1
|
Núñez D, Oyarzún P, González S, Martínez I. Toward biomanufacturing of next-generation bacterial nanocellulose (BNC)-based materials with tailored properties: A review on genetic engineering approaches. Biotechnol Adv 2024; 74:108390. [PMID: 38823654 DOI: 10.1016/j.biotechadv.2024.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/01/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Bacterial nanocellulose (BNC) is a biopolymer that is drawing significant attention for a wide range of applications thanks to its unique structure and excellent properties, such as high purity, mechanical strength, high water holding capacity and biocompatibility. Nevertheless, the biomanufacturing of BNC is hindered due to its low yield, the instability of microbial strains and cost limitations that prevent it from being mass-produced on a large scale. Various approaches have been developed to address these problems by genetically modifying strains and to produce BNC-based biomaterials with added value. These works are summarized and discussed in the present article, which include the overexpression and knockout of genes related and not related with the nanocellulose biosynthetic operon, the application of synthetic biology approaches and CRISPR/Cas techniques to modulate BNC biosynthesis. Further discussion is provided on functionalized BNC-based biomaterials with tailored properties that are incorporated in-vivo during its biosynthesis using genetically modified strains either in single or co-culture systems (in-vivo manufacturing). This novel strategy holds potential to open the road toward cost-effective production processes and to find novel applications in a variety of technology and industrial fields.
Collapse
Affiliation(s)
- Dariela Núñez
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile; Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile.
| | - Patricio Oyarzún
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - Sebastián González
- Laboratorio de Biotecnología y Materiales Avanzados, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción, Chile
| | - Irene Martínez
- Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago, Chile; Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago, Chile.
| |
Collapse
|
2
|
Abidi W, Decossas M, Torres-Sánchez L, Puygrenier L, Létoffé S, Ghigo JM, Krasteva PV. Bacterial crystalline cellulose secretion via a supramolecular BcsHD scaffold. SCIENCE ADVANCES 2022; 8:eadd1170. [PMID: 36525496 PMCID: PMC9757748 DOI: 10.1126/sciadv.add1170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Cellulose, the most abundant biopolymer on Earth, is not only the predominant constituent of plants but also a key extracellular polysaccharide in the biofilms of many bacterial species. Depending on the producers, chemical modifications, and three-dimensional assemblies, bacterial cellulose (BC) can present diverse degrees of crystallinity. Highly ordered, or crystalline, cellulose presents great economical relevance due to its ever-growing number of biotechnological applications. Even if some acetic acid bacteria have long been identified as BC superproducers, the molecular mechanisms determining the secretion of crystalline versus amorphous cellulose remain largely unknown. Here, we present structural and mechanistic insights into the role of the accessory subunits BcsH (CcpAx) and BcsD (CesD) that determine crystalline BC secretion in the Gluconacetobacter lineage. We show that oligomeric BcsH drives the assembly of BcsD into a supramolecular cytoskeletal scaffold that likely stabilizes the cellulose-extruding synthase nanoarrays through an unexpected inside-out mechanism for secretion system assembly.
Collapse
Affiliation(s)
- Wiem Abidi
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, France
- ‘Structural Biology of Biofilms’ Group, European Institute of Chemistry and Biology (IECB), Pessac, France
- Doctoral School of Therapeutic Innovation ITFA, Université Paris-Saclay, Orsay, France
| | - Marion Decossas
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, France
- ‘Structural Biology of Biofilms’ Group, European Institute of Chemistry and Biology (IECB), Pessac, France
| | - Lucía Torres-Sánchez
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, France
- ‘Structural Biology of Biofilms’ Group, European Institute of Chemistry and Biology (IECB), Pessac, France
- Doctoral School of Therapeutic Innovation ITFA, Université Paris-Saclay, Orsay, France
| | - Lucie Puygrenier
- ‘Structural Biology of Biofilms’ Group, European Institute of Chemistry and Biology (IECB), Pessac, France
| | - Sylvie Létoffé
- Institut Pasteur, Université de Paris, UMR CNRS2001, ‘Genetics of Biofilms’ laboratory, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université de Paris, UMR CNRS2001, ‘Genetics of Biofilms’ laboratory, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Petya V. Krasteva
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, France
- ‘Structural Biology of Biofilms’ Group, European Institute of Chemistry and Biology (IECB), Pessac, France
| |
Collapse
|
3
|
The Roles of the Various Cellulose Biosynthesis Operons in Komagataeibacter hansenii ATCC 23769. Appl Environ Microbiol 2022; 88:e0246021. [PMID: 35319232 DOI: 10.1128/aem.02460-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellulose is the most abundant biopolymer on earth and offers versatile applicability in biotechnology. Bacterial cellulose, especially, is an attractive material because it represents pure microcrystalline cellulose. The cellulose synthase complex of acetic acid bacteria serves as a model for general studies on (bacterial) cellulose synthesis. The genome of Komagataeibacter hansenii ATCC 23769 encodes three cellulose synthase (CS) operons of different sizes and gene compositions. This implies the question of which role each of the three CS-encoding operons, bcsAB1, bcsAB2, and bcsAB3, plays in overall cellulose synthesis. Therefore, we constructed markerless deletions in K. hansenii ATCC 23769, yielding mutant strains that expressed only one of the three CSs. Apparently, BcsAB1 is the only CS that produces fibers of crystalline cellulose. The markerless deletion of bcsAB1 resulted in a nonfiber phenotype in scanning electron microscopy analysis. Expression of the other CSs resulted in a different, nonfibrous extracellular polymeric substance (nfEPS) structure wrapping the cells, which is proposed to contain acetylated cellulose. Transcription analysis revealed that all CSs were expressed continuously and that bcsAB2 showed a higher transcription level than bcsAB1. Moreover, we were able to link the expression of diguanylate cyclase B (dgcB) to cellulose production. IMPORTANCE Acetic acid bacteria form a massive biofilm called "mother of vinegar," which is built of cellulose fibers. Bacterial cellulose is an appealing biomaterial with manifold applications in biomedicine and biotechnology. Because most cellulose-producing acetic acid bacteria express several cellulose synthase operons, a deeper understanding of their contribution to the synthesis of modified forms of cellulose fibers within a natural biofilm is of special interest. For the first time, we were able to identify the contribution of each of the three cellulose synthases to cellulose formation in Komagataeibacter hansenii ATCC 23769 after a chromosomal clean deletion. Moreover, we were able to depict their roles in spatial composition of the biofilm. These findings might be applicable in the future for naturally modified biomaterials with novel properties.
Collapse
|
4
|
Towards control of cellulose biosynthesis by Komagataeibacter using systems-level and strain engineering strategies: current progress and perspectives. Appl Microbiol Biotechnol 2020; 104:6565-6585. [PMID: 32529377 PMCID: PMC7347698 DOI: 10.1007/s00253-020-10671-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/29/2022]
Abstract
The strains of the Komagataeibacter genus have been shown to be the most efficient bacterial nanocellulose producers. Although exploited for many decades, the studies of these species focused mainly on the optimisation of cellulose synthesis process through modification of culturing conditions in the industrially relevant settings. Molecular physiology of Komagataeibacter was poorly understood and only a few studies explored genetic engineering as a strategy for strain improvement. Only since recently the systemic information of the Komagataeibacter species has been accumulating in the form of omics datasets representing sequenced genomes, transcriptomes, proteomes and metabolomes. Genetic analyses of the mutants generated in the untargeted strain modification studies have drawn attention to other important proteins, beyond those of the core catalytic machinery of the cellulose synthase complex. Recently, modern molecular and synthetic biology tools have been developed which showed the potential for improving targeted strain engineering. Taking the advantage of the gathered knowledge should allow for better understanding of the genotype–phenotype relationship which is necessary for robust modelling of metabolism as well as selection and testing of new molecular engineering targets. In this review, we discuss the current progress in the area of Komagataeibacter systems biology and its impact on the research aimed at scaled-up cellulose synthesis as well as BNC functionalisation.Key points • The accumulated omics datasets advanced the systemic understanding of Komagataeibacter physiology at the molecular level. • Untargeted and targeted strain modification approaches have been applied to improve nanocellulose yield and properties. • The development of modern molecular and synthetic biology tools presents a potential for enhancing targeted strain engineering. • The accumulating omic information should improve modelling of Komagataeibacter’s metabolism as well as selection and testing of new molecular engineering targets. |
Collapse
|
5
|
Lin D, Liu Z, Shen R, Chen S, Yang X. Bacterial cellulose in food industry: Current research and future prospects. Int J Biol Macromol 2020; 158:1007-1019. [PMID: 32387361 DOI: 10.1016/j.ijbiomac.2020.04.230] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/10/2020] [Accepted: 04/26/2020] [Indexed: 12/11/2022]
Abstract
Bacterial cellulose, a pure exocellular polysaccharide produced by microorganisms, has many excellent properties as compared with plant-derived cellulose, including high water holding capability, high surface area, rheological properties, biocompatibility. Due to its suspending, thickening, water holding, stabilizing, bulking and fluid properties, BC has been demonstrated as a promising low calorie bulking ingredient for the development of novel rich functional foods of different forms such as powder gelatinous or shred foams, which facilitate its application in food industry. In this review, the recent reports on the biosynthesis, structure and general application of bacterial cellulose in food industry have been summarized and discussed. The main application of bacterial cellulose in current food industry includes raw food materials, additive ingredients, packing materials, delivery system, enzyme and cell immobilizers. In addition, we also propose the potential challenges and explore the solution of expanding the application of BC in various fields.
Collapse
Affiliation(s)
- Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Zhe Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Shen
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Siqian Chen
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
6
|
Revin VV, Liyas’kina EV, Sapunova NB, Bogatyreva AO. Isolation and Characterization of the Strains Producing Bacterial Cellulose. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720010130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Jang WD, Kim TY, Kim HU, Shim WY, Ryu JY, Park JH, Lee SY. Genomic and metabolic analysis of Komagataeibacter xylinus DSM 2325 producing bacterial cellulose nanofiber. Biotechnol Bioeng 2019; 116:3372-3381. [PMID: 31433066 DOI: 10.1002/bit.27150] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/08/2019] [Accepted: 08/04/2019] [Indexed: 12/12/2022]
Abstract
Bacterial cellulose nanofiber (CNF) is a polymer with a wide range of potential industrial applications. Several Komagataeibacter species, including Komagataeibacter xylinus as a model organism, produce CNF. However, the industrial application of CNF has been hampered by inefficient CNF production, necessitating metabolic engineering for the enhanced CNF production. Here, we present complete genome sequence and a genome-scale metabolic model KxyMBEL1810 of K. xylinus DSM 2325 for metabolic engineering applications. Genome analysis of this bacterium revealed that a set of genes associated with CNF biosynthesis and regulation were present in this bacterium, which were also conserved in another six representative Komagataeibacter species having complete genome information. To better understand the metabolic characteristics of K. xylinus DSM 2325, KxyMBEL1810 was reconstructed using genome annotation data, relevant computational resources and experimental growth data generated in this study. Random sampling and correlation analysis of the KxyMBEL1810 predicted pgi and gnd genes as novel overexpression targets for the enhanced CNF production. Among engineered K. xylinus strains individually overexpressing heterologous pgi and gnd genes, either from Escherichia coli or Corynebacterium glutamicum, batch fermentation of a strain overexpressing the E. coli pgi gene produced 3.15 g/L of CNF in a complex medium containing glucose, which was the best CNF concentration achieved in this study, and 115.8% higher than that (1.46 g/L) obtained from the control strain. Genome sequence data and KxyMBEL1810 generated in this study should be useful resources for metabolic engineering of K. xylinus for the enhanced CNF production.
Collapse
Affiliation(s)
- Woo Dae Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Tae Yong Kim
- Biomaterials Lab, Material Research Center, Samsung Advanced Institute of Technology, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Hyun Uk Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea.,BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, Republic of Korea
| | - Woo Yong Shim
- Biomaterials Lab, Material Research Center, Samsung Advanced Institute of Technology, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Jae Yong Ryu
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jin Hwan Park
- Biomaterials Lab, Material Research Center, Samsung Advanced Institute of Technology, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea.,BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Gullo M, La China S, Petroni G, Di Gregorio S, Giudici P. Exploring K2G30 Genome: A High Bacterial Cellulose Producing Strain in Glucose and Mannitol Based Media. Front Microbiol 2019; 10:58. [PMID: 30761107 PMCID: PMC6363697 DOI: 10.3389/fmicb.2019.00058] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/14/2019] [Indexed: 11/16/2022] Open
Abstract
Demands for renewable and sustainable biopolymers have rapidly increased in the last decades along with environmental issues. In this context, bacterial cellulose, as renewable and biodegradable biopolymer has received considerable attention. Particularly, acetic acid bacteria of the Komagataeibacter xylinus species can produce bacterial cellulose from several carbon sources. To fully exploit metabolic potential of cellulose producing acetic acid bacteria, an understanding of the ability of producing bacterial cellulose from different carbon sources and the characterization of the genes involved in the synthesis is required. Here, K2G30 (UMCC 2756) was studied with respect to bacterial cellulose production in mannitol, xylitol and glucose media. Moreover, the draft genome sequence with a focus on cellulose related genes was produced. A pH reduction and gluconic acid formation was observed in glucose medium which allowed to produce 6.14 ± 0.02 g/L of bacterial cellulose; the highest bacterial cellulose production obtained was in 1.5% (w/v) mannitol medium (8.77 ± 0.04 g/L), while xylitol provided the lowest (1.35 ± 0.05 g/L) yield. Genomic analysis of K2G30 revealed a peculiar gene sets of cellulose synthase; three bcs operons and a fourth copy of bcsAB gene, that encodes the catalytic core of cellulose synthase. These features can explain the high amount of bacterial cellulose produced by K2G30 strain. Results of this study provide valuable information to industrially exploit acetic acid bacteria in producing bacterial cellulose from different carbon sources including vegetable waste feedstocks containing mannitol.
Collapse
Affiliation(s)
- Maria Gullo
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Salvatore La China
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | | | | | - Paolo Giudici
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
9
|
Ryngajłło M, Kubiak K, Jędrzejczak-Krzepkowska M, Jacek P, Bielecki S. Comparative genomics of the Komagataeibacter strains-Efficient bionanocellulose producers. Microbiologyopen 2018; 8:e00731. [PMID: 30365246 PMCID: PMC6528568 DOI: 10.1002/mbo3.731] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/13/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022] Open
Abstract
Komagataeibacter species are well-recognized bionanocellulose (BNC) producers. This bacterial genus, formerly assigned to Gluconacetobacter, is known for its phenotypic diversity manifested by strain-dependent carbon source preference, BNC production rate, pellicle structure, and strain stability. Here, we performed a comparative study of nineteen Komagataeibacter genomes, three of which were newly contributed in this work. We defined the core genome of the genus, clarified phylogenetic relationships among strains, and provided genetic evidence for the distinction between the two major clades, the K. xylinus and the K. hansenii. We found genomic traits, which likely contribute to the phenotypic diversity between the Komagataeibacter strains. These features include genome flexibility, carbohydrate uptake and regulation of its metabolism, exopolysaccharides synthesis, and the c-di-GMP signaling network. In addition, this work provides a comprehensive functional annotation of carbohydrate metabolism pathways, such as those related to glucose, glycerol, acetan, levan, and cellulose. Findings of this multi-genomic study expand understanding of the genetic variation within the Komagataeibacter genus and facilitate exploiting of its full potential for bionanocellulose production at the industrial scale.
Collapse
Affiliation(s)
- Małgorzata Ryngajłło
- Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland
| | - Katarzyna Kubiak
- Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland
| | | | - Paulina Jacek
- Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland
| | - Stanisław Bielecki
- Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
10
|
McManus JB, Wilson L, Yang H, Kubicki JD, Tien M. Kinetic analysis of cellulose synthase of Gluconacetobacter hansenii in whole cells and in purified form. Enzyme Microb Technol 2018; 119:24-29. [PMID: 30243383 DOI: 10.1016/j.enzmictec.2018.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
Abstract
The Gram-negative bacterium, Gluconacetobacter hansenii, has been long studied and is a model for cellulose synthesis. It produces cellulose, using the enzyme AcsA-AcsB, of exceptionally high crystallinity in comparison to the cellulose of higher plants. We determined the rate of cellulose synthesis in whole cells measured as moles of glucose incorporated into cellulose per second per mole of enzyme. This was determined by quantifying the rate of cellulose synthesis (over a short time span, such that the enzyme concentration is not changing due to cell growth) and the amount of enzyme in the whole cell by quantitative western blotting. We found that the whole cell rate of 24 s-1 is much faster than the kcat, measured from steady-state kinetic analysis, of 1.7 s-1. Our whole cell rates are consistent with previous studies using microscopy. We postulate that the rationale for this difference is the presence of an alternative in vivo priming mechanism. This in turn can increase the rate of initiation, which we previously postulated to be the rate-limiting step in catalysis.
Collapse
Affiliation(s)
- John B McManus
- Department of Biochemistry and Molecular Biology, 305 South Frear, University Park, The Pennsylvania State University, PA, 16802, USA
| | - Liza Wilson
- Department of Biology, University Park, The Pennsylvania State University, PA, 16802, USA
| | - Hui Yang
- Department of Biology, University Park, The Pennsylvania State University, PA, 16802, USA
| | - James D Kubicki
- Department of Geological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Ming Tien
- Department of Biochemistry and Molecular Biology, 305 South Frear, University Park, The Pennsylvania State University, PA, 16802, USA.
| |
Collapse
|
11
|
Souza SSD, Castro JDV, Porto LM. MODELING THE CORE METABOLISM OF Komagataeibacter hansenii ATCC 23769 TO EVALUATE NANOCELLULOSE BIOSYNTHESIS. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1590/0104-6632.20180353s20170327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Gullo M, La China S, Falcone PM, Giudici P. Biotechnological production of cellulose by acetic acid bacteria: current state and perspectives. Appl Microbiol Biotechnol 2018; 102:6885-6898. [PMID: 29926141 DOI: 10.1007/s00253-018-9164-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
Abstract
Bacterial cellulose is an attractive biopolymer for a number of applications including food, biomedical, cosmetics, and engineering fields. In addition to renewability and biodegradability, its unique structure and properties such as chemical purity, nanoscale fibrous 3D network, high water-holding capacity, high degree of polymerization, high crystallinity index, light transparency, biocompatibility, and mechanical features offer several advantages when it is used as native polymer or in composite materials. Structure and properties play a functional role in both the biofilm life cycle and biotechnological applications. Among all the cellulose-producing bacteria, acetic acid bacteria of the Komagataeibacter xylinus species play the most important role because they are considered the highest producers. Bacterial cellulose from acetic acid bacteria is widely investigated as native and modified biopolymer in functionalized materials, as well as in terms of differences arising from the static or submerged production system. In this paper, the huge amount of knowledge on basic and applied aspects of bacterial cellulose is reviewed to the aim to provide a comprehensive viewpoint on the intriguing interplay between the biological machinery of synthesis, the native structure, and the factors determining its nanostructure and applications. Since in acetic acid bacteria biofilm and cellulose production are two main phenotypes with industrial impact, new insights into biofilm production are provided.
Collapse
Affiliation(s)
- Maria Gullo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Amendola, 2, Pad. Besta, 42122, Reggio Emilia, Italy.
| | - Salvatore La China
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Amendola, 2, Pad. Besta, 42122, Reggio Emilia, Italy
| | - Pasquale Massimiliano Falcone
- Department of Agricultural, Food and Environmental Sciences, University Polytechnical of Marche, Brecce Bianche 2, Ancona, Italy
| | - Paolo Giudici
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Amendola, 2, Pad. Besta, 42122, Reggio Emilia, Italy
| |
Collapse
|
13
|
Complete genome analysis of Gluconacetobacter xylinus CGMCC 2955 for elucidating bacterial cellulose biosynthesis and metabolic regulation. Sci Rep 2018; 8:6266. [PMID: 29674724 PMCID: PMC5908849 DOI: 10.1038/s41598-018-24559-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/03/2018] [Indexed: 01/04/2023] Open
Abstract
Complete genome sequence of Gluconacetobacter xylinus CGMCC 2955 for fine control of bacterial cellulose (BC) synthesis is presented here. The genome, at 3,563,314 bp, was found to contain 3,193 predicted genes without gaps. There are four BC synthase operons (bcs), among which only bcsI is structurally complete, comprising bcsA, bcsB, bcsC, and bcsD. Genes encoding key enzymes in glycolytic, pentose phosphate, and BC biosynthetic pathways and in the tricarboxylic acid cycle were identified. G. xylinus CGMCC 2955 has a complete glycolytic pathway because sequence data analysis revealed that this strain possesses a phosphofructokinase (pfk)-encoding gene, which is absent in most BC-producing strains. Furthermore, combined with our previous results, the data on metabolism of various carbon sources (monosaccharide, ethanol, and acetate) and their regulatory mechanism of action on BC production were explained. Regulation of BC synthase (Bcs) is another effective method for precise control of BC biosynthesis, and cyclic diguanylate (c-di-GMP) is the key activator of BcsA–BcsB subunit of Bcs. The quorum sensing (QS) system was found to positively regulate phosphodiesterase, which decomposed c-di-GMP. Thus, in this study, we demonstrated the presence of QS in G. xylinus CGMCC 2955 and proposed a possible regulatory mechanism of QS action on BC production.
Collapse
|
14
|
Lavasani PS, Motevaseli E, Shirzad M, Modarressi MH. Isolation and identification of Komagataeibacter xylinus from Iranian traditional vinegars and molecular analyses. IRANIAN JOURNAL OF MICROBIOLOGY 2017; 9:338-347. [PMID: 29487732 PMCID: PMC5825934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Acetic acid bacteria (AAB) are one of the major interests of researchers. Traditional vinegars are suitable sources of AAB because they are not undergone industrial process like filtering and adding preservatives. Komagataeibacter xylinus as a member of AAB is known as the main cellulose producer among other bacteria. The purpose of the current study was to isolate the bacteria from traditional vinegars and its molecular analyses. MATERIALS AND METHODS Vinegar samples were collected. Well-organized bacteriological tests were carried out to differentiate isolated bacteria from other cellulose producers and to identify K. xylinus. NaOH treatment and Calcofluor white staining were used for detecting cellulose. Chromosomal DNA of each strain was extracted via three methods of boiling, phenol-chloroform and sonication. Molecular analyses were performed on the basis of 16S rRNA sequences and cellulose synthase catalytic subunit gene (bcsA) for further confirmation. Phylogenetic tree was constructed for more characterization. Two housekeeping genes were studied including phenylalanyl-tRNA synthase alpha subunit (pheS) and RNA polymerase alpha subunit (rpoA). RESULTS Of the 97 samples, 43 K. xylinus strains were isolated. They were identified via bacteriological and molecular techniques. 16S rDNA sequence showed 99% similarity with registered sequences of the bacteria. Biodiversity of the genome confirmed by analyzing bcsA, pheS and rpoA genes. CONCLUSION K. xylinus can be isolated from traditional vinegars. Screening tests ought to include the classical methods and molecular techniques. Different molecular techniques and more genomic research should be developed to expand our knowledge for distinguishing isolated bacteria especially in the fields of AAB.
Collapse
Affiliation(s)
- Paria Sadat Lavasani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Shirzad
- Department of Microbiology, School of Biology, College of Sciences, Tehran University, Tehran, Iran
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Mohammad Hossein Modarressi, MD, PhD, Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Tel: +982188953005, Fax: +982188953005,
| |
Collapse
|
15
|
Yin H, Zhang R, Xia M, Bai X, Mou J, Zheng Y, Wang M. Effect of aspartic acid and glutamate on metabolism and acid stress resistance of Acetobacter pasteurianus. Microb Cell Fact 2017; 16:109. [PMID: 28619110 PMCID: PMC5472864 DOI: 10.1186/s12934-017-0717-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 06/05/2017] [Indexed: 11/25/2022] Open
Abstract
Background Acetic acid bacteria (AAB) are widely applied in food, bioengineering and medicine fields. However, the acid stress at low pH conditions limits acetic acid fermentation efficiency and high concentration of vinegar production with AAB. Therefore, how to enhance resistance ability of the AAB remains as the major challenge. Amino acids play an important role in cell growth and cell survival under severe environment. However, until now the effects of amino acids on acetic fermentation and acid stress resistance of AAB have not been fully studied. Results In the present work the effects of amino acids on metabolism and acid stress resistance of Acetobacter pasteurianus were investigated. Cell growth, culturable cell counts, acetic acid production, acetic acid production rate and specific production rate of acetic acid of A. pasteurianus revealed an increase of 1.04, 5.43, 1.45, 3.30 and 0.79-folds by adding aspartic acid (Asp), and cell growth, culturable cell counts, acetic acid production and acetic acid production rate revealed an increase of 0.51, 0.72, 0.60 and 0.94-folds by adding glutamate (Glu), respectively. For a fully understanding of the biological mechanism, proteomic technology was carried out. The results showed that the strengthening mechanism mainly came from the following four aspects: (1) Enhancing the generation of pentose phosphates and NADPH for the synthesis of nucleic acid, fatty acids and glutathione (GSH) throughout pentose phosphate pathway. And GSH could protect bacteria from low pH, halide, oxidative stress and osmotic stress by maintaining the viability of cells through intracellular redox equilibrium; (2) Reinforcing deamination of amino acids to increase intracellular ammonia concentration to maintain stability of intracellular pH; (3) Enhancing nucleic acid synthesis and reparation of impaired DNA caused by acid stress damage; (4) Promoting unsaturated fatty acids synthesis and lipid transport, which resulted in the improvement of cytomembrane fluidity, stability and integrity. Conclusions The present work is the study to show the effectiveness of Asp and Glu on metabolism and acid stress resistance of A. pasteurianus as well as their working mechanism. The research results will be helpful for development of nutrient salts, the optimization and regulation of high concentration of cider vinegar production process. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0717-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haisong Yin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.,School of Bioengineering, Tianjin Modern Vocational Technology College, Tianjin, 300350, People's Republic of China
| | - Renkuan Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Menglei Xia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Xiaolei Bai
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Jun Mou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Yu Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
16
|
Florea M, Hagemann H, Santosa G, Abbott J, Micklem CN, Spencer-Milnes X, de Arroyo Garcia L, Paschou D, Lazenbatt C, Kong D, Chughtai H, Jensen K, Freemont PS, Kitney R, Reeve B, Ellis T. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain. Proc Natl Acad Sci U S A 2016; 113:E3431-40. [PMID: 27247386 PMCID: PMC4914174 DOI: 10.1073/pnas.1522985113] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology.
Collapse
Affiliation(s)
- Michael Florea
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Henrik Hagemann
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Gabriella Santosa
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - James Abbott
- Bioinformatics Support Service, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, United Kingdom; Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chris N Micklem
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xenia Spencer-Milnes
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Laura de Arroyo Garcia
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Despoina Paschou
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Christopher Lazenbatt
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Deze Kong
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Haroon Chughtai
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Kirsten Jensen
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Paul S Freemont
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Richard Kitney
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Benjamin Reeve
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tom Ellis
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom;
| |
Collapse
|
17
|
Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 Å Resolution. PLoS One 2016; 11:e0155886. [PMID: 27214134 PMCID: PMC4877109 DOI: 10.1371/journal.pone.0155886] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 05/05/2016] [Indexed: 01/08/2023] Open
Abstract
Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsD in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 Å for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. The results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and support the hypothesis that it is the extrusion mechanism and order in linearly arrayed TCs that enables production of crystalline cellulose.
Collapse
|
18
|
Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582. Sci Rep 2016; 6:23635. [PMID: 27010592 PMCID: PMC4806288 DOI: 10.1038/srep23635] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/10/2016] [Indexed: 12/27/2022] Open
Abstract
Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity.
Collapse
|
19
|
Dos Santos RAC, Berretta AA, Barud HDS, Ribeiro SJL, González-García LN, Zucchi TD, Goldman GH, Riaño-Pachón DM. Draft Genome Sequence of Komagataeibacter intermedius Strain AF2, a Producer of Cellulose, Isolated from Kombucha Tea. GENOME ANNOUNCEMENTS 2015; 3:e01404-15. [PMID: 26634755 PMCID: PMC4669396 DOI: 10.1128/genomea.01404-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/16/2015] [Indexed: 11/20/2022]
Abstract
Here, we present the draft genome sequence of Komagataeibacter intermedius strain AF2, which was isolated from Kombucha tea and is capable of producing cellulose, although at lower levels compared to another bacterium from the same environment, K. rhaeticus strain AF1.
Collapse
Affiliation(s)
- Renato Augusto Corrêa Dos Santos
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| | - Andresa Aparecida Berretta
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil Laboratório de Pesquisa, Desenvolvimento e Inovação, Apis Flora Industrial e Comercial Ltda., Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | - Gustavo H Goldman
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Diego M Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| |
Collapse
|
20
|
Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: Pellicle formation, post-synthesis aggregation and fiber density. Carbohydr Polym 2015; 133:270-6. [DOI: 10.1016/j.carbpol.2015.06.091] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/15/2015] [Accepted: 06/26/2015] [Indexed: 11/18/2022]
|
21
|
AcsA-AcsB: The core of the cellulose synthase complex from Gluconacetobacter hansenii ATCC23769. Enzyme Microb Technol 2015; 82:58-65. [PMID: 26672449 DOI: 10.1016/j.enzmictec.2015.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 01/14/2023]
Abstract
The gram-negative bacterium, Gluconacetobacter hansenii, produces cellulose of exceptionally high crystallinity in comparison to the cellulose of higher plants. This bacterial cellulose is synthesized and extruded into the extracellular medium by the cellulose synthase complex (CSC). The catalytic component of this complex is encoded by the gene AcsAB. However, several other genes are known to encode proteins critical to cellulose synthesis and are likely components of the bacterial CSC. We have purified an active heterodimer AcsA-AcsB from G. hansenii ATCC23769 to homogeneity by two different methods. With the purified protein, we have determined how it is post-translationally processed, forming the active heterodimer AcsA-AcsB. Additionally, we have performed steady-state kinetic studies on the AcsA-AcsB complex. Finally through mutagenesis studies, we have explored the roles of the postulated CSC proteins AcsC, AcsD, and CcpAx.
Collapse
|
22
|
Römling U, Galperin MY. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 2015; 23:545-57. [PMID: 26077867 DOI: 10.1016/j.tim.2015.05.005] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/05/2015] [Accepted: 05/18/2015] [Indexed: 12/30/2022]
Abstract
Recent studies of bacterial cellulose biosynthesis, including structural characterization of a functional cellulose synthase complex, provided the first mechanistic insight into this fascinating process. In most studied bacteria, just two subunits, BcsA and BcsB, are necessary and sufficient for the formation of the polysaccharide chain in vitro. Other subunits - which differ among various taxa - affect the enzymatic activity and product yield in vivo by modulating (i) the expression of the biosynthesis apparatus, (ii) the export of the nascent β-D-glucan polymer to the cell surface, and (iii) the organization of cellulose fibers into a higher-order structure. These auxiliary subunits play key roles in determining the quantity and structure of resulting biofilms, which is particularly important for the interactions of bacteria with higher organisms - leading to rhizosphere colonization and modulating the virulence of cellulose-producing bacterial pathogens inside and outside of host cells. We review the organization of four principal types of cellulose synthase operon found in various bacterial genomes, identify additional bcs genes that encode components of the cellulose biosynthesis and secretion machinery, and propose a unified nomenclature for these genes and subunits. We also discuss the role of cellulose as a key component of biofilms and in the choice between acute infection and persistence in the host.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
23
|
Adaptive mutation related to cellulose producibility in Komagataeibacter medellinensis (Gluconacetobacter xylinus) NBRC 3288. Appl Microbiol Biotechnol 2015; 99:7229-40. [DOI: 10.1007/s00253-015-6598-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/06/2015] [Accepted: 04/10/2015] [Indexed: 10/23/2022]
|
24
|
Deng Y, Nagachar N, Fang L, Luan X, Catchmark JM, Tien M, Kao TH. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity. PLoS One 2015; 10:e0119504. [PMID: 25790428 PMCID: PMC4366249 DOI: 10.1371/journal.pone.0119504] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/13/2015] [Indexed: 11/25/2022] Open
Abstract
Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the assembly of crystalline cellulose.
Collapse
Affiliation(s)
- Ying Deng
- Department of Biochemistry and Molecular Biology, the Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Nivedita Nagachar
- Department of Biochemistry and Molecular Biology, the Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Lin Fang
- Department of Agricultural and Biological Engineering, the Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Xin Luan
- Department of Biochemistry and Molecular Biology, the Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jeffrey M. Catchmark
- Department of Agricultural and Biological Engineering, the Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Ming Tien
- Department of Biochemistry and Molecular Biology, the Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Teh-hui Kao
- Department of Biochemistry and Molecular Biology, the Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
25
|
Kharina A, Podolich O, Faidiuk I, Zaika S, Haidak A, Kukharenko O, Zaets I, Tovkach F, Reva O, Kremenskoy M, Kozyrovska N. Temperate bacteriophages collected by outer membrane vesicles inKomagataeibacter intermedius. J Basic Microbiol 2015; 55:509-13. [DOI: 10.1002/jobm.201400711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/07/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Alla Kharina
- Institute of Biology of Taras Shevchenko National University of Kyiv; Kyiv Ukraine
| | - Olga Podolich
- Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine; Kyiv Ukraine
| | - Iuliia Faidiuk
- Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine; Kyiv Ukraine
| | - Sergiy Zaika
- Institute of Biology of Taras Shevchenko National University of Kyiv; Kyiv Ukraine
| | - Andriy Haidak
- Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine; Kyiv Ukraine
| | - Olga Kukharenko
- Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine; Kyiv Ukraine
| | - Iryna Zaets
- Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine; Kyiv Ukraine
| | - Fedor Tovkach
- Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine; Kyiv Ukraine
| | - Oleg Reva
- Department of Biochemistry; Bioinformatics and Computational Biology Unit; University of Pretoria; Pretoria South Africa
| | | | - Natalia Kozyrovska
- Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine; Kyiv Ukraine
| |
Collapse
|
26
|
Overview on mechanisms of acetic acid resistance in acetic acid bacteria. World J Microbiol Biotechnol 2015; 31:255-63. [PMID: 25575804 DOI: 10.1007/s11274-015-1799-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.
Collapse
|
27
|
Draft Genome Sequence of Komagataeibacter rhaeticus Strain AF1, a High Producer of Cellulose, Isolated from Kombucha Tea. GENOME ANNOUNCEMENTS 2014; 2:2/4/e00731-14. [PMID: 25059874 PMCID: PMC4110232 DOI: 10.1128/genomea.00731-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Here, we present the draft genome sequence of Komagatabaeicter rhaeticus strain AF1, which was isolated from Kombucha tea and is capable of producing high levels of cellulose.
Collapse
|
28
|
Kubiak K, Kurzawa M, Jędrzejczak-Krzepkowska M, Ludwicka K, Krawczyk M, Migdalski A, Kacprzak MM, Loska D, Krystynowicz A, Bielecki S. Complete genome sequence of Gluconacetobacter xylinus E25 strain—Valuable and effective producer of bacterial nanocellulose. J Biotechnol 2014; 176:18-9. [DOI: 10.1016/j.jbiotec.2014.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
|
29
|
Identification and characterization of non-cellulose-producing mutants of Gluconacetobacter hansenii generated by Tn5 transposon mutagenesis. J Bacteriol 2013; 195:5072-83. [PMID: 24013627 DOI: 10.1128/jb.00767-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The acs operon of Gluconacetobacter is thought to encode AcsA, AcsB, AcsC, and AcsD proteins that constitute the cellulose synthase complex, required for the synthesis and secretion of crystalline cellulose microfibrils. A few other genes have been shown to be involved in this process, but their precise role is unclear. We report here the use of Tn5 transposon insertion mutagenesis to identify and characterize six non-cellulose-producing (Cel(-)) mutants of Gluconacetobacter hansenii ATCC 23769. The genes disrupted were acsA, acsC, ccpAx (encoding cellulose-complementing protein [the subscript "Ax" indicates genes from organisms formerly classified as Acetobacter xylinum]), dgc1 (encoding guanylate dicyclase), and crp-fnr (encoding a cyclic AMP receptor protein/fumarate nitrate reductase transcriptional regulator). Protein blot analysis revealed that (i) AcsB and AcsC were absent in the acsA mutant, (ii) the levels of AcsB and AcsC were significantly reduced in the ccpAx mutant, and (iii) the level of AcsD was not affected in any of the Cel(-) mutants. Promoter analysis showed that the acs operon does not include acsD, unlike the organization of the acs operon of several strains of closely related Gluconacetobacter xylinus. Complementation experiments confirmed that the gene disrupted in each Cel(-) mutant was responsible for the phenotype. Quantitative real-time PCR and protein blotting results suggest that the transcription of bglAx (encoding β-glucosidase and located immediately downstream from acsD) was strongly dependent on Crp/Fnr. A bglAx knockout mutant, generated via homologous recombination, produced only ∼16% of the wild-type cellulose level. Since the crp-fnr mutant did not produce any cellulose, Crp/Fnr may regulate the expression of other gene(s) involved in cellulose biosynthesis.
Collapse
|
30
|
Enhanced Production of Bacterial Cellulose by Using Gluconacetobacter hansenii NCIM 2529 Strain Under Shaking Conditions. Appl Biochem Biotechnol 2013; 169:1497-511. [DOI: 10.1007/s12010-013-0092-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 01/01/2013] [Indexed: 11/25/2022]
|
31
|
Ma T, Ji K, Wang W, Wang J, Li Z, Ran H, Liu B, Li G. Cellulose synthesized by Enterobacter sp. FY-07 under aerobic and anaerobic conditions. BIORESOURCE TECHNOLOGY 2012; 126:18-23. [PMID: 23073085 DOI: 10.1016/j.biortech.2012.09.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 08/01/2012] [Accepted: 09/13/2012] [Indexed: 06/01/2023]
Abstract
Enterobacter sp. FY-07 can produce bacterial cellulose (BC) under aerobic and anaerobic conditions. In static cultivation at 30 °C for 72 h under anoxic, oxygen-limited and aerated conditions, cellulose production exceeded 5 g/l, which indicated that oxygen was not essential for production of BC by Enterobacter sp. FY-07. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) analysis showed that the microstructure of the BC was similar to that produced by aerobic bacteria such as Gluconacetobacter xylinum BCRC12335 and Acetobacter sp. V6. The crystallinity index of the BC was 63.3%. Water-holding capacity (approximately 11000%) and rehydration ratio (24.4%) were superior to those reported for BC produced by the aerobic bacteria G. xylinum BCRC12335 and Acetobacter sp. V6. These results will facilitate static submerged fermentation for the production of BC.
Collapse
Affiliation(s)
- Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Jin H, Zhang Y, Buchko GW, Varnum SM, Robinson H, Squier TC, Long PE. Structure determination and functional analysis of a chromate reductase from Gluconacetobacter hansenii. PLoS One 2012; 7:e42432. [PMID: 22879982 PMCID: PMC3412864 DOI: 10.1371/journal.pone.0042432] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022] Open
Abstract
Environmental protection through biological mechanisms that aid in the reductive immobilization of toxic metals (e.g., chromate and uranyl) has been identified to involve specific NADH-dependent flavoproteins that promote cell viability. To understand the enzyme mechanisms responsible for metal reduction, the enzyme kinetics of a putative chromate reductase from Gluconacetobacter hansenii (Gh-ChrR) was measured and the crystal structure of the protein determined at 2.25 Å resolution. Gh-ChrR catalyzes the NADH-dependent reduction of chromate, ferricyanide, and uranyl anions under aerobic conditions. Kinetic measurements indicate that NADH acts as a substrate inhibitor; catalysis requires chromate binding prior to NADH association. The crystal structure of Gh-ChrR shows the protein is a homotetramer with one bound flavin mononucleotide (FMN) per subunit. A bound anion is visualized proximal to the FMN at the interface between adjacent subunits within a cationic pocket, which is positioned at an optimal distance for hydride transfer. Site-directed substitutions of residues proposed to involve in both NADH and metal anion binding (N85A or R101A) result in 90–95% reductions in enzyme efficiencies for NADH-dependent chromate reduction. In comparison site-directed substitution of a residue (S118A) participating in the coordination of FMN in the active site results in only modest (50%) reductions in catalytic efficiencies, consistent with the presence of a multitude of side chains that position the FMN in the active site. The proposed proximity relationships between metal anion binding site and enzyme cofactors is discussed in terms of rational design principles for the use of enzymes in chromate and uranyl bioremediation.
Collapse
Affiliation(s)
- Hongjun Jin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Strain Gluconacetobacter hansenii CGMCC1671 and Saccharomyces cerevisiae CGMCC1670 were applied to make traditional Kombucha with pure cultures to search for the optimum parameters of major factors affecting the yields and productivities of Bacterial cellulose (BC) in the beverage. Three culture factors were examined. The yields and productivities of BC and sugar consumed were measured after cultured statically for 22 days. After single factor test factors affecting the yields and productivities of BC have been optimized by response surface methodology (RSM). The quadratic polynomial regression equation reflecting BC yield and affecting factors was build up with Box-Behnken design principle. The optimal values of 10.37% inoculum, initial pH 4.96 and medium volume 77.13 mL in 250 mL flask were obtained with theoretical BC yield 300.093mg/g. BC yield of 279.579 mg/g was obtained with 6.84% deviation by validation test with the optimal parameters. The co-culture of pure strains of traditional Kombucha technique can be used to provide both high quality and high yield of BC in addition to producing high quality Kombucha beverage.
Collapse
|
34
|
Complete genome sequence of NBRC 3288, a unique cellulose-nonproducing strain of Gluconacetobacter xylinus isolated from vinegar. J Bacteriol 2012; 193:6997-8. [PMID: 22123756 DOI: 10.1128/jb.06158-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gluconacetobacter xylinus is involved in the industrial production of cellulose. We have determined the genome sequence of G. xylinus NBRC 3288, a cellulose-nonproducing strain. Comparative analysis of genomes of G. xylinus NBRC 3288 with those of the cellulose-producing strains clarified the genes important for cellulose production in Gluconacetobacter.
Collapse
|
35
|
Strap JL, Latos A, Shim I, Bonetta DT. Characterization of pellicle inhibition in Gluconacetobacter xylinus 53582 by a small molecule, pellicin, identified by a chemical genetics screen. PLoS One 2011; 6:e28015. [PMID: 22174763 PMCID: PMC3235090 DOI: 10.1371/journal.pone.0028015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/30/2011] [Indexed: 11/19/2022] Open
Abstract
Pellicin ([2E]-3-phenyl-1-[2,3,4,5-tetrahydro-1,6-benzodioxocin-8-yl]prop-2-en-1-one) was identified in a chemical genetics screen of 10,000 small molecules for its ability to completely abolish pellicle production in Gluconacetobacter xylinus. Cells grown in the presence of pellicin grew 1.5 times faster than untreated cells. Interestingly, growth in pellicin also caused G. xylinus cells to elongate. Measurement of cellulose synthesis in vitro showed that cellulose synthase activity was not directly inhibited by pellicin. Rather, when cellulose synthase activity was measured in cells that were pre-treated with the compound, the rate of cellulose synthesis increased eight-fold over that observed for untreated cells. This phenomenon was also apparent in the rapid production of cellulose when cells grown in the presence of pellicin were washed and transferred to media lacking the inhibitor. The rate at which cellulose was produced could not be accounted for by growth of the organism. Pellicin was not detected when intracellular contents were analyzed. Furthermore, it was found that pellicin exerts its effect extracellularly by interfering with the crystallization of pre-cellulosic tactoidal aggregates. This interference of the crystallization process resulted in enhanced production of cellulose II as evidenced by the ratio of acid insoluble to acid soluble product in in vitro assays and confirmed in vivo by scanning electron microscopy and powder X-ray diffraction. The relative crystallinity index, RCI, of pellicle produced by untreated G. xylinus cultures was 70% while pellicin-grown cultures had RCI of 38%. Mercerized pellicle of untreated cells had RCI of 42%, which further confirms the mechanism of action of pellicin as an inhibitor of the cellulose I crystallization process. Pellicin is a useful tool for the study of cellulose biosynthesis in G. xylinus.
Collapse
Affiliation(s)
- Janice L. Strap
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | - Andrew Latos
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | - Isaac Shim
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | - Dario T. Bonetta
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| |
Collapse
|
36
|
Masud U, Matsushita K, Theeragool G. Molecular cloning and characterization of two inducible NAD⁺-adh genes encoding NAD⁺-dependent alcohol dehydrogenases from Acetobacter pasteurianus SKU1108. J Biosci Bioeng 2011; 112:422-31. [PMID: 21843965 DOI: 10.1016/j.jbiosc.2011.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 07/16/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
Abstract
The cytosolic NAD⁺-dependent alcohol dehydrogenases (NAD⁺-ADHs) are induced in the quinoprotein ADH-(PQQ-ADH) defective Acetobacter pasteurianus SKU1108 mutant during growth in an ethanol medium. The adhI and adhII genes, which encode NAD⁺-ADH I and ADH II, respectively, of this strain have been cloned and characterized. Sequence analyses have revealed that the adhI gene consists of 1029 bp coding for 342 amino acids, which share 99.71% identity with the same protein from A. pasteurianus IFO 3283. Conversely, the adhII gene is composed of 762 bp encoding for a polypeptide of 253 amino acids, which exhibit 99.60% identity with the A. pasteurianus IFO 3283 protein. ADH I is a member of the group I Zn-dependent long-chain ADHs, while the ADH II belongs to the group II short-chain dehydrogenase/reductase NAD⁺-ADHs. The NAD⁺-adh gene disruptants exhibited a growth reduction when grown in an ethanol medium. In Escherichia coli, ethanol induced adhI and adhII promoter activities by approximately 1.5 and 2.0 times, respectively, and the promoter activity of the adhII gene exceeded that of the adhI gene by approximately 3.5 times. The possible promoter regions of the adhI and adhII genes are located at approximately 81-105 bp and 74-92 bp, respectively, from their respective ATG start codons. Their repressor regions might be located in proximity to these promoters and may repress gene expression in the wild-type, where the membrane-bound ADH effectively functions.
Collapse
Affiliation(s)
- Uraiwan Masud
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand
| | | | | |
Collapse
|
37
|
Genome sequences of the high-acetic acid-resistant bacteria Gluconacetobacter europaeus LMG 18890T and G. europaeus LMG 18494 (reference strains), G. europaeus 5P3, and Gluconacetobacter oboediens 174Bp2 (isolated from vinegar). J Bacteriol 2011; 193:2670-1. [PMID: 21441523 DOI: 10.1128/jb.00229-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria of the genus Gluconacetobacter are usually involved in the industrial production of vinegars with high acetic acid concentrations. We describe here the genome sequence of three Gluconacetobacter europaeus strains, a very common bacterial species from industrial fermentors, as well as of a Gluconacetobacter oboediens strain.
Collapse
|