four hours of treatment was close to 90% and is dependent on donor. The capacity of Seraph® 100 for S. aureus in human plasma was approximately 5 x 108 cells. CONCLUSIONS The Seraph affinity filter, based on heparin-coated beads, is a highly efficient method for reducing S. aureus in human blood plasma, with efficiency dependent on blood plasma composition and treatment duration.
Collapse
Affiliation(s)
- Malin-Theres Seffer
- Helmholtz Centre for Infection Research, Microbial Proteomics, Braunschweig, Germany
- Medical Clinic V, Nephrology, Rheumatology, Blood Purification, Academic Teaching Hospital Braunschweig, Braunschweig, Germany
| | - Martin Weinert
- Helmholtz Centre for Infection Research, Microbial Proteomics, Braunschweig, Germany
- Technische Universität Braunschweig, Institute for Microbiology, Braunschweig, Germany
| | - Gabriella Molinari
- Helmholtz Centre for Infection Research, Central Facility of Microscopy, Braunschweig Germany
| | - Manfred Rohde
- Helmholtz Centre for Infection Research, Central Facility of Microscopy, Braunschweig Germany
| | - Lothar Gröbe
- Helmholtz Centre for Infection Research, Experimental Immunology, Braunschweig, Germany
| | - Jan T. Kielstein
- Medical Clinic V, Nephrology, Rheumatology, Blood Purification, Academic Teaching Hospital Braunschweig, Braunschweig, Germany
| | - Susanne Engelmann
- Helmholtz Centre for Infection Research, Microbial Proteomics, Braunschweig, Germany
- Technische Universität Braunschweig, Institute for Microbiology, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
13
|
Zwack EE, Chen Z, Devlin JC, Li Z, Zheng X, Weinstock A, Lacey KA, Fisher EA, Fenyö D, Ruggles KV, Loke P, Torres VJ. Staphylococcus aureus induces a muted host response in human blood that blunts the recruitment of neutrophils. Proc Natl Acad Sci U S A 2022; 119:e2123017119. [PMID: 35881802 PMCID: PMC9351360 DOI: 10.1073/pnas.2123017119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/29/2022] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen and chief among bloodstream-infecting bacteria. S. aureus produces an array of human-specific virulence factors that may contribute to immune suppression. Here, we defined the response of primary human phagocytes following infection with S. aureus using RNA-sequencing (RNA-Seq). We found that the overall transcriptional response to S. aureus was weak both in the number of genes and in the magnitude of response. Using an ex vivo bacteremia model with fresh human blood, we uncovered that infection with S. aureus resulted in the down-regulation of genes related to innate immune response and cytokine and chemokine signaling. This muted transcriptional response was conserved across diverse S. aureus clones but absent in blood exposed to heat-killed S. aureus or blood infected with the less virulent staphylococcal species Staphylococcus epidermidis. Notably, this signature was also present in patients with S. aureus bacteremia. We identified the master regulator S. aureus exoprotein expression (SaeRS) and the SaeRS-regulated pore-forming toxins as key mediators of the transcriptional suppression. The S. aureus-mediated suppression of chemokine and cytokine transcription was reflected by circulating protein levels in the plasma. Wild-type S. aureus elicited a soluble milieu that was restrictive in the recruitment of human neutrophils compared with strains lacking saeRS. Thus, S. aureus blunts the inflammatory response resulting in impaired neutrophil recruitment, which could promote the survival of the pathogen during invasive infection.
Collapse
Affiliation(s)
- Erin E. Zwack
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Ze Chen
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Joseph C. Devlin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Zhi Li
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016
| | - Xuhui Zheng
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Ada Weinstock
- Department of Medicine Cardiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Keenan A. Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Edward A. Fisher
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
- Department of Medicine Cardiology, New York University Grossman School of Medicine, New York, NY 10016
| | - David Fenyö
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016
- Department for Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
| | - Kelly V. Ruggles
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016
- Division of Translational Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016
| | - P’ng Loke
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016
| |
Collapse
|
14
|
Fait A, Seif Y, Mikkelsen K, Poudel S, Wells JM, Palsson BO, Ingmer H. Adaptive laboratory evolution and independent component analysis disentangle complex vancomycin adaptation trajectories. Proc Natl Acad Sci U S A 2022; 119:e2118262119. [PMID: 35858453 PMCID: PMC9335240 DOI: 10.1073/pnas.2118262119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/11/2022] [Indexed: 11/27/2022] Open
Abstract
Human infections with methicillin-resistant Staphylococcus aureus (MRSA) are commonly treated with vancomycin, and strains with decreased susceptibility, designated as vancomycin-intermediate S. aureus (VISA), are associated with treatment failure. Here, we profiled the phenotypic, mutational, and transcriptional landscape of 10 VISA strains adapted by laboratory evolution from one common MRSA ancestor, the USA300 strain JE2. Using functional and independent component analysis, we found that: 1) despite the common genetic background and environmental conditions, the mutational landscape diverged between evolved strains and included mutations previously associated with vancomycin resistance (in vraT, graS, vraFG, walKR, and rpoBCD) as well as novel adaptive mutations (SAUSA300_RS04225, ssaA, pitAR, and sagB); 2) the first wave of mutations affected transcriptional regulators and the second affected genes involved in membrane biosynthesis; 3) expression profiles were predominantly strain-specific except for sceD and lukG, which were the only two genes significantly differentially expressed in all clones; 4) three independent virulence systems (φSa3, SaeR, and T7SS) featured as the most transcriptionally perturbed gene sets across clones; 5) there was a striking variation in oxacillin susceptibility across the evolved lineages (from a 10-fold increase to a 63-fold decrease) that also arose in clinical MRSA isolates exposed to vancomycin and correlated with susceptibility to teichoic acid inhibitors; and 6) constitutive expression of the VraR regulon explained cross-susceptibility, while mutations in walK were associated with cross-resistance. Our results show that adaptation to vancomycin involves a surprising breadth of mutational and transcriptional pathways that affect antibiotic susceptibility and possibly the clinical outcome of infections.
Collapse
Affiliation(s)
- Anaëlle Fait
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870 Denmark
| | - Yara Seif
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
- Merck & Co., Inc., South San Francisco, CA 94080
| | - Kasper Mikkelsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870 Denmark
| | - Saugat Poudel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Jerry M. Wells
- Host-Microbe Interactomics, Animal Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870 Denmark
| |
Collapse
|
15
|
Wang M, Buist G, van Dijl JM. Staphylococcus aureus cell wall maintenance - the multifaceted roles of peptidoglycan hydrolases in bacterial growth, fitness, and virulence. FEMS Microbiol Rev 2022; 46:6604383. [PMID: 35675307 PMCID: PMC9616470 DOI: 10.1093/femsre/fuac025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is an important human and livestock pathogen that is well-protected against environmental insults by a thick cell wall. Accordingly, the wall is a major target of present-day antimicrobial therapy. Unfortunately, S. aureus has mastered the art of antimicrobial resistance, as underscored by the global spread of methicillin-resistant S. aureus (MRSA). The major cell wall component is peptidoglycan. Importantly, the peptidoglycan network is not only vital for cell wall function, but it also represents a bacterial Achilles' heel. In particular, this network is continuously opened by no less than 18 different peptidoglycan hydrolases (PGHs) encoded by the S. aureus core genome, which facilitate bacterial growth and division. This focuses attention on the specific functions executed by these enzymes, their subcellular localization, their control at the transcriptional and post-transcriptional levels, their contributions to staphylococcal virulence and their overall importance in bacterial homeostasis. As highlighted in the present review, our understanding of the different aspects of PGH function in S. aureus has been substantially increased over recent years. This is important because it opens up new possibilities to exploit PGHs as innovative targets for next-generation antimicrobials, passive or active immunization strategies, or even to engineer them into effective antimicrobial agents.
Collapse
Affiliation(s)
- Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, the Netherlands
| | | | - Jan Maarten van Dijl
- Corresponding author: Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, HPC EB80, 9700 RB Groningen, the Netherlands, Tel. +31-50-3615187; Fax. +31-50-3619105; E-mail:
| |
Collapse
|
16
|
Subramanian D, Natarajan J. Leveraging big data bioinformatics approaches to extract knowledge from Staphylococcus aureus public omics data. Crit Rev Microbiol 2022; 49:391-413. [PMID: 35468027 DOI: 10.1080/1040841x.2022.2065905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Staphylococcus aureus is a notorious pathogen posing challenges in the medical industry due to drug resistance and biofilm formation. The horizon of knowledge on S. aureus pathogenesis has expanded with the advancement of data-driven bioinformatics techniques. Mining information from sequenced genomes and their expression data is an economic approach that alleviates wastage of resources and redundancy in experiments. The current review covers how big data bioinformatics has been used in the analysis of S. aureus from publicly available -omics data to uncover mechanisms of infection and inhibition. Particularly, advances in the past two decades in biomarker discovery, host responses, phenotype identification, consolidation of information, and drug development are discussed highlighting the challenges and shortcomings. Overall, the review summarizes the diverse aspects of scrupulous re-analysis of S. aureus proteomic and transcriptomic expression datasets retrieved from public repositories in terms of the efforts taken, benefits offered, and follow-up actions. The detailed review thus serves as a reference and aid for (i) Computational biologists by briefing the approaches utilized for bacterial omics re-analysis concerning S. aureus and (ii) Experimental biologists by elucidating the potential of bioinformatics in biological research to generate reliable postulates in a prompt and economical manner.
Collapse
Affiliation(s)
- Devika Subramanian
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, India
| | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, India
| |
Collapse
|
17
|
Guo H, Tong Y, Cheng J, Abbas Z, Li Z, Wang J, Zhou Y, Si D, Zhang R. Biofilm and Small Colony Variants-An Update on Staphylococcus aureus Strategies toward Drug Resistance. Int J Mol Sci 2022; 23:ijms23031241. [PMID: 35163165 PMCID: PMC8835882 DOI: 10.3390/ijms23031241] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Recently, the drawbacks arising from the overuse of antibiotics have drawn growing public attention. Among them, drug-resistance (DR) and even multidrug-resistance (MDR) pose significant challenges in clinical practice. As a representative of a DR or MDR pathogen, Staphylococcus aureus can cause diversity of infections related to different organs, and can survive or adapt to the diverse hostile environments by switching into other phenotypes, including biofilm and small colony variants (SCVs), with altered physiologic or metabolic characteristics. In this review, we briefly describe the development of the DR/MDR as well as the classical mechanisms (accumulation of the resistant genes). Moreover, we use multidimensional scaling analysis to evaluate the MDR relevant hotspots in the recent published reports. Furthermore, we mainly focus on the possible non-classical resistance mechanisms triggered by the two important alternative phenotypes of the S. aureus, biofilm and SCVs, which are fundamentally caused by the different global regulation of the S. aureus population, such as the main quorum-sensing (QS) and agr system and its coordinated regulated factors, such as the SarA family proteins and the alternative sigma factor σB (SigB). Both the biofilm and the SCVs are able to escape from the host immune response, and resist the therapeutic effects of antibiotics through the physical or the biological barriers, and become less sensitive to some antibiotics by the dormant state with the limited metabolisms.
Collapse
|
18
|
Wang X, Zhao H, Wang B, Zhou Y, Xu Y, Rao L, Ai W, Guo Y, Wu X, Yu J, Hu L, Han L, Chen S, Chen L, Yu F. Identification of methicillin-resistant Staphylococcus aureus ST8 isolates in China with potential high virulence. Emerg Microbes Infect 2022; 11:507-518. [PMID: 35044290 PMCID: PMC8843119 DOI: 10.1080/22221751.2022.2031310] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) ST8 strains have spread worldwide, causing outbreaks in various regions. However, this clone has only been sporadically reported in China. Consequently, detailed information regarding the phylogeny and potential virulence of S. aureus ST8 strains in China remains unknown. In this study, we characterized six ST8 strains collected from three tertiary hospitals in China, including three MRSA (MR50, MR526, and MR254) and three MSSA (H78, H849 and H863). Whole genome sequencing and phylogenetic analysis showed that the six strains formed two separate clusters, including two (MR50 and MR526) and four (MR254, H78, H849 and H863) isolates, respectively. Among them, MR50 and MR526 harboured spa t008, SCCmec IVa, arginine catabolic mobile element, and were phylogenetically close to the epidemic USA300 strains, while other four strains belonged to spa t9101 and formed a unique branch. MR254 carried a novel hybrid SCCmec element (namely SCCmec254). Same as the USA300 prototype strain LAC, the China S. aureus ST8 strains produced weak biofilms except MR254. Among them, MR254 had significantly stronger haemolysis ability and higher α-toxin levels than others, while MR526 showed comparable haemolysis and α-toxin production levels as USA300-LAC. In mouse skin abscess model, MR254 showed particularly strong invasions, accompanied by necrosis, while MR526 exhibited similar infection levels as USA300-LAC. These data suggested that the China MRSA ST8 isolates (e.g. MR254 and MR526) were highly virulent, displaying higher or similar virulence potential as the epidemic USA300 strain. Active surveillance should be enacted to closely monitor the further spread of these hyper-virulent MRSA strains in China.
Collapse
Affiliation(s)
- Xinyi Wang
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Huilin Zhao
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Bingjie Wang
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Ying Zhou
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yanlei Xu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang 330000, China
| | - Lulin Rao
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wenxiu Ai
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yinjuan Guo
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Xiaocui Wu
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Jingyi Yu
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Longhua Hu
- Department of Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Lizhong Han
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuying Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Fangyou Yu
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
19
|
Bleul L, Francois P, Wolz C. Two-Component Systems of S. aureus: Signaling and Sensing Mechanisms. Genes (Basel) 2021; 13:34. [PMID: 35052374 PMCID: PMC8774646 DOI: 10.3390/genes13010034] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus encodes 16 two-component systems (TCSs) that enable the bacteria to sense and respond to changing environmental conditions. Considering the function of these TCSs in bacterial survival and their potential role as drug targets, it is important to understand the exact mechanisms underlying signal perception. The differences between the sensing of appropriate signals and the transcriptional activation of the TCS system are often not well described, and the signaling mechanisms are only partially understood. Here, we review present insights into which signals are sensed by histidine kinases in S. aureus to promote appropriate gene expression in response to diverse environmental challenges.
Collapse
Affiliation(s)
- Lisa Bleul
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tubingen, Germany;
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tubingen, Germany
| | - Patrice Francois
- Genomic Research Laboratory, Infectious Diseases Service, University Hospitals of Geneva University Medical Center, Michel Servet 1, CH-1211 Geneva, Switzerland;
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tubingen, Germany;
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tubingen, Germany
| |
Collapse
|
20
|
Tao J, Yan S, Zhou C, Liu Q, Zhu H, Wen Z. Total flavonoids from Potentilla kleiniana Wight et Arn inhibits biofilm formation and virulence factors production in methicillin-resistant Staphylococcus aureus (MRSA). JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114383. [PMID: 34214645 DOI: 10.1016/j.jep.2021.114383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
ETHANOPHARMACOLOGICAL RELEVANCE Potentilla kleiniana Wight et Arn is a wide-spread wild plant in the mountainous areas in southern China. The whole herb has been used as a traditional herbal medicine to treat fever, arthritis, malaria, insect and snake bites, hepatitis, and traumatic injury. In vitro studies have reported the antibacterial activity use of the plant in traditional medicinal systems. AIM OF THE STUDY The aim of this study was to investigate the inhibitory activity of total flavonoid from Potentilla kleiniana Wight et Arn (TFP) on methicillin-resistant Staphylococcus aureus (MRSA) in planktonic state and biofilm state. MATERIALS AND METHODS Antibacterial activities of TFP on planktonic MRSA were determined by agar diffusion method, microtiter plate assay and time-kill curve assay. Electrical conductivity, membrane permeability, membrane potential and autoaggregation were analyzed to study TFP effects on planktonic MRSA growth. Crystal violet (CV) staining and confocal laser scanning microscopy (CLSM) were analyzed to study TFP effects on aggregation and maturation of MRSA biofilm. After TFP treatment, extracellular polymeric substances (EPS) production were examined. Morphological changes in planktonic and MRSA biofilm following TFP treatment were determined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Moreover, α-Toxin protein expression and adhesion-related gene expression were also determined. RESULTS The minimum inhibitory concentration (MIC) of TFP against MRSA was 20 μg/mL. The agar diffusion method and time-kill curve assay results indicated that TFP inhibited planktonic MRSA growth. TFP treatment significantly inhibited planktonic MRSA growth by inhibiting autoaggregation, α-hemolysin activity, α-Toxin protein expression, but increasing electrolyte leakage, membrane permeability and membrane potential and impacting cell structure. Moreover, TFP treatment significantly inhibited aggregation and maturation on MRSA biofilm by decreasing surface hydrophobicity, EPS production and adhesion-related gene expression. CONCLUSION The results of this trial provide scientific experimental data on the traditional use of Potentilla Kleiniana Wight et Arn for traumatic injury treatment and further demonstrate the potential of TFP to be developed as a novel anti-biofilm drug.
Collapse
Affiliation(s)
- Junyu Tao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518000, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China; School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China
| | - Shilun Yan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518000, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China; School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China
| | - Chuyue Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Qiong Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Hui Zhu
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China
| | - Zhen Wen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518000, China; School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China.
| |
Collapse
|
21
|
Contribution of Coagulase and Its Regulator SaeRS to Lethality of CA-MRSA 923 Bacteremia. Pathogens 2021; 10:pathogens10111396. [PMID: 34832552 PMCID: PMC8623987 DOI: 10.3390/pathogens10111396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Coagulase is a critical factor for distinguishing Staphylococcus aureus and coagulase-negative Staphylococcus. Our previous studies demonstrated that the null mutation of coagulase (coa) or its direct regulator, SaeRS, significantly enhanced the ability of S. aureus (CA-MRSA 923) to survive in human blood in vitro. This led us to further investigate the role of coagulase and its direct regulator, SaeRS, in the pathogenicity of CA-MRSA 923 in bacteremia during infection. In this study, we found that the null mutation of coa significantly decreased the mortality of CA-MRSA 923; moreover, the single null mutation of saeRS and the double deletion of coa/saeRS abolished the virulence of CA-MRSA 923. Moreover, the mice infected with either the saeRS knockout or the coa/saeRS double knockout mutant exhibited fewer histological lesions and less neutrophils infiltration in the infected kidneys compared to those infected with the coa knockout mutant or their parental control. Furthermore, we examined the impact of coa and saeRS on bacterial survival in vitro. The null mutation of coa had no impact on bacterial survival in mice blood, whereas the deletion mutation of saeRS or coa/saeRS significantly enhanced bacterial survival in mice blood. These data indicate that SaeRS plays a key role in the lethality of CA-MRSA 923 bacteremia, and that coagulase is one of the important virulence factors that is regulated by SaeRS and contributes to the pathogenicity of CA-MRSA 923.
Collapse
|
22
|
DeMars ZR, Krute CN, Ridder MJ, Gilchrist AK, Menjivar C, Bose JL. Fatty acids can inhibit Staphylococcus aureus SaeS activity at the membrane independent of alterations in respiration. Mol Microbiol 2021; 116:1378-1391. [PMID: 34626146 DOI: 10.1111/mmi.14830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022]
Abstract
In Staphylococcus aureus, the two-component system SaeRS is responsible for regulating various virulence factors essential for the success of this pathogen. SaeRS can be stimulated by neutrophil-derived products but has also recently been shown to be inactivated by the presence of free fatty acids. A mechanism for how fatty acids negatively impacts SaeRS has not been described. We found that unsaturated fatty acids, as well as fatty acids not commonly found in Staphylococcal membranes, prevent the activation of SaeRS at a lower concentration than their saturated counterparts. These fatty acids can negatively impact SaeRS without altering the respiratory capacity of the bacterium. To uncover a potential mechanism for how fatty acids impact SaeRS function/activity, we utilized a naturally occurring point mutation found in S. aureus as well as chimeric SaeS proteins. Using these tools, we identified that the native transmembrane domains of SaeS dictate the transcriptional response to fatty acids in S. aureus. Our data support a model where free fatty acids alter the activity of the two-component system SaeRS directly through the sensor kinase SaeS and is dependent on the transmembrane domains of the protein.
Collapse
Affiliation(s)
- Zachary R DeMars
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Christina N Krute
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Miranda J Ridder
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aubrey K Gilchrist
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Cindy Menjivar
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jeffrey L Bose
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
23
|
Rumpf C, Lange J, Schwartbeck B, Kahl BC. Staphylococcus aureus and Cystic Fibrosis-A Close Relationship. What Can We Learn from Sequencing Studies? Pathogens 2021; 10:1177. [PMID: 34578208 PMCID: PMC8466686 DOI: 10.3390/pathogens10091177] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023] Open
Abstract
Staphylococcus aureus is next to Pseudomonas aeruginosa the most isolated pathogen from the airways of cystic fibrosis (CF) patients, who are often infected by a dominant S. aureus clone for extended periods. To be able to persist, the pathogen has to adapt to the hostile niche of the airways to counteract host defence, antibiotic therapy and the competition with coinfecting pathogens. S. aureus is equipped with many virulence factors including adhesins, toxins that are localized on the chromosome, on plasmids or are phage-related. S. aureus is especially versatile and adaptation and evolution of the pathogen occurs by the acquisition of new genes by horizontal gene transfer (HGT), changes in nucleotides (single nucleotide variations, SNVs) that can cause a selective advantage for the bacteria and become fixed in subpopulations. Methicillin-resistant S. aureus are a special threat to CF patients due to the more severe lung disease occurring in infected patients. Today, with decreasing costs for sequencing, more and more studies using S. aureus isolates cultured from CF patients are being published, which use whole genome sequencing (WGS), multilocus sequence typing (MLST) or spa-sequence typing (spa-typing) to follow the population dynamics of S. aureus, elucidate the underlying mechanisms of phenotypic variants, newly acquired resistance or adaptation to the host response in this particular niche. In the first part of this review, an introduction to the genetic make-up and the pathogenesis of S. aureus with respect to CF is provided. The second part presents an overview of recent studies and their findings using genotypic methods such as single or multilocus sequencing and whole genome sequencing, which identify factors contributing to the adaptation of S. aureus and its evolution in the airways of individuals with CF.
Collapse
Affiliation(s)
| | | | | | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (C.R.); (J.L.); (B.S.)
| |
Collapse
|
24
|
Dehbashi S, Tahmasebi H, Zeyni B, Arabestani MR. Regulation of virulence and β-lactamase gene expression in Staphylococcus aureus isolates: cooperation of two-component systems in bloodstream superbugs. BMC Microbiol 2021; 21:192. [PMID: 34172010 PMCID: PMC8228909 DOI: 10.1186/s12866-021-02257-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/13/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA)-bloodstream infections (BSI) are predominantly seen in the hospital or healthcare-associated host. Nevertheless, the interactions of virulence factor (VFs) regulators and β-lactam resistance in MRSA-BSI are unclear. This study aims to characterize the molecular relationship of two-component systems of VFs and the expression of the β-lactamase gene in MRSA-BSI isolates. In this study, 639 samples were collected from BSI and identified by phenotypic methods. We performed extensive molecular characterization, including SCCmec type, agr type, VFs gene profiles determinations, and MLST on isolates. Also, a quantitative real-time PCR (q-RT PCR) assay was developed for identifying the gene expressions. RESULTS Ninety-one (91) S. aureus and 61 MRSA (67.0%) strains were detected in BSI samples. The presence of VFs and SCCmec genes in MRSA isolates were as follows: tst (31.4%), etA (18.0%), etB (8.19%), lukS-PVL (31.4%), lukF-PV (18.0%), lukE-lukD (16.3%), edin (3.2%), hla (16.3%), hlb (18.0%), hld (14.7%), hlg (22.9%), SCCmecI (16.3%), SCCmecII (22.9%), SCCmecIII (36.0%), SCCmecIV (21.3%), and SCCmecV (16.3%). Quantitative real-time PCR showed overexpression of mecRI and mecI in the toxigenic isolates. Moreover, RNAIII and sarA genes were the highest expressions of MRSA strains. The multi-locus sequence typing data confirmed a high prevalence of CC5, CC8, and CC30. However, ST30, ST22, and ST5 were the most prevalent in the resistant and toxigenic strains. CONCLUSION We demonstrated that although regulation of β-lactamase gene expressions is a significant contributor to resistance development, two-component systems also influence antibiotic resistance development in MRSA-BSI isolates. This indicates that resistant strains might have pathogenic potential. We also confirmed that some MLST types are more successful colonizers with a potential for MRSA-BSI.
Collapse
Affiliation(s)
- Sanaz Dehbashi
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Tahmasebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Behrouz Zeyni
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Nutrition health Research center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
25
|
Yang Y, Wang X, Gao Y, Wang H, Niu X. Insight into the Dual inhibitory Mechanism of verbascoside targeting serine/threonine phosphatase Stp1 against Staphylococcus aureus. Eur J Pharm Sci 2021; 157:105628. [PMID: 33115673 DOI: 10.1016/j.ejps.2020.105628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022]
Abstract
The eukaryotic-like serine/threonine phosphatase (Stp1) is an enzyme-dependent protein phosphatase involved in regulating various virulence factors of Staphylococcus aureus. Owing to its role in S. aureus infections, Stp1 has become a potential target for antibiotic development. Unfortunately, there are very few reports describing Stp1 inhibitors. Using virtual screening, we have identified a potent and effective Stp1 inhibitor, verbascoside (VBS). Interestingly, the kinetics of the enzymatic reaction revealed that this natural inhibitor acts via both competitive and allosteric mechanisms. To explore the mechanism of interaction between VBS and Stp1, standard molecular dynamics (MD) simulations were performed for the Stp1-VBS complex. Consistent with the experimental results, competitive and allosteric binding sites for VBS were identified in Stp1. Met39, Gly41, His42, Arg161, and Asn162 residues were involved in the competitive binding of VBS, while Arg122, Ser136, Asp137, Asn142, and Val145 residues were associated with the allosteric binding of VBS. The contributions of these residues were confirmed by amino acid site-directed mutagenesis and fluorescence quenching experiments. This work demonstrates that VBS is a potent anti-virulence compound against S. aureus infection, laying the foundation for the further development of novel anti-virulence agents.
Collapse
Affiliation(s)
- Yanan Yang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yawen Gao
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, China.
| |
Collapse
|
26
|
Fan R, Shi X, Guo B, Zhao J, Liu J, Quan C, Dong Y, Fan S. The effects of L-arginine on protein stability and DNA binding ability of SaeR, a transcription factor in Staphylococcus aureus. Protein Expr Purif 2020; 177:105765. [PMID: 32987120 DOI: 10.1016/j.pep.2020.105765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
The SaeRS two-component system in Staphylococcus aureus controls the expression of a series of virulence factors, such as hemolysins, proteases, and coagulase. The response regulator, SaeR, belongs to the OmpR family with an N-terminal regulatory domain and a C-terminal DNA binding domain. To improve the production and stability of the recombinant protein SaeR, l-arginine (L-Arg) was added to the purification buffers. L-Arg enhanced the solubility and stability of the recombinant protein SaeR. The thermal denaturation temperature of SaeR in 10 mM L-Arg buffer was significantly increased compared to the buffer without L-Arg. Microscale Thermophoresis (MST) analysis results showed that the SaeR protein could bind to the P1 promoter under both phosphorylated and non-phosphorylated status in buffer containing 10 mM L-Arg. These results illustrate an effective method to purify SaeR and other proteins.
Collapse
Affiliation(s)
- Ruochen Fan
- School of Bioengineering, Dalian University of Technology, Dalian, China; Key Laboratory of Biotechnology and Bioresources Utilization (Ministry of Education), College of Life Science, Dalian Minzu University, Dalian, China
| | - Xian Shi
- Key Laboratory of Biotechnology and Bioresources Utilization (Ministry of Education), College of Life Science, Dalian Minzu University, Dalian, China
| | - Binmei Guo
- Key Laboratory of Biotechnology and Bioresources Utilization (Ministry of Education), College of Life Science, Dalian Minzu University, Dalian, China
| | - Jing Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization (Ministry of Education), College of Life Science, Dalian Minzu University, Dalian, China
| | - Jialu Liu
- Key Laboratory of Biotechnology and Bioresources Utilization (Ministry of Education), College of Life Science, Dalian Minzu University, Dalian, China
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization (Ministry of Education), College of Life Science, Dalian Minzu University, Dalian, China.
| | - Yuesheng Dong
- School of Bioengineering, Dalian University of Technology, Dalian, China.
| | - Shengdi Fan
- Key Laboratory of Biotechnology and Bioresources Utilization (Ministry of Education), College of Life Science, Dalian Minzu University, Dalian, China
| |
Collapse
|
27
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020; 84:e00026-19. [PMID: 32792334 PMCID: PMC7430342 DOI: 10.1128/mmbr.00026-19] [Citation(s) in RCA: 321] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
28
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020. [PMID: 32792334 DOI: 10.1128/mmbr.00026-19/asset/e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
29
|
Abstract
Bacteria are able to sense environmental conditions and respond accordingly. Their sensorial system relies on pairs of sensory and regulatory proteins, known as two-component systems (TCSs). The majority of bacteria contain dozens of TCSs, each of them responsible for sensing and responding to a different range of signals. Traditionally, the function of each TCS has been determined by analyzing the changes in gene expression caused by the absence of individual TCSs. Here, we used a bacterial strain deprived of the complete TC sensorial system to introduce, one by one, the active form of every TCS. This gain-of-function strategy allowed us to identify the changes in gene expression conferred by each TCS without interference of other members of the family. In bacteria, adaptation to changes in the environment is mainly controlled through two-component signal transduction systems (TCSs). Most bacteria contain dozens of TCSs, each of them responsible for sensing a different range of signals and controlling the expression of a repertoire of target genes (regulon). Over the years, identification of the regulon controlled by each individual TCS in different bacteria has been a recurrent question. However, limitations associated with the classical approaches used have left our knowledge far from complete. In this report, using a pioneering approach in which a strain devoid of the complete nonessential TCS network was systematically complemented with the constitutively active form of each response regulator, we have reconstituted the regulon of each TCS of S. aureus in the absence of interference between members of the family. Transcriptome sequencing (RNA-Seq) and proteomics allowed us to determine the size, complexity, and insulation of each regulon and to identify the genes regulated exclusively by one or many TCSs. This gain-of-function strategy provides the first description of the complete TCS regulon in a living cell, which we expect will be useful to understand the pathobiology of this important pathogen. IMPORTANCE Bacteria are able to sense environmental conditions and respond accordingly. Their sensorial system relies on pairs of sensory and regulatory proteins, known as two-component systems (TCSs). The majority of bacteria contain dozens of TCSs, each of them responsible for sensing and responding to a different range of signals. Traditionally, the function of each TCS has been determined by analyzing the changes in gene expression caused by the absence of individual TCSs. Here, we used a bacterial strain deprived of the complete TC sensorial system to introduce, one by one, the active form of every TCS. This gain-of-function strategy allowed us to identify the changes in gene expression conferred by each TCS without interference of other members of the family.
Collapse
|
30
|
Yeo WS, Anokwute C, Marcadis P, Levitan M, Ahmed M, Bae Y, Kim K, Kostrominova T, Liu Q, Bae T. A Membrane-Bound Transcription Factor is Proteolytically Regulated by the AAA+ Protease FtsH in Staphylococcus aureus. J Bacteriol 2020; 202:e00019-20. [PMID: 32094161 PMCID: PMC7148131 DOI: 10.1128/jb.00019-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
In bacteria, chromosomal DNA resides in the cytoplasm, and most transcription factors are also found in the cytoplasm. However, some transcription factors, called membrane-bound transcription factors (MTFs), reside in the cytoplasmic membrane. Here, we report the identification of a new MTF in the Gram-positive pathogen Staphylococcus aureus and its regulation by the protease FtsH. The MTF, named MbtS (membrane-bound transcription factor of Staphylococcus aureus), is encoded by SAUSA300_2640 and predicted to have an N-terminal DNA binding domain and three transmembrane helices. The MbtS protein was degraded by membrane vesicles containing FtsH or by the purified FtsH. MbtS bound to an inverted repeat sequence in its promoter region, and the DNA binding was essential for its transcription. Transcriptional comparison between the ftsH deletion mutant and the ftsH mbtS double mutant showed that MbtS could alter the transcription of over 200 genes. Although the MbtS protein was not detected in wild-type (WT) cells grown in a liquid medium, the protein was detected in some isolated colonies on an agar plate. In a murine model of a skin infection, the disruption of mbtS increased the lesion size. Based on these results, we concluded that MbtS is a new S. aureus MTF whose activity is proteolytically regulated by FtsH.IMPORTANCEStaphylococcus aureus is an important pathogenic bacterium causing various diseases in humans. In the bacterium, transcription is typically regulated by the transcription factors located in the cytoplasm. In this study, we report an atypical transcription factor identified in S. aureus Unlike most other transcription factors, the newly identified transcription factor is located in the cytoplasmic membrane, and its activity is proteolytically controlled by the membrane-bound AAA+ protease FtsH. The newly identified MTF, named MbtS, has the potential to regulate the transcription of over 200 genes. This study provides a molecular mechanism by which a protease affects bacterial transcription and illustrates the diversity of the bacterial transcriptional regulation.
Collapse
Affiliation(s)
- Won-Sik Yeo
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana, USA
| | - Chiamara Anokwute
- Department of Biology, Indiana University Northwest, Gary, Indiana, USA
| | - Philip Marcadis
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana, USA
| | - Marcus Levitan
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Mahmoud Ahmed
- Department of Biology, Indiana University Northwest, Gary, Indiana, USA
| | - Yeun Bae
- Department of Psychology, Indiana University, Bloomington, Indiana, USA
| | - Kyeongkyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Tatiana Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, Indiana, USA
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana, USA
| |
Collapse
|
31
|
Herzog S, Dach F, de Buhr N, Niemann S, Schlagowski J, Chaves-Moreno D, Neumann C, Goretzko J, Schwierzeck V, Mellmann A, Dübbers A, Küster P, Schültingkemper H, Rescher U, Pieper DH, von Köckritz-Blickwede M, Kahl BC. High Nuclease Activity of Long Persisting Staphylococcus aureus Isolates Within the Airways of Cystic Fibrosis Patients Protects Against NET-Mediated Killing. Front Immunol 2019; 10:2552. [PMID: 31772562 PMCID: PMC6849659 DOI: 10.3389/fimmu.2019.02552] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus is one of the first and most prevalent pathogens cultured from the airways of cystic fibrosis (CF) patients, which can persist there for extended periods. Airway infections in CF patients are characterized by a strong inflammatory response of highly recruited neutrophils. One killing mechanism of neutrophils is the formation of neutrophil extracellular traps (NETs), which capture and eradicate bacteria by extracellular fibers of neutrophil chromatin decorated with antimicrobial granule proteins. S. aureus secretes nuclease, which can degrade NETs. We hypothesized, that S. aureus adapts to the airways of CF patients during persistent infection by escaping from NET-mediated killing via an increase of nuclease activity. Sputum samples of CF patients with chronic S. aureus infection were visualized by confocal microscopy after immuno-fluorescence staining for NET-specific markers, S. aureus bacteria and overall DNA structures. Nuclease activity was analyzed in sequential isogenic long persisting S. aureus isolates, as confirmed by whole genome sequencing, from an individual CF patient using a FRET-based nuclease activity assay. Additionally, some of these isolates were selected and analyzed by qRT-PCR to determine the expression of nuc1 and regulators of interest. NET-killing assays were performed with clinical S. aureus isolates to evaluate killing and bacterial survival depending on nuclease activity. To confirm the role of nuclease during NET-mediated killing, a clinical isolate with low nuclease activity was transformed with a nuclease expression vector (pCM28nuc). Furthermore, two sputa from an individual CF patient were subjected to RNA-sequence analysis to evaluate the activity of nuclease in vivo. In sputa, S. aureus was associated to extracellular DNA structures. Nuclease activity in clinical S. aureus isolates increased in a time-and phenotype-dependent manner. In the clinical isolates, the expression of nuc1 was inversely correlated to the activity of agr and was independent of saeS. NET-mediated killing was significantly higher in S. aureus isolates with low compared to isolates with high nuclease activity. Importantly, transformation of the clinical isolate with low nuclease activity with pCM28nuc conferred protection against NET-mediated killing confirming the beneficial role of nuclease for protection against NETs. Also, nuclease expression in in vivo sputa was high, which underlines the important role of nuclease within the highly inflamed CF airways. In conclusion, our data show that S. aureus adapts to the neutrophil-rich environment of CF airways with increasing nuclease expression most likely to avoid NET-killing during long-term persistence.
Collapse
Affiliation(s)
- Susann Herzog
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research, Münster, Germany
| | - Felix Dach
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research, Münster, Germany
| | - Nicole de Buhr
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Jannik Schlagowski
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Diego Chaves-Moreno
- Helmholtz Center for Infection Research, Helmholtz Association of German Research Centers (HZ), Brunswick, Germany
| | - Claudia Neumann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Jonas Goretzko
- Center for Molecular Biology of Inflammation (ZMBE), Institute of Medical Biochemistry, University of Münster, Münster, Germany
| | - Vera Schwierzeck
- Institute of Hygiene, University Hospital Münster, Münster, Germany
| | | | - Angelika Dübbers
- Department of Pediatrics, University Hospital Münster, Münster, Germany
| | - Peter Küster
- Department of Pediatrics, Clemenshospital, Münster, Germany
| | | | - Ursula Rescher
- Center for Molecular Biology of Inflammation (ZMBE), Institute of Medical Biochemistry, University of Münster, Münster, Germany
| | - Dietmar H. Pieper
- Helmholtz Center for Infection Research, Helmholtz Association of German Research Centers (HZ), Brunswick, Germany
| | | | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research, Münster, Germany
| |
Collapse
|
32
|
Gudeta DD, Lei MG, Lee CY. Contribution of hla Regulation by SaeR to Staphylococcus aureus USA300 Pathogenesis. Infect Immun 2019; 87:e00231-19. [PMID: 31209148 PMCID: PMC6704604 DOI: 10.1128/iai.00231-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023] Open
Abstract
The SaeRS two-component system in Staphylococcus aureus is critical for regulation of many virulence genes, including hla, which encodes alpha-toxin. However, the impact of regulation of alpha-toxin by Sae on S. aureus pathogenesis has not been directly addressed. Here, we mutated the SaeR-binding sequences in the hla regulatory region and determined the contribution of this mutation to hla expression and pathogenesis in strain USA300 JE2. Western blot analyses revealed drastic reduction of alpha-toxin levels in the culture supernatants of SaeR-binding mutant in contrast to the marked alpha-toxin production in the wild type. The SaeR-binding mutation had no significant effect on alpha-toxin regulation by Agr, MgrA, and CcpA. In animal studies, we found that the SaeR-binding mutation did not contribute to USA300 JE2 pathogenesis using a rat infective endocarditis model. However, in a rat skin and soft tissue infection model, the abscesses on rats infected with the mutant were significantly smaller than the abscesses on those infected with the wild type but similar to the abscesses on those infected with a saeR mutant. These studies indicated that there is a direct effect of hla regulation by SaeR on pathogenesis but that the effect depends on the animal model used.
Collapse
Affiliation(s)
- Dereje D Gudeta
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mei G Lei
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Chia Y Lee
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
33
|
Influence of protein and vitamin B2 as nutrients of chicken meat on staphylococcal enterotoxin genes expression via virulence regulators. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Kannappan A, Srinivasan R, Nivetha A, Annapoorani A, Pandian SK, Ravi AV. Anti-virulence potential of 2-hydroxy-4-methoxybenzaldehyde against methicillin-resistant Staphylococcus aureus and its clinical isolates. Appl Microbiol Biotechnol 2019; 103:6747-6758. [PMID: 31230099 DOI: 10.1007/s00253-019-09941-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 05/09/2019] [Accepted: 05/25/2019] [Indexed: 12/28/2022]
Abstract
Burgeoning antibiotic resistance among bacterial pathogens necessitates the alternative treatment options to control the multidrug-resistant bacterial infections. Plant secondary metabolites, a significant source of structurally diverse compounds, posses several biological activities. The present study was designed to investigate the anti-virulence potential of least explored phytocompound 2-hydroxy-4-methoxybenzaldehyde (HMB) against methicillin-resistant Staphylococcus aureus (MRSA) and its clinical isolates. The minimum inhibitory concentration of HMB was found to be 1024 μg/ml. HMB at sub-MIC (200 μg/ml) exhibited a profound staphyloxanthin inhibitory activity against MRSA and its clinical isolates. Besides, growth curve analysis revealed the non-bactericidal activity of HMB at its sub-MIC. Other virulences of MRSA such as lipase, nuclease, and hemolysin were also significantly inhibited upon HMB treatment. The observations made out of blood and H2O2 sensitivity assay suggested that HMB treatment sensitized the test pathogens and aided the functions of host immune responses. Transcriptomic analysis revealed that HMB targets the virulence regulatory genes such as sigB and saeS to attenuate the production of virulence arsenal in MRSA. Further, the result of in vitro cytotoxicity assay using PBMC cells portrayed the non-toxic nature of HMB. To our knowledge, for the first time, the present study reported the virulence inhibitory property of HMB against MRSA along with plausible molecular mechanisms. Additional studies incorporating in vivo analysis and omics technologies are required to explore the anti-virulence potential of HMB and its mode of action during MRSA infections.
Collapse
Affiliation(s)
- Arunachalam Kannappan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | - Ramanathan Srinivasan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | - Arumugam Nivetha
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | - Angusamy Annapoorani
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | | | - Arumugam Veera Ravi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India.
| |
Collapse
|
35
|
Graf AC, Leonard A, Schäuble M, Rieckmann LM, Hoyer J, Maass S, Lalk M, Becher D, Pané-Farré J, Riedel K. Virulence Factors Produced by Staphylococcus aureus Biofilms Have a Moonlighting Function Contributing to Biofilm Integrity. Mol Cell Proteomics 2019; 18:1036-1053. [PMID: 30850421 PMCID: PMC6553939 DOI: 10.1074/mcp.ra118.001120] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/19/2019] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is the causative agent of various biofilm-associated infections in humans causing major healthcare problems worldwide. This type of infection is inherently difficult to treat because of a reduced metabolic activity of biofilm-embedded cells and the protective nature of a surrounding extracellular matrix (ECM). However, little is known about S. aureus biofilm physiology and the proteinaceous composition of the ECM. Thus, we cultivated S. aureus biofilms in a flow system and comprehensively profiled intracellular and extracellular (ECM and flow-through (FT)) biofilm proteomes, as well as the extracellular metabolome compared with planktonic cultures. Our analyses revealed the expression of many pathogenicity factors within S. aureus biofilms as indicated by a high abundance of capsule biosynthesis proteins along with various secreted virulence factors, including hemolysins, leukotoxins, and lipases as a part of the ECM. The activity of ECM virulence factors was confirmed in a hemolysis assay and a Galleria mellonella pathogenicity model. In addition, we uncovered a so far unacknowledged moonlighting function of secreted virulence factors and ribosomal proteins trapped in the ECM: namely their contribution to biofilm integrity. Mechanistically, it was revealed that this stabilizing effect is mediated by the strong positive charge of alkaline virulence factors and ribosomal proteins in an acidic ECM environment, which is caused by the release of fermentation products like formate, lactate, and acetate because of oxygen limitation in biofilms. The strong positive charge of these proteins most likely mediates electrostatic interactions with anionic cell surface components, eDNA, and anionic metabolites. In consequence, this leads to strong cell aggregation and biofilm stabilization. Collectively, our study identified a new molecular mechanism during S. aureus biofilm formation and thus significantly widens the understanding of biofilm-associated S. aureus infections - an essential prerequisite for the development of novel antimicrobial therapies.
Collapse
Affiliation(s)
- Alexander C Graf
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Anne Leonard
- §Institute of Biochemistry, Department of Cellular Biochemistry and Metabolomics
| | - Manuel Schäuble
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Lisa M Rieckmann
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Juliane Hoyer
- ¶Institute of Microbiology, Department of Microbial Proteomics; University of Greifswald, Germany
| | - Sandra Maass
- ¶Institute of Microbiology, Department of Microbial Proteomics; University of Greifswald, Germany
| | - Michael Lalk
- §Institute of Biochemistry, Department of Cellular Biochemistry and Metabolomics
| | - Dörte Becher
- ¶Institute of Microbiology, Department of Microbial Proteomics; University of Greifswald, Germany
| | - Jan Pané-Farré
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Katharina Riedel
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology;
| |
Collapse
|
36
|
Contribution of YjbIH to Virulence Factor Expression and Host Colonization in Staphylococcus aureus. Infect Immun 2019; 87:IAI.00155-19. [PMID: 30885928 DOI: 10.1128/iai.00155-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022] Open
Abstract
To persist within the host and cause disease, Staphylococcus aureus relies on its ability to precisely fine-tune virulence factor expression in response to rapidly changing environments. During an unbiased transposon mutant screen, we observed that disruption of a two-gene operon, yjbIH, resulted in decreased levels of pigmentation and aureolysin (Aur) activity relative to the wild-type strain. Further analyses revealed that YjbH, a predicted thioredoxin-like oxidoreductase, is predominantly responsible for the observed yjbIH mutant phenotypes, though a minor role exists for the putative truncated hemoglobin YjbI. These differences were due to significantly decreased expression of crtOPQMN and aur Previous studies found that YjbH targets the disulfide- and oxidative stress-responsive regulator Spx for degradation by ClpXP. The absence of yjbH or yjbI resulted in altered sensitivities to nitrosative and oxidative stress and iron deprivation. Additionally, aconitase activity was altered in the yjbH and yjbI mutant strains. Decreased levels of pigmentation and aureolysin (Aur) activity in the yjbH mutant were found to be Spx dependent. Lastly, we used a murine sepsis model to determine the effect of the yjbIH deletion on pathogenesis and found that the mutant was better able to colonize the kidneys and spleens during an acute infection than the wild-type strain. These studies identified changes in pigmentation and protease activity in response to YjbIH and are the first to have shown a role for these proteins during infection.
Collapse
|
37
|
Gharaibeh MH, Khalifeh MS, Zattout EM, Abu-Qatouseh LF. Potential antimicrobial effect of plant essential oils and virulence genes expression in methicillin-resistant Staphylococcus aureus isolates. Vet World 2019; 13:669-675. [PMID: 32546910 PMCID: PMC7245711 DOI: 10.14202/vetworld.2020.669-675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/04/2020] [Indexed: 12/24/2022] Open
Abstract
AIM This study aimed to investigate the antibacterial efficacy of eight commercially available essential oil (EO) blends and characterize the effect on the expression of some virulence genes against methicillin-resistant Staphylococcus aureus (MRSA). MATERIALS AND METHODS In vitro evaluation of the antimicrobial effects of oils against MRSA was performed using the disk diffusion method and by measuring the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The EOs (A-F) were contained (β-pinene, carvacrol, carvone, dimethyl trisulfide, linalool, limonene, menthol, monoterpene hydrocarbons, and thymol) in different amounts. In addition, a real-time polymerase chain reaction was also used to determine the gene expression of the virulence genes (intercellular adhesion cluster [ica]-9, ica-15, and RNA III) against MRSA (ATCC 43300) after treatment with selected oils. RESULTS Among the eight EOs evaluated, EO (D), (E), and (A) showed, in general, the greatest antimicrobial activity against MRSA. EO at 1/3 MIC has effectively down-regulated ica-9 and ica-15 of MRSA by 17.83 and 4.94 folds, respectively. Meanwhile, EO (A) has effectively down-regulated RNAIII by 3.74 folds. Our results indicated that some of the EOs exhibit promising antimicrobial effects against MRSA isolates. Moreover, the results of the analyzed virulence genes related to the pathogenicity of MRSA were down-regulated at the sub-MIC concentrations of EOs, indicated that EOs could be successfully used to suppress the virulence factors and, consequently, decreased the pathogenicity of MRSA. CONCLUSION These encouraging results indicate that some of the EOs used in this study can be utilized as a natural antibiotic for the treatment of MRSA disease.
Collapse
Affiliation(s)
- Mohammad H. Gharaibeh
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030 Irbid 22110 Jordan
| | - Mohammad S. Khalifeh
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030 Irbid 22110 Jordan
| | - Esam M. Zattout
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030 Irbid 22110 Jordan
| | - Luay F. Abu-Qatouseh
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy, University of Petra, Amman, Jordan
| |
Collapse
|
38
|
Singh V, Phukan UJ. Interaction of host and Staphylococcus aureus protease-system regulates virulence and pathogenicity. Med Microbiol Immunol 2018; 208:585-607. [PMID: 30483863 DOI: 10.1007/s00430-018-0573-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus causes various health care- and community-associated infections as well as certain chronic TH2 driven inflammatory diseases. It is a potent pathogen with serious virulence and associated high morbidity. Severe pathogenicity is accredited to the S. aureus secreted virulence factors such as proteases and host protease modulators. These virulence factors promote adhesion and invasion of bacteria through damage of tight junction barrier and keratinocytes. They inhibit activation and transmigration of various immune cells such as neutrophils (and neutrophil proteases) to evade opsono-phagocytosis and intracellular bacterial killing. Additionally, they protect the bacteria from extracellular killing by disrupting integrity of extracellular matrix. Platelet activation and agglutination is also impaired by these factors. They also block the classical as well as alternative pathways of complement activation and assist in spread of infection through blood and tissue. As these factors are exquisite factors of S. aureus mediated disease development, we have focused on review of diversification of various protease-system associated virulence factors, their structural building, diverse role in disease development and available therapeutic counter measures. This review summarises the role of protease-associated virulence factors during invasion and progression of disease.
Collapse
Affiliation(s)
- Vigyasa Singh
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India
| | - Ujjal Jyoti Phukan
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
39
|
Queiroux C, Bonnet M, Saraoui T, Delpech P, Veisseire P, Rifa E, Moussard C, Gagne G, Delbès C, Bornes S. Dialogue between Staphylococcus aureus SA15 and Lactococcus garvieae strains experiencing oxidative stress. BMC Microbiol 2018; 18:193. [PMID: 30466395 PMCID: PMC6251228 DOI: 10.1186/s12866-018-1340-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 11/14/2018] [Indexed: 02/02/2023] Open
Abstract
Background Staphylococcus aureus is an important foodborne pathogen. Lactococcus garvieae is a lactic acid bacterium found in dairy products; some of its strains are able to inhibit S. aureus growth by producing H2O2. Three strains of L. garvieae from different origins were tested for their ability to inhibit S. aureus SA15 growth. Two conditions were tested, one in which H2O2 was produced (high aeration) and another one in which it was not detected (low aeration). Several S. aureus genes related to stress, H2O2-response and virulence were examined in order to compare their level of expression depending on the inoculated L. garvieae strain. Simultaneous L. garvieae H2O2 metabolism gene expression was followed. Results The results showed that under high aeration condition, L. garvieae strains producing H2O2 (N201 and CL-1183) inhibited S. aureus SA15 growth and impaired its ability to deal with hydrogen peroxide by repressing H2O2-degrading genes. L. garvieae strains induced overexpression of S. aureus stress-response genes while cell division genes and virulence genes were repressed. A catalase treatment partially or completely restored the SA15 growth. In addition, the H2O2 non-producing L. garvieae strain (Lg2) did not cause any growth inhibition. The SA15 stress-response genes were down-regulated and cell division genes expression was not affected. Under low aeration condition, while none of the strains tested exhibited H2O2-production, the 3 L. garvieae strains inhibited S. aureus SA15 growth, but to a lesser extent than under high aeration condition. Conclusion Taken together, these results suggest a L. garvieae strain-specific anti-staphylococcal mechanism and an H2O2 involvement in at least two of the tested L. garvieae strains. Electronic supplementary material The online version of this article (10.1186/s12866-018-1340-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Muriel Bonnet
- Université Clermont Auvergne, INRA, UMRF, F-15000, Aurillac, France
| | - Taous Saraoui
- Université Clermont Auvergne, INRA, UMRF, F-15000, Aurillac, France
| | - Pierre Delpech
- Université Clermont Auvergne, INRA, UMRF, F-15000, Aurillac, France
| | | | - Etienne Rifa
- Université Clermont Auvergne, INRA, UMRF, F-15000, Aurillac, France
| | - Cécile Moussard
- Université Clermont Auvergne, INRA, UMRF, F-15000, Aurillac, France
| | - Geneviève Gagne
- Université Clermont Auvergne, INRA, UMRF, F-15000, Aurillac, France
| | - Céline Delbès
- Université Clermont Auvergne, INRA, UMRF, F-15000, Aurillac, France.
| | - Stéphanie Bornes
- Université Clermont Auvergne, INRA, UMRF, F-15000, Aurillac, France
| |
Collapse
|
40
|
Horn J, Klepsch M, Manger M, Wolz C, Rudel T, Fraunholz M. Long Noncoding RNA SSR42 Controls Staphylococcus aureus Alpha-Toxin Transcription in Response to Environmental Stimuli. J Bacteriol 2018; 200:e00252-18. [PMID: 30150231 PMCID: PMC6199474 DOI: 10.1128/jb.00252-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/22/2018] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus is a human pathogen causing a variety of diseases by versatile expression of a large set of virulence factors that most prominently features the cytotoxic and hemolytic pore-forming alpha-toxin. Expression of alpha-toxin is regulated by an intricate network of transcription factors. These include two-component systems sensing quorum and environmental signals as well as regulators reacting to the nutritional status of the pathogen. We previously identified the repressor of surface proteins (Rsp) as a virulence regulator. Acute cytotoxicity and hemolysis are strongly decreased in rsp mutants, which are characterized by decreased transcription of toxin genes as well as loss of transcription of a 1,232-nucleotide (nt)-long noncoding RNA (ncRNA), SSR42. Here, we show that SSR42 is the effector of Rsp in transcription regulation of the alpha-toxin gene, hla SSR42 transcription is enhanced after exposure of S. aureus to subinhibitory concentrations of oxacillin which thus leads to an SSR42-dependent increase in hemolysis. Aside from Rsp, SSR42 transcription is under the control of additional global regulators, such as CodY, AgrA, CcpE, and σB, but is positioned upstream of the two-component system SaeRS in the regulatory cascade leading to alpha-toxin production. Thus, alpha-toxin expression depends on two long ncRNAs, SSR42 and RNAIII, which control production of the cytolytic toxin on the transcriptional and translational levels, respectively, with SSR42 as an important regulator of SaeRS-dependent S. aureus toxin production in response to environmental and metabolic signals.IMPORTANCEStaphylococcus aureus is a major cause of life-threatening infections. The bacterium expresses alpha-toxin, a hemolysin and cytotoxin responsible for many of the pathologies of S. aureus Alpha-toxin production is enhanced by subinhibitory concentrations of antibiotics. Here, we show that this process is dependent on the long noncoding RNA, SSR42. Further, SSR42 itself is regulated by several global regulators, thereby integrating environmental and nutritional signals that modulate hemolysis of the pathogen.
Collapse
Affiliation(s)
- Jessica Horn
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Maximilian Klepsch
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Michelle Manger
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Thomas Rudel
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
| | - Martin Fraunholz
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
41
|
Nagel A, Michalik S, Debarbouille M, Hertlein T, Gesell Salazar M, Rath H, Msadek T, Ohlsen K, van Dijl JM, Völker U, Mäder U. Inhibition of Rho Activity Increases Expression of SaeRS-Dependent Virulence Factor Genes in Staphylococcus aureus, Showing a Link between Transcription Termination, Antibiotic Action, and Virulence. mBio 2018; 9:e01332-18. [PMID: 30228237 PMCID: PMC6143737 DOI: 10.1128/mbio.01332-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/16/2018] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus aureus causes various diseases ranging from skin and soft tissue infections to life-threatening infections. Adaptation to the different host niches is controlled by a complex network of transcriptional regulators. Global profiling of condition-dependent transcription revealed adaptation of S. aureus HG001 at the levels of transcription initiation and termination. In particular, deletion of the gene encoding the Rho transcription termination factor triggered a remarkable overall increase in antisense transcription and gene expression changes attributable to indirect regulatory effects. The goal of the present study was a detailed comparative analysis of S. aureus HG001 and its isogenic rho deletion mutant. Proteome analysis revealed significant differences in cellular and extracellular protein profiles, most notably increased amounts of the proteins belonging to the SaeR regulon in the Rho-deficient strain. The SaeRS two-component system acts as a major regulator of virulence gene expression in staphylococci. Higher levels of SaeRS-dependent virulence factors such as adhesins, toxins, and immune evasion proteins in the rho mutant resulted in higher virulence in a murine bacteremia model, which was alleviated in a rho complemented strain. Inhibition of Rho activity by bicyclomycin, a specific inhibitor of Rho activity, also induced the expression of SaeRS-dependent genes, at both the mRNA and protein levels, to the same extent as observed in the rho mutant. Taken together, these findings indicate that activation of the Sae system in the absence of Rho is directly linked to Rho's transcription termination activity and establish a new link between antibiotic action and virulence gene expression in S. aureusIMPORTANCE The major human pathogen Staphylococcus aureus is a widespread commensal bacterium but also the most common cause of nosocomial infections. It adapts to the different host niches through a complex gene regulatory network. We show here that the Rho transcription termination factor, which represses pervasive antisense transcription in various bacteria, including S. aureus, plays a role in controlling SaeRS-dependent virulence gene expression. A Rho-deficient strain produces larger amounts of secreted virulence factors in vitro and shows increased virulence in mice. We also show that treatment of S. aureus with the antibiotic bicyclomycin, which inhibits Rho activity and is effective against Gram-negative bacteria, induces the same changes in the proteome as observed in the Rho-deficient strain. Our results reveal for the first time a link between transcription termination and virulence regulation in S. aureus, which implies a novel mechanism by which an antibiotic can modulate the expression of virulence factors.
Collapse
Affiliation(s)
- Anna Nagel
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Michel Debarbouille
- Biology of Gram-Positive Pathogens, Department of Microbiology, Institut Pasteur and CNRS ERL 3526, Paris, France
| | - Tobias Hertlein
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Hermann Rath
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Tarek Msadek
- Biology of Gram-Positive Pathogens, Department of Microbiology, Institut Pasteur and CNRS ERL 3526, Paris, France
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
42
|
From the genome sequence via the proteome to cell physiology – Pathoproteomics and pathophysiology of Staphylococcus aureus. Int J Med Microbiol 2018; 308:545-557. [DOI: 10.1016/j.ijmm.2018.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/23/2017] [Accepted: 01/02/2018] [Indexed: 02/01/2023] Open
|
43
|
Duan J, Li M, Hao Z, Shen X, Liu L, Jin Y, Wang S, Guo Y, Yang L, Wang L, Yu F. Subinhibitory concentrations of resveratrol reduce alpha-hemolysin production in Staphylococcus aureus isolates by downregulating saeRS. Emerg Microbes Infect 2018; 7:136. [PMID: 30065273 PMCID: PMC6068196 DOI: 10.1038/s41426-018-0142-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022]
Abstract
Resveratrol is a natural phytoalexin. In recent studies, it has been shown to have beneficial effects on cardiovascular disease and cancer and has been deemed to have effective antiviral and immunomodulatory activities. Methicillin-resistant Staphylococcus aureus is a multidrug-resistant pathogen associated with skin and soft tissue infections. Alpha-hemolysin is known to play a key role in the symptoms caused by S. aureus, and the saeRS two-component system has been shown to be a major regulatory system of S. aureus virulence. The present study was designed to determine the effect of subinhibitory concentrations of resveratrol on the production of alpha-hemolysin in S. aureus. The effect of resveratrol on the transcription of S. aureus was studied by transcriptome sequencing. A total of 760 genes with >2-fold changes in expression were selected, including 479 upregulated genes and 281 downregulated genes. On the basis of transcriptome sequencing, the expression of alpha-hemolysin in the S. aureus strains of the resveratrol-treated group was downregulated. Our results showed that resveratrol weakly inhibited the growth of S. aureus strains, and subinhibitory concentration of resveratrol decreased the expression of hla and inhibited the regulation of saeRS. Hemolysis testing confirmed that resveratrol had an inhibitory effect on the hemolysis of rabbit erythrocytes infected with S. aureus strains in a dose-dependent manner. Resveratrol also decreased the hemolytic capacity by reducing the production of alpha-hemolysin. We found that resveratrol could decrease the expression of hla and reduce the secretion of alpha-hemolysin by downregulating saeRS. These findings have provided more evidence of the potential of resveratrol as a drug for resisting S. aureus infections.
Collapse
Affiliation(s)
- Jingjing Duan
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Meilan Li
- Emergency Intensive Care Unit, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, China
| | - Zhihao Hao
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaofei Shen
- Department of Respiratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Li Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ye Jin
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shanshan Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yinjuan Guo
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, China
| | - Lehe Yang
- Department of Respiratory Medicine, Affiliated Yueqing Hospital of Wenzhou Medical University, Wenzhou, 325600, China
| | - Liangxing Wang
- Department of Respiratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Fangyou Yu
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, China.
| |
Collapse
|
44
|
Regulation of saeRS, agrA and sarA on sasX Expression in Staphylococcus aureus. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
45
|
Fisher EL, Otto M, Cheung GYC. Basis of Virulence in Enterotoxin-Mediated Staphylococcal Food Poisoning. Front Microbiol 2018; 9:436. [PMID: 29662470 PMCID: PMC5890119 DOI: 10.3389/fmicb.2018.00436] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/26/2018] [Indexed: 12/17/2022] Open
Abstract
The Staphylococcus aureus enterotoxins are a superfamily of secreted virulence factors that share structural and functional similarities and possess potent superantigenic activity causing disruptions in adaptive immunity. The enterotoxins can be separated into two groups; the classical (SEA-SEE) and the newer (SEG-SElY and counting) enterotoxin groups. Many members from both these groups contribute to the pathogenesis of several serious human diseases, including toxic shock syndrome, pneumonia, and sepsis-related infections. Additionally, many members demonstrate emetic activity and are frequently responsible for food poisoning outbreaks. Due to their robust tolerance to denaturing, the enterotoxins retain activity in food contaminated previously with S. aureus. The genes encoding the enterotoxins are found mostly on a variety of different mobile genetic elements. Therefore, the presence of enterotoxins can vary widely among different S. aureus isolates. Additionally, the enterotoxins are regulated by multiple, and often overlapping, regulatory pathways, which are influenced by environmental factors. In this review, we also will focus on the newer enterotoxins (SEG-SElY), which matter for the role of S. aureus as an enteropathogen, and summarize our current knowledge on their prevalence in recent food poisoning outbreaks. Finally, we will review the current literature regarding the key elements that govern the complex regulation of enterotoxins, the molecular mechanisms underlying their enterotoxigenic, superantigenic, and immunomodulatory functions, and discuss how these activities may collectively contribute to the overall manifestation of staphylococcal food poisoning.
Collapse
Affiliation(s)
- Emilie L Fisher
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
46
|
Müller A, Grein F, Otto A, Gries K, Orlov D, Zarubaev V, Girard M, Sher X, Shamova O, Roemer T, François P, Becher D, Schneider T, Sahl HG. Differential daptomycin resistance development in Staphylococcus aureus strains with active and mutated gra regulatory systems. Int J Med Microbiol 2017; 308:335-348. [PMID: 29429584 DOI: 10.1016/j.ijmm.2017.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 02/03/2023] Open
Abstract
The first-in-class lipopeptide antibiotic daptomycin (DAP) is highly active against Gram-positive pathogens including ß-lactam and glycopeptide resistant strains. Its molecular mode of action remains enigmatic, since a defined target has not been identified so far and multiple effects, primarily on the cell envelope have been observed. Reduced DAP susceptibility has been described in S. aureus and enterococci after prolonged treatment courses. In line with its pleiotropic antibiotic activities, a unique, defined molecular mechanism of resistance has not emerged, instead non-susceptibility appears often accompanied by alterations in membrane composition and changes in cell wall homeostasis. We compared S. aureus strains HG001 and SG511, which differ primarily in the functionality of the histidine kinase GraS, to evaluate the impact of the GraRS regulatory system on the development of DAP non-susceptibility. After extensive serial passing, both DAPR variants reached a minimal inhibitory concentration of 31 μg/ml and shared some phenotypic characteristics (e.g. thicker cell wall, reduced autolysis). However, based on comprehensive analysis of the underlying genetic, transcriptomic and proteomic changes, we found that both strains took different routes to achieve DAP resistance. Our study highlights the impressive genetic and physiological capacity of S. aureus to counteract pleiotropic activities of cell wall- and membrane-active compounds even when a major cell wall regulatory system is dysfunctional.
Collapse
Affiliation(s)
- Anna Müller
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn.
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn
| | - Andreas Otto
- Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | - Kathrin Gries
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Dmitriy Orlov
- Institute for Experimental Medicine, Saint Petersburg, Russia; Saint Petersburg University, Saint Petersburg, Russia
| | - Vladimir Zarubaev
- Pasteur Institute of Epidemiology and Microbiology, Saint Petersburg Russia
| | - Myriam Girard
- Genomic Research Laboratory, Department of Medical Specialties, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| | - Xinwei Sher
- Merck & Co., Infectious Diseases, Kenilworth, NJ, USA
| | - Olga Shamova
- Institute for Experimental Medicine, Saint Petersburg, Russia; Saint Petersburg University, Saint Petersburg, Russia
| | | | - Patrice François
- Genomic Research Laboratory, Department of Medical Specialties, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| | - Dörte Becher
- Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn
| | - Hans-Georg Sahl
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn; Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
47
|
Staphylococcus aureus Strain Newman D2C Contains Mutations in Major Regulatory Pathways That Cripple Its Pathogenesis. J Bacteriol 2017; 199:JB.00476-17. [PMID: 28924032 DOI: 10.1128/jb.00476-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/15/2017] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen that imposes a great burden on the health care system. In the development of antistaphylococcal modalities intended to reduce the burden of staphylococcal disease, it is imperative to select appropriate models of S. aureus strains when assessing the efficacy of novel agents. Here, using whole-genome sequencing, we reveal that the commonly used strain Newman D2C from the American Type Culture Collection (ATCC) contains mutations that render the strain essentially avirulent. Importantly, Newman D2C is often inaccurately referred to as simply "Newman" in many publications, leading investigators to believe it is the well-described pathogenic strain Newman. This study reveals that Newman D2C carries a stop mutation in the open reading frame of the virulence gene regulator, agrA In addition, Newman D2C carries a single-nucleotide polymorphism (SNP) in the global virulence regulator gene saeR that results in loss of protein function. This loss of function is highlighted by complementation studies, where the saeR allele from Newman D2C is incapable of restoring functionality to an saeR-null mutant. Additional functional assessment was achieved through the use of biochemical assays for protein secretion, ex vivo intoxications of human immune cells, and in vivo infections. Altogether, our study highlights the importance of judiciously screening for genetic changes in model S. aureus strains when assessing pathogenesis or the efficacy of novel agents. Moreover, we have identified a novel SNP in the virulence regulator gene saeR that directly affects the ability of the protein product to activate S. aureus virulence pathways.IMPORTANCE Staphylococcus aureus is a human pathogen that imposes an enormous burden on health care systems worldwide. This bacterium is capable of evoking a multitude of disease states that can range from self-limiting skin infections to life-threatening bacteremia. To combat these infections, numerous investigations are under way to develop therapeutics capable of thwarting the deadly effects of the bacterium. To generate successful treatments, it is of paramount importance that investigators use suitable models for examining the efficacy of the drugs under study. Here, we demonstrate that a strain of S. aureus commonly used for drug efficacy studies is severely mutated and displays markedly reduced pathogenicity. As such, the organism is an inappropriate model for disease studies.
Collapse
|
48
|
Marincola G, Wolz C. Downstream element determines RNase Y cleavage of the saePQRS operon in Staphylococcus aureus. Nucleic Acids Res 2017; 45:5980-5994. [PMID: 28453818 PMCID: PMC5449607 DOI: 10.1093/nar/gkx296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 04/12/2017] [Indexed: 12/19/2022] Open
Abstract
In gram-positive bacteria, RNase J1, RNase J2 and RNase Y are thought to be major contributors to mRNA degradation and maturation. In Staphylococcus aureus, RNase Y activity is restricted to regulating the mRNA decay of only certain transcripts. Here the saePQRS operon was used as a model to analyze RNase Y specificity in living cells. A RNase Y cleavage site is located in an intergenic region between saeP and saeQ. This cleavage resulted in rapid degradation of the upstream fragment and stabilization of the downstream fragment. Thereby, the expression ratio of the different components of the operon was shifted towards saeRS, emphasizing the regulatory role of RNase Y activity. To assess cleavage specificity different regions surrounding the sae CS were cloned upstream of truncated gfp, and processing was analyzed in vivo using probes up- and downstream of CS. RNase Y cleavage was not determined by the cleavage site sequence. Instead a 24-bp double-stranded recognition structure was identified that was required to initiate cleavage 6 nt upstream. The results indicate that RNase Y activity is determined by secondary structure recognition determinants, which guide cleavage from a distance.
Collapse
Affiliation(s)
- Gabriella Marincola
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
49
|
Mechanisms of Pyocyanin Toxicity and Genetic Determinants of Resistance in Staphylococcus aureus. J Bacteriol 2017; 199:JB.00221-17. [PMID: 28607159 DOI: 10.1128/jb.00221-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/07/2017] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are commonly isolated from polymicrobial infections, such as wound infections and chronic respiratory infections of persons with cystic fibrosis. Despite their coisolation, P. aeruginosa produces substances toxic to S. aureus, including pyocyanin, a blue-pigmented molecule that functions in P. aeruginosa virulence. Pyocyanin inhibits S. aureus respiration, forcing it to derive energy from fermentation and adopt a small-colony variant (SCV) phenotype. The mechanisms by which S. aureus sustains infection in the presence of pyocyanin are not clear. We sought to clarify the mechanisms of pyocyanin toxicity in S. aureus as well as identify the staphylococcal factors involved in its resistance to pyocyanin toxicity. Nonrespiring S. aureus SCVs are inhibited by pyocyanin through pyocyanin-dependent reactive oxygen species (ROS) production, indicating that pyocyanin toxicity is mediated through respiratory inhibition and ROS generation. Selection on pyocyanin yielded a menadione auxotrophic SCV capable of growth on high concentrations of pyocyanin. Genome sequencing of this isolate identified mutations in four genes, including saeS, menD, NWMN_0006, and qsrR QsrR is a quinone-sensing repressor of quinone detoxification genes. Inactivation of qsrR resulted in significant pyocyanin resistance, and additional pyocyanin resistance was achieved through combined inactivation of qsrR and menadione biosynthesis. Pyocyanin-resistant S. aureus has an enhanced capability to inactivate pyocyanin, suggesting QsrR-regulated gene products may degrade pyocyanin to alleviate toxicity. These findings demonstrate pyocyanin-mediated ROS generation as an additional mechanism of pyocyanin toxicity and define QsrR as a key mediator of pyocyanin resistance in S. aureus IMPORTANCE Many bacterial infections occur in the presence of other microbes, where interactions between different microbes and the host impact disease. In patients with cystic fibrosis, chronic lung infection with multiple microbes results in the most severe disease manifestations. Staphylococcus aureus and Pseudomonas aeruginosa are prevalent cystic fibrosis pathogens, and infection with both is associated with worse outcomes. These organisms have evolved mechanisms of competing with one another. For example, P. aeruginosa produces pyocyanin, which inhibits S. aureus growth. Our research has identified how pyocyanin inhibits S. aureus growth and how S. aureus can adapt to survive in the presence of pyocyanin. Understanding how S. aureus sustains infection in the presence of P. aeruginosa may identify means of disrupting these microbial communities.
Collapse
|
50
|
Guerra FE, Borgogna TR, Patel DM, Sward EW, Voyich JM. Epic Immune Battles of History: Neutrophils vs. Staphylococcus aureus. Front Cell Infect Microbiol 2017; 7:286. [PMID: 28713774 PMCID: PMC5491559 DOI: 10.3389/fcimb.2017.00286] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/12/2017] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in human blood and the first line of defense after bacteria have breached the epithelial barriers. After migration to a site of infection, neutrophils engage and expose invading microorganisms to antimicrobial peptides and proteins, as well as reactive oxygen species, as part of their bactericidal arsenal. Ideally, neutrophils ingest bacteria to prevent damage to surrounding cells and tissues, kill invading microorganisms with antimicrobial mechanisms, undergo programmed cell death to minimize inflammation, and are cleared away by macrophages. Staphylococcus aureus (S. aureus) is a prevalent Gram-positive bacterium that is a common commensal and causes a wide range of diseases from skin infections to endocarditis. Since its discovery, S. aureus has been a formidable neutrophil foe that has challenged the efficacy of this professional assassin. Indeed, proper clearance of S. aureus by neutrophils is essential to positive infection outcome, and S. aureus has developed mechanisms to evade neutrophil killing. Herein, we will review mechanisms used by S. aureus to modulate and evade neutrophil bactericidal mechanisms including priming, activation, chemotaxis, production of reactive oxygen species, and resolution of infection. We will also highlight how S. aureus uses sensory/regulatory systems to tailor production of virulence factors specifically to the triggering signal, e.g., neutrophils and defensins. To conclude, we will provide an overview of therapeutic approaches that may potentially enhance neutrophil antimicrobial functions.
Collapse
Affiliation(s)
- Fermin E Guerra
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Timothy R Borgogna
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Delisha M Patel
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Eli W Sward
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| | - Jovanka M Voyich
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, United States
| |
Collapse
|