1
|
Zang Z, Zhang C, Park KJ, Schwartz DA, Podicheti R, Lennon JT, Gerdt JP. Streptomyces secretes a siderophore that sensitizes competitor bacteria to phage infection. Nat Microbiol 2025:10.1038/s41564-024-01910-8. [PMID: 39779880 DOI: 10.1038/s41564-024-01910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
To overtake competitors, microbes produce and secrete secondary metabolites that kill neighbouring cells and sequester nutrients. This metabolite-mediated competition probably evolved in complex microbial communities in the presence of viral pathogens. We therefore hypothesized that microbes secrete natural products that make competitors sensitive to phage infection. We used a binary-interaction screen and chemical characterization to identify a secondary metabolite (coelichelin) produced by Streptomyces sp. that sensitizes its soil competitor Bacillus subtilis to phage infection in vitro. The siderophore coelichelin sensitized B. subtilis to a panel of lytic phages (SPO1, SP10, SP50, Goe2) via iron sequestration, which prevented the activation of B. subtilis Spo0A, the master regulator of the stationary phase and sporulation. Metabolomics analysis revealed that other bacterial natural products may also provide phage-mediated competitive advantages to their producers. Overall, this work reveals that synergy between natural products and phages can shape the outcomes of competition between microbes.
Collapse
Affiliation(s)
- Zhiyu Zang
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Chengqian Zhang
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Kyoung Jin Park
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | | | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Joseph P Gerdt
- Department of Chemistry, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
2
|
Harms M, Michalik S, Hildebrandt P, Schaffer M, Gesell Salazar M, Gerth U, Mäder U, van Dijl JM, Hecker M, Völker U, Reder A. Activation of the general stress response sigma factor SigB prevents competence development in Bacillus subtilis. mBio 2024; 15:e0227424. [PMID: 39470193 PMCID: PMC11633097 DOI: 10.1128/mbio.02274-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Seemingly simple bacteria mount intricate adaptive responses when exposed to physical stress or nutrient limitation, and the activation of these responses is governed by complex signal transduction networks. Upon entry into the stationary growth phase, the soil bacterium Bacillus subtilis may develop natural competence, form biofilms or stress-resistant cells, or ultimately trigger a cellular differentiation program leading to spore formation. Master regulators, such as Spo0A, ComK, SinR, and SigB, constantly monitor the bacterium's environment and then determine appropriate adaptive responses. Here, we show that exposure of B. subtilis to visible light and other stresses triggers a general stress response-dependent block in competence development. SigB serves as an "emergency system" to silence inappropriate expression of an alternative developmental program in the face of unfavorable conditions. In particular, we document a stress-dependent molecular mechanism that prevents accumulation of the central competence regulator ComK via expression of a SigB-driven antisense RNA (as-comK, S365) which is part of a noncontiguous operon. IMPORTANCE Bacillus subtilis exhibits a large number of different specific and general adaptation reactions, which need to be well balanced to sustain survival under largely unfavorable conditions. Under specific conditions, natural competence develops, which enables B. subtilis to actively take up exogenous DNA to integrate it into its own genome. In contrast to this specific adaptation, the general stress response is induced by a variety of exogenous stress and starvation stimuli, providing comprehensive protection and enabling survival of vegetative B. subtilis cells. In the present work, we reveal the molecular basis for the interconnection of these two important responses in the regulatory network. We describe that the master regulator of the general stress response SigB is activated by physiological stress stimuli, including daylight and ethanol stress, leading to the inactivation of the competence master regulator ComK by transcriptional anti-sense regulation, showing a strict hierarchy of adaptational responses under severe stress.
Collapse
Affiliation(s)
- Marco Harms
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Stephan Michalik
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Petra Hildebrandt
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Marc Schaffer
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Manuela Gesell Salazar
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Ulf Gerth
- University of Greifswald, Center for Functional Genomics of Microbes, Institute of Microbiology, Greifswald, Germany
| | - Ulrike Mäder
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michael Hecker
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
- University of Greifswald, Center for Functional Genomics of Microbes, Institute of Microbiology, Greifswald, Germany
| | - Uwe Völker
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Alexander Reder
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| |
Collapse
|
3
|
Zhu M, Wang Y, Mu H, Han F, Wang Q, Pei Y, Wang X, Dai X. Plasmid-encoded phosphatase RapP enhances cell growth in non-domesticated Bacillus subtilis strains. Nat Commun 2024; 15:9567. [PMID: 39500898 PMCID: PMC11538241 DOI: 10.1038/s41467-024-53992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
The trade-off between rapid growth and other important physiological traits (e.g., survival and adaptability) poses a fundamental challenge for microbes to achieve fitness maximization. Studies on Bacillus subtilis biology often use strains derived after a process of lab 'domestication' from an ancestral strain known as Marburg strain. The domestication process led to loss of a large plasmid (pBS32) encoding a phosphatase (RapP) that dephosphorylates the Spo0F protein and thus regulates biofilm formation and sporulation. Here, we show that plasmid pBS32, and more specifically rapP, enhance growth rates by preventing premature expression of the Spo0F-Spo0A-mediated adaptive response during exponential phase. This results in reallocation of proteome resources towards biosynthetic, growth-promoting pathways without compromising long-term fitness during stationary phase. Thus, RapP helps B. subtilis to constrain physiological trade-offs and economize cellular resources for fitness improvement.
Collapse
Affiliation(s)
- Manlu Zhu
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Yiheng Wang
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Haoyan Mu
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Fei Han
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Qian Wang
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Yongfu Pei
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Xin Wang
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Xiongfeng Dai
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China.
| |
Collapse
|
4
|
Burton AT, Zeinert R, Storz G. Large Roles of Small Proteins. Annu Rev Microbiol 2024; 78:1-22. [PMID: 38772630 DOI: 10.1146/annurev-micro-112723-083001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Bacterial proteins of ≤50 amino acids, denoted small proteins or microproteins, have been traditionally understudied and overlooked, as standard computational, biochemical, and genetic approaches often do not detect proteins of this size. However, with the realization that small proteins are stably expressed and have important cellular roles, there has been increased identification of small proteins in bacteria and eukaryotes. Gradually, the functions of a few of these small proteins are being elucidated. Many interact with larger protein products to modulate their subcellular localization, stabilities, or activities. Here, we provide an overview of these diverse functions in bacteria, highlighting generalities among bacterial small proteins and similarly sized proteins in eukaryotic organisms and discussing questions for future research.
Collapse
Affiliation(s)
- Aisha T Burton
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| | - Rilee Zeinert
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| |
Collapse
|
5
|
Li Y, Cao X, Chai Y, Chen R, Zhao Y, Borriss R, Ding X, Wu X, Ye J, Hao D, He J, Wang G, Cao M, Jiang C, Han Z, Fan B. A phosphate starvation induced small RNA promotes Bacillus biofilm formation. NPJ Biofilms Microbiomes 2024; 10:115. [PMID: 39472585 PMCID: PMC11522486 DOI: 10.1038/s41522-024-00586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 10/13/2024] [Indexed: 11/02/2024] Open
Abstract
Currently, almost all known regulators involved in bacterial phosphorus metabolism are proteins. In this study, we identified a conserved new small regulatory RNA (sRNA), named PhoS, encoded in the 3' untranslated region (UTR) of the phoPR genes in Bacillus velezensis and B. subtilis. Expression of phoS is strongly induced upon phosphorus scarcity and stimulated by the transcription factor PhoP. Conversely, PhoS positively regulates PhoP translation by binding to the ribosome binding site (RBS) of phoP mRNA. PhoS can promote Bacillus biofilm formation through, at least in part, enhancing the expression of the matrix-related genes, such as the eps genes and the tapA-sipW-tasA operon. The positive regulation of phoP expression by PhoS contributes to the promoting effect of PhoS on biofilm formation. sRNAs regulating biofilm formation have rarely been reported in gram-positive Bacillus species. Here we highlight the significance of sRNAs involved in two important biological processes: phosphate metabolism and biofilm formation.
Collapse
Affiliation(s)
- Yulong Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
- School of Agriculture, Ningxia University, Ningxia, China
| | - Xianming Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, USA
| | - Ruofu Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Yinjuan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Rainer Borriss
- Institut für Biologie, Humboldt Universität Berlin, Berlin, Germany
| | - Xiaolei Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Xiaoqin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Jianren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Dejun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China.
| | - Jian He
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Guibin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Mingmin Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Chunliang Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Zhengmin Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
6
|
Lander SM, Fisher G, Everett BA, Tran P, Prindle A. Secreted nucleases reclaim extracellular DNA during biofilm development. NPJ Biofilms Microbiomes 2024; 10:103. [PMID: 39375363 PMCID: PMC11458576 DOI: 10.1038/s41522-024-00575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
DNA is the genetic code found inside all living cells and its molecular stability can also be utilized outside the cell. While extracellular DNA (eDNA) has been identified as a structural polymer in bacterial biofilms, whether it persists stably throughout development remains unclear. Here, we report that eDNA is temporarily invested in the biofilm matrix before being reclaimed later in development. Specifically, by imaging eDNA dynamics within undomesticated Bacillus subtilis biofilms, we found eDNA is produced during biofilm establishment before being globally degraded in a spatiotemporally coordinated pulse. We identified YhcR, a secreted Ca2+-dependent nuclease, as responsible for eDNA degradation in pellicle biofilms. YhcR cooperates with two other nucleases, NucA and NucB, to reclaim eDNA for its phosphate content in colony biofilms. Our results identify extracellular nucleases that are crucial for eDNA reclamation during biofilm development and we therefore propose a new role for eDNA as a dynamic metabolic reservoir.
Collapse
Affiliation(s)
- Stephen M Lander
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, 60611, IL, USA
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, 60611, IL, USA
| | - Garth Fisher
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Blake A Everett
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Peter Tran
- Center for Synthetic Biology, Northwestern University, Evanston, 60208, IL, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, 60208, IL, USA
| | - Arthur Prindle
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, 60611, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, 60208, IL, USA.
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, 60208, IL, USA.
- Department of Microbiology-Immunology, Feinberg School of Medicine, Chicago, 60611, IL, USA.
- Chan Zuckerberg Biohub Chicago, Chicago, IL, 60642, USA.
| |
Collapse
|
7
|
Povolotsky TL, Levy Barazany H, Shacham Y, Kolodkin-Gal I. Bacterial epigenetics and its implication for agriculture, probiotics development, and biotechnology design. Biotechnol Adv 2024; 75:108414. [PMID: 39019123 DOI: 10.1016/j.biotechadv.2024.108414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
In their natural habitats, organisms encounter numerous external stimuli and must be able to sense and adapt to those stimuli to survive. Unlike mutations, epigenetic changes do not alter the underlying DNA sequence. Instead, they create modifications that promote or silence gene expression. Bacillus subtilis has long been a model organism in studying genetics and development. It is beneficial for numerous biotechnological applications where it is included as a probiotic, in fermentation, or in bio-concrete design. This bacterium has also emerged recently as a model organism for studying bacterial epigenetic adaptation. In this review, we examine the evolving knowledge of epigenetic regulation (restriction-modification systems (RM), orphan methyltransferases, and chromosome condensation) in B. subtilis and related bacteria, and utilize it as a case study to test their potential roles and future applications in genetic engineering and microbial biotechnology. Finally, we suggest how the implementation of these fundamental findings promotes the design of synthetic epigenetic memory circuits and their future applications in agriculture, medicine, and biotechnology.
Collapse
Affiliation(s)
- Tatyana L Povolotsky
- Institute for Chemistry and Biochemistry, Physical and Theoretical Chemistry, Freie Universität Berlin, Altensteinstraße 23A, 14195 Berlin, Germany
| | - Hilit Levy Barazany
- Scojen Institute for Synthetic Biology, Reichman University, Hauniversita 8, Herzeliya, Israel
| | - Yosi Shacham
- Scojen Institute for Synthetic Biology, Reichman University, Hauniversita 8, Herzeliya, Israel
| | - Ilana Kolodkin-Gal
- Scojen Institute for Synthetic Biology, Reichman University, Hauniversita 8, Herzeliya, Israel.
| |
Collapse
|
8
|
Leistikow KR, May DS, Suh WS, Vargas Asensio G, Schaenzer AJ, Currie CR, Hristova KR. Bacillus subtilis-derived peptides disrupt quorum sensing and biofilm assembly in multidrug-resistant Staphylococcus aureus. mSystems 2024; 9:e0071224. [PMID: 38990088 PMCID: PMC11334493 DOI: 10.1128/msystems.00712-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 07/12/2024] Open
Abstract
Multidrug-resistant Staphylococcus aureus is one of the most clinically important pathogens in the world, with infections leading to high rates of morbidity and mortality in both humans and animals. The ability of S. aureus to form biofilms protects cells from antibiotics and promotes the transfer of antibiotic resistance genes; therefore, new strategies aimed at inhibiting biofilm growth are urgently needed. Probiotic species, including Bacillus subtilis, are gaining interest as potential therapies against S. aureus for their ability to reduce S. aureus colonization and virulence. Here, we search for strains and microbially derived compounds with strong antibiofilm activity against multidrug-resistant S. aureus by isolating and screening Bacillus strains from a variety of agricultural environments. From a total of 1,123 environmental isolates, we identify a single strain B. subtilis 6D1, with a potent ability to inhibit biofilm growth, disassemble mature biofilm, and improve antibiotic sensitivity of S. aureus biofilms through an Agr quorum sensing interference mechanism. Biochemical and molecular networking analysis of an active organic fraction revealed multiple surfactin isoforms, and an uncharacterized peptide was driving this antibiofilm activity. Compared with commercial high-performance liquid chromatography grade surfactin obtained from B. subtilis, we show these B. subtilis 6D1 peptides are significantly better at inhibiting biofilm formation in all four S. aureus Agr backgrounds and preventing S. aureus-induced cytotoxicity when applied to HT29 human intestinal cells. Our study illustrates the potential of exploring microbial strain diversity to discover novel antibiofilm agents that may help combat multidrug-resistant S. aureus infections and enhance antibiotic efficacy in clinical and veterinary settings. IMPORTANCE The formation of biofilms by multidrug-resistant bacterial pathogens, such as Staphylococcus aureus, increases these microorganisms' virulence and decreases the efficacy of common antibiotic regimens. Probiotics possess a variety of strain-specific strategies to reduce biofilm formation in competing organisms; however, the mechanisms and compounds responsible for these phenomena often go uncharacterized. In this study, we identified a mixture of small probiotic-derived peptides capable of Agr quorum sensing interference as one of the mechanisms driving antibiofilm activity against S. aureus. This collection of peptides also improved antibiotic killing and protected human gut epithelial cells from S. aureus-induced toxicity by stimulating an adaptive cytokine response. We conclude that purposeful strain screening and selection efforts can be used to identify unique probiotic strains that possess specially desired mechanisms of action. This information can be used to further improve our understanding of the ways in which probiotic and probiotic-derived compounds can be applied to prevent bacterial infections or improve bacterial sensitivity to antibiotics in clinical and agricultural settings.
Collapse
Affiliation(s)
- Kyle R. Leistikow
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Daniel S. May
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, Washington College, Chestertown, Maryland, USA
| | - Won Se Suh
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Adam J. Schaenzer
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
9
|
Rosazza T, Earl C, Eigentler L, Davidson FA, Stanley-Wall NR. Reciprocal sharing of extracellular proteases and extracellular matrix molecules facilitates Bacillus subtilis biofilm formation. Mol Microbiol 2024; 122:184-200. [PMID: 38922753 DOI: 10.1111/mmi.15288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Extracellular proteases are a class of public good that support growth of Bacillus subtilis when nutrients are in a polymeric form. Bacillus subtilis biofilm matrix molecules are another class of public good that are needed for biofilm formation and are prone to exploitation. In this study, we investigated the role of extracellular proteases in B. subtilis biofilm formation and explored interactions between different public good producer strains across various conditions. We confirmed that extracellular proteases support biofilm formation even when glutamic acid provides a freely available nitrogen source. Removal of AprE from the NCIB 3610 secretome adversely affects colony biofilm architecture, while sole induction of WprA activity into an otherwise extracellular protease-free strain is sufficient to promote wrinkle development within the colony biofilm. We found that changing the nutrient source used to support growth affected B. subtilis biofilm structure, hydrophobicity and architecture. We propose that the different phenotypes observed may be due to increased protease dependency for growth when a polymorphic protein presents the sole nitrogen source. We however cannot exclude that the phenotypic changes are due to alternative matrix molecules being made. Co-culture of biofilm matrix and extracellular protease mutants can rescue biofilm structure, yet reliance on extracellular proteases for growth influences population coexistence dynamics. Our findings highlight the intricate interplay between these two classes of public goods, providing insights into microbial social dynamics during biofilm formation across different ecological niches.
Collapse
Affiliation(s)
- Thibault Rosazza
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Chris Earl
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Lukas Eigentler
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
- Mathematics, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Fordyce A Davidson
- Mathematics, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Nicola R Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
10
|
Smith DR, Kearns DB, Burton BM. ComI inhibits transformation in Bacillus subtilis by selectively killing competent cells. J Bacteriol 2024; 206:e0041323. [PMID: 38874341 PMCID: PMC11270867 DOI: 10.1128/jb.00413-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Many bacteria build elaborate molecular machines to import DNA via natural competence, yet this activity is often not identified until strains have been handled and domesticated in laboratory settings. For example, one of the best studied Gram-positive model organisms, Bacillus subtilis, has a poorly transformable ancestor. Transformation in the ancestral strain is inhibited by a transmembrane peptide, ComI, which is encoded on an extrachromosomal plasmid. Although ComI was shown to be necessary and sufficient to inhibit transformation when produced at high levels under an inducible promoter, the mechanism by which ComI inhibits transformation is unknown. Here, we examine the native regulation and mechanism of transformation inhibition by ComI. We find that under native regulation, ComI expression is restricted in the absence of the plasmid. In the presence of the plasmid, we find that ComI is expressed at higher levels in cells that are differentiating into a competent state. The subcellular localization of ComI, however, does not depend on any other competence proteins, and permeabilization activity is concentration-dependent. Time-lapse microscopy reveals that competent cells producing ComI are first permeabilized and then die. Based on these observations, we propose a new model for the mechanism of ComI in which response to competence activation leads to selective elimination of the competent subpopulation. IMPORTANCE Natural transformation mechanisms have been studied across several bacterial systems, but few examples of inhibition exist. This work investigates the mechanism of action of a plasmid-encoded transmembrane inhibitor of natural transformation. The data reveal that the peptide can cause cell permeabilization. Permeabilization is synergistic with entry of Bacillus subtilis into the "competent" state, such that cells with the ability to be transformed are preferentially killed. These findings reveal a self-preservation mechanism coupled to the physiological state of the cells that ensures that the population can maintain an unaltered plasmid and its predicted prophage.
Collapse
Affiliation(s)
- Dominique R. Smith
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Briana M. Burton
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Fernandez NL, Simmons LA. Two distinct regulatory systems control pulcherrimin biosynthesis in Bacillus subtilis. PLoS Genet 2024; 20:e1011283. [PMID: 38753885 PMCID: PMC11135676 DOI: 10.1371/journal.pgen.1011283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/29/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Regulation of transcription is a fundamental process that allows bacteria to respond to external stimuli with appropriate timing and magnitude of response. In the soil bacterium Bacillus subtilis, transcriptional regulation is at the core of developmental processes needed for cell survival. Gene expression in cells transitioning from exponential phase to stationary phase is under the control of a group of transcription factors called transition state regulators (TSRs). TSRs influence numerous developmental processes including the decision between biofilm formation and motility, genetic competence, and sporulation, but the extent to which TSRs influence bacterial physiology remains to be fully elucidated. Here, we demonstrate two TSRs, ScoC and AbrB, along with the MarR-family transcription factor PchR negatively regulate production of the iron chelator pulcherrimin in B. subtilis. Genetic analysis of the relationship between the three transcription factors indicate that all are necessary to limit pulcherrimin production during exponential phase and influence the rate and total amount of pulcherrimin produced. Similarly, expression of the pulcherrimin biosynthesis gene yvmC was found to be under control of ScoC, AbrB, and PchR and correlated with the amount of pulcherrimin produced by each background. Lastly, our in vitro data indicate a weak direct role for ScoC in controlling pulcherrimin production along with AbrB and PchR. The layered regulation by two distinct regulatory systems underscores the important role for pulcherrimin in B. subtilis physiology.
Collapse
Affiliation(s)
- Nicolas L. Fernandez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
12
|
Mabesoone MF, Leopold-Messer S, Minas HA, Chepkirui C, Chawengrum P, Reiter S, Meoded RA, Wolf S, Genz F, Magnus N, Piechulla B, Walker AS, Piel J. Evolution-guided engineering of trans-acyltransferase polyketide synthases. Science 2024; 383:1312-1317. [PMID: 38513027 PMCID: PMC11260071 DOI: 10.1126/science.adj7621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
Bacterial multimodular polyketide synthases (PKSs) are giant enzymes that generate a wide range of therapeutically important but synthetically challenging natural products. Diversification of polyketide structures can be achieved by engineering these enzymes. However, notwithstanding successes made with textbook cis-acyltransferase (cis-AT) PKSs, tailoring such large assembly lines remains challenging. Unlike textbook PKSs, trans-AT PKSs feature an extraordinary diversity of PKS modules and commonly evolve to form hybrid PKSs. In this study, we analyzed amino acid coevolution to identify a common module site that yields functional PKSs. We used this site to insert and delete diverse PKS parts and create 22 engineered trans-AT PKSs from various pathways and in two bacterial producers. The high success rates of our engineering approach highlight the broader applicability to generate complex designer polyketides.
Collapse
Affiliation(s)
- Mathijs F.J. Mabesoone
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Stefan Leopold-Messer
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Hannah A. Minas
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Clara Chepkirui
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Pornsuda Chawengrum
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
- Chemical Biology Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Silke Reiter
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Roy A. Meoded
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Sarah Wolf
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Ferdinand Genz
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Nancy Magnus
- Institute for Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | - Birgit Piechulla
- Institute for Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | - Allison S. Walker
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37240, United States
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue S, Nashville, Tennesee 37232, United States
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
- Lead contact
| |
Collapse
|
13
|
Tran P, Lander SM, Prindle A. Active pH regulation facilitates Bacillus subtilis biofilm development in a minimally buffered environment. mBio 2024; 15:e0338723. [PMID: 38349175 PMCID: PMC10936434 DOI: 10.1128/mbio.03387-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 03/14/2024] Open
Abstract
Biofilms provide individual bacteria with many advantages, yet dense cellular proliferation can also create intrinsic metabolic challenges including excessive acidification. Because such pH stress can be masked in buffered laboratory media-such as MSgg commonly used to study Bacillus subtilis biofilms-it is not always clear how such biofilms cope with minimally buffered natural environments. Here, we report how B. subtilis biofilms overcome this intrinsic metabolic challenge through an active pH regulation mechanism. Specifically, we find that these biofilms can modulate their extracellular pH to the preferred neutrophile range, even when starting from acidic and alkaline initial conditions, while planktonic cells cannot. We associate this behavior with dynamic interplay between acetate and acetoin biosynthesis and show that this mechanism is required to buffer against biofilm acidification. Furthermore, we find that buffering-deficient biofilms exhibit dysregulated biofilm development when grown in minimally buffered conditions. Our findings reveal an active pH regulation mechanism in B. subtilis biofilms that could lead to new targets to control unwanted biofilm growth.IMPORTANCEpH is known to influence microbial growth and community dynamics in multiple bacterial species and environmental contexts. Furthermore, in many bacterial species, rapid cellular proliferation demands the use of overflow metabolism, which can often result in excessive acidification. However, in the case of bacterial communities known as biofilms, these acidification challenges can be masked when buffered laboratory media are employed to stabilize the pH environment for optimal growth. Our study reveals that B. subtilis biofilms use an active pH regulation mechanism to mitigate both growth-associated acidification and external pH challenges. This discovery provides new opportunities for understanding microbial communities and could lead to new methods for controlling biofilm growth outside of buffered laboratory conditions.
Collapse
Affiliation(s)
- Peter Tran
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Stephen M Lander
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Arthur Prindle
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
14
|
Mishra A, Hughes AC, Amon JD, Rudner DZ, Wang X, Kearns DB. SwrA-mediated Multimerization of DegU and an Upstream Activation Sequence Enhance Flagellar Gene Expression in Bacillus subtilis. J Mol Biol 2024; 436:168419. [PMID: 38141873 PMCID: PMC11462632 DOI: 10.1016/j.jmb.2023.168419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
The earliest genes in bacterial flagellar assembly are activated by narrowly-conserved proteins called master regulators that often act as heteromeric complexes. A complex of SwrA and the response-regulator transcription factor DegU is thought to form the master flagellar regulator in Bacillus subtilis but how the two proteins co-operate to activate gene expression is poorly-understood. Here we find using ChIP-Seq that SwrA interacts with a subset of DegU binding sites in the chromosome and does so in a DegU-dependent manner. Using this information, we identify a DegU-specific inverted repeat DNA sequence in the Pflache promoter region and show that SwrA synergizes with DegU phosphorylation to increase binding affinity. We further demonstrate that the SwrA/DegU footprint extends from the DegU binding site towards the promoter, likely through SwrA-induced DegU multimerization. The location of the DegU inverted repeat was critical and moving the binding site closer to the promoter impaired transcription by disrupting a previously-unrecognized upstream activation sequence (UAS). Thus, the SwrA-DegU heteromeric complex likely enables both remote binding and interaction between the activator and RNA polymerase. Small co-activator proteins like SwrA may allow selective activation of subsets of genes where activator multimerization is needed. Why some promoters require activator multimerization and some require UAS sequences is unknown.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Biology, Indiana University, Bloomington, IN 47408, USA
| | - Anna C Hughes
- Department of Biology, Indiana University, Bloomington, IN 47408, USA
| | - Jeremy D Amon
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN 47408, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, IN 47408, USA.
| |
Collapse
|
15
|
Zang Z, Zhang C, Park KJ, Schwartz DA, Podicheti R, Lennon JT, Gerdt JP. Bacterium secretes chemical inhibitor that sensitizes competitor to bacteriophage infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578241. [PMID: 38352521 PMCID: PMC10862869 DOI: 10.1101/2024.01.31.578241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
To overtake competitors, microbes produce and secrete secondary metabolites that kill neighboring cells and sequester nutrients. This natural product-mediated competition likely evolved in complex microbial communities that included viral pathogens. From this ecological context, we hypothesized that microbes secrete metabolites that "weaponize" natural pathogens (i.e., bacteriophages) to lyse their competitors. Indeed, we discovered a bacterial secondary metabolite that sensitizes other bacteria to phage infection. We found that this metabolite provides the producer (a Streptomyces sp.) with a fitness advantage over its competitor (Bacillus subtilis) by promoting phage infection. The phage-promoting metabolite, coelichelin, sensitized B. subtilis to a wide panel of lytic phages, and it did so by preventing the early stages of sporulation through iron sequestration. Beyond coelichelin, other natural products may provide phage-mediated competitive advantages to their producers-either by inhibiting sporulation or through yet-unknown mechanisms.
Collapse
Affiliation(s)
- Zhiyu Zang
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Chengqian Zhang
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kyoung Jin Park
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | | | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Jay T. Lennon
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Joseph P. Gerdt
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
16
|
Mitchell SL, Kearns DB, Carlson EE. Penicillin-binding protein redundancy in Bacillus subtilis enables growth during alkaline shock. Appl Environ Microbiol 2024; 90:e0054823. [PMID: 38126750 PMCID: PMC10807460 DOI: 10.1128/aem.00548-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Penicillin-binding proteins (PBPs) play critical roles in cell wall construction, cell shape maintenance, and bacterial replication. Bacteria maintain a diversity of PBPs, indicating that despite their apparent functional redundancy, there is differentiation across the PBP family. Apparently-redundant proteins can be important for enabling an organism to cope with environmental stressors. In this study, we evaluated the consequence of environmental pH on PBP enzymatic activity in Bacillus subtilis. Our data show that a subset of PBPs in B. subtilis change activity levels during alkaline shock and that one PBP isoform is rapidly modified to generate a smaller protein (i.e., PBP1a to PBP1b). Our results indicate that a subset of the PBPs are favored for growth under alkaline conditions, while others are readily dispensable. Indeed, we found that this phenomenon could also be observed in Streptococcus pneumoniae, implying that it may be generalizable across additional bacterial species and further emphasizing the evolutionary benefit of maintaining many, seemingly-redundant periplasmic enzymes.IMPORTANCEMicrobes adapt to ever-changing environments and thrive over a vast range of conditions. While bacterial genomes are relatively small, significant portions encode for "redundant" functions. Apparent redundancy is especially pervasive in bacterial proteins that reside outside of the inner membrane. While conditions within the cytoplasm are carefully controlled, those of the periplasmic space are largely determined by the cell's exterior environment. As a result, proteins within this environmentally exposed region must be capable of functioning under a vast array of conditions, and/or there must be several similar proteins that have evolved to function under a variety of conditions. This study examines the activity of a class of enzymes that is essential in cell wall construction to determine if individual proteins might be adapted for activity under particular growth conditions. Our results indicate that a subset of these proteins are preferred for growth under alkaline conditions, while others are readily dispensable.
Collapse
Affiliation(s)
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Erin E. Carlson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
- Departments of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
17
|
Fernandez NL, Simmons LA. Two Distinct Regulatory Systems Control Pulcherrimin Biosynthesis in Bacillus subtilis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574033. [PMID: 38260623 PMCID: PMC10802322 DOI: 10.1101/2024.01.03.574033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Regulation of transcription is a fundamental process that allows bacteria to respond to external stimuli with appropriate timing and magnitude of response. In the soil bacterium Bacillus subtilis, transcriptional regulation is at the core of developmental processes needed for cell survival. Gene expression in cells transitioning from exponential phase to stationary phase is under the control of a group of transcription factors called transition state regulators (TSRs). TSRs influence numerous developmental processes including the decision between biofilm formation and motility, genetic competence, and sporulation, but the extent to which TSRs influence bacterial physiology remains to be fully elucidated. Here, we demonstrate two TSRs, ScoC and AbrB, along with the MerR-family transcription factor PchR negatively regulate production of the iron chelator pulcherrimin in B. subtilis. Genetic analysis of the relationship between the three transcription factors indicate that all are necessary to limit pulcherrimin production during exponential phase and influence the rate and total amount of pulcherrimin produced. Similarly, expression of the pulcherrimin biosynthesis gene yvmC was found to be under control of ScoC, AbrB, and PchR and correlated with the amount of pulcherrimin produced by each background. Lastly, our in vitro data indicate a weak direct role for ScoC in controlling pulcherrimin production along with AbrB and PchR. The layered regulation by two distinct regulatory systems underscores the important, and somewhat enigmatic, role for pulcherrimin in B. subtilis physiology.
Collapse
Affiliation(s)
- Nicolas L. Fernandez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
18
|
Dergham Y, Le Coq D, Bridier A, Sanchez-Vizuete P, Jbara H, Deschamps J, Hamze K, Yoshida KI, Noirot-Gros MF, Briandet R. Bacillus subtilis NDmed, a model strain for biofilm genetic studies. Biofilm 2023; 6:100152. [PMID: 37694162 PMCID: PMC10485040 DOI: 10.1016/j.bioflm.2023.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/20/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
The Bacillus subtilis strain NDmed was isolated from an endoscope washer-disinfector in a medical environment. NDmed can form complex macrocolonies with highly wrinkled architectural structures on solid medium. In static liquid culture, it produces thick pellicles at the interface with air as well as remarkable highly protruding ''beanstalk-like'' submerged biofilm structures at the solid surface. Since these mucoid submerged structures are hyper-resistant to biocides, NDmed has the ability to protect pathogens embedded in mixed-species biofilms by sheltering them from the action of these agents. Additionally, this non-domesticated and highly biofilm forming strain has the propensity of being genetically manipulated. Due to all these properties, the NDmed strain becomes a valuable model for the study of B. subtilis biofilms. This review focuses on several studies performed with NDmed that have highlighted the sophisticated genetic dynamics at play during B. subtilis biofilm formation. Further studies in project using modern molecular tools of advanced technologies with this strain, will allow to deepen our knowledge on the emerging properties of multicellular bacterial life.
Collapse
Affiliation(s)
- Yasmine Dergham
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Lebanese University, Faculty of Science, 1003 Beirut, Lebanon
| | - Dominique Le Coq
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, Anses, 35300, Fougères, France
| | - Pilar Sanchez-Vizuete
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Hadi Jbara
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Julien Deschamps
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Kassem Hamze
- Lebanese University, Faculty of Science, 1003 Beirut, Lebanon
| | - Ken-ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
19
|
Jeckel H, Nosho K, Neuhaus K, Hastewell AD, Skinner DJ, Saha D, Netter N, Paczia N, Dunkel J, Drescher K. Simultaneous spatiotemporal transcriptomics and microscopy of Bacillus subtilis swarm development reveal cooperation across generations. Nat Microbiol 2023; 8:2378-2391. [PMID: 37973866 PMCID: PMC10686836 DOI: 10.1038/s41564-023-01518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
Development of microbial communities is a complex multiscale phenomenon with wide-ranging biomedical and ecological implications. How biological and physical processes determine emergent spatial structures in microbial communities remains poorly understood due to a lack of simultaneous measurements of gene expression and cellular behaviour in space and time. Here we combined live-cell microscopy with a robotic arm for spatiotemporal sampling, which enabled us to simultaneously acquire phenotypic imaging data and spatiotemporal transcriptomes during Bacillus subtilis swarm development. Quantitative characterization of the spatiotemporal gene expression patterns revealed correlations with cellular and collective properties, and phenotypic subpopulations. By integrating these data with spatiotemporal metabolome measurements, we discovered a spatiotemporal cross-feeding mechanism fuelling swarm development: during their migration, earlier generations deposit metabolites which are consumed by later generations that swarm across the same location. These results highlight the importance of spatiotemporal effects during the emergence of phenotypic subpopulations and their interactions in bacterial communities.
Collapse
Affiliation(s)
- Hannah Jeckel
- Biozentrum, University of Basel, Basel, Switzerland
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Kazuki Nosho
- Biozentrum, University of Basel, Basel, Switzerland
| | - Konstantin Neuhaus
- Biozentrum, University of Basel, Basel, Switzerland
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Alasdair D Hastewell
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dominic J Skinner
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, USA
| | - Dibya Saha
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Knut Drescher
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
20
|
Burton AT, Pospíšilová D, Sudzinova P, Snider EV, Burrage AM, Krásný L, Kearns DB. The alternative sigma factor SigN of Bacillus subtilis is intrinsically toxic. J Bacteriol 2023; 205:e0011223. [PMID: 37728605 PMCID: PMC10601692 DOI: 10.1128/jb.00112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/13/2023] [Indexed: 09/21/2023] Open
Abstract
Sigma factors bind and direct the RNA polymerase core to specific promoter sequences, and alternative sigma factors direct transcription of different regulons of genes. Here, we study the pBS32 plasmid-encoded sigma factor SigN of Bacillus subtilis to determine how it contributes to DNA damage-induced cell death. We find that SigN causes cell death when expressed at high levels and does so in the absence of its regulon suggesting it is intrinsically toxic. One way toxicity was relieved was by curing the pBS32 plasmid, which eliminated a positive feedback loop that led to SigN hyper-accumulation. Another way toxicity was relieved was through mutating the chromosomally encoded transcriptional repressor protein AbrB, thereby derepressing a potent antisense transcript that antagonized SigN expression. SigN efficiently competed with the vegetative sigma factor SigA in vitro, and SigN accumulation in the absence of positive feedback reduced SigA-dependent transcription suggesting that toxicity may be due to competitive inhibition of one or more essential transcripts. Why B. subtilis encodes a toxic sigma factor is unclear but SigN may function in host-inhibition during lytic conversion, as phage lysogen genes are also encoded on pBS32. IMPORTANCE Alternative sigma factors activate entire regulons of genes to improve viability in response to environmental stimuli. The pBS32 plasmid-encoded alternative sigma factor SigN of Bacillus subtilis however, is activated by the DNA damage response and leads to cellular demise. Here we find that SigN impairs viability by hyper-accumulating and outcompeting the vegetative sigma factor for the RNA polymerase core. Why B. subtilis retains a plasmid with a deleterious alternative sigma factor is unknown.
Collapse
Affiliation(s)
- Aisha T. Burton
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Debora Pospíšilová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, Prague, Czechia
| | - Petra Sudzinova
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, Prague, Czechia
| | | | - Andrew M. Burrage
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Libor Krásný
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, Prague, Czechia
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
21
|
Belcher LJ, Dewar AE, Hao C, Ghoul M, West SA. Signatures of kin selection in a natural population of the bacteria Bacillus subtilis. Evol Lett 2023; 7:315-330. [PMID: 37829498 PMCID: PMC10565896 DOI: 10.1093/evlett/qrad029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 10/14/2023] Open
Abstract
Laboratory experiments have suggested that bacteria perform a range of cooperative behaviors, which are favored because they are directed toward relatives (kin selection). However, there is a lack of evidence for cooperation and kin selection in natural bacterial populations. Molecular population genetics offers a promising method to study natural populations because the theory predicts that kin selection will lead to relaxed selection, which will result in increased polymorphism and divergence at cooperative genes. Examining a natural population of Bacillus subtilis, we found consistent evidence that putatively cooperative traits have higher polymorphism and greater divergence than putatively private traits expressed at the same rate. In addition, we were able to eliminate alternative explanations for these patterns and found more deleterious mutations in genes controlling putatively cooperative traits. Overall, our results suggest that cooperation is favored by kin selection, with an average relatedness of r = .79 between interacting individuals.
Collapse
Affiliation(s)
| | - Anna E Dewar
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Chunhui Hao
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Melanie Ghoul
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Stuart A West
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Bareia T, Pollak S, Guler P, Puyesky S, Eldar A. Major distinctions between the two oligopeptide permease systems of Bacillus subtilis with respect to signaling, development and evolutionary divergence. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001382. [PMID: 37755230 PMCID: PMC10569065 DOI: 10.1099/mic.0.001382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/02/2023] [Indexed: 09/28/2023]
Abstract
Oligopeptide-permeases (Opps) are used by bacteria to import short peptides. In addition to their metabolic benefit, imported short peptides are used in many Gram-positive bacteria as signalling molecules of the RRNPP super-family of quorum-sensing systems, making Opps an integral part of cell–cell communication. In some Gram-positive bacteria there exist multiple Opps and the relative importance of those to RRNPP quorum sensing are not fully clear. Specifically, in Bacillus subtilis , the Gram-positive model species, there exist two homologous oligopeptide permeases named Opp and App. Previous work showed that the App system is mutated in lab strain 168 and its recovery partially complements an Opp mutation for several developmental processes. Yet, the nature of the impact of App on signalling and development in wild-type strains, where both permeases are active was not studied. Here we re-examine the impact of the two permease systems. We find that App has a minor contribution to biofilm formation, surfactin production and phage infection compared to the effect of Opp. This reduced effect is also reflected in its lower ability to import the signals of four different Rap-Phr RRNPP systems. Further analysis of the App system revealed that, unlike Opp, some App genes have undergone horizontal transfer, resulting in two distinct divergent alleles of this system in B. subtilis strains. We found that both alleles were substantially better adapted than the Opp system to import an exogenous RRNPP signal of the Bacillus cereus group PlcR-PapR system. In summary, we find that the App system has only a minor role in signalling but may still be crucial for the import of other peptides.
Collapse
Affiliation(s)
- Tasneem Bareia
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
- Present address: Department of Plant & Environmental Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Shaul Pollak
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
- Present address: Division of Microbial Ecology, Centre for Microbiology and Environmental Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Polina Guler
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Shani Puyesky
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Avigdor Eldar
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| |
Collapse
|
23
|
Mishra A, Hughes AC, Amon JD, Rudner DZ, Wang X, Kearns DB. SwrA extends DegU over an UP element to activate flagellar gene expression in Bacillus subtilis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552067. [PMID: 37577504 PMCID: PMC10418190 DOI: 10.1101/2023.08.04.552067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
SwrA activates flagellar gene expression in Bacillus subtilis to increase the frequency of motile cells in liquid and elevate flagellar density to enable swarming over solid surfaces. Here we use ChIP-seq to show that SwrA interacts with many sites on the chromosome in a manner that depends on the response regulator DegU. We identify a DegU-specific inverted repeat DNA sequence and show that SwrA synergizes with phosphorylation to increase DegU DNA binding affinity. We further show that SwrA increases the size of the DegU footprint expanding the region bound by DegU towards the promoter. The location of the DegU inverted repeat was critical and moving the binding site closer to the promoter impaired transcription more that could be explained by deactivation. We conclude that SwrA/DegU forms a heteromeric complex that enables both remote binding and interaction between the activator and RNA polymerase in the context of an interceding UP element. We speculate that multimeric activators that resolve cis-element spatial conflicts are common in bacteria and likely act on flagellar biosynthesis loci and other long operons of other multi-subunit complexes. IMPORTANCE In Bacteria, the sigma subunit of RNA polymerase recognizes specific DNA sequences called promoters that determine where gene transcription begins. Some promoters also have sequences immediately upstream called an UP element that is bound by the alpha subunit of RNA polymerase and is often necessary for transcription. Finally, promoters may be activated by transcription factors that bind DNA specific sequences and help recruit RNA polymerase to weak promoter elements. Here we show that the promoter for the 32 gene long flagellar operon in Bacillus subtilis requires an UP element and is activated by a heteromeric transcription factor of DegU and SwrA. Our evidence suggests that SwrA oligomerizes DegU over the DNA to allow RNA polymerase to interact with DegU and the UP element simultaneously. Heteromeric activator complexes are known but poorly-understood in bacteria and we speculate they may be needed to resolve spatial conflicts in the DNA sequence.
Collapse
|
24
|
Rosazza T, Eigentler L, Earl C, Davidson FA, Stanley‐Wall NR. Bacillus subtilis extracellular protease production incurs a context-dependent cost. Mol Microbiol 2023; 120:105-121. [PMID: 37380434 PMCID: PMC10952608 DOI: 10.1111/mmi.15110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
Microbes encounter a wide range of polymeric nutrient sources in various environmental settings, which require processing to facilitate growth. Bacillus subtilis, a bacterium found in the rhizosphere and broader soil environment, is highly adaptable and resilient due to its ability to utilise diverse sources of carbon and nitrogen. Here, we explore the role of extracellular proteases in supporting growth and assess the cost associated with their production. We provide evidence of the essentiality of extracellular proteases when B. subtilis is provided with an abundant, but polymeric nutrient source and demonstrate the extracellular proteases as a shared public good that can operate over a distance. We show that B. subtilis is subjected to a public good dilemma, specifically in the context of growth sustained by the digestion of a polymeric food source. Furthermore, using mathematical simulations, we uncover that this selectively enforced dilemma is driven by the relative cost of producing the public good. Collectively, our findings reveal how bacteria can survive in environments that vary in terms of immediate nutrient accessibility and the consequent impact on the population composition. These findings enhance our fundamental understanding of how bacteria respond to diverse environments, which has importance to contexts ranging from survival in the soil to infection and pathogenesis scenarios.
Collapse
Affiliation(s)
- Thibault Rosazza
- Division of Molecular Microbiology, School of Life ScienceUniversity of DundeeDundeeUK
| | - Lukas Eigentler
- Division of Molecular Microbiology, School of Life ScienceUniversity of DundeeDundeeUK
- Mathematics, School of Science and EngineeringUniversity of DundeeDundeeUK
- Present address:
Evolutionary Biology DepartmentUniversität BielefeldKonsequenz 45Bielefeld33615Germany
| | - Chris Earl
- Division of Molecular Microbiology, School of Life ScienceUniversity of DundeeDundeeUK
| | | | | |
Collapse
|
25
|
Kalamara M, Abbott J, Sukhodub T, MacPhee C, Stanley-Wall NR. The putative role of the epipeptide EpeX in Bacillus subtilis intra-species competition. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001344. [PMID: 37289492 PMCID: PMC7614699 DOI: 10.1099/mic.0.001344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
Bacteria engage in competitive interactions with neighbours that can either be of the same or different species. Multiple mechanisms are deployed to ensure the desired outcome and one tactic commonly implemented is the production of specialised metabolites. The Gram-positive bacterium Bacillus subtilis uses specialized metabolites as part of its intra-species competition determinants to differentiate between kin and non-kin isolates. It is, however, unknown if the collection of specialized metabolites defines competitive fitness when the two isolates start as a close, interwoven community that grows into a densely packed colony biofilm. Moreover, the identity of specialized metabolites that have an active role in defining the outcome of an intra-species interaction has not been revealed. Here, we determine the competition outcomes that manifest when 21 environmental isolates of B. subtilis are individually co-incubated with the model isolate NCIB 3610 in a colony biofilm. We correlated these data with the suite of specialized metabolite biosynthesis clusters encoded by each isolate. We found that the epeXEPAB gene cluster was primarily present in isolates with a strong competitive phenotype. This cluster is responsible for producing the epipeptide EpeX. We demonstrated that EpeX is a competition determinant of B. subtilis in an otherwise isogenic context for NCBI 3610. However, when we competed the NCIB 3610 EpeX-deficient strain against our suite of environmental isolates we found that the impact of EpeX in competition is isolate-specific, as only one of the 21 isolates showed increased survival when EpeX was lacking. Taken together, we have shown that EpeX is a competition determinant used by B. subtilis that impacts intra-species interactions but only in an isolate-specific manner.
Collapse
Affiliation(s)
- Margarita Kalamara
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD5 4EH, UK
| | - James Abbott
- Data Analysis Group, Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD5 4EH, UK
| | - Tetyana Sukhodub
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD5 4EH, UK
| | - Cait MacPhee
- National Biofilms Innovation Centre, School of Physics & Astronomy, University of Edinburgh, EH9 3FD Edinburgh, UK
| | - Nicola R. Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD5 4EH, UK
| |
Collapse
|
26
|
Cheng YY, Chen Z, Cao X, Ross TD, Falbel TG, Burton BM, Venturelli OS. Programming bacteria for multiplexed DNA detection. Nat Commun 2023; 14:2001. [PMID: 37037805 PMCID: PMC10086068 DOI: 10.1038/s41467-023-37582-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/23/2023] [Indexed: 04/12/2023] Open
Abstract
DNA is a universal and programmable signal of living organisms. Here we develop cell-based DNA sensors by engineering the naturally competent bacterium Bacillus subtilis (B. subtilis) to detect specific DNA sequences in the environment. The DNA sensor strains can identify diverse bacterial species including major human pathogens with high specificity. Multiplexed detection of genomic DNA from different species in complex samples can be achieved by coupling the sensing mechanism to orthogonal fluorescent reporters. We also demonstrate that the DNA sensors can detect the presence of species in the complex samples without requiring DNA extraction. The modularity of the living cell-based DNA-sensing mechanism and simple detection procedure could enable programmable DNA sensing for a wide range of applications.
Collapse
Affiliation(s)
- Yu-Yu Cheng
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhengyi Chen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Xinyun Cao
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Tyler D Ross
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Tanya G Falbel
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Briana M Burton
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
27
|
Mitchell SL, Kearns DB, Carlson EE. Penicillin-binding protein redundancy in Bacillus subtilis enables growth during alkaline shock. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533529. [PMID: 36993441 PMCID: PMC10055284 DOI: 10.1101/2023.03.20.533529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Penicillin-binding proteins (PBPs) play critical roles in cell wall construction, cell shape, and bacterial replication. Bacteria maintain a diversity of PBPs, indicating that despite their apparent functional redundancy, there is differentiation across the PBP family. Seemingly redundant proteins can be important for enabling an organism to cope with environmental stressors. We sought to evaluate the consequence of environmental pH on PBP enzymatic activity in Bacillus subtilis. Our data show that a subset of B. subtilis PBPs change activity levels during alkaline shock and that one PBP isoform is rapidly modified to generate a smaller protein (i.e., PBP1a to PBP1b). Our results indicate that a subset of the PBPs are preferred for growth under alkaline conditions, while others are readily dispensable. Indeed, we found that this phenomenon could also be observed in Streptococcus pneumoniae, implying that it may be generalizable across additional bacterial species and further emphasizing the evolutionary benefit of maintaining many, seemingly redundant periplasmic enzymes.
Collapse
Affiliation(s)
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Erin E. Carlson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Departments of Medicinal Chemistry, Biochemistry, Molecular Biology and Biophysics, and Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
28
|
Cheng YY, Zhou Z, Papadopoulos JM, Zuke JD, Falbel TG, Anantharaman K, Burton BM, Venturelli OS. Efficient plasmid transfer via natural competence in a microbial co-culture. Mol Syst Biol 2023; 19:e11406. [PMID: 36714980 PMCID: PMC9996237 DOI: 10.15252/msb.202211406] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
The molecular and ecological factors shaping horizontal gene transfer (HGT) via natural transformation in microbial communities are largely unknown, which is critical for understanding the emergence of antibiotic-resistant pathogens. We investigate key factors shaping HGT in a microbial co-culture by quantifying extracellular DNA release, species growth, and HGT efficiency over time. In the co-culture, plasmid release and HGT efficiency are significantly enhanced than in the respective monocultures. The donor is a key determinant of HGT efficiency as plasmids induce the SOS response, enter a multimerized state, and are released in high concentrations, enabling efficient HGT. However, HGT is reduced in response to high donor lysis rates. HGT is independent of the donor viability state as both live and dead cells transfer the plasmid with high efficiency. In sum, plasmid HGT via natural transformation depends on the interplay of plasmid properties, donor stress responses and lysis rates, and interspecies interactions.
Collapse
Affiliation(s)
- Yu-Yu Cheng
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - James M Papadopoulos
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, USA
| | - Jason D Zuke
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Tanya G Falbel
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | | | - Briana M Burton
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin, Madison, WI, USA.,Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
29
|
The Slowdown of Growth Rate Controls the Single-Cell Distribution of Biofilm Matrix Production via an SinI-SinR-SlrR Network. mSystems 2023; 8:e0062222. [PMID: 36786593 PMCID: PMC10134886 DOI: 10.1128/msystems.00622-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
In Bacillus subtilis, master regulator Spo0A controls several cell-differentiation pathways. Under moderate starvation, phosphorylated Spo0A (Spo0A~P) induces biofilm formation by indirectly activating genes controlling matrix production in a subpopulation of cells via an SinI-SinR-SlrR network. Under severe starvation, Spo0A~P induces sporulation by directly and indirectly regulating sporulation gene expression. However, what determines the heterogeneity of individual cell fates is not fully understood. In particular, it is still unclear why, despite being controlled by a single master regulator, biofilm matrix production and sporulation seem mutually exclusive on a single-cell level. In this work, with mathematical modeling, we showed that the fluctuations in the growth rate and the intrinsic noise amplified by the bistability in the SinI-SinR-SlrR network could explain the single-cell distribution of matrix production. Moreover, we predicted an incoherent feed-forward loop; the decrease in the cellular growth rate first activates matrix production by increasing in Spo0A phosphorylation level but then represses it via changing the relative concentrations of SinR and SlrR. Experimental data provide evidence to support model predictions. In particular, we demonstrate how the degree to which matrix production and sporulation appear mutually exclusive is affected by genetic perturbations. IMPORTANCE The mechanisms of cell-fate decisions are fundamental to our understanding of multicellular organisms and bacterial communities. However, even for the best-studied model systems we still lack a complete picture of how phenotypic heterogeneity of genetically identical cells is controlled. Here, using B. subtilis as a model system, we employ a combination of mathematical modeling and experiments to explain the population-level dynamics and single-cell level heterogeneity of matrix gene expression. The results demonstrate how the two cell fates, biofilm matrix production and sporulation, can appear mutually exclusive without explicitly inhibiting one another. Such a mechanism could be used in a wide range of other biological systems.
Collapse
|
30
|
Podnar E, Erega A, Danevčič T, Kovačec E, Lories B, Steenackers H, Mandic-Mulec I. Nutrient Availability and Biofilm Polysaccharide Shape the Bacillaene-Dependent Antagonism of Bacillus subtilis against Salmonella Typhimurium. Microbiol Spectr 2022; 10:e0183622. [PMID: 36342318 PMCID: PMC9769773 DOI: 10.1128/spectrum.01836-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Salmonella enterica is one of the most common foodborne pathogens and, due to the spread of antibiotic resistance, new antimicrobial strategies are urgently needed to control it. In this study, we explored the probiotic potential of Bacillus subtilis PS-216 and elucidated the mechanisms that underlie the interactions between this soil isolate and the model pathogenic strain S. Typhimurium SL1344. The results reveal that B. subtilis PS-216 inhibits the growth and biofilm formation of S. Typhimurium through the production of the pks cluster-dependent polyketide bacillaene. The presence of S. Typhimurium enhanced the activity of the PpksC promoter that controls bacillaene production, suggesting that B. subtilis senses and responds to Salmonella. The level of Salmonella inhibition, overall PpksC activity, and PpksC induction by Salmonella were all higher in nutrient-rich conditions than in nutrient-depleted conditions. Although eliminating the extracellular polysaccharide production of B. subtilis via deletion of the epsA-O operon had no significant effect on inhibitory activity against Salmonella in nutrient-rich conditions, this deletion mutant showed an enhanced antagonism against Salmonella in nutrient-depleted conditions, revealing an intricate relationship between exopolysaccharide production, nutrient availability, and bacillaene synthesis. Overall, this work provides evidence on the regulatory role of nutrient availability, sensing of the competitor, and EpsA-O polysaccharide in the social outcome of bacillaene-dependent competition between B. subtilis and S. Typhimurium. IMPORTANCE Probiotic bacteria represent an alternative for controlling foodborne disease caused by Salmonella enterica, which constitutes a serious concern during food production due to its antibiotic resistance and resilience to environmental stress. Bacillus subtilis is gaining popularity as a probiotic, but its behavior in biofilms with pathogens such as Salmonella remains to be elucidated. Here, we show that the antagonism of B. subtilis is mediated by the polyketide bacillaene and that the production of bacillaene is a highly dynamic trait which depends on environmental factors such as nutrient availability and the presence of competitors. Moreover, the production of extracellular polysaccharides by B. subtilis further alters the influence of these factors. Hence, this work highlights the inhibitory effect of B. subtilis, which is condition-dependent, and the importance of evaluating probiotic strains under conditions relevant to the intended use.
Collapse
Affiliation(s)
- Eli Podnar
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andi Erega
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tjaša Danevčič
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Kovačec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Bram Lories
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Hans Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Ines Mandic-Mulec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Chair of Microprocess Engineering and Technology (COMPETE), University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
31
|
Feng RY, Chen YH, Lin C, Tsai CH, Yang YL, Chen YL. Surfactin secreted by Bacillus amyloliquefaciens Ba01 is required to combat Streptomyces scabies causing potato common scab. FRONTIERS IN PLANT SCIENCE 2022; 13:998707. [PMID: 36388520 PMCID: PMC9664162 DOI: 10.3389/fpls.2022.998707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Potato common scab, which is mainly caused by the bacterium Streptomyces scabies, occurs in key potato growing regions worldwide. It causes necrotic or corky symptoms on potato tubers and decreases the economic value of potato. At present, there is no recommended chemical or biological control for combating potato common scab in Taiwan. It can only reduce the occurrence by cultivation control, but the efficacy is limited. Previously we found that Bacillus amyloliquefaciens Ba01 could control potato common scab in pot assay and in the field. The potential anti-S. scabies mechanism was associated with surfactin secretion, but further molecular dissection was not conducted. Thus, in this study we aimed to determine whether surfactin is the main compound active against S. scabies by knocking out the srf gene cluster in Ba01. The cloning plasmid pRY1 was transformed to Ba01 by electroporation for in-frame deletion. Two independent Δsrf mutants were obtained and confirmed by specific primers and mass spectrometry. The swarming ability and S. scabies inhibition was significantly decreased (P<0.001) in Δsrf mutants. The swarming ability of Δsrf mutants could be restored by the addition of surfactin. Furthermore, we found that Ba01 formed wrinkled biofilm in MSgg liquid medium, while Δsrf mutants formed biofilm abnormally. Furthermore, the α-amylase, protease and phosphate-solubilizing ability of Δsrf mutants was decreased, and the mutants could not inhibit the growth and sporulation of S. scabies on potato tuber slices. In conclusion, srf gene cluster of B. amyloliquefaciens Ba01 is responsible for the secretion of surfactin and inhibition of S. scabies.
Collapse
Affiliation(s)
- Ru-Ying Feng
- Master Program for Plant Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsuan Chen
- Master Program for Plant Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chia-Hsin Tsai
- Plant Pathology Division, Taiwan Agricultural Research Institute, Taichung, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ying-Lien Chen
- Master Program for Plant Medicine, National Taiwan University, Taipei, Taiwan
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
32
|
Arjes HA, Gui H, Porter R, Atolia E, Peters JM, Gross C, Kearns DB, Huang KC. Fatty Acid Synthesis Knockdown Promotes Biofilm Wrinkling and Inhibits Sporulation in Bacillus subtilis. mBio 2022; 13:e0138822. [PMID: 36069446 PMCID: PMC9600695 DOI: 10.1128/mbio.01388-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
Many bacterial species typically live in complex three-dimensional biofilms, yet much remains unknown about differences in essential processes between nonbiofilm and biofilm lifestyles. Here, we created a CRISPR interference (CRISPRi) library of knockdown strains covering all known essential genes in the biofilm-forming Bacillus subtilis strain NCIB 3610 and investigated growth, biofilm colony wrinkling, and sporulation phenotypes of the knockdown library. First, we showed that gene essentiality is largely conserved between liquid and surface growth and between two media. Second, we quantified biofilm colony wrinkling using a custom image analysis algorithm and found that fatty acid synthesis and DNA gyrase knockdown strains exhibited increased wrinkling independent of biofilm matrix gene expression. Third, we designed a high-throughput screen to quantify sporulation efficiency after essential gene knockdown; we found that partial knockdowns of essential genes remained competent for sporulation in a sporulation-inducing medium, but knockdown of essential genes involved in fatty acid synthesis exhibited reduced sporulation efficiency in LB, a medium with generally lower levels of sporulation. We conclude that a subset of essential genes are particularly important for biofilm structure and sporulation/germination and suggest a previously unappreciated and multifaceted role for fatty acid synthesis in bacterial lifestyles and developmental processes. IMPORTANCE For many bacteria, life typically involves growth in dense, three-dimensional communities called biofilms that contain cells with differentiated roles held together by extracellular matrix. To examine how essential gene function varies between vegetative growth and the developmental states of biofilm formation and sporulation, we created and screened a comprehensive library of strains using CRISPRi to knockdown expression of each essential gene in the biofilm-capable Bacillus subtilis strain 3610. High-throughput assays and computational algorithms identified a subset of essential genes involved in biofilm wrinkling and sporulation and indicated that fatty acid synthesis plays important and multifaceted roles in bacterial development.
Collapse
Affiliation(s)
- Heidi A. Arjes
- Department of Bioengineering, Stanford University School of Medicine, Stanford, California, USA
| | - Haiwen Gui
- Department of Bioengineering, Stanford University School of Medicine, Stanford, California, USA
| | - Rachel Porter
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | - Esha Atolia
- Department of Bioengineering, Stanford University School of Medicine, Stanford, California, USA
| | - Jason M. Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Carol Gross
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
33
|
Haudiquet M, de Sousa JM, Touchon M, Rocha EPC. Selfish, promiscuous and sometimes useful: how mobile genetic elements drive horizontal gene transfer in microbial populations. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210234. [PMID: 35989606 PMCID: PMC9393566 DOI: 10.1098/rstb.2021.0234] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Horizontal gene transfer (HGT) drives microbial adaptation but is often under the control of mobile genetic elements (MGEs) whose interests are not necessarily aligned with those of their hosts. In general, transfer is costly to the donor cell while potentially beneficial to the recipients. The diversity and plasticity of cell–MGEs interactions, and those among MGEs, result in complex evolutionary processes where the source, or even the existence of selection for maintaining a function in the genome, is often unclear. For example, MGE-driven HGT depends on cell envelope structures and defense systems, but many of these are transferred by MGEs themselves. MGEs can spur periods of intense gene transfer by increasing their own rates of horizontal transmission upon communicating, eavesdropping, or sensing the environment and the host physiology. This may result in high-frequency transfer of host genes unrelated to the MGE. Here, we review how MGEs drive HGT and how their transfer mechanisms, selective pressures and genomic traits affect gene flow, and therefore adaptation, in microbial populations. The encoding of many adaptive niche-defining microbial traits in MGEs means that intragenomic conflicts and alliances between cells and their MGEs are key to microbial functional diversification. This article is part of a discussion meeting issue ‘Genomic population structures of microbial pathogens’.
Collapse
Affiliation(s)
- Matthieu Haudiquet
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Jorge Moura de Sousa
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Marie Touchon
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| |
Collapse
|
34
|
Engelhardt IC, Patko D, Liu Y, Mimault M, de Las Heras Martinez G, George TS, MacDonald M, Ptashnyk M, Sukhodub T, Stanley-Wall NR, Holden N, Daniell TJ, Dupuy LX. Novel form of collective movement by soil bacteria. THE ISME JOURNAL 2022; 16:2337-2347. [PMID: 35798939 PMCID: PMC9478162 DOI: 10.1038/s41396-022-01277-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 04/16/2023]
Abstract
Although migrations are essential for soil microorganisms to exploit scarce and heterogeneously distributed resources, bacterial mobility in soil remains poorly studied due to experimental limitations. In this study, time-lapse images collected using live microscopy techniques captured collective and coordinated groups of B. subtilis cells exhibiting "crowd movement". Groups of B. subtilis cells moved through transparent soil (nafion polymer with particle size resembling sand) toward plant roots and re-arranged dynamically around root tips in the form of elongating and retracting "flocks" resembling collective behaviour usually associated with higher organisms (e.g., bird flocks or fish schools). Genetic analysis reveals B. subtilis flocks are likely driven by the diffusion of extracellular signalling molecules (e.g., chemotaxis, quorum sensing) and may be impacted by the physical obstacles and hydrodynamics encountered in the soil like environment. Our findings advance understanding of bacterial migration through soil matrices and expand known behaviours for coordinated bacterial movement.
Collapse
Affiliation(s)
- I C Engelhardt
- Ecological Sciences, The James Hutton Institute, Dundee, UK
- Department of Conservation of Natural Resources, Neiker, Bilbao, Spain
| | - D Patko
- Ecological Sciences, The James Hutton Institute, Dundee, UK
- Department of Conservation of Natural Resources, Neiker, Bilbao, Spain
| | - Y Liu
- Ecological Sciences, The James Hutton Institute, Dundee, UK
- ICS, The James Hutton Institute, Dundee, UK
| | - M Mimault
- ICS, The James Hutton Institute, Dundee, UK
| | | | - T S George
- Ecological Sciences, The James Hutton Institute, Dundee, UK
| | - M MacDonald
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - M Ptashnyk
- School of Mathematical & Computer Sciences, Heriot-Watt University, Edinburgh, UK
| | - T Sukhodub
- School of Life Sciences, University of Dundee, Dundee, UK
| | | | - N Holden
- Ecological Sciences, The James Hutton Institute, Dundee, UK
- North Faculty, Scotland's Rural College, Aberdeen, UK
| | - T J Daniell
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - L X Dupuy
- Ecological Sciences, The James Hutton Institute, Dundee, UK.
- Department of Conservation of Natural Resources, Neiker, Bilbao, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
35
|
Jautzus T, van Gestel J, Kovács ÁT. Complex extracellular biology drives surface competition during colony expansion in Bacillus subtilis. THE ISME JOURNAL 2022; 16:2320-2328. [PMID: 35790818 PMCID: PMC9477810 DOI: 10.1038/s41396-022-01279-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 04/29/2023]
Abstract
Many bacteria grow on surfaces in nature, where they form cell collectives that compete for space. Within these collectives, cells often secrete molecules that benefit surface spreading by, for example, reducing surface tension or promoting filamentous growth. Although we have a detailed understanding of how these molecules are produced, much remains unknown about their role in surface competition. Here we examine sliding motility in Bacillus subtilis and compare how secreted molecules, essential for sliding, affect intraspecific cooperation and competition on a surface. We specifically examine (i) the lipopeptide surfactin, (ii) the hydrophobin protein BslA, and (iii) exopolysaccharides (EPS). We find that these molecules have a distinct effect on surface competition. Whereas surfactin acts like a common good, which is costly to produce and benefits cells throughout the surface, BslA and EPS are cost-free and act locally. Accordingly, surfactin deficient mutants can exploit the wild-type strain in competition for space, while BslA and EPS mutants cannot. Supported by a mathematical model, we show that three factors are important in predicting the outcome of surface competition: the costs of molecule synthesis, the private benefits of molecule production, and the diffusion rate. Our results underscore the intricate extracellular biology that can drive bacterial surface competition.
Collapse
Affiliation(s)
- Theresa Jautzus
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Jordi van Gestel
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Ákos T Kovács
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, 07743, Jena, Germany.
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
36
|
Giammarinaro PI, Young MKM, Steinchen W, Mais CN, Hochberg G, Yang J, Stevenson DM, Amador-Noguez D, Paulus A, Wang JD, Bange G. Diadenosine tetraphosphate regulates biosynthesis of GTP in Bacillus subtilis. Nat Microbiol 2022; 7:1442-1452. [PMID: 35953658 PMCID: PMC10439310 DOI: 10.1038/s41564-022-01193-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022]
Abstract
Diadenosine tetraphosphate (Ap4A) is a putative second messenger molecule that is conserved from bacteria to humans. Nevertheless, its physiological role and the underlying molecular mechanisms are poorly characterized. We investigated the molecular mechanism by which Ap4A regulates inosine-5'-monophosphate dehydrogenase (IMPDH, a key branching point enzyme for the biosynthesis of adenosine or guanosine nucleotides) in Bacillus subtilis. We solved the crystal structure of BsIMPDH bound to Ap4A at a resolution of 2.45 Å to show that Ap4A binds to the interface between two IMPDH subunits, acting as the glue that switches active IMPDH tetramers into less active octamers. Guided by these insights, we engineered mutant strains of B. subtilis that bypass Ap4A-dependent IMPDH regulation without perturbing intracellular Ap4A pools themselves. We used metabolomics, which suggests that these mutants have a dysregulated purine, and in particular GTP, metabolome and phenotypic analysis, which shows increased sensitivity of B. subtilis IMPDH mutant strains to heat compared with wild-type strains. Our study identifies a central role for IMPDH in remodelling metabolism and heat resistance, and provides evidence that Ap4A can function as an alarmone.
Collapse
Affiliation(s)
- Pietro I Giammarinaro
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Megan K M Young
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Wieland Steinchen
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Christopher-Nils Mais
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Georg Hochberg
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jin Yang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Anja Paulus
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Gert Bange
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany.
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
37
|
Nordgaard M, Blake C, Maróti G, Hu G, Wang Y, Strube ML, Kovács ÁT. Experimental evolution of Bacillus subtilis on Arabidopsis thaliana roots reveals fast adaptation and improved root colonization. iScience 2022; 25:104406. [PMID: 35663012 PMCID: PMC9157203 DOI: 10.1016/j.isci.2022.104406] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/22/2022] [Accepted: 05/05/2022] [Indexed: 12/16/2022] Open
Abstract
Bacillus subtilis is known to promote plant growth and protect plants against disease. B. subtilis rapidly adapts to Arabidopsis thaliana root colonization, as evidenced by improved root colonizers already after 12 consecutive transfers between seedlings in a hydroponic setup. Re-sequencing of single evolved isolates and endpoint populations revealed mutations in genes related to different bacterial traits, in accordance with evolved isolates displaying increased root colonization associated with robust biofilm formation in response to the plant polysaccharide xylan and impaired motility. Interestingly, evolved isolates suffered a fitness disadvantage in a non-selective environment, demonstrating an evolutionary cost of adaptation to the plant root. Finally, increased root colonization by an evolved isolate was also demonstrated in the presence of resident soil microbes. Our findings highlight how a plant growth-promoting rhizobacterium rapidly adapts to an ecologically relevant environment and reveal evolutionary consequences that are fundamental to consider when evolving strains for biocontrol purposes. Bacillus subtilis shows fast adaptation to Arabidopsis thaliana roots in a hydroponic setup Evolved isolates exhibit robust biofilms in response to xylan and impaired motility Adaptation to A. thaliana roots is accompanied by an evolutionary cost An evolved isolate shows higher root colonization in the presence of soil bacteria
Collapse
Affiliation(s)
- Mathilde Nordgaard
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Christopher Blake
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network (ELKH), 6726 Szeged, Hungary
| | - Guohai Hu
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.,China National GeneBank, BGI-Shenzhen, 518120 Shenzhen, China
| | - Yue Wang
- China National GeneBank, BGI-Shenzhen, 518120 Shenzhen, China.,BGI-Beijing, BGI-Shenzhen, 100101 Beijing, China
| | - Mikael Lenz Strube
- Bacterial Ecophysiology and Biotechnology Group, DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
38
|
Probing the growth and mechanical properties of Bacillus subtilis biofilms through genetic mutation strategies. Synth Syst Biotechnol 2022; 7:965-971. [PMID: 35756965 PMCID: PMC9194759 DOI: 10.1016/j.synbio.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
Bacterial communities form biofilms on various surfaces by synthesizing a cohesive and protective extracellular matrix, and these biofilms protect microorganisms against harsh environmental conditions. Bacillus subtilis is a widely used experimental species, and its biofilms are used as representative models of beneficial biofilms. Specifically, B. subtilis biofilms are known to be rich in extracellular polymeric substances (EPS) and other biopolymers such as DNA and proteins like the amyloid protein TasA and the hydrophobic protein BslA. These materials, which form an interconnected, cohesive, three-dimensional polymer network, provide the mechanical stability of biofilms and mediate their adherence to surfaces among other functional contributions. Here, we explored how genetically-encoded components specifically contribute to regulate the growth status, mechanical properties, and antibiotic resistance of B. subtilis biofilms, thereby establishing a solid empirical basis for understanding how various genetic engineering efforts are likely to affect the structure and function of biofilms. We noted discrete contributions to biofilm morphology, mechanical properties, and survival from major biofilm components such as EPS, TasA and BslA. For example, EPS plays an important role in maintaining the stability of the mechanical properties and the antibiotic resistance of biofilms, whereas BslA has a significant impact on the resolution that can be obtained for printing applications. This work provides a deeper understanding of the internal interactions of biofilm components through systematic genetic manipulations. It thus not only broadens the application prospects of beneficial biofilms, but also serves as the basis of future strategies for targeting and effectively removing harmful biofilms.
Collapse
|
39
|
Jeong DE, Kim MS, Kim HR, Choi SK. Cell Factory Engineering of Undomesticated Bacillus Strains Using a Modified Integrative and Conjugative Element for Efficient Plasmid Delivery. Front Microbiol 2022; 13:802040. [PMID: 35558120 PMCID: PMC9086855 DOI: 10.3389/fmicb.2022.802040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/14/2022] [Indexed: 11/29/2022] Open
Abstract
A large number of Bacillus strains have been isolated from various environments and many of them have great potential as cell factories. However, they have been rarely developed as cell factories due to their poor transformation efficiency. In this study, we developed a highly efficient plasmid delivery system for undomesticated Bacillus strains using a modified integrative and conjugative element (MICE), which was designed to be activated by an inducer, prevent self-transfer, and deliver desired plasmids to the recipient cells. The MICE system was demonstrated to successfully introduce a gfp-containing plasmid into all 41 undomesticated Bacillus subtilis strains tested and eight other Bacillus species. The MICE was used to deliver a cytosine base editor (CBE)-based multiplex genome-editing tool for the cell factory engineering of the Bacillus species. The introduced CBE enabled one-step inactivation of the major extracellular protease genes of the tested strains. The engineered strains were used as hosts for heterologous expression of nattokinase, which resulted in various enzyme expression levels. The results suggested that the MICE and CBE systems can be powerful tools for genetic engineering of undomesticated Bacillus strains, and greatly contribute to the expansion of the Bacillus cell factory.
Collapse
Affiliation(s)
- Da-Eun Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Man Su Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, South Korea
| | - Ha-Rim Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Soo-Keun Choi
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
40
|
Holtrup S, Graumann PL. Strain-dependent motility defects and suppression by a flhO mutation for B. subtilis bactofilins. BMC Res Notes 2022; 15:168. [PMID: 35562765 PMCID: PMC9103452 DOI: 10.1186/s13104-022-06048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/24/2022] [Indexed: 11/22/2022] Open
Abstract
Objective Bactofilins can assemble into polymeric structures and play important roles in cell shape maintenance, chromosome segregation and motility. Bacillus subtilis bactofilins BacE and BacF were shown to be important for swimming motility in strain PY79, and single gene deletions were reported to be lethal, in contrast to a double bacEF deletion. Results Extending this work, we show that motility defects vary between different B. subtilis strains, with strain 168 showing no defect in motility, and 3610 showing delayed induction of swimming. Generation of single gene deletions in PY79 was possible by transferring corresponding deletions from 168. In the natural isolate 3610, gene deletions also showed a negative effect on biofilm formation, revealing an additional function for BacE and BacF. A spontaneous arising suppressor mutation in PY79 was mapped to the flhO gene, a constituent of the flagellum, which obtained an 18 amino acid extension at its C-terminus. Our findings show that bactofilin gene deletions lead to different motility phenotypes dependent on the strain background, and affect biofilm formation in the natural isolate 3610. Our data reinforce the idea of a connection between bactofilins and motion via the flagellum, and suggest that they operate in a switch like manner. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-06048-6.
Collapse
Affiliation(s)
- Sven Holtrup
- SYNMIKRO, Zentrum Für Synthetische Mikrobiologie, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany.,Fachbereich Chemie, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Peter L Graumann
- SYNMIKRO, Zentrum Für Synthetische Mikrobiologie, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany. .,Fachbereich Chemie, Hans-Meerwein-Straße 4, 35032, Marburg, Germany.
| |
Collapse
|
41
|
Tn
FLXopen
: Markerless Transposons for Functional Fluorescent Fusion Proteins and Protein Interaction Prediction. Microbiol Spectr 2022; 10:e0242821. [PMID: 35499319 PMCID: PMC9241775 DOI: 10.1128/spectrum.02428-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fluorescence microscopy of cells expressing proteins translationally linked to a fluorophore can be a powerful tool to investigate protein localization dynamics in vivo. One major obstacle to reliably analyze biologically relevant localization is the construction of a fusion protein that is both fluorescent and functional. Here, we develop a strategy to construct fluorescent fusions at theoretically any location in the protein by using TnFLXopen random transposon mutagenesis to randomly insert a gene encoding a fluorescent protein. Moreover, insertions within a target gene are enriched by an inducible gene-trap strategy and selection by fluorescence activated cell sorting. Using this approach, we isolate a variety of fluorescent fusions to FtsZ that exhibit ring-like localization and a fusion to the flagellar stator protein that both is functional for supporting motility and localizes as fluorescent puncta. Finally, we further modify TnFLXopen to insert the coding sequence for the C-terminal half of mVenus for use in bimolecular fluorescence complementation (BiFC) and the in vivo detection of protein-protein interaction candidates. As proof-of-concept, the DivIVA polar scaffolding protein was fused to the N terminus of mVenus, the C terminus of mVenus was delivered by transposition, and a combination of fluorescence activated cell sorter (FACS) sorting and whole-genome sequencing identified the known self-interaction of DivIVA as well as other possible candidate interactors. We suggest that the FACS selection is a viable alternative to antibiotic selection in transposon mutagenesis that can generate new fluorescent tools for in vivo protein characterization. IMPORTANCE Transposon mutagenesis is a powerful tool for random mutagenesis, as insertion of a transposon and accompanying antibiotic resistance cassette often disrupt gene function. Here, we present a series of transposons with fluorescent protein genes which, when integrated in frame, may be selected with a fluorescence activated cell sorter (FACS). An open reading frame runs continuously through the transposon such that fluorescent protein fusions may be inserted theoretically anywhere in the primary sequence and potentially preserve function of the target protein. Finally, the transposons were further modified to randomly insert a partial fluorescent protein compatible with bimolecular fluorescence complementation (BiFC) to identify protein interaction candidates.
Collapse
|
42
|
Deol R, Louis A, Glazer HL, Hosseinion W, Bagley A, Chandrangsu P. Poly-Gamma-Glutamic Acid Secretion Protects Bacillus subtilis from Zinc and Copper Intoxication. Microbiol Spectr 2022; 10:e0132921. [PMID: 35311566 PMCID: PMC9045300 DOI: 10.1128/spectrum.01329-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/11/2022] [Indexed: 11/20/2022] Open
Abstract
Zinc and copper are essential micronutrients that serve as a cofactors for numerous enzymes. However, when present at elevated concentrations, zinc and copper are highly toxic to bacteria. To combat the effects of zinc and copper excess, bacteria have evolved a wide array of defense mechanisms. Here, we show that the Gram-positive soil bacterium, Bacillus subtilis, produces the extracellular polymeric substance, poly-gamma-glutamate (γ-PGA) as a protective mechanism in response to zinc and copper excess. Furthermore, we provide evidence that zinc and copper dependent γ-PGA production is independent of the DegS-DegQ two-component regulatory system and likely occurs at a posttranscriptional level through the small protein, PgsE. These data provide new insight into bacterial metal resistance mechanisms and contribute to our understanding of the regulation of bacterial γ-PGA biosynthesis. IMPORTANCE Zinc and copper are potent antimicrobial compounds. As such, bacteria have evolved a diverse range of tools to prevent metal intoxication. Here, we show that the Gram-positive model organism, Bacillus subtilis, produces poly-gamma-glutamic acid (γ-PGA) as a protective mechanism against zinc and copper intoxication and that zinc and copper dependent γ-PGA production occurs by a yet undefined mechanism independent of known γ-PGA regulation pathways.
Collapse
Affiliation(s)
- Reina Deol
- Keck Science Department, Scripps College, Claremont, California, USA
| | - Ashweetha Louis
- Keck Science Department, Scripps College, Claremont, California, USA
| | - Harper Lee Glazer
- Keck Science Department, Scripps College, Claremont, California, USA
| | | | - Anna Bagley
- Keck Science Department, Scripps College, Claremont, California, USA
| | - Pete Chandrangsu
- Keck Science Department, Scripps College, Claremont, California, USA
- Keck Science Department, Pitzer College, Claremont, California, USA
- Keck Science Department, Claremont McKenna College, Claremont, California, USA
| |
Collapse
|
43
|
Cordero M, García-Fernández J, Acosta IC, Yepes A, Avendano-Ortiz J, Lisowski C, Oesterreicht B, Ohlsen K, Lopez-Collazo E, Förstner KU, Eulalio A, Lopez D. The induction of natural competence adapts staphylococcal metabolism to infection. Nat Commun 2022; 13:1525. [PMID: 35314690 PMCID: PMC8938553 DOI: 10.1038/s41467-022-29206-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/03/2022] [Indexed: 11/26/2022] Open
Abstract
A central question concerning natural competence is why orthologs of competence genes are conserved in non-competent bacterial species, suggesting they have a role other than in transformation. Here we show that competence induction in the human pathogen Staphylococcus aureus occurs in response to ROS and host defenses that compromise bacterial respiration during infection. Bacteria cope with reduced respiration by obtaining energy through fermentation instead. Since fermentation is energetically less efficient than respiration, the energy supply must be assured by increasing the glycolytic flux. The induction of natural competence increases the rate of glycolysis in bacteria that are unable to respire via upregulation of DNA- and glucose-uptake systems. A competent-defective mutant showed no such increase in glycolysis, which negatively affects its survival in both mouse and Galleria infection models. Natural competence foster genetic variability and provides S. aureus with additional nutritional and metabolic possibilities, allowing it to proliferate during infection.
Collapse
Affiliation(s)
- Mar Cordero
- National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), 28049, Madrid, Spain
| | - Julia García-Fernández
- National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), 28049, Madrid, Spain
| | - Ivan C Acosta
- National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), 28049, Madrid, Spain
| | - Ana Yepes
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080, Würzburg, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080, Würzburg, Germany
| | - Jose Avendano-Ortiz
- The Innate Immune Response and Tumor Immunology Group, IdiPaz La Paz University Hospital, 28046, Madrid, Spain
| | - Clivia Lisowski
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080, Würzburg, Germany
| | - Babett Oesterreicht
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080, Würzburg, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080, Würzburg, Germany
| | - Knut Ohlsen
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080, Würzburg, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080, Würzburg, Germany
| | - Eduardo Lopez-Collazo
- The Innate Immune Response and Tumor Immunology Group, IdiPaz La Paz University Hospital, 28046, Madrid, Spain
- CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Konrad U Förstner
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080, Würzburg, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080, Würzburg, Germany
- Information Centre for Life Science (ZBMED), 50931, Cologne, Germany
- TH Köln - University of Applied Sciences, 50578, Cologne, Germany
| | - Ana Eulalio
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080, Würzburg, Germany
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Daniel Lopez
- National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), 28049, Madrid, Spain.
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080, Würzburg, Germany.
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
44
|
Bremer E, Hoffmann T, Dempwolff F, Bedrunka P, Bange G. The many faces of the unusual biofilm activator RemA. Bioessays 2022; 44:e2200009. [PMID: 35289951 DOI: 10.1002/bies.202200009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/08/2022]
Abstract
Biofilms can be viewed as tissue-like structures in which microorganisms are organized in a spatial and functional sophisticated manner. Biofilm formation requires the orchestration of a highly integrated network of regulatory proteins to establish cell differentiation and production of a complex extracellular matrix. Here, we discuss the role of the essential Bacillus subtilis biofilm activator RemA. Despite intense research on biofilms, RemA is a largely underappreciated regulatory protein. RemA forms donut-shaped octamers with the potential to assemble into dimeric superstructures. The presumed DNA-binding mode suggests that RemA organizes its target DNA into nucleosome-like structures, which are the basis for its role as transcriptional activator. We discuss how RemA affects gene expression in the context of biofilm formation, and its regulatory interplay with established components of the biofilm regulatory network, such as SinR, SinI, SlrR, and SlrA. We emphasize the additional role of RemA played in nitrogen metabolism and osmotic-stress adjustment.
Collapse
Affiliation(s)
- Erhard Bremer
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Tamara Hoffmann
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Felix Dempwolff
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Patricia Bedrunka
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.,Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
45
|
Bacillus subtilis Histidine Kinase KinC Activates Biofilm Formation by Controlling Heterogeneity of Single-Cell Responses. mBio 2022; 13:e0169421. [PMID: 35012345 PMCID: PMC8749435 DOI: 10.1128/mbio.01694-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis, biofilm and sporulation pathways are both controlled by a master regulator, Spo0A, which is activated by phosphorylation via a phosphorelay-a cascade of phosphotransfer reactions commencing with autophosphorylation of histidine kinases KinA, KinB, KinC, KinD, and KinE. However, it is unclear how the kinases, despite acting via the same regulator, Spo0A, differentially regulate downstream pathways, i.e., how KinA mainly activates sporulation genes and KinC mainly activates biofilm genes. In this work, we found that KinC also downregulates sporulation genes, suggesting that KinC has a negative effect on Spo0A activity. To explain this effect, with a mathematical model of the phosphorelay, we revealed that unlike KinA, which always activates Spo0A, KinC has distinct effects on Spo0A at different growth stages: during fast growth, KinC acts as a phosphate source and activates Spo0A, whereas during slow growth, KinC becomes a phosphate sink and contributes to decreasing Spo0A activity. However, under these conditions, KinC can still increase the population-mean biofilm matrix production activity. In a population, individual cells grow at different rates, and KinC would increase the Spo0A activity in the fast-growing cells but reduce the Spo0A activity in the slow-growing cells. This mechanism reduces single-cell heterogeneity of Spo0A activity, thereby increasing the fraction of cells that activate biofilm matrix production. Thus, KinC activates biofilm formation by controlling the fraction of cells activating biofilm gene expression. IMPORTANCE In many bacterial and eukaryotic systems, multiple cell fate decisions are activated by a single master regulator. Typically, the activities of the regulators are controlled posttranslationally in response to different environmental stimuli. The mechanisms underlying the ability of these regulators to control multiple outcomes are not understood in many systems. By investigating the regulation of Bacillus subtilis master regulator Spo0A, we show that sensor kinases can use a novel mechanism to control cell fate decisions. By acting as a phosphate source or sink, kinases can interact with one another and provide accurate regulation of the phosphorylation level. Moreover, this mechanism affects the cell-to-cell heterogeneity of the transcription factor activity and eventually determines the fraction of different cell types in the population. These results demonstrate the importance of intercellular heterogeneity for understanding the effects of genetic perturbations on cell fate decisions. Such effects can be applicable to a wide range of cellular systems.
Collapse
|
46
|
Abstract
Bacillus subtilis is a widely studied Gram-positive bacterium that serves as an important model for understanding processes critical for several areas of biology including biotechnology and human health. B. subtilis has several advantages as a model organism: it is easily grown under laboratory conditions, it has a rapid doubling time, it is relatively inexpensive to maintain, and it is nonpathogenic. Over the last 50 years, advancements in genetic engineering have continued to make B. subtilis a genetic workhorse in scientific discovery. In this chapter, we describe methods for traditional gene disruptions, use of gene deletion libraries from the Bacillus Genetic Stock Center, allelic exchange, CRISPRi, and CRISPR/Cas9. Additionally, we provide general materials and equipment needed, strengths and limitations, time considerations, and troubleshooting notes to perform each method. Use of the methods outlined in this chapter will allow researchers to create gene insertions, deletions, substitutions, and RNA interference strains through a variety of methods custom to each application.
Collapse
Affiliation(s)
- Katherine J Wozniak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
47
|
Sattler L, Graumann PL. Real-Time Messenger RNA Dynamics in Bacillus subtilis. Front Microbiol 2021; 12:760857. [PMID: 34867890 PMCID: PMC8637298 DOI: 10.3389/fmicb.2021.760857] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Messenger RNA molecules have been localized to different positions in cells and have been followed by time-lapse microscopy. We have used MS2-mVenus-labeled mRNA and single-particle tracking to obtain information on the dynamics of single-mRNA molecules in real time. Using single-molecule tracking, we show that several mRNA molecules visualized via two MS2-binding sites and MS2-mVenus expressed in Bacillus subtilis cells show free diffusion through the entire cell and constrained motion predominantly close to the cell membrane and at the polar regions of the cells. Because constrained motion of mRNAs likely reflects molecules complexed with ribosomes, our data support the idea that translation occurs at sites surrounding the nucleoids. Squared displacement analyses show the existence of at least two distinct populations of molecules with different diffusion constants or possibly of three populations, for example, freely mobile mRNAs, mRNAs in transition complexes, or in complex with polysomes. Diffusion constants between differently sized mRNAs did not differ dramatically and were much lower than that of cytosolic proteins. These data agree with the large size of mRNA molecules and suggest that, within the viscous cytoplasm, size variations do not translate into mobility differences. However, at observed diffusion constants, mRNA molecules would be able to reach all positions within cells in a frame of seconds. We did not observe strong differences in the location of confined motion for mRNAs encoding mostly soluble or membrane proteins, indicating that there is no strong bias for localization of membrane protein-encoding transcripts for the cell membrane.
Collapse
Affiliation(s)
- Laura Sattler
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Peter L Graumann
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
48
|
Giri S, Oña L, Waschina S, Shitut S, Yousif G, Kaleta C, Kost C. Metabolic dissimilarity determines the establishment of cross-feeding interactions in bacteria. Curr Biol 2021; 31:5547-5557.e6. [PMID: 34731676 DOI: 10.1016/j.cub.2021.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/01/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022]
Abstract
The exchange of metabolites among different bacterial genotypes profoundly impacts the structure and function of microbial communities. However, the factors governing the establishment of these cross-feeding interactions remain poorly understood. While shared physiological features may facilitate interactions among more closely related individuals, a lower relatedness should reduce competition and thus increase the potential for synergistic interactions. Here, we investigate how the relationship between a metabolite donor and recipient affects the propensity of strains to engage in unidirectional cross-feeding interactions. For this, we performed pairwise cocultivation experiments between four auxotrophic recipients and 25 species of potential amino acid donors. Auxotrophic recipients grew in the vast majority of pairs tested (63%), suggesting metabolic cross-feeding interactions are readily established. Strikingly, both the phylogenetic distance between donor and recipient and the dissimilarity of their metabolic networks were positively associated with the growth of auxotrophic recipients. Analyzing the co-growth of species from a gut microbial community in silico also revealed that recipient genotypes benefitted more from interacting with metabolically dissimilar partners, thus corroborating the empirical results. Together, our work identifies the metabolic dissimilarity between bacterial genotypes as a key factor determining the establishment of metabolic cross-feeding interactions in microbial communities.
Collapse
Affiliation(s)
- Samir Giri
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Department of Ecology, School of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany.
| | - Leonardo Oña
- Department of Ecology, School of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Silvio Waschina
- Institute for Human Nutrition and Food Science, Nutriinformatics, Christian-Albrechts-University Kiel, 24105 Kiel, Germany; Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, 24105 Kiel, Germany
| | - Shraddha Shitut
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Department of Ecology, School of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Ghada Yousif
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Department of Ecology, School of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany; Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, 24105 Kiel, Germany
| | - Christian Kost
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Department of Ecology, School of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany.
| |
Collapse
|
49
|
Kristensen CS, Varming AK, Leinweber HAK, Hammer K, Lo Leggio L, Ingmer H, Kilstrup M. Characterization of the genetic switch from phage ɸ13 important for Staphylococcus aureus colonization in humans. Microbiologyopen 2021; 10:e1245. [PMID: 34713608 PMCID: PMC8516035 DOI: 10.1002/mbo3.1245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/30/2021] [Indexed: 11/09/2022] Open
Abstract
Temperate phages are bacterial viruses that after infection either reside integrated into a bacterial genome as prophages forming lysogens or multiply in a lytic lifecycle. The decision between lifestyles is determined by a switch involving a phage-encoded repressor, CI, and a promoter region from which lytic and lysogenic genes are divergently transcribed. Here, we investigate the switch of phage ɸ13 from the human pathogen Staphylococcus aureus. ɸ13 encodes several virulence factors and is prevalent in S. aureus strains colonizing humans. We show that the ɸ13 switch harbors a cI gene, a predicted mor (modulator of repression) gene, and three high-affinity operator sites binding CI. To quantify the decision between lytic and lysogenic lifestyle, we introduced reporter plasmids that carry the 1.3 kb switch region from ɸ13 with the lytic promoter fused to lacZ into S. aureus and Bacillus subtilis. Analysis of β-galactosidase expression indicated that decision frequency is independent of host factors. The white "lysogenic" phenotype, which relies on the expression of cI, could be switched to a stable blue "lytic" phenotype by DNA damaging agents. We have characterized lifestyle decisions of phage ɸ13, and our approach may be applied to other temperate phages encoding virulence factors in S. aureus.
Collapse
Affiliation(s)
- Camilla S. Kristensen
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | | | | | - Karin Hammer
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Leila Lo Leggio
- Department of ChemistryUniversity of CopenhagenKobenhavnDenmark
| | - Hanne Ingmer
- Department of Veterinary and Animal SciencesUniversity of CopenhagenKobenhavnDenmark
| | - Mogens Kilstrup
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| |
Collapse
|
50
|
Structural and functional characterization of the bacterial biofilm activator RemA. Nat Commun 2021; 12:5707. [PMID: 34588455 PMCID: PMC8481266 DOI: 10.1038/s41467-021-26005-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
Bacillus subtilis can form structurally complex biofilms on solid or liquid surfaces, which requires expression of genes for matrix production. The transcription of these genes is activated by regulatory protein RemA, which binds to poorly conserved, repetitive DNA regions but lacks obvious DNA-binding motifs or domains. Here, we present the structure of the RemA homologue from Geobacillus thermodenitrificans, showing a unique octameric ring with the potential to form a 16-meric superstructure. These results, together with further biochemical and in vivo characterization of B. subtilis RemA, suggests that the protein can wrap DNA around its ring-like structure through a LytTR-related domain. Biofilm formation in Bacillus subtilis requires expression of matrix production genes, which are upregulated by transcriptional activator RemA. Here, the authors show that RemA forms octameric rings with the potential to form a 16-meric superstructure, suggesting that the protein can wrap DNA through a LytTR-related domain.
Collapse
|