1
|
Richter J, Cork AJ, Ong Y, Keller N, Hayes AJ, Schembri MA, Jennison AV, Davies MR, Schroder K, Walker MJ, Brouwer S. Characterization of a novel covS SNP identified in Australian group A Streptococcus isolates derived from the M1 UK lineage. mBio 2024:e0336624. [PMID: 39688411 DOI: 10.1128/mbio.03366-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Group A Streptococcus (GAS) is a human-adapted pathogen responsible for a variety of diseases. The GAS M1UK lineage has contributed significantly to the recently reported increases in scarlet fever and invasive infections. However, the basis for its evolutionary success is not yet fully understood. During the transition to systemic disease, the M1 serotype is known to give rise to spontaneous mutations in the control of virulence two-component regulatory system (CovRS) that confer a fitness advantage during invasive infections. Mutations that inactivate CovS function result in the de-repression of key GAS virulence factors such as streptolysin O (SLO), a pore-forming toxin and major trigger of inflammasome/interleukin-1β-dependent inflammation. Conversely, expression of the streptococcal cysteine protease SpeB, which is required during initial stages of colonization and onset of invasive disease, is typically lost in such mutants. In this study, we identified and characterized a novel covS single nucleotide polymorphism detected in three separate invasive M1UK isolates. The resulting CovSAla318Val mutation caused a significant upregulation of SLO resulting in increased inflammasome activation in human THP-1 macrophages, indicating an enhanced inflammatory potential. Surprisingly, SpeB production was unaffected. Site-directed mutagenesis was performed to assess the impact of this mutation on virulence and global gene expression. We found that the CovSAla318Val mutation led to subtle, virulence-specific changes of the CovRS regulon compared to previously characterized covS mutations, highlighting an unappreciated level of complexity in CovRS-dependent gene regulation. Continued longitudinal surveillance is warranted to determine whether this novel covS mutation will expand in the M1UK lineage.IMPORTANCEThe M1UK lineage of GAS has contributed to a recent global upsurge in scarlet fever and invasive infections. Understanding how GAS can become more virulent is critical for infection control and identifying new treatment approaches. The two-component CovRS system, comprising the sensor kinase CovS and transcription factor CovR, is a central regulator of GAS virulence genes. In the M1 serotype, covRS mutations are associated with an invasive phenotype. Such mutations have not been fully characterized in the M1UK lineage. This study identified a novel covS mutation in invasive Australian M1UK isolates that resulted in a more nuanced virulence gene regulation compared to previously characterized covS mutations. A representative isolate displayed upregulated SLO production and triggered amplified interleukin-1β secretion in infected human macrophages, indicating an enhanced inflammatory potential. These findings underscore the need for comprehensive analyses of covRS mutants to fully elucidate their contribution to M1UK virulence and persistence.
Collapse
Affiliation(s)
- Johanna Richter
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Amanda J Cork
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Yvette Ong
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nadia Keller
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew J Hayes
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Mark A Schembri
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Amy V Jennison
- Public and Environmental Health, Pathology Queensland, Queensland Health, Coopers Plains, Queensland, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark J Walker
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Stephan Brouwer
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Loh JM, Aghababa H, Proft T. Eluding the immune system's frontline defense: Secreted complement evasion factors of pathogenic Gram-positive cocci. Microbiol Res 2023; 277:127512. [PMID: 37826985 DOI: 10.1016/j.micres.2023.127512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
The human complement system is an important part of the innate immune response in the fight against invasive bacteria. Complement responses can be activated independently by the classical pathway, the lectin pathway, or the alternative pathway, each resulting in the formation of a C3 convertase that produces the anaphylatoxin C3a and the opsonin C3b by specifically cutting C3. Other important features of complement are the production of the chemotactic C5a peptide and the generation of the membrane attack complex to lyse intruding pathogens. Invasive pathogens like Staphylococcus aureus and several species of the genus Streptococcus have developed a variety of complement evasion strategies to resist complement activity thereby increasing their virulence and potential to cause disease. In this review, we focus on secreted complement evasion factors that assist the bacteria to avoid opsonization and terminal pathway lysis. We also briefly discuss the potential role of complement evasion factors for the development of vaccines and therapeutic interventions.
Collapse
Affiliation(s)
- Jacelyn Ms Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Haniyeh Aghababa
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
3
|
Abstract
Necrotizing fasciitis is a severe infectious disease that results in significant mortality. Streptococcus pyogenes (group A Streptococcus, GAS) is one of the most common bacterial pathogens of monomicrobial necrotizing fasciitis. The early diagnosis of necrotizing fasciitis is crucial; however, the typical cutaneous manifestations are not always presented in patients with GAS necrotizing fasciitis, which would lead to miss- or delayed diagnosis. GAS with spontaneous inactivating mutations in the CovR/CovS two-component regulatory system is significantly associated with destructive diseases such as necrotizing fasciitis and toxic shock syndrome; however, no specific marker has been used to identify these invasive clinical isolates. This study evaluated the sensitivity and specificity of using CovR/CovS-controlled phenotypes to identify CovR/CovS-inactivated isolates. Results showed that the increase of hyaluronic acid capsule production and streptolysin O expression were not consistently presented in CovS-inactivated clinical isolates. The repression of SpeB is the phenotype with 100% sensitivity of identifying in CovS-inactivated isolates among 61 clinical isolates. Nonetheless, this phenotype failed to distinguish RopB-inactivated isolates from CovS-inactivated isolates and cannot be utilized to identify CovR-inactivated mutant and RocA (Regulator of Cov)-inactivated isolates. In this study, we identified and verified that PepO, the endopeptidase which regulates SpeB expression through degrading SpeB-inducing quorum-sensing peptide, was a bacterial marker to identify isolates with defects in the CovR/CovS pathway. These results also inform the potential strategy of developing rapid detection methods to identify invasive GAS variants during infection. IMPORTANCE Necrotizing fasciitis is rapidly progressive and life-threatening; if the initial diagnosis is delayed, deep soft tissue infection can progress to massive tissue destruction and toxic shock syndrome. Group A Streptococcus (GAS) with inactivated mutations in the CovR/CovS two-component regulatory system are related to necrotizing fasciitis and toxic shock syndrome; however, no bacterial marker is available to identify these invasive clinical isolates. Inactivation of CovR/CovS resulted in the increased expression of endopeptidase PepO. Our study showed that the upregulation of PepO mediates a decrease in SpeB-inducing peptide (SIP) in the covR mutant, indicating that CovR/CovS modulates SIP-dependent quorum-sensing activity through PepO. Importantly, the sensitivity and specificity of utilizing PepO to identify clinical isolates with defects in the CovR/CovS pathway, including its upstream RocA regulator, were 100%. Our results suggest that identification of invasive GAS by PepO may be a strategy for preventing severe manifestation or poor prognosis after GAS infection.
Collapse
|
4
|
Bekő K, Grózner D, Mitter A, Udvari L, Földi D, Wehmann E, Kovács ÁB, Domán M, Bali K, Bányai K, Gyuris É, Thuma Á, Kreizinger Z, Gyuranecz M. Development and evaluation of temperature-sensitive Mycoplasma anserisalpingitidis clones as vaccine candidates. Avian Pathol 2022; 51:535-549. [PMID: 35866306 DOI: 10.1080/03079457.2022.2102967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mycoplasma anserisalpingitidis is economically the most important pathogenic Mycoplasma species of waterfowl in Europe and Asia. The lack of commercially available vaccines against M. anserisalpingitidis had prompted this study with the aim to produce temperature-sensitive (ts+) clones as candidates for an attenuated live vaccine. The production of ts+ clones was performed by N-methyl-N'-nitro-N-nitrosoguanidine (NTG)-evoked mutagenesis of Hungarian M. anserisalpingitidis field isolates. The clones were administered via eye drop and intracloacally to 33-day-old geese. Colonisation ability was examined by PCR and isolation from the trachea and cloaca, while the serological response of the birds was tested by ELISA. Pathological and histopathological examinations were performed at the eighth week after inoculation. Whole-genome sequence (WGS) analysis of the selected clone and its parent strain was also performed. NTG-treatment provided three ts+ mutants (MA177/1/11, MA177/1/12, MA271). MA271 was detected at the highest rate from cloacal (86.25%) and tracheal (30%) samples, while MA177/1/12 and MA271 elicited remarkable serological responses with 90% of the animals showing seroconversion. Re-isolates of MA271 remained ts+ throughout the experiment. Based on these properties, clone MA271 was found to be the most promising vaccine candidate. WGS analysis revealed 59 mutations in the genome of MA271 when compared to its parent strain, affecting both polypeptides involved in different cellular processes and proteins previously linked to bacterial fitness and virulence. Although further studies are needed to prove that MA271 is in all aspects a suitable vaccine strain, it is expected that this ts+ clone will contribute to the control of M. anserisalpingitidis infection.
Collapse
Affiliation(s)
- Katinka Bekő
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary
| | - Dénes Grózner
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary.,MolliScience Ltd., Március 15. utca 1, Biatorbágy 2051, Hungary
| | - Alexa Mitter
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary.,MolliScience Ltd., Március 15. utca 1, Biatorbágy 2051, Hungary
| | - Lilla Udvari
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary
| | - Dorottya Földi
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary
| | - Enikő Wehmann
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary
| | - Áron B Kovács
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary
| | - Marianna Domán
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary
| | - Krisztina Bali
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary.,University of Veterinary Medicine, István utca 2, Budapest 1078, Hungary
| | - Éva Gyuris
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok utca 2, Budapest 1143, Hungary
| | - Ákos Thuma
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok utca 2, Budapest 1143, Hungary
| | - Zsuzsa Kreizinger
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary.,MolliScience Ltd., Március 15. utca 1, Biatorbágy 2051, Hungary
| | - Miklós Gyuranecz
- Veterinary Medical Research Institute, Hungária körút 21, Budapest 1143, Hungary.,MolliScience Ltd., Március 15. utca 1, Biatorbágy 2051, Hungary
| |
Collapse
|
5
|
Abstract
The nasopharynx and the skin are the major oxygen-rich anatomical sites for colonization by the human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]). To establish infection, GAS must survive oxidative stress generated during aerobic metabolism and the release of reactive oxygen species (ROS) by host innate immune cells. Glutathione is the major host antioxidant molecule, while GAS is glutathione auxotrophic. Here, we report the molecular characterization of the ABC transporter substrate binding protein GshT in the GAS glutathione salvage pathway. We demonstrate that glutathione uptake is critical for aerobic growth of GAS and that impaired import of glutathione induces oxidative stress that triggers enhanced production of the reducing equivalent NADPH. Our results highlight the interrelationship between glutathione assimilation, carbohydrate metabolism, virulence factor production, and innate immune evasion. Together, these findings suggest an adaptive strategy employed by extracellular bacterial pathogens to exploit host glutathione stores for their own benefit.
Collapse
|
6
|
Richter J, Monteleone MM, Cork AJ, Barnett TC, Nizet V, Brouwer S, Schroder K, Walker MJ. Streptolysins are the primary inflammasome activators in macrophages during Streptococcus pyogenes infection. Immunol Cell Biol 2021; 99:1040-1052. [PMID: 34462965 DOI: 10.1111/imcb.12499] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 08/28/2021] [Indexed: 12/30/2022]
Abstract
Group A Streptococcus (GAS) is a Gram-positive bacterial pathogen that causes an array of infectious diseases in humans. Accumulating clinical evidence suggests that proinflammatory interleukin (IL)-1β signaling plays an important role in GAS disease progression. The host regulates the production and secretion of IL-1β via the cytosolic inflammasome pathway. Activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome complex requires two signals: a priming signal that stimulates increased transcription of genes encoding the components of the inflammasome pathway, and an activating signal that induces assembly of the inflammasome complex. Here we show that GAS-derived lipoteichoic acid can provide a priming signal for NLRP3 inflammasome activation. As only few GAS-derived proteins have been associated with inflammasome-dependent IL-1β signaling, we investigated novel candidates that might play a role in activating the inflammasome pathway by infecting mouse bone marrow-derived macrophages and human THP-1 macrophage-like cells with a panel of isogenic GAS mutant strains. We found that the cytolysins streptolysin O (SLO) and streptolysin S are the main drivers of IL-1β release in proliferating logarithmic phase GAS. Using a mutant form of recombinant SLO, we confirmed that bacterial pore formation on host cell membranes is a key mechanism required for inflammasome activation. Our results suggest that streptolysins are major determinants of GAS-induced inflammation and present an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Johanna Richter
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mercedes M Monteleone
- Australian Infectious Diseases Research Centre, Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, QLD, Australia
| | - Amanda J Cork
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Timothy C Barnett
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.,Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Victor Nizet
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, CA, USA.,Skaggs School of Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Stephan Brouwer
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Kate Schroder
- Australian Infectious Diseases Research Centre, Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, QLD, Australia
| | - Mark J Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
7
|
Fabri LV, Azzopardi KI, Osowicki J, Frost HR, Smeesters PR, Steer AC. An emm-type specific qPCR to track bacterial load during experimental human Streptococcus pyogenes pharyngitis. BMC Infect Dis 2021; 21:463. [PMID: 34020607 PMCID: PMC8138111 DOI: 10.1186/s12879-021-06173-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/12/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Streptococcus pyogenes causes a profound global burden of morbidity and mortality across its diverse clinical spectrum. To support a new controlled human infection ('challenge') model seeking to accelerate S. pyogenes vaccine development, we aimed to develop an accurate and reliable molecular method for quantifying bacterial load from pharyngeal swabs collected during experimental human pharyngitis. METHODS Combined sequential RNA + DNA extraction from throat swabs was compared to traditional separate RNA-only and DNA-only extractions. An emm-type specific qPCR was developed to detect the emm75 challenge strain. Results from the qPCR were compared to culture, using throat swab samples collected in a human challenge study. RESULTS The qPCR was 100% specific for the emm75 challenge strain when tested against a panel of S. pyogenes emm-types and other respiratory pathogens. Combined RNA + DNA extraction had similar yield to traditional separate extractions. The combined extraction method and emm75 qPCR had 98.8% sensitivity compared to culture for throat swabs collected from challenge study participants. CONCLUSIONS We have developed a reliable molecular method for measuring S. pyogenes bacterial load from throat swabs collected in a controlled human infection model of S. pyogenes pharyngitis. TRIAL REGISTRATION NCT03361163 on 4th December 2017.
Collapse
Affiliation(s)
- Loraine V Fabri
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, Université Libre de Bruxelles, Brussels, Belgium
| | - Kristy I Azzopardi
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Joshua Osowicki
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.
- Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia.
| | - Hannah R Frost
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Pierre R Smeesters
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, Université Libre de Bruxelles, Brussels, Belgium
- Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, Belgium
| | - Andrew C Steer
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Schoina C, Rodenburg SYA, Meijer HJG, Seidl MF, Lacambra LT, Bouwmeester K, Govers F. Mining oomycete proteomes for metalloproteases leads to identification of candidate virulence factors in Phytophthora infestans. MOLECULAR PLANT PATHOLOGY 2021; 22:551-563. [PMID: 33657266 PMCID: PMC8035641 DOI: 10.1111/mpp.13043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Pathogens deploy a wide range of pathogenicity factors, including a plethora of proteases, to modify host tissue or manipulate host defences. Metalloproteases (MPs) have been implicated in virulence in several animal and plant pathogens. Here we investigated the repertoire of MPs in 46 stramenopile species including 37 oomycetes, 5 diatoms, and 4 brown algae. Screening their complete proteomes using hidden Markov models (HMMs) trained for MP detection resulted in over 4,000 MPs, with most species having between 65 and 100 putative MPs. Classification in clans and families according to the MEROPS database showed a highly diverse MP repertoire in each species. Analyses of domain composition, orthologous groups, distribution, and abundance within the stramenopile lineage revealed a few oomycete-specific MPs and MPs potentially related to lifestyle. In-depth analyses of MPs in the plant pathogen Phytophthora infestans revealed 91 MPs, divided over 21 protein families, including 25 MPs with a predicted signal peptide or signal anchor. Expression profiling showed different patterns of MP gene expression during pre-infection and infection stages. When expressed in leaves of Nicotiana benthamiana, 12 MPs changed the sizes of lesions caused by inoculation with P. infestans; with 9 MPs the lesions were larger, suggesting a positive effect on the virulence of P. infestans, while 3 MPs had a negative effect, resulting in smaller lesions. To the best of our knowledge, this is the first systematic inventory of MPs in oomycetes and the first study pinpointing MPs as potential pathogenicity factors in Phytophthora.
Collapse
Affiliation(s)
- Charikleia Schoina
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Present address:
Enza Zaden Research and Development B. V.EnkhuizenNetherlands
| | - Sander Y. A. Rodenburg
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Bioinformatics GroupWageningen University and ResearchWageningenNetherlands
- Present address:
The Hyve B. V.UtrechtNetherlands
| | - Harold J. G. Meijer
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Wageningen Plant ResearchWageningen University and ResearchWageningenNetherlands
| | - Michael F. Seidl
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Present address:
Theoretical Biology & Bioinformatics groupDepartment of BiologyUtrecht UniversityUtrechtNetherlands
| | - Lysette T. Lacambra
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Present address:
East‐West Seed Knowledge TransferNonthaburiThailand
| | - Klaas Bouwmeester
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
- Biosystematics GroupWageningen University and ResearchWageningenNetherlands
| | - Francine Govers
- Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
| |
Collapse
|
9
|
Zondervan NA, Martins Dos Santos VAP, Suarez-Diez M, Saccenti E. Phenotype and multi-omics comparison of Staphylococcus and Streptococcus uncovers pathogenic traits and predicts zoonotic potential. BMC Genomics 2021; 22:102. [PMID: 33541265 PMCID: PMC7860044 DOI: 10.1186/s12864-021-07388-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 01/13/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Staphylococcus and Streptococcus species can cause many different diseases, ranging from mild skin infections to life-threatening necrotizing fasciitis. Both genera consist of commensal species that colonize the skin and nose of humans and animals, and of which some can display a pathogenic phenotype. RESULTS We compared 235 Staphylococcus and 315 Streptococcus genomes based on their protein domain content. We show the relationships between protein persistence and essentiality by integrating essentiality predictions from two metabolic models and essentiality measurements from six large-scale transposon mutagenesis experiments. We identified clusters of strains within species based on proteins associated to similar biological processes. We built Random Forest classifiers that predicted the zoonotic potential. Furthermore, we identified shared attributes between of Staphylococcus aureus and Streptococcus pyogenes that allow them to cause necrotizing fasciitis. CONCLUSIONS Differences observed in clustering of strains based on functional groups of proteins correlate with phenotypes such as host tropism, capability to infect multiple hosts and drug resistance. Our method provides a solid basis towards large-scale prediction of phenotypes based on genomic information.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands
- LifeGlimmer GmBH, Markelstraße 38, 12163, Berlin, Germany
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands.
| |
Collapse
|
10
|
Alves LA, Ganguly T, Harth-Chú ÉN, Kajfasz J, Lemos JA, Abranches J, Mattos-Graner RO. PepO is a target of the two-component systems VicRK and CovR required for systemic virulence of Streptococcus mutans. Virulence 2020; 11:521-536. [PMID: 32427040 PMCID: PMC7239026 DOI: 10.1080/21505594.2020.1767377] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/10/2020] [Accepted: 03/29/2020] [Indexed: 12/14/2022] Open
Abstract
Streptococcus mutans, a cariogenic species, is often associated with cardiovascular infections. Systemic virulence of specific S. mutans serotypes has been associated with the expression of the collagen- and laminin-binding protein Cnm, which is transcriptionally regulated by VicRK and CovR. In this study, we characterized a VicRK- and CovR-regulated gene, pepO, coding for a conserved endopeptidase. Transcriptional and protein analyses revealed that pepO is highly expressed in S. mutans strains resistant to complement immunity (blood isolates) compared to oral isolates. Gel mobility assay, transcriptional, and Western blot analyses revealed that pepO is repressed by VicR and induced by CovR. Deletion of pepO in the Cnm+ strain OMZ175 (OMZpepO) or in the Cnm- UA159 (UApepO) led to an increased susceptibility to C3b deposition, and to low binding to complement proteins C1q and C4BP. Additionally, pepO mutants showed diminished ex vivo survival in human blood and impaired capacity to kill G. mellonella larvae. Inactivation of cnm in OMZ175 (OMZcnm) resulted in increased resistance to C3b deposition and unaltered blood survival, although both pepO and cnm mutants displayed attenuated virulence in G. mellonella. Unlike OMZcnm, OMZpepO could invade HCAEC endothelial cells. Supporting these phenotypes, recombinant proteins rPepO and rCnmA showed specific profiles of binding to C1q, C4BP, and to other plasma (plasminogen, fibronectin) and extracellular matrix proteins (type I collagen, laminin). Therefore this study identifies a novel VicRK/CovR-target required for immune evasion and host persistence, pepO, expanding the roles of VicRK and CovR in regulating S. mutans virulence.
Collapse
Affiliation(s)
- Lívia A. Alves
- Department of Oral Diagnosis, Piracicaba Dental School – State University of Campinas, Piracicaba, SP, Brazil
| | - Tridib Ganguly
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Érika N. Harth-Chú
- Department of Oral Diagnosis, Piracicaba Dental School – State University of Campinas, Piracicaba, SP, Brazil
| | - Jessica Kajfasz
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - José A. Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Jacqueline Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Renata O. Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School – State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
11
|
Brouwer S, Barnett TC, Ly D, Kasper KJ, De Oliveira DMP, Rivera-Hernandez T, Cork AJ, McIntyre L, Jespersen MG, Richter J, Schulz BL, Dougan G, Nizet V, Yuen KY, You Y, McCormick JK, Sanderson-Smith ML, Davies MR, Walker MJ. Prophage exotoxins enhance colonization fitness in epidemic scarlet fever-causing Streptococcus pyogenes. Nat Commun 2020; 11:5018. [PMID: 33024089 PMCID: PMC7538557 DOI: 10.1038/s41467-020-18700-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 09/01/2020] [Indexed: 02/03/2023] Open
Abstract
The re-emergence of scarlet fever poses a new global public health threat. The capacity of North-East Asian serotype M12 (emm12) Streptococcus pyogenes (group A Streptococcus, GAS) to cause scarlet fever has been linked epidemiologically to the presence of novel prophages, including prophage ΦHKU.vir encoding the secreted superantigens SSA and SpeC and the DNase Spd1. Here, we report the molecular characterization of ΦHKU.vir-encoded exotoxins. We demonstrate that streptolysin O (SLO)-induced glutathione efflux from host cellular stores is a previously unappreciated GAS virulence mechanism that promotes SSA release and activity, representing the first description of a thiol-activated bacterial superantigen. Spd1 is required for resistance to neutrophil killing. Investigating single, double and triple isogenic knockout mutants of the ΦHKU.vir-encoded exotoxins, we find that SpeC and Spd1 act synergistically to facilitate nasopharyngeal colonization in a mouse model. These results offer insight into the pathogenesis of scarlet fever-causing GAS mediated by prophage ΦHKU.vir exotoxins.
Collapse
Affiliation(s)
- Stephan Brouwer
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Timothy C Barnett
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Diane Ly
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Katherine J Kasper
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - David M P De Oliveira
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Amanda J Cork
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Liam McIntyre
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Magnus G Jespersen
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Johanna Richter
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Benjamin L Schulz
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Gordon Dougan
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, Hong Kong, China
| | - Yuanhai You
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, 102206, China
| | - John K McCormick
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Martina L Sanderson-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Mark R Davies
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
12
|
Rivera-Hernandez T, Walker MJ. Humanized Plasminogen Mouse Model to Study Group A Streptococcus Invasive Disease. Methods Mol Biol 2020; 2136:309-316. [PMID: 32430832 DOI: 10.1007/978-1-0716-0467-0_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
This chapter presents the methodology to carry out infection of humanized plasminogen mice with Group A Streptococcus (GAS). This model of invasive disease has been widely used within the field to study the virulence of different GAS strains, host-pathogen interactions, the importance of particular virulence factors, and preclinical evaluation of novel treatments and vaccines. The model has shown to be highly reproducible and therefore represents an invaluable tool for GAS research.
Collapse
Affiliation(s)
- Tania Rivera-Hernandez
- Cátedras CONACYT-Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, CDMX, Mexico.
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
13
|
Novel Probiotic Mechanisms of the Oral Bacterium Streptococcus sp. A12 as Explored with Functional Genomics. Appl Environ Microbiol 2019; 85:AEM.01335-19. [PMID: 31420345 DOI: 10.1128/aem.01335-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
Health-associated biofilms in the oral cavity are composed of a diverse group of microbial species that can foster an environment that is less favorable for the outgrowth of dental caries pathogens, like Streptococcus mutans A novel oral bacterium, designated Streptococcus A12, was previously isolated from supragingival dental plaque of a caries-free individual and was shown to interfere potently with the growth and virulence properties of S. mutans In this study, we applied functional genomics to begin to identify molecular mechanisms used by A12 to antagonize, and to resist the antagonistic factors of, S. mutans Using bioinformatics, genes that could encode factors that enhance the ability of A12 to compete with S. mutans were identified. Selected genes, designated potential competitive factors (pcf), were deleted. Certain mutant derivatives showed a reduced capacity to compete with S. mutans compared to that of the parental strain. The A12 pcfO mutant lost the ability to inhibit comX -inducing peptide (XIP) signaling by S. mutans, while mutants with changes in the pcfFEG locus were impaired in sensing of, and were more sensitive to, the lantibiotic nisin. Loss of PcfV, annotated as a colicin V biosynthetic protein, resulted in diminished antagonism of S. mutans Collectively, the data provide new insights into the complexities and variety of factors that affect biofilm ecology and virulence. Continued exploration of the genomic and physiological factors that distinguish commensals from truly beneficial members of the oral microbiota will lead to a better understanding of the microbiome and new approaches to promote oral health.IMPORTANCE Advances in defining the composition of health-associated biofilms have highlighted the important role of beneficial species in maintaining health. Comparatively little, however, has been done to address the genomic and physiological bases underlying the probiotic mechanisms of beneficial commensals. In this study, we explored the ability of a novel oral bacterial isolate, Streptococcus A12, to compete with the dental pathogen Streptococcus mutans using various gene products with diverse functions. A12 displayed enhanced competitiveness by (i) disrupting intercellular communication pathways of S. mutans, (ii) sensing and resisting antimicrobial peptides, and (iii) producing factors involved in the production of a putative antimicrobial compound. Research on the probiotic mechanisms employed by Streptococcus A12 is providing essential insights into how beneficial bacteria may help maintain oral health, which will aid in the development of biomarkers and therapeutics that can improve the practice of clinical dentistry.
Collapse
|
14
|
Freydlin IS, Starikova EA, Lebedeva AM. Overcoming the protective functions of macrophages by Streptococcus pyogenes virulence factors. BULLETIN OF SIBERIAN MEDICINE 2019. [DOI: 10.20538/1682-0363-2019-1-109-118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The review is devoted to the analysis of molecular mechanisms of action ofS. pyogenesvirulence factors aimed at overcoming the protective functions of macrophages. The review describes in detail the main protective functions of macrophages and the mechanisms of their implementation in the course of streptococcal infection. The virulence factors ofS. pyogenes,which prevent the recruitment of macrophages to the site of infection, are examined. Particular attention is paid to the analysis of molecular effects that suppress the pathogen by the process of phagocytosis, intracellular bactericidal activity and the production of cytokines by macrophages. The analysis of molecular genetic mechanisms of regulation of the expression ofS. pyogenesvirulence factors that provide adaptation of the pathogen to changing conditions in the site of inflammation is carried out.
Collapse
Affiliation(s)
- I. S. Freydlin
- Institute of Experimental Medicine; Pavlov First Saint Petersburg State Medical University
| | | | | |
Collapse
|
15
|
Gogos A, Federle MJ. Modeling Streptococcus pyogenes Pharyngeal Colonization in the Mouse. Front Cell Infect Microbiol 2019; 9:137. [PMID: 31119108 PMCID: PMC6507483 DOI: 10.3389/fcimb.2019.00137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pyogenes, or Group A Streptococcus (GAS), is a human-restricted pathogen most commonly found in the posterior oropharynx of the human host. The bacterium is responsible for 600 million annual cases of pharyngitis globally and has been found to asymptomatically colonize the pharynxes of 4-30% of the population. As such, many studies have utilized animals as models in order to decipher bacterial and host elements that contribute to the bacterial-pharyngeal interaction and determine differences between acute infection and asymptomatic colonization. The aim of this review is to first describe both bacterial and host factors that are important for the pharyngeal persistence of GAS in humans, then to detail the bacterial and host factors that are important for colonization in murine model, and finally to compare the two in order to evaluate the strength of murine pharyngeal colonization as a model for the human-GAS pharyngeal interaction.
Collapse
Affiliation(s)
- Artemis Gogos
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States
| | - Michael J. Federle
- Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
16
|
Zhu L, Olsen RJ, Beres SB, Eraso JM, Saavedra MO, Kubiak SL, Cantu CC, Jenkins L, Charbonneau ARL, Waller AS, Musser JM. Gene fitness landscape of group A streptococcus during necrotizing myositis. J Clin Invest 2019; 129:887-901. [PMID: 30667377 PMCID: PMC6355216 DOI: 10.1172/jci124994] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
Necrotizing fasciitis and myositis are devastating infections characterized by high mortality. Group A streptococcus (GAS) is a common cause of these infections, but the molecular pathogenesis is poorly understood. We report a genome-wide analysis using serotype M1 and M28 strains that identified GAS genes contributing to necrotizing myositis in nonhuman primates (NHP), a clinically relevant model. Using transposon-directed insertion-site sequencing (TraDIS), we identified 126 and 116 GAS genes required for infection by serotype M1 and M28 organisms, respectively. For both M1 and M28 strains, more than 25% of the GAS genes required for necrotizing myositis encode known or putative transporters. Thirteen GAS transporters contributed to both M1 and M28 strain fitness in NHP myositis, including putative importers for amino acids, carbohydrates, and vitamins and exporters for toxins, quorum-sensing peptides, and uncharacterized molecules. Targeted deletion of genes encoding 5 transporters confirmed that each isogenic mutant strain was significantly (P < 0.05) impaired in causing necrotizing myositis in NHPs. Quantitative reverse-transcriptase PCR (qRT-PCR) analysis showed that these 5 genes are expressed in infected NHP and human skeletal muscle. Certain substrate-binding lipoproteins of these transporters, such as Spy0271 and Spy1728, were previously documented to be surface exposed, suggesting that our findings have translational research implications.
Collapse
Affiliation(s)
- Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Randall J. Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Stephen B. Beres
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Jesus M. Eraso
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Samantha L. Kubiak
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Concepcion C. Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Leslie Jenkins
- Department of Comparative Medicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Amelia R. L. Charbonneau
- Animal Health Trust, Newmarket, Suffolk, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - James M. Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
17
|
Laabei M, Ermert D. Catch Me if You Can: Streptococcus pyogenes Complement Evasion Strategies. J Innate Immun 2018; 11:3-12. [PMID: 30269134 DOI: 10.1159/000492944] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/16/2018] [Indexed: 12/27/2022] Open
Abstract
The human host has evolved elaborate protection mechanisms to prevent infection from the billions of microorganisms to which it host is exposed and is home. One of these systems, complement, is an evolutionary ancient arm of innate immunity essential for combatting bacterial infection. Complement permits the efficient labelling of bacteria with opsonins, supports phagocytosis, and facilitates phagocyte recruitment to the site of infection through the production of chemoattractants. However, it is by no means perfect, and certain organisms engage in an evolutionary arms race with the host where complement has become a major target to promote immune evasion. Streptococcus pyogenes is a major human pathogen that causes significant morbidity and mortality globally. S. pyogenes is also a member of an elite group of bacterial pathogens possessing a sophisticated arsenal of virulence determinants capable of interfering with complement. In this review, we focus on these complement evasins, their mechanism of action, and their importance in disease progression. Finally, we highlight new therapeutic options for fighting S. pyogenes, by interfering with one of its main mechanisms of complement evasion.
Collapse
|