1
|
Tamang A, Kaur A, Thakur D, Thakur A, Thakur BK, Shivani, Swarnkar M, Pal PK, Hallan V, Pandey SS. Unraveling endophytic diversity in dioecious Siraitia grosvenorii: implications for mogroside production. Appl Microbiol Biotechnol 2024; 108:247. [PMID: 38427084 PMCID: PMC10907472 DOI: 10.1007/s00253-024-13076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/04/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Host and tissue-specificity of endophytes are important attributes that limit the endophyte application on multiple crops. Therefore, understanding the endophytic composition of the targeted crop is essential, especially for the dioecious plants where the male and female plants are different. Here, efforts were made to understand the endophytic bacterial composition of the dioecious Siraitia grosvenorii plant using 16S rRNA amplicon sequencing. The present study revealed the association of distinct endophytic bacterial communities with different parts of male and female plants. Roots of male and female plants had a higher bacterial diversity than other parts of plants, and the roots of male plants had more bacterial diversity than the roots of female plants. Endophytes belonging to the phylum Proteobacteria were abundant in all parts of male and female plants except male stems and fruit pulp, where the Firmicutes were most abundant. Class Gammaproteobacteria predominated in both male and female plants, with the genus Acinetobacter as the most dominant and part of the core microbiome of the plant (present in all parts of both, male and female plants). The presence of distinct taxa specific to male and female plants was also identified. Macrococcus, Facklamia, and Propionibacterium were the distinct genera found only in fruit pulp, the edible part of S. grosvenorii. Predictive functional analysis revealed the abundance of enzymes of secondary metabolite (especially mogroside) biosynthesis in the associated endophytic community with predominance in roots. The present study revealed bacterial endophytic communities of male and female S. grosvenorii plants that can be further explored for monk fruit cultivation, mogroside production, and early-stage identification of male and female plants. KEY POINTS: • Male and female Siraitia grosvenorii plants had distinct endophytic communities • The diversity of endophytic communities was specific to different parts of plants • S. grosvenorii-associated endophytes may be valuable for mogroside biosynthesis and monk fruit cultivation.
Collapse
Affiliation(s)
- Anish Tamang
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amanpreet Kaur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
| | - Deepali Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
| | - Ankita Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Babit Kumar Thakur
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shivani
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohit Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
| | - Probir K Pal
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vipin Hallan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shiv Shanker Pandey
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Tamang A, Swarnkar M, Kumar P, Kumar D, Pandey SS, Hallan V. Endomicrobiome of in vitro and natural plants deciphering the endophytes-associated secondary metabolite biosynthesis in Picrorhiza kurrooa, a Himalayan medicinal herb. Microbiol Spectr 2023; 11:e0227923. [PMID: 37811959 PMCID: PMC10715050 DOI: 10.1128/spectrum.02279-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Picrorhiza kurrooa is a major source of picrosides, potent hepatoprotective molecules. Due to the ever-increasing demands, overexploitation has caused an extensive decline in its population in the wild and placed it in the endangered plants' category. At present plant in-vitro systems are widely used for the sustainable generation of P. kurrooa plants, and also for the conservation of other commercially important, rare, endangered, and threatened plant species. Furthermore, the in-vitro-generated plants had reduced content of therapeutic secondary metabolites compared to their wild counterparts, and the reason behind, not well-explored. Here, we revealed the loss of plant-associated endophytic communities during in-vitro propagation of P. kurrooa plants which also correlated to in-planta secondary metabolite biosynthesis. Therefore, this study emphasized to consider the essential role of plant-associated endophytic communities in in-vitro practices which may be the possible reason for reduced secondary metabolites in in-vitro plants.
Collapse
Affiliation(s)
- Anish Tamang
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Mohit Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
| | - Pawan Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Shiv Shanker Pandey
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Vipin Hallan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
3
|
Bhandari MS, Maikhuri S, Thakur A, Panwar GS, Shamoon A, Pandey S. Rapid multiplication of mature Eucalyptus hybrids through macro-and-micropropagation. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00394-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
4
|
Rios-Galicia B, Villagómez-Garfias C, De la Vega-Camarillo E, Guerra-Camacho JE, Medina-Jaritz N, Arteaga-Garibay RI, Villa-Tanaca L, Hernández-Rodríguez C. The Mexican giant maize of Jala landrace harbour plant-growth-promoting rhizospheric and endophytic bacteria. 3 Biotech 2021; 11:447. [PMID: 34631348 DOI: 10.1007/s13205-021-02983-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/04/2021] [Indexed: 01/02/2023] Open
Abstract
The giant landrace of maize Jala is a native crop cultured in Nayarit and Jalisco States in the occident of México. In this study, after screening 374 rhizospheric and endophytic bacteria isolated from rhizospheric soil, root, and seed tissues of maize Jala, a total of 16 bacterial strains were selected for their plant-growth-promoting potential and identified by 16S rRNA phylogenetic analysis. The isolates exhibited different combinations of phenotypic traits, including solubilisation of phosphate from hydroxyapatite, production of a broad spectrum of siderophores such as cobalt, iron, molybdenum, vanadium, or zinc (Co2+, Fe3+, Mo2 +, V5+, Zn2+), and nitrogen fixation capabilities, which were detected in both rhizospheric and endophytic strains. Additional traits such as production of 1-aminocyclopropane-1-carboxylate deaminase and a high-rate production of Indoleacetic Acid were exclusively detected on endophytic isolates. Among the selected strains, the rhizospheric Burkholderia sp., and Klebsiella variicola, and the endophytic Pseudomonas protegens significantly improved the growth of maize plants in greenhouse assays and controlled the infection against Fusarium sp. 50 on fresh maize cobs. These results present the first deep approach on handling autochthonous microorganisms from native maize with a potential biotechnological application in sustainable agriculture as biofertilizers or biopesticides.
Collapse
Affiliation(s)
- Bibiana Rios-Galicia
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Catalina Villagómez-Garfias
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Esaú De la Vega-Camarillo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Jairo Eder Guerra-Camacho
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Nora Medina-Jaritz
- Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - Ramón Ignacio Arteaga-Garibay
- Laboratorio de Recursos Genéticos Microbianos, Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Boulevard de la Biodiversidad No. 400, Rancho Las Cruces, 47600 Tepatitlán de Morelos, Jalisco Mexico
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340 Ciudad de México, Mexico
| |
Collapse
|
5
|
Sharma S, Compant S, Franken P, Ruppel S, Ballhausen MB. It Takes Two to Tango: A Bacterial Biofilm Provides Protection against a Fungus-Feeding Bacterial Predator. Microorganisms 2021; 9:microorganisms9081566. [PMID: 34442645 PMCID: PMC8398733 DOI: 10.3390/microorganisms9081566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/23/2022] Open
Abstract
Fungus-bacterium interactions are widespread, encompass multiple interaction types from mutualism to parasitism, and have been frequent targets for microbial inoculant development. In this study, using in vitro systems combined with confocal laser scanning microscopy and real-time quantitative PCR, we test whether the nitrogen-fixing bacterium Kosakonia radicincitans can provide protection to the plant-beneficial fungus Serendipita indica, which inhabits the rhizosphere and colonizes plants as an endophyte, from the fungus-feeding bacterium Collimonas fungivorans. We show that K. radicincitans can protect fungal hyphae from bacterial feeding on solid agar medium, with probable mechanisms being quick hyphal colonization and biofilm formation. We furthermore find evidence for different feeding modes of K. radicincitans and C. fungivorans, namely “metabolite” and “hyphal feeding”, respectively. Overall, we demonstrate, to our knowledge, the first evidence for a bacterial, biofilm-based protection of fungal hyphae against attack by a fungus-feeding, bacterial predator on solid agar medium. Besides highlighting the importance of tripartite microbial interactions, we discuss implications of our results for the development and application of microbial consortium-based bioprotectants and biostimulants.
Collapse
Affiliation(s)
- Shubhangi Sharma
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
| | - Stéphane Compant
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria;
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 24, 07743 Jena, Germany
| | - Silke Ruppel
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
| | - Max-Bernhard Ballhausen
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
- Correspondence:
| |
Collapse
|
6
|
Bacterial Endophytes of Spring Wheat Grains and the Potential to Acquire Fe, Cu, and Zn under Their Low Soil Bioavailability. BIOLOGY 2021; 10:biology10050409. [PMID: 34063099 PMCID: PMC8148187 DOI: 10.3390/biology10050409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary Unmasking the overall endophytic bacteria communities from wheat grains may help to identify and describe the microbial colonization of bread and emmer varieties, their link to the bioactive compounds produced, and their possible role in mineral nutrition. The possibility of using microorganisms to improve the microelemental composition of grain is an important food security concern, as approximately one-third of the human population experiences latent starvation caused by Fe (anemia), Zn, or Cu deficiency. Four wheat varieties from T. aestivum L. and T. turgidum subsp. dicoccum were grown in field conditions with low bioavailability of microelements in the soil. Varietal differences in the yield, yield characteristics, and the grain micronutrient concentrations were compared with the endophytic bacteria isolated from the grains. Twelve different bacterial isolates were obtained that represented the genera Staphylococcus, Pantoea, Sphingobium, Bacillus, Kosakonia, and Micrococcus. All studied strains were able to synthesize indole-related compounds (IRCs) with phytohormonal activity. IRCs produced by the bacterial genera Pantoea spp. and Bacillus spp. isolated from high-yielding Oksamyt myronivs’kyi and Holikovs’ka grains may be considered as one of the determinants of the yield of wheat and its nutritional characteristics. Abstract Wheat grains are usually low in essential micronutrients. In resolving the problem of grain micronutritional quality, microbe-based technologies, including bacterial endophytes, seem to be promising. Thus, we aimed to (1) isolate and identify grain endophytic bacteria from selected spring wheat varieties (bread Oksamyt myronivs’kyi, Struna myronivs’ka, Dubravka, and emmer Holikovs’ka), which were all grown in field conditions with low bioavailability of microelements, and (2) evaluate the relationship between endophytes’ abilities to synthesize auxins and the concentration of Fe, Zn, and Cu in grains. The calculated biological accumulation factor (BAF) allowed for comparing the varietal ability to uptake and transport micronutrients to the grains. For the first time, bacterial endophytes were isolated from grains of emmer wheat T. turgidum subsp. dicoccum. Generally, the 12 different isolates identified in the four varieties belonged to the genera Staphylococcus, Pantoea, Sphingobium, Bacillus, Kosakonia, and Micrococcus (NCBI accession numbers: MT302194—MT302204, MT312840). All the studied strains were able to synthesize the indole-related compounds (IRCs; max: 16.57 µg∙mL−1) detected using the Salkowski reagent. The IRCs produced by the bacterial genera Pantoea spp. and Bacillus spp. isolated from high-yielding Oksamyt myronivs’kyi and Holikovs’ka grains may be considered as one of the determinants of the yield of wheat and its nutritional characteristics.
Collapse
|
7
|
Dudeja SS, Suneja-Madan P, Paul M, Maheswari R, Kothe E. Bacterial endophytes: Molecular interactions with their hosts. J Basic Microbiol 2021; 61:475-505. [PMID: 33834549 DOI: 10.1002/jobm.202000657] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 01/19/2023]
Abstract
Plant growth promotion has been found associated with plants on the surface (epiphytic), inside (endophytic), or close to the plant roots (rhizospheric). Endophytic bacteria mainly have been researched for their beneficial activities in terms of nutrient availability, plant growth hormones, and control of soil-borne and systemic pathogens. Molecular communications leading to these interactions between plants and endophytic bacteria are now being unrevealed using multidisciplinary approaches with advanced techniques such as metagenomics, metaproteomics, metatranscriptomics, metaproteogenomic, microRNAs, microarray, chips as well as the comparison of complete genome sequences. More than 400 genes in both the genomes of host plant and bacterial endophyte are up- or downregulated for the establishment of endophytism and plant growth-promoting activity. The involvement of more than 20 genes for endophytism, about 50 genes for direct plant growth promotion, about 25 genes for biocontrol activity, and about 10 genes for mitigation of different stresses has been identified in various bacterial endophytes. This review summarizes the progress that has been made in recent years by these modern techniques and approaches.
Collapse
Affiliation(s)
- Surjit S Dudeja
- Department of Bio & Nanotechnology, Guru Jambeshwar University of Science & Technology, Hisar, India
| | - Pooja Suneja-Madan
- Department of Microbiology, Maharishi Dayanand University, Rohtak, India
| | - Minakshi Paul
- Department of Bio & Nanotechnology, Guru Jambeshwar University of Science & Technology, Hisar, India
| | - Rajat Maheswari
- Department of Microbiology, Maharishi Dayanand University, Rohtak, India
| | - Erika Kothe
- Microbial Communication, Institute of Microbiology, Faculty for Biosciences, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
8
|
Krishnamoorthy A, Gupta A, Sar P, Maiti MK. Metagenomics of two gnotobiotically grown aromatic rice cultivars reveals genotype-dependent and tissue-specific colonization of endophytic bacterial communities attributing multiple plant growth promoting traits. World J Microbiol Biotechnol 2021; 37:59. [PMID: 33660141 DOI: 10.1007/s11274-021-03022-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/19/2021] [Indexed: 01/05/2023]
Abstract
Exploration of community structures, habitations, and potential plant growth promoting (PGP) attributes of endophytic bacteria through next generation sequencing (NGS) is a prerequisite to culturing PGP endophytic bacteria for their application in sustainable agriculture. The present study unravels the taxonomic abundance and diversity of endophytic bacteria inhabiting in vitro grown root, shoot and callus tissues of two aromatic rice cultivars through 16S rRNA gene-based Illumina NGS. Wide variability in the number of bacterial operational taxonomic units (OTUs) and genera was observed between the two samples of the root (55, 14 vs. 310, 76) and shoot (26, 12 vs. 276, 73) but not between the two callus samples (251, 61 vs. 259, 51), indicating tissue-specific and genotype-dependent bacterial community distribution in rice plant, even under similar gnotobiotic growth conditions. Sizes of core bacteriomes of the selected two rice genotypes varied from 1 to 15 genera, with Sphingomonas being the only genus detected in all six samples. Functional annotation, based upon the abundance of bacterial OTUs, revealed the presence of several PGP trait-related genes having variable relative abundance in tissue-specific and genotype-dependent manners. In silico study also documented a higher abundance of certain genes in the same biochemical pathway, such as nitrogen fixation, phosphate solubilization and indole acetic acid production; implying their crucial roles in the biosynthesis of metabolites leading to PGP. New insights on utilizing callus cultures for isolation of PGP endophytes aiming to improve rice crop productivity are presented, owing to constancy in bacterial OTUs and genera in callus tissues of both the rice genotypes.
Collapse
Affiliation(s)
- Anagha Krishnamoorthy
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Abhishek Gupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Pinaki Sar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
9
|
Singh P, Singh RK, Li HB, Guo DJ, Sharma A, Lakshmanan P, Malviya MK, Song XP, Solanki MK, Verma KK, Yang LT, Li YR. Diazotrophic Bacteria Pantoea dispersa and Enterobacter asburiae Promote Sugarcane Growth by Inducing Nitrogen Uptake and Defense-Related Gene Expression. Front Microbiol 2021; 11:600417. [PMID: 33510724 PMCID: PMC7835727 DOI: 10.3389/fmicb.2020.600417] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022] Open
Abstract
Sugarcane is a major crop in tropical and subtropical regions of the world. In China, the application of large amounts of nitrogen (N) fertilizer to boost sugarcane yield is commonplace, but it causes substantial environmental damages, particularly soil, and water pollution. Certain rhizosphere microbes are known to be beneficial for sugarcane production, but much of the sugarcane rhizosphere microflora remains unknown. We have isolated several sugarcane rhizosphere bacteria, and 27 of them were examined for N-fixation, plant growth promotion, and antifungal activity. 16S rRNA gene sequencing was used to identify these strains. Among the isolates, several strains were found to have a relatively high activity of nitrogenase and ACC deaminase, the enzyme that reduces ethylene production in plants. These strains were found to possess nifH and acdS genes associated with N-fixation and ethylene production, respectively. Two of these strains, Pantoea dispersa-AA7 and Enterobacter asburiae-BY4 showed maximum plant growth promotion (PGP) and nitrogenase activity, and thus they were selected for detailed analysis. The results show that they colonize different sugarcane tissues, use various growth substrates (carbon and nitrogen), and tolerate various stress conditions (pH and osmotic stress). The positive effect of AA7 and BY4 strains on nifH and stress-related gene (SuCAT, SuSOD, SuPAL, SuCHI, and SuGLU) expression and the induction of defense-related processes in two sugarcane varieties, GT11 and GXB9, showed their potential for stress amelioration and PGP. Both bacterial strains increased several sugarcane physiological parameters. i.e., plant height, shoot weight, root weight, leaf area, chlorophyll content, and photosynthesis, in plants grown under greenhouse conditions. The ability of rhizobacteria on N-fixing in sugarcane was also confirmed by a 15N isotope-dilution study, and the estimate indicates a contribution of 21-35% of plant nitrogen by rhizobacterial biological N fixation (BNF). This is the first report of sugarcane growth promotion by N-fixing rhizobacteria P. dispersa and E. asburiae strains. Both strains could be used as biofertilizer for sugarcane to minimize nitrogen fertilizer use and better disease management.
Collapse
Affiliation(s)
- Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China.,State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bio Resources, College of Agriculture, Guangxi University, Nanning, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China.,State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bio Resources, College of Agriculture, Guangxi University, Nanning, China
| | - Hai-Bi Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi South Subtropical Agricultural Science Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Dao-Jun Guo
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China.,State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bio Resources, College of Agriculture, Guangxi University, Nanning, China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Prakash Lakshmanan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China.,Interdisciplinary Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China.,Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Mukesh K Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Xiu-Peng Song
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Manoj K Solanki
- Department of Food Quality and Safety, The Volcani Center, Institute for Post-Harvest and Food Sciences, Agricultural Research Organization, Rishon LeZion, Israel
| | - Krishan K Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Li-Tao Yang
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China.,State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bio Resources, College of Agriculture, Guangxi University, Nanning, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China.,State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bio Resources, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
10
|
Citrobacter telavivum sp. nov. with chromosomal mcr-9 from hospitalized patients. Eur J Clin Microbiol Infect Dis 2020; 40:123-131. [DOI: 10.1007/s10096-020-04003-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
|
11
|
Chen Y, Huang Z, Li J, Su G, Feng B. Complete Genome Sequence of Kosakonia radicincitans GXGL-4A, a Nitrogen-Fixing Bacterium with Capability to Degrade TEX. Curr Microbiol 2020; 77:1848-1857. [PMID: 32170407 DOI: 10.1007/s00284-020-01942-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/03/2020] [Indexed: 11/26/2022]
Abstract
Kosakonia radicincitans GXGL-4A, a free-living nitrogen-fixing (NF) bacterial strain isolated from maize (Zea mays L.) roots was found to have ability to degrade aromatic hydrocarbons. In this study, we describe the main morphological characteristics of bacterium, aromatic hydrocarbon-degrading capability, and the complete genome of K. radicincitans GXGL-4A. The genome is consisted of only one 5,687,681 bp linear chromosome with a G + C content of 53.96%. The strain has two genetically distinct nitrogenase systems, one based on molybdenum (Mo) similar to nitrogenase isolated from a wide range of nitrogen-fixing organisms, and the other contains iron (Fe). The differences in transcriptional level of several important nitrogen fixation (nif) genes between LB (nitrogen-rich, NR) and A15 nitrogen-free (nitrogen-limited, NL) culture conditions were detected using Real-time Quantitative Reverse Transcription PCR (qRT-PCR). The bacterial cells of GXGL-4A can grow well in LB liquid medium containing 1% toluene, ethylbenzene or xylene, suggesting a good resistance to the tested aromatic hydrocarbons. The results of GC-MS analysis showed that K. radicincitans GXGL-4A has a good capability to degrade toluene, ethylbenzene, and xylene (TEX). Completion of the genome sequencing will no doubt contribute to the deep exploration and comprehensive utilization of this NF bacterium in sustainable agriculture and bioremediation of aromatic pollutants.
Collapse
Affiliation(s)
- Yunpeng Chen
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhibo Huang
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaoyong Li
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoxun Su
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baoyun Feng
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
12
|
Mosquito S, Bertani I, Licastro D, Compant S, Myers MP, Hinarejos E, Levy A, Venturi V. In Planta Colonization and Role of T6SS in Two Rice Kosakonia Endophytes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:349-363. [PMID: 31609645 DOI: 10.1094/mpmi-09-19-0256-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Endophytes live inside plants and are often beneficial. Kosakonia is a novel bacterial genus that includes many diazotrophic plant-associated isolates. Plant-bacteria studies on two rice endophytic Kosakonia beneficial strains were performed, including comparative genomics, secretome profiling, in planta tests, and a field release trial. The strains are efficient rhizoplane and root endosphere colonizers and localized in the root cortex. Secretomics revealed 144 putative secreted proteins, including type VI secretory system (T6SS) proteins. A Kosakonia T6SS genomic knock-out mutant showed a significant decrease in rhizoplane and endosphere colonization ability. A field trial using rice seed inoculated with Kosakonia spp. showed no effect on plant growth promotion upon nitrogen stress and microbiome studies revealed that Kosakonia spp. were significantly more present in the inoculated rice. Comparative genomics indicated that several protein domains were enriched in plant-associated Kosakonia spp. This study highlights that Kosakonia is an important, recently classified genus involved in plant-bacteria interaction.
Collapse
Affiliation(s)
- Susan Mosquito
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Iris Bertani
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Danilo Licastro
- CBM S.c.r.l., Area Science Park-Basovizza, 34149 Trieste, Italy
| | - Stéphane Compant
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Vienna, Austria
| | - Michael P Myers
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | | | - Asaf Levy
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| |
Collapse
|
13
|
Draft Genome Sequence of Kosakonia radicincitans UYSO10, an Endophytic Plant Growth-Promoting Bacterium of Sugarcane ( Saccharum officinarum). Microbiol Resour Announc 2019; 8:8/43/e01000-19. [PMID: 31649079 PMCID: PMC6813391 DOI: 10.1128/mra.01000-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Kosakonia radicincitas UYSO10 is an endophytic bacterium that was isolated from stem tissues of Saccharum officinarum plants cultivated in Uruguay. UYSO10 is a diazotrophic indoleacetic acid-producing bacterium with growth-promoting effects on sugarcane. Here, we report the draft genome sequence, in which genes that are probably involved in the plant-bacterium interaction were identified. Kosakonia radicincitas UYSO10 is an endophytic bacterium that was isolated from stem tissues of Saccharum officinarum plants cultivated in Uruguay. UYSO10 is a diazotrophic indoleacetic acid-producing bacterium with growth-promoting effects on sugarcane. Here, we report the draft genome sequence, in which genes that are probably involved in the plant-bacterium interaction were identified.
Collapse
|
14
|
Cruz Barrera M, Jakobs-Schoenwandt D, Gómez MI, Becker M, Patel AV, Ruppel S. Salt stress and hydroxyectoine enhance phosphate solubilisation and plant colonisation capacity of Kosakonia radicincitans. J Adv Res 2019; 19:91-97. [PMID: 31341674 PMCID: PMC6629720 DOI: 10.1016/j.jare.2019.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 11/24/2022] Open
Abstract
Gram-negative bacterial endophytes have attracted research interest caused by their advantageous over epiphytic bacteria in plant nutrition and protection. However, research on these typically Gram-negative endophytes has deficiencies concerning the role of cultivation and pre-formulation strategies on further plant colonisation capabilities. Besides, the influence of cultivation conditions and osmotic stress within bacterial endophytes on their phosphate solubilising ability has not yet been addressed. By pre-conditioning cells with an osmoadaptation and a hydroxyectoine accumulation approach, this research aimed at enhancing the capability of the plant growth promoting bacterium Kosakonia radicincitans strain DSM 16656T to both solubilise phosphate and colonise plant seedlings. The results showed that halotolerant bacterial phenotypes increased the root-colonising capability by approximately 3-fold and presented growth-promoting effects in radish plants. Interestingly, findings also demonstrated that salt stress in the culture media along with the accumulation of hydroxyectoine led to an increase in the in vitro phosphate-solubilising ability by affecting the production of acid phosphatases, from 1.24 to 3.34 U mg-1 for non-salt stressed cells and hydroxyectoine-added cells respectively. Thus, this approach provides a useful knowledge upon which the salt stress and compatible solutes in bacteria endophytes can confer phenotypic adaptations to support the eco-physiological performance concerning phosphate-solubilising abilities and endosphere establishment.
Collapse
Affiliation(s)
- Mauricio Cruz Barrera
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Mosquera, Colombia. Km 14, Bogotá-Mosquera, Colombia
| | - Desirée Jakobs-Schoenwandt
- Bielefeld University of Applied Sciences, WG Fermentation and Formulation of Biologicals and Chemicals, Department of Engineering Sciences and Mathematics, Bielefeld, Germany
| | - Martha Isabel Gómez
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Mosquera, Colombia. Km 14, Bogotá-Mosquera, Colombia
| | - Matthias Becker
- Leibniz-Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
| | - Anant V. Patel
- Bielefeld University of Applied Sciences, WG Fermentation and Formulation of Biologicals and Chemicals, Department of Engineering Sciences and Mathematics, Bielefeld, Germany
| | - Silke Ruppel
- Leibniz-Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
| |
Collapse
|
15
|
Taulé C, Luizzi H, Beracochea M, Mareque C, Platero R, Battistoni F. The Mo- and Fe-nitrogenases of the endophyte Kosakonia sp. UYSO10 are necessary for growth promotion of sugarcane. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01466-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
16
|
Li M, Li F, Mi Z, Zhao Y, Zhang X, Jiang Z, Pei G, Zhou L, Tong Y, Zhao B. Comparative genomics analysis of pTEM-2262, an MDR plasmid from Citrobacter freundii, harboring two unclassified replicons. Future Microbiol 2018; 13:1657-1668. [PMID: 30499345 DOI: 10.2217/fmb-2018-0243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To genetically characterize the multidrug-resistance (MDR) plasmid pTEM-2262 that could not be classified into any known incompatibility group from the clinical Citrobacter freundii isolate 2262. MATERIALS & METHODS The repA or repB deletion mutants of pTEM-2262 were constructed using the scarless Cas9-assisted recombineering system. Comparative genomic analysis of pTEM-2262 and the other four previously sequenced plasmids belonging to the same incompatibility group were performed. RESULTS pTEM-2262, a conjugative plasmid, harbored two unclassified replicons, repA and repB, while repB was not essential for pTEM-2262 replication. In five analyzed plasmids, their conserved backbones primarily integrated massive accessory modules at two 'hotspots' that were located between orf597 and orf504, and between orf393 and orf405. All the antibiotic resistance genes of pTEM-2262 were clustered in the MDR region with a complex mosaic structure. CONCLUSION This study thoroughly investigates the detailed structure and genomic comparison of this unknown incompatibility group for the first time.
Collapse
Affiliation(s)
- Manli Li
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.,State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, PR China
| | - Fei Li
- Clinical Laboratory, Taian City Central Hospital, Taian 271000, PR China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, PR China
| | - Yachao Zhao
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, PR China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, PR China
| | - Zhaofang Jiang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, PR China
| | - Guangqian Pei
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, PR China
| | - Lijun Zhou
- Central Laboratory, Navy General Hospital, Beijing 100048, PR China
| | - Yigang Tong
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, PR China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| |
Collapse
|
17
|
Becker M, Patz S, Becker Y, Berger B, Drungowski M, Bunk B, Overmann J, Spröer C, Reetz J, Tchuisseu Tchakounte GV, Ruppel S. Comparative Genomics Reveal a Flagellar System, a Type VI Secretion System and Plant Growth-Promoting Gene Clusters Unique to the Endophytic Bacterium Kosakonia radicincitans. Front Microbiol 2018; 9:1997. [PMID: 30214433 PMCID: PMC6125372 DOI: 10.3389/fmicb.2018.01997] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/08/2018] [Indexed: 01/04/2023] Open
Abstract
The recent worldwide discovery of plant growth-promoting (PGP) Kosakonia radicincitans in a large variety of crop plants suggests that this species confers significant influence on plants, both in terms of yield increase and product quality improvement. We provide a comparative genome analysis which helps to unravel the genetic basis for K. radicincitans' motility, competitiveness and plant growth-promoting capacities. We discovered that K. radicincitans carries multiple copies of complex gene clusters, among them two flagellar systems and three type VI secretion systems (T6SSs). We speculate that host invasion may be facilitated by different flagella, and bacterial competitor suppression by effector proteins ejected via T6SSs. We found a large plasmid in K. radicincitans DSM 16656T, the species type strain, that confers the potential to exploit plant-derived carbon sources. We propose that multiple copies of complex gene clusters in K. radicincitans are metabolically expensive but provide competitive advantage over other bacterial strains in nutrient-rich environments. The comparison of the DSM 16656T genome to genomes of other genera of enteric plant growth-promoting bacteria (PGPB) exhibits traits unique to DSM 16656T and K. radicincitans, respectively, and traits shared between genera. We used the output of the in silico analysis for predicting the purpose of genomic features unique to K. radicincitans and performed microarray, PhyloChip, and microscopical analyses to gain deeper insight into the interaction of DSM 16656T, plants and associated microbiota. The comparative genome analysis will facilitate the future search for promising candidates of PGPB for sustainable crop production.
Collapse
Affiliation(s)
- Matthias Becker
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
| | - Sascha Patz
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany.,Algorithms in Bioinformatics, Center for Bioinformatics, University of Tübingen, Tübingen, Germany
| | - Yvonne Becker
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany.,Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute-Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Beatrice Berger
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany.,Institute for National and International Plant Health, Julius Kühn-Institute-Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Mario Drungowski
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jochen Reetz
- Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Silke Ruppel
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
| |
Collapse
|
18
|
Sun S, Chen Y, Cheng J, Li Q, Zhang Z, Lan Z. Isolation, characterization, genomic sequencing, and GFP-marked insertional mutagenesis of a high-performance nitrogen-fixing bacterium, Kosakonia radicincitans GXGL-4A and visualization of bacterial colonization on cucumber roots. Folia Microbiol (Praha) 2018; 63:789-802. [PMID: 29876800 DOI: 10.1007/s12223-018-0608-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 04/25/2018] [Indexed: 11/26/2022]
Abstract
A gram-negative bacterium GXGL-4A was originally isolated from maize roots. It displayed nitrogen-fixing (NF) ability under nitrogen-free culture condition, and had a significant promotion effect on cucumber growth in the pot inoculation test. The preliminary physiological and biochemical traits of GXGL-4A were characterized. Furthermore, a phylogenetic tree was constructed based on 16S ribosomal DNA (rDNA) sequences of genetically related species. To determine the taxonomic status of GXGL-4A and further utilize its nitrogen-fixing potential, genome sequence was obtained using PacBio RS II technology. The analyses of average nucleotide identity based on BLAST+ (ANIb) and correlation indexes of tetra-nucleotide signatures (Tetra) showed that the NF isolate GXGL-4A is closely related to the Kosakonia radicincitans type strain DSM 16656. Therefore, the isolate GXGL-4A was eventually classified into the species of Kosakonia radicincitans and designated K. radicincitans GXGL-4A. A high consistency in composition and gene arrangement of nitrogen-fixing gene cluster I (nif cluster I) was found between K. radicincitans GXGL-4A and other Kosakonia NF strains. The mutants tagged with green fluorescence protein (GFP) were obtained by transposon Tn5 mutagenesis, and then, the colonization of gfp-marked K. radicincitans GXGL-4A cells on cucumber seedling root were observed under fluorescence microscopy. The preferential sites of the labeled GXGL-4A cell population were the lateral root junctions, the differentiation zone, and the elongation zone. All these results should benefit for the deep exploration of nitrogen fixation mechanism of K. radicincitans GXGL-4A and will definitely facilitate the genetic modification process of this NF bacterium in sustainable agriculture.
Collapse
Affiliation(s)
- Shuaixin Sun
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China
| | - Yunpeng Chen
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China.
| | - Jiejie Cheng
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China
| | - Qiongjie Li
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China
| | - Zhenchuan Zhang
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China
| | - Zhengliang Lan
- Key Laboratory of Urban Agriculture (South) of Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
19
|
Ekandjo LK, Ruppel S, Remus R, Witzel K, Patz S, Becker Y. Site-directed mutagenesis to deactivate two nitrogenase isozymes of Kosakonia radicincitans DSM16656 T. Can J Microbiol 2017; 64:97-106. [PMID: 29059532 DOI: 10.1139/cjm-2017-0532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biological nitrogen fixation (BNF) is considered one of the key plant-growth-promoting (PGP) factors for diazotrophic organisms. Whether the iron and iron-molybdenum nitrogenases of Kosakonia radicincitans contribute to its PGP effect is yet to be proven. Hence, for the first time, we conducted site-directed mutagenesis in K. radicincitans to knock out anfH and (or) nifH as a mean to deactivate BNF in this strain. We used 15N2-labeled air to trace BNF activities in ΔanfH, ΔnifH, and ΔanfHΔnifH mutants. Assessing bacterial growth, nitrogen content, and 15N incorporation revealed that BNF is impaired in K. radicincitans DSM16656T ΔnifH and ΔanfHΔnifH. However, we detected no significant contribution of the Fe nitrogenase to biological dinitrogen assimilation under our pure bacterial culture experimental conditions. Such nondiazotrophic K. radicincitans DSM16656T mutants represent excellent tools for investigating nitrogen nutrition in K. radicincitans-inoculated plants.
Collapse
Affiliation(s)
- Lempie K Ekandjo
- a Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Groβbeeren, Germany
| | - Silke Ruppel
- a Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Groβbeeren, Germany
| | - Rainer Remus
- b Leibniz Centre for Agricultural Landscape Research, Eberswalder Straβe 84, 15374 Müncheberg, Germany
| | - Katja Witzel
- a Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Groβbeeren, Germany
| | - Sascha Patz
- a Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Groβbeeren, Germany
| | - Yvonne Becker
- a Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Groβbeeren, Germany
| |
Collapse
|
20
|
Characterization of the Complete Nucleotide Sequences of IncA/C 2 Plasmids Carrying In809-Like Integrons from Enterobacteriaceae Isolates of Wildlife Origin. Antimicrob Agents Chemother 2017; 61:AAC.01093-17. [PMID: 28696228 DOI: 10.1128/aac.01093-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/19/2017] [Indexed: 11/20/2022] Open
Abstract
A total of 18 Enterobacteriaceae (17 from gulls and 1 from a clinical sample) collected from Australia, carrying IncA/C plasmids with the IMP-encoding In809-like integrons, were studied. Seven plasmids, being representatives of different origins, plasmid sizes, replicon combinations, and resistance genes, were completely sequenced. Plasmid pEc158, identified in a clinical Escherichia coli ST752 isolate, showed extensive similarity to type 2 IncA/C2 plasmids. pEc158 carried none of the blaCMY-2-like region or ARI-B and ARI-A regions, while it contained a hybrid transposon structure. The six remaining plasmids, which were of wildlife origin, were highly similar to each other and probably were fusion derivatives of type 1 and type 2 A/C2 plasmids. The latter plasmids contained an ARI-B region and hybrid transposon structures. In all plasmids, hybrid transposon structures containing In809-like integrons were inserted 3,434 bp downstream of the rhs2 start codon. In all cases, the one outermost 38-bp inverted repeat (IR) of the transposon was associated with the Tn1696 tnp module, while the other outermost 38-bp IR of the transposon was associated with either a Tn6317-like module or a Tn21 mer module. However, the internal structure of the transposon and the resistance genes were different in each plasmid. These findings indicated that, for the specific periods of time and settings, different IncA/C2 plasmid types carrying In809-like elements circulated among isolates of wildlife and clinical origins. Additionally, they provided the basis for speculations regarding the reshuffling of IncA/C2 plasmids with In809-like integrons and confirmed the rapid evolution of IncA/C2 plasmid lineages.
Collapse
|
21
|
Witzel K, Üstün S, Schreiner M, Grosch R, Börnke F, Ruppel S. A Proteomic Approach Suggests Unbalanced Proteasome Functioning Induced by the Growth-Promoting Bacterium Kosakonia radicincitans in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:661. [PMID: 28491076 PMCID: PMC5405128 DOI: 10.3389/fpls.2017.00661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
Endophytic plant growth-promoting bacteria have significant impact on the plant physiology and understanding this interaction at the molecular level is of particular interest to support crop productivity and sustainable production systems. We used a proteomics approach to investigate the molecular mechanisms underlying plant growth promotion in the interaction of Kosakonia radicincitans DSM 16656 with Arabidopsis thaliana. Four weeks after the inoculation, the proteome of roots from inoculated and control plants was compared using two-dimensional gel electrophoresis and differentially abundant protein spots were identified by liquid chromatography tandem mass spectrometry. Twelve protein spots were responsive to the inoculation, with the majority of them being related to cellular stress reactions. The protein expression of 20S proteasome alpha-3 subunit was increased by the presence of K. radicincitans. Determination of proteasome activity and immuno blotting analysis for ubiquitinated proteins revealed that endophytic colonization interferes with ubiquitin-dependent protein degradation. Inoculation of rpn12a, defective in a 26S proteasome regulatory particle, enhanced the growth-promoting effect. This indicates that the plant proteasome, besides being a known target for plant pathogenic bacteria, is involved in the establishment of beneficial interactions of microorganisms with plants.
Collapse
Affiliation(s)
- Katja Witzel
- Leibniz Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Li Y, Li S, Chen M, Peng G, Tan Z, An Q. Complete genome sequence of Kosakonia oryzae type strain Ola 51 T. Stand Genomic Sci 2017; 12:28. [PMID: 28428833 PMCID: PMC5392936 DOI: 10.1186/s40793-017-0240-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/07/2017] [Indexed: 01/13/2023] Open
Abstract
Strain Ola 51T (=LMG 24251T = CGMCC 1.7012T) is the type strain of the species Kosakonia oryzae and was isolated from surface-sterilized roots of the wild rice species Oryza latifolia grown in Guangdong, China. Here we summarize the features of the strain Ola 51T and describe its complete genome sequence. The genome contains one circular chromosome of 5,303,342 nucleotides with 54.01% GC content, 4773 protein-coding genes, 16 rRNA genes, 76 tRNA genes, 13 ncRNA genes, 48 pseudo genes, and 1 CRISPR array.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuying Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Mingyue Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Guixiang Peng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642 China
| | - Zhiyuan Tan
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Qianli An
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Bhatti MD, Kalia A, Sahasrabhojane P, Kim J, Greenberg DE, Shelburne SA. Identification and Whole Genome Sequencing of the First Case of Kosakonia radicincitans Causing a Human Bloodstream Infection. Front Microbiol 2017; 8:62. [PMID: 28174569 PMCID: PMC5258702 DOI: 10.3389/fmicb.2017.00062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/10/2017] [Indexed: 11/17/2022] Open
Abstract
The taxonomy of Enterobacter species is rapidly changing. Herein we report a bloodstream infection isolate originally identified as Enterobacter cloacae by Vitek2 methodology that we found to be Kosakonia radicincitans using genetic means. Comparative whole genome sequencing of our isolate and other published Kosakonia genomes revealed these organisms lack the AmpC β-lactamase present on the chromosome of Enterobacter sp. A fimbriae operon primarily found in Escherichia coli O157:H7 isolates was present in our organism and other available K. radicincitans genomes. This is the first report of a Kosakonia species, which are typically associated with plants, causing a human infection.
Collapse
Affiliation(s)
- Micah D Bhatti
- Department of Microbiology, MD Anderson Cancer Center, Houston TX, USA
| | - Awdhesh Kalia
- Graduate Program in Diagnostic Genetics, School of Health Professions, MD Anderson Cancer Center, Houston TX, USA
| | - Pranoti Sahasrabhojane
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston TX, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas TX, USA
| | - David E Greenberg
- Division of Infectious Diseases, University of Texas Southwestern Medical Center, DallasTX, USA; Department of Microbiology, University of Texas Southwestern Medical Center, DallasTX, USA
| | - Samuel A Shelburne
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, HoustonTX, USA; Department of Genomic Medicine, MD Anderson Cancer Center, HoustonTX, USA
| |
Collapse
|
24
|
Kaul S, Sharma T, K. Dhar M. "Omics" Tools for Better Understanding the Plant-Endophyte Interactions. FRONTIERS IN PLANT SCIENCE 2016; 7:955. [PMID: 27446181 PMCID: PMC4925718 DOI: 10.3389/fpls.2016.00955] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 06/15/2016] [Indexed: 05/20/2023]
Abstract
Endophytes, which mostly include bacteria, fungi and actinomycetes, are the endosymbionts that reside asymptomatically in plants for at least a part of their life cycle. They have emerged as a valuable source of novel metabolites, industrially important enzymes and as stress relievers of host plant, but still many aspects of endophytic biology are unknown. Functions of individual endophytes are the result of their continuous and complex interactions with the host plant as well as other members of the host microbiome. Understanding plant microbiomes as a system allows analysis and integration of these complex interactions. Modern genomic studies involving metaomics and comparative studies can prove to be helpful in unraveling the gray areas of endophytism. A deeper knowledge of the mechanism of host infestation and role of endophytes could be exploited to improve the agricultural management in terms of plant growth promotion, biocontrol and bioremediation. Genome sequencing, comparative genomics, microarray, next gen sequencing, metagenomics, metatranscriptomics are some of the techniques that are being used or can be used to unravel plant-endophyte relationship. The modern techniques and approaches need to be explored to study endophytes and their putative role in host plant ecology. This review highlights "omics" tools that can be explored for understanding the role of endophytes in the plant microbiome.
Collapse
|
25
|
Dutta J, Handique PJ, Thakur D. Assessment of Culturable Tea Rhizobacteria Isolated from Tea Estates of Assam, India for Growth Promotion in Commercial Tea Cultivars. Front Microbiol 2015; 6:1252. [PMID: 26617590 PMCID: PMC4639606 DOI: 10.3389/fmicb.2015.01252] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/27/2015] [Indexed: 02/04/2023] Open
Abstract
In the present study, 217 rhizobacterial isolates were obtained from six different tea estates of Assam, India and subjected to preliminary in vitro plant growth promotion (PGP) screening for indole acetic acid (IAA) production, phosphate solubilization, siderophore production and ammonia production. Fifty isolates showed all the PGP traits and five isolates did not exhibit any PGP traits. These 50 potential isolates were further analyzed for quantitative estimation of the PGP traits along with the aminocyclopropane-1-carboxylate (ACC) deaminase, protease and cellulose production. After several rounds of screening, four rhizobacteria were selected based on their maximum ability to produce in vitro PGP traits and their partial 16S rRNA gene sequence analysis revealed that they belong to Enterobacter lignolyticus strain TG1, Burkholderia sp. stain TT6, Bacillus pseudomycoides strain SN29 and Pseudomonas aeruginosa strain KH45. To evaluate the efficacy of these four rhizobacteria as plant growth promoters, three different commercially important tea clones TV1, TV19, and TV20 plants were inoculated with these rhizobacteria in greenhouse condition and compared to the uninoculated control plants. Though, all the rhizobacterial treatments showed an increase in plant growth compared to control but the multivariate PCA analysis confirmed more growth promotion by TG1 and SN29 strains than the other treatments in all three clones. To validate this result, the fold change analysis was performed and it revealed that the tea clone TV19 plants inoculated with the E. lignolyticus strain TG1 showed maximum root biomass production with an increase in 4.3-fold, shoot biomass with increase in 3.1-fold, root length by 2.2-fold and shoot length by 1.6-fold. Moreover, two way ANOVA analysis also revealed that rhizobacterial treatment in different tea clones showed the significant increase (P < 0.05) in growth promotion compared to the control. Thus, this study indicates that the potential of these indigenous plant growth promoting rhizobacteria isolates to use as microbial inoculation or biofertilizer for growth promotion of tea crops.
Collapse
Affiliation(s)
- Jintu Dutta
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati, India
| | | | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology Guwahati, India
| |
Collapse
|
26
|
Firrincieli A, Otillar R, Salamov A, Schmutz J, Khan Z, Redman RS, Fleck ND, Lindquist E, Grigoriev IV, Doty SL. Genome sequence of the plant growth promoting endophytic yeast Rhodotorula graminis WP1. Front Microbiol 2015; 6:978. [PMID: 26441909 PMCID: PMC4585186 DOI: 10.3389/fmicb.2015.00978] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 09/03/2015] [Indexed: 12/22/2022] Open
Affiliation(s)
- Andrea Firrincieli
- Department for Innovation Biological, Agro-Food and Forest System, University of Tuscia Tuscia, Italy
| | - Robert Otillar
- U.S. Department of Energy Joint Genome Institute Walnut Creek, CA, USA
| | - Asaf Salamov
- U.S. Department of Energy Joint Genome Institute Walnut Creek, CA, USA
| | - Jeremy Schmutz
- U.S. Department of Energy Joint Genome Institute Walnut Creek, CA, USA ; HudsonAlpha Institute for Biotechnology Huntsville, AL, USA
| | - Zareen Khan
- School of Environmental and Forest Sciences, University of Washington Seattle, WA, USA
| | | | - Neil D Fleck
- School of Environmental and Forest Sciences, University of Washington Seattle, WA, USA
| | - Erika Lindquist
- U.S. Department of Energy Joint Genome Institute Walnut Creek, CA, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute Walnut Creek, CA, USA
| | - Sharon L Doty
- School of Environmental and Forest Sciences, University of Washington Seattle, WA, USA
| |
Collapse
|
27
|
Ren G, Zhang H, Lin X, Zhu J, Jia Z. Response of leaf endophytic bacterial community to elevated CO2 at different growth stages of rice plant. Front Microbiol 2015; 6:855. [PMID: 26379635 PMCID: PMC4553393 DOI: 10.3389/fmicb.2015.00855] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/06/2015] [Indexed: 11/13/2022] Open
Abstract
Plant endophytic bacteria play an important role in plant growth and health. In the context of climate change, the response of plant endophytic bacterial communities to elevated CO2 at different rice growing stages is poorly understood. Using 454 pyrosequencing, we investigated the response of leaf endophytic bacterial communities to elevated CO2 (eCO2) at the tillering, filling, and maturity stages of the rice plant under different nitrogen fertilization conditions [low nitrogen fertilization (LN) and high nitrogen fertilization (HN)]. The results revealed that the leaf endophytic bacterial community was dominated by Gammaproteobacteria-affiliated families, such as Enterobacteriaceae and Xanthomonadaceae, which represent 28.7-86.8% and 2.14-42.6% of the total sequence reads, respectively, at all tested growth stages. The difference in the bacterial community structure between the different growth stages was greater than the difference resulting from the CO2 and nitrogen fertilization treatments. The eCO2 effect on the bacterial communities differed greatly under different nitrogen application conditions and at different growth stages. Specifically, eCO2 revealed a significant effect on the community structure under both LN and HN levels at the tillering stage; however, the significant effect of eCO2 was only observed under HN, rather than under the LN condition at the filling stage; no significant effect of eCO2 on the community structure at both the LN and HN fertilization levels was found at the maturity stage. These results provide useful insights into the response of leaf endophytic bacterial communities to elevated CO2 across rice growth stages.
Collapse
Affiliation(s)
- Gaidi Ren
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science – Chinese Academy of SciencesNanjing, China
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science – Chinese Academy of SciencesNanjing, China
| | - Huayong Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science – Chinese Academy of SciencesNanjing, China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science – Chinese Academy of SciencesNanjing, China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science – Chinese Academy of SciencesNanjing, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science – Chinese Academy of SciencesNanjing, China
| |
Collapse
|
28
|
Nogales A, Nobre T, Valadas V, Ragonezi C, Döring M, Polidoros A, Arnholdt-Schmitt B. Can functional hologenomics aid tackling current challenges in plant breeding? Brief Funct Genomics 2015; 15:288-97. [PMID: 26293603 DOI: 10.1093/bfgp/elv030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Molecular plant breeding usually overlooks the genetic variability that arises from the association of plants with endophytic microorganisms, when looking at agronomic interesting target traits. This source of variability can have crucial effects on the functionality of the organism considered as a whole (the holobiont), and therefore can be selectable in breeding programs. However, seeing the holobiont as a unit for selection and improvement in breeding programs requires novel approaches for genotyping and phenotyping. These should not focus just at the plant level, but also include the associated endophytes and their functional effects on the plant, to make effective desirable trait screenings. The present review intends to draw attention to a new research field on functional hologenomics that if associated with adequate phenotyping tools could greatly increase the efficiency of breeding programs.
Collapse
|
29
|
Suhaimi NSM, Yap KP, Ajam N, Thong KL. Genome sequence of Kosakonia radicincitans UMEnt01/12, a bacterium associated with bacterial wilt diseased banana plant. FEMS Microbiol Lett 2015; 358:11-3. [PMID: 25047976 DOI: 10.1111/1574-6968.12537] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/07/2014] [Accepted: 07/12/2014] [Indexed: 11/29/2022] Open
Abstract
Kosakonia radicincitans (formerly known as Enterobacter radicincitans), an endophytic bacterium was isolated from the symptomatic tissues of bacterial wilt diseased banana (Musa spp.) plant in Malaysia. The total genome size of K. radicincitans UMEnt01/12 is 5 783 769 bp with 5463 coding sequences (CDS), 75 tRNAs, and 9 rRNAs. The annotated draft genome of the K. radicincitans UMEnt01/12 strain might shed light on its role as a bacterial wilt-associated bacterium.
Collapse
|
30
|
Genome Sequence of Kosakonia radicincitans Strain YD4, a Plant Growth-Promoting Rhizobacterium Isolated from Yerba Mate (Ilex paraguariensis St. Hill.). GENOME ANNOUNCEMENTS 2015; 3:3/2/e00239-15. [PMID: 25838492 PMCID: PMC4384496 DOI: 10.1128/genomea.00239-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kosakonia radicincitans strain YD4 is a rhizospheric isolate from yerba mate (Ilex paraguariensis St. Hill.) with plant growth-promoting effects on this crop. Genes involved in different plant growth-promoting activities are present in this genome, suggesting its potential as a bioinoculant for yerba mate.
Collapse
|
31
|
Zhang F, Su S, Yu G, Zheng B, Shu F, Wang Z, Xiang T, Dong H, Zhang Z, Hou D, She Y. High quality genome sequence and description of Enterobacter mori strain 5-4, isolated from a mixture of formation water and crude-oil. Stand Genomic Sci 2015; 10:9. [PMID: 27408680 PMCID: PMC4940761 DOI: 10.1186/1944-3277-10-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/24/2014] [Indexed: 11/10/2022] Open
Abstract
Enterobacter mori strain 5-4 is a Gram-negative, motile, rod shaped, and facultatively anaerobic bacterium, which was isolated from a mixture of formation water (also known as oil-reservior water) and crude-oil in Karamay oilfield, China. To date, there is only one E. mori genome has been sequenced and very little knowledge about the mechanism of E. mori adapted to the petroleum reservoir. Here, we report the second E. mori genome sequence and annotation, together with the description of features for this organism. The 4,621,281 bp assembly genome exhibits a G + C content of 56.24% and contains 4,317 protein-coding and 65 RNA genes, including 5 rRNA genes.
Collapse
Affiliation(s)
- Fan Zhang
- />The Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, School of Energy Resources, China University of Geosciences, Beijing, China
| | - Sanbao Su
- />College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Gaoming Yu
- />College of Petroleum Engineering, Yangtze University, Jingzhou, China
| | - Beiwen Zheng
- />State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Fuchang Shu
- />College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Zhengliang Wang
- />College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Tingsheng Xiang
- />College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Hao Dong
- />State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
| | - Zhongzhi Zhang
- />State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
| | - DuJie Hou
- />The Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, School of Energy Resources, China University of Geosciences, Beijing, China
| | - Yuehui She
- />College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| |
Collapse
|
32
|
Complete Genome Sequence of Enterobacter sp. Strain R4-368, an Endophytic N-Fixing Gammaproteobacterium Isolated from Surface-Sterilized Roots of Jatropha curcas L. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00544-13. [PMID: 23908287 PMCID: PMC3731841 DOI: 10.1128/genomea.00544-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Enterobacter sp. strain R4-368 is one of the few characterized Jatropha endophytic diazotrophic bacteria and was isolated from surface-sterilized roots. This bacterium shows strong growth-promoting effects, being able to increase plant biomass and seed yields. Enterobacter sp. R4-368 is the second fully sequenced diazotrophic Enterobacter species. The sequence information shall facilitate the elucidation of the molecular mechanisms of plant growth promotion, nitrogen fixation in nonlegume plant species, and evolution of biological nitrogen fixation systems.
Collapse
|
33
|
Genome sequence of Enterobacter sp. strain SP1, an endophytic nitrogen-fixing bacterium isolated from sugarcane. J Bacteriol 2013; 194:6963-4. [PMID: 23209221 DOI: 10.1128/jb.01933-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Enterobacter sp. strain SP1 is an endophytic nitrogen-fixing bacterium isolated from a sugarcane stem and can promote plant growth. The draft genome sequence of strain SP1 presented here will promote comparative genomic studies to determine the genetic background of interactions between endophytic enterobacteria and plants.
Collapse
|
34
|
Genome sequences published outside of Standards in Genomic Sciences, October - November 2012. Stand Genomic Sci 2012. [PMCID: PMC3569392 DOI: 10.4056/sigs.3597227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to subsequent versions of this list are invited to provide the bibliographic data for such references to the SIGS editorial office.
Collapse
|
35
|
Abstract
The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to subsequent versions of this list are invited to provide the bibliographic data for such references to the SIGS editorial office.
Collapse
|