1
|
Sedlmayr VL, Széliová D, De Kock V, Gansemans Y, Van Nieuwerburgh F, Peeters E, Quehenberger J, Zanghellini J, Spadiut O. Impact of nutrient excess on physiology and metabolism of Sulfolobus acidocaldarius. Front Microbiol 2024; 15:1475385. [PMID: 39430106 PMCID: PMC11486757 DOI: 10.3389/fmicb.2024.1475385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
Overflow metabolism is a well-known phenomenon that describes the seemingly wasteful and incomplete substrate oxidation by aerobic cells, such as yeasts, bacteria, and mammalian cells, even when conditions allow for total combustion via respiration. This cellular response, triggered by an excess of C-source, has not yet been investigated in archaea. In this study, we conducted chemostat cultivations to compare the metabolic and physiological states of the thermoacidophilic archaeon Sulfolobus acidocaldarius under three conditions, each with gradually increasing nutrient stress. Our results show that S. acidocaldarius has different capacities for the uptake of the two C-sources, monosodium glutamate and glucose. A saturated tricarboxylic acid cycle at elevated nutrient concentrations affects the cell's ability to deplete its intermediates. This includes deploying additional cataplerotic pathways and the secretion of amino acids, notably valine, glycine, and alanine, while glucose is increasingly metabolized via glycogenesis. We did not observe the secretion of common fermentation products, like organic acids. Transcriptomic analysis indicated an upregulation of genes involved in fatty acid metabolism, suggesting the intracellular conservation of energy. Adapting respiratory enzymes under nutrient stress indicated high metabolic flexibility and robust regulatory mechanisms in this archaeon. This study enhances our fundamental understanding of the metabolism of S. acidocaldarius.
Collapse
Affiliation(s)
- Viktor Laurin Sedlmayr
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Diana Széliová
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Veerke De Kock
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yannick Gansemans
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julian Quehenberger
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Jürgen Zanghellini
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Oliver Spadiut
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
2
|
Hackley RK, Vreugdenhil-Hayslette A, Darnell CL, Schmid AK. A conserved transcription factor controls gluconeogenesis via distinct targets in hypersaline-adapted archaea with diverse metabolic capabilities. PLoS Genet 2024; 20:e1011115. [PMID: 38227606 PMCID: PMC10817205 DOI: 10.1371/journal.pgen.1011115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/26/2024] [Accepted: 12/22/2023] [Indexed: 01/18/2024] Open
Abstract
Timely regulation of carbon metabolic pathways is essential for cellular processes and to prevent futile cycling of intracellular metabolites. In Halobacterium salinarum, a hypersaline adapted archaeon, a sugar-sensing TrmB family protein controls gluconeogenesis and other biosynthetic pathways. Notably, Hbt. salinarum does not utilize carbohydrates for energy, uncommon among Haloarchaea. We characterized a TrmB-family transcriptional regulator in a saccharolytic generalist, Haloarcula hispanica, to investigate whether the targets and function of TrmB, or its regulon, is conserved in related species with distinct metabolic capabilities. In Har. hispanica, TrmB binds to 15 sites in the genome and induces the expression of genes primarily involved in gluconeogenesis and tryptophan biosynthesis. An important regulatory control point in Hbt. salinarum, activation of ppsA and repression of pykA, is absent in Har. hispanica. Contrary to its role in Hbt. salinarum and saccharolytic hyperthermophiles, TrmB does not act as a global regulator: it does not directly repress the expression of glycolytic enzymes, peripheral pathways such as cofactor biosynthesis, or catabolism of other carbon sources in Har. hispanica. Cumulatively, these findings suggest rewiring of the TrmB regulon alongside metabolic network evolution in Haloarchaea.
Collapse
Affiliation(s)
- Rylee K. Hackley
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | | | - Cynthia L. Darnell
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Amy K. Schmid
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
3
|
Gevorgyan H, Khalatyan S, Vassilian A, Trchounian K. Metabolic pathways and ΔpH regulation in Escherichia coli during the fermentation of glucose and glycerol in the presence of formate at pH 6.5: the role of FhlA transcriptional activator. FEMS Microbiol Lett 2022; 369:6825452. [PMID: 36370455 DOI: 10.1093/femsle/fnac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/08/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022] Open
Abstract
Escherichia coli is able to ferment mixed carbon sources and produce various fermentation end-products. In this study, the function of FhlA protein in the specific growth rate (µ), metabolism, regulation of ΔpH and proton ATPase activity was investigated. Reduced µ in fhlA mutant of ∼25% was shown, suggesting the role of FhlA in the growth process. The utilization rate of glycerol is decreased in fhlA ∼ 2 fold, depending on the oxidation-reduction potential values. Bacteria regulate the activity of hydrogenase enzymes during growth depending on the external pH, which manifests as a lack of hydrogen gas generation during glycerol utilization at pH values below 5.9. It is suggested that cells maintain ΔpH during the fermentative growth via formate-lactate-succinate exchange. The decrement of the value of pHin, but not of pHex in mutant cells, is regulating ΔpH and consequently proton motive force generation.
Collapse
Affiliation(s)
- Heghine Gevorgyan
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia.,Scientific-Research Institute of Biology, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia.,Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 0025 Yerevan, Armenia
| | - Satenik Khalatyan
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia.,Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 0025 Yerevan, Armenia
| | - Anait Vassilian
- Scientific-Research Institute of Biology, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia.,Scientific-Research Institute of Biology, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia.,Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 0025 Yerevan, Armenia
| |
Collapse
|
4
|
Thermostable and O2-Insensitive Pyruvate Decarboxylases from Thermoacidophilic Archaea Catalyzing the Production of Acetaldehyde. BIOLOGY 2022; 11:biology11081247. [PMID: 36009875 PMCID: PMC9405506 DOI: 10.3390/biology11081247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Pyruvate decarboxylase (PDC) is a key enzyme involved in ethanol fermentation, a process for the production of biofuels. Thermostable and oxygen-stable PDC activity is highly desirable for biotechnological applications at high temperatures. The enzymes from the thermoacidophiles Saccharolobus (formerly Sulfolobus) solfataricus (Ss, Topt = 80 °C) and Sulfolobus acidocaldarius (Sa, Topt = 80 °C) were purified and characterized, and their biophysical and biochemical properties were determined comparatively. The purified enzymes were CoA-dependent and thermostable. There was no loss of activity in the presence of oxygen. In conclusion, both thermostable SsPDC and SaPDC catalyze the CoA-dependent production of acetaldehyde from pyruvate in the presence of oxygen. Abstract Pyruvate decarboxylase (PDC) is a key enzyme involved in ethanol fermentation, and it catalyzes the decarboxylation of pyruvate to acetaldehyde and CO2. Bifunctional PORs/PDCs that also have additional pyruvate:ferredoxin oxidoreductase (POR) activity are found in hyperthermophiles, and they are mostly oxygen-sensitive and CoA-dependent. Thermostable and oxygen-stable PDC activity is highly desirable for biotechnological applications. The enzymes from the thermoacidophiles Saccharolobus (formerly Sulfolobus) solfataricus (Ss, Topt = 80 °C) and Sulfolobus acidocaldarius (Sa, Topt = 80 °C) were purified and characterized, and their biophysical and biochemical properties were determined comparatively. Both enzymes were shown to be heterodimeric, and their two subunits were determined by SDS-PAGE to be 37 ± 3 kDa and 65 ± 2 kDa, respectively. The purified enzymes from S. solfataricus and S. acidocaldarius showed both PDC and POR activities which were CoA-dependent, and they were thermostable with half-life times of 2.9 ± 1 and 1.1 ± 1 h at 80 °C, respectively. There was no loss of activity in the presence of oxygen. Optimal pH values for their PDC and POR activity were determined to be 7.9 and 8.6, respectively. In conclusion, both thermostable SsPOR/PDC and SaPOR/PDC catalyze the CoA-dependent production of acetaldehyde from pyruvate in the presence of oxygen.
Collapse
|
5
|
Lee A, Jin H, Cha J. Engineering of Sulfolobus acidocaldarius for Hemicellulosic Biomass Utilization. J Microbiol Biotechnol 2022; 32:663-671. [PMID: 35283427 PMCID: PMC9628888 DOI: 10.4014/jmb.2202.02016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
The saccharification of cellulose and hemicellulose is essential for utilizing lignocellulosic biomass as a biofuel. While cellulose is composed of glucose only, hemicelluloses are composed of diverse sugars such as xylose, arabinose, glucose, and galactose. Sulfolobus acidocaldarius is a good potential candidate for biofuel production using hemicellulose as this archaeon simultaneously utilizes various sugars. However, S. acidocaldarius has to be manipulated because the enzyme that breaks down hemicellulose is not present in this species. Here, we engineered S. acidocaldarius to utilize xylan as a carbon source by introducing xylanase and β-xylosidase. Heterologous expression of β-xylosidase enhanced the organism's degradability and utilization of xylooligosaccharides (XOS), but the mutant still failed to grow when xylan was provided as a carbon source. S. acidocaldarius exhibited the ability to degrade xylan into XOS when xylanase was introduced, but no further degradation proceeded after this sole reaction. Following cell growth and enzyme reaction, S. acidocaldarius successfully utilized xylan in the synergy between xylanase and β-xylosidase.
Collapse
Affiliation(s)
- Areum Lee
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Hyeju Jin
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Jaeho Cha
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea,Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea,Corresponding author Phone: +82-51-510-2196 Fax: +82-51-514-1778 E-mail:
| |
Collapse
|
6
|
Szentgyörgyi F, Benedek T, Fekete D, Táncsics A, Harkai P, Kriszt B. Development of a bacterial consortium from Variovorax paradoxus and Pseudomonas veronii isolates applicable in the removal of BTEX. AMB Express 2022; 12:4. [PMID: 35075552 PMCID: PMC8787013 DOI: 10.1186/s13568-022-01349-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 12/07/2022] Open
Abstract
In this study, we report on the development of a novel bacterial consortium, consisting of Variovorax paradoxus and Pseudomonas veronii isolates, applicable in the biodegradation of all six BTEX compounds (benzene, toluene, ethylbenzene, o-, m- and p-xylene) and the bioremediation of contaminated sites. The co-cultivability of the selected bacterial isolates was determined in nutrient-rich medium, as well as in BTEX amended mineral salts solution using Terminal Restriction Fragment Length Polymorphism (T-RFLP) and CFU determinations. BTEX biodegradation capacity of the two-strain consortium was assessed in mineral salts solution, where a series of BTEX depletions and supplementations occurred, as well as in a real, BTEX polluted environmental sample (contaminated groundwater) in the presence of the autochthonous bacterial community. The obtained results indicated that the developed bacterial consortium is very efficient in BTEX biodegradation. Under laboratory conditions, the acclimatized bacterial consortium completely degraded the BTEX mixture with a concentration as high as 20 mg l-1 in a mineral salt medium within a short span of 6 h. Close to in situ groundwater conditions (incubated at 15 °C under static conditions in the absence of light), groundwater microcosms containing the autochthonous bacterial community inoculated with the developed bacterial consortium showed more efficient toluene, o-, m-and p-xylene biodegradation capacity than microcosms containing solely the native microbial population originally found in the groundwater. In the inoculated microcosms, after 115 h of incubation the concentration (~ 1.7 mg l-1 each) of o-, m- and p-xylene decreased to zero, whereas in the non-inoculated microcosms the concentration of xylene isomers was still 0.2, 0.3 and 0.3 mg l-1, respectively. The allochthonous bioaugmentation of the contaminated groundwater with the obtained inoculant was successful and manifested in a better BTEX degradation rate. Our results suggest that the obtained bacterial consortium can be a new, stable and efficient bioremediation agent applicable in the synergistic elimination of BTEX compounds from contaminated sites.
Collapse
|
7
|
Lignocellulosic Biomass as a Substrate for Oleaginous Microorganisms: A Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217698] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microorganisms capable of accumulating lipids in high percentages, known as oleaginous microorganisms, have been widely studied as an alternative for producing oleochemicals and biofuels. Microbial lipid, so-called Single Cell Oil (SCO), production depends on several growth parameters, including the nature of the carbon substrate, which must be efficiently taken up and converted into storage lipid. On the other hand, substrates considered for large scale applications must be abundant and of low acquisition cost. Among others, lignocellulosic biomass is a promising renewable substrate containing high percentages of assimilable sugars (hexoses and pentoses). However, it is also highly recalcitrant, and therefore it requires specific pretreatments in order to release its assimilable components. The main drawback of lignocellulose pretreatment is the generation of several by-products that can inhibit the microbial metabolism. In this review, we discuss the main aspects related to the cultivation of oleaginous microorganisms using lignocellulosic biomass as substrate, hoping to contribute to the development of a sustainable process for SCO production in the near future.
Collapse
|
8
|
Wang L, Wang D, Zhang Z, Cheng S, Liu B, Wang C, Li R, Guo S. Comparative Glucose and Xylose Coutilization Efficiencies of Soil-Isolated Yeast Strains Identify Cutaneotrichosporon dermatis as a Potential Producer of Lipid. ACS OMEGA 2020; 5:23596-23603. [PMID: 32984679 PMCID: PMC7512434 DOI: 10.1021/acsomega.0c02089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Glucose and xylose are the major hydrolysates of lignocellulose, and therefore, it is of great implication to identify the microbes involved in simultaneous utilization of glucose and xylose. In this study, the strain ZZ-46 isolated from the soil of Nanyang, China, could simultaneously assimilate glucose and xylose efficiently to produce lipid. Upon cultivation with a 2:1 glucose/xylose mixture as the carbon source for 144 h, the cell biomass, lipid concentration, lipid content, and lipid yield of ZZ-46 reached 19.85 ± 0.39 g/L, 9.53 ± 0.60 g/L, 48.05 ± 3.51%, and 0.142 ± 0.003 g/g sugar, respectively. Moreover, C16 and C18 fatty acids were the main constituents of lipid produced by ZZ-46. In addition, ZZ-46 was identified as Cutaneotrichosporon dermatis by the morphology features and phylogenetic analyses. The strain ZZ-46 would have good perspective in practical application for converting lignocellulose into microbial lipid.
Collapse
Affiliation(s)
- Laiyou Wang
- School
of Biological and Chemical Engineering, Nanyang Institute of Technology, No. 80 Changjiang Road, Wancheng
District, Nanyang 473004, Henan, China
- Henan
Key Laboratory of Industrial Microbial Resources and Fermentation
Technology, Nanyang Institute of Technology, No. 80 Changjiang Road, Wancheng District, Nanyang 473004, Henan, China
- State
Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473004, China
| | - Dongmei Wang
- School
of Biological and Chemical Engineering, Nanyang Institute of Technology, No. 80 Changjiang Road, Wancheng
District, Nanyang 473004, Henan, China
- Henan
Key Laboratory of Industrial Microbial Resources and Fermentation
Technology, Nanyang Institute of Technology, No. 80 Changjiang Road, Wancheng District, Nanyang 473004, Henan, China
| | - Zhili Zhang
- School
of Biological and Chemical Engineering, Nanyang Institute of Technology, No. 80 Changjiang Road, Wancheng
District, Nanyang 473004, Henan, China
| | - Shuang Cheng
- School
of Biological and Chemical Engineering, Nanyang Institute of Technology, No. 80 Changjiang Road, Wancheng
District, Nanyang 473004, Henan, China
- Henan
Key Laboratory of Industrial Microbial Resources and Fermentation
Technology, Nanyang Institute of Technology, No. 80 Changjiang Road, Wancheng District, Nanyang 473004, Henan, China
| | - Bingbing Liu
- School
of Biological and Chemical Engineering, Nanyang Institute of Technology, No. 80 Changjiang Road, Wancheng
District, Nanyang 473004, Henan, China
- Henan
Key Laboratory of Industrial Microbial Resources and Fermentation
Technology, Nanyang Institute of Technology, No. 80 Changjiang Road, Wancheng District, Nanyang 473004, Henan, China
| | - Chunyan Wang
- School
of Biological and Chemical Engineering, Nanyang Institute of Technology, No. 80 Changjiang Road, Wancheng
District, Nanyang 473004, Henan, China
- Henan
Key Laboratory of Industrial Microbial Resources and Fermentation
Technology, Nanyang Institute of Technology, No. 80 Changjiang Road, Wancheng District, Nanyang 473004, Henan, China
| | - Ruige Li
- School
of Mathematics and Statistics, Nanyang Institute
of Technology, No. 80 Changjiang Road, Wancheng District, Nanyang 473004, Henan, China
| | - Shuxian Guo
- School
of Biological and Chemical Engineering, Nanyang Institute of Technology, No. 80 Changjiang Road, Wancheng
District, Nanyang 473004, Henan, China
- Henan
Key Laboratory of Industrial Microbial Resources and Fermentation
Technology, Nanyang Institute of Technology, No. 80 Changjiang Road, Wancheng District, Nanyang 473004, Henan, China
- State
Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473004, China
| |
Collapse
|
9
|
Panjiar N, Mattam AJ, Jose S, Gandham S, Velankar HR. Valorization of xylose-rich hydrolysate from rice straw, an agroresidue, through biosurfactant production by the soil bacterium Serratia nematodiphila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138933. [PMID: 32371209 DOI: 10.1016/j.scitotenv.2020.138933] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 05/26/2023]
Abstract
Biosurfactants, amphiphilic compounds that reduce interfacial tension in oil-aqueous mixtures, are used in the petroleum, pharmaceutical, food, and agriculture industries. Fermentative production of biosurfactants requires expensive sugar or lipid substrates. Lignocellulosic biomass is a relatively cheap and abundant agricultural residue that can be used as an alternative substrate. Currently, several million tonnes of rice and wheat straw are generated globally as agricultural residues, most of which is disposed by open-field burning thereby leading to severe environmental pollution. This study aimed to produce biosurfactants in xylose-rich hydrolysates generated from rice straw. The hydrolysate is also a byproduct of 2G biofuel processes that often goes underutilized. A soil bacterium capable of growing and producing biosurfactants in rice straw hydrolysates, which typically contain growth-inhibitory compounds such as furfural and hydroxymethyl furfural, was isolated. Interestingly, the organism, identified as Serratia nematodiphila, exhibited higher glycolipid formation (4.5 ± 0.6 gL-1) in xylose-rich hydrolysate than in glucose-rich enzymatic hydrolysate (3.1 ± 0.2 gL-1) despite the higher bacterial cell density observed with the latter. The biosurfactants were thermostable and possessed promising emulsifying property and anti-microbial activity against bacteria and yeast. Further optimization of C:N resulted in a 2.8-fold increase in glycolipid production from xylose-rich hydrolysates. This study demonstrates the production of glycolipid biosurfactants from lignocellulosic biomass, a low-cost substrate and offers a plausible strategy for the management of these residues. Further, it also provides insights into the generation of additional high-value compounds in a bioethanol biorefinery to improve its commercial feasibility.
Collapse
Affiliation(s)
- Neha Panjiar
- Hindustan Petroleum Green R&D Centre, KIADB Industrial Area, Tarabanahalli, Devanagonthi, Hoskote, Bengaluru 560067, India
| | - Anu Jose Mattam
- Hindustan Petroleum Green R&D Centre, KIADB Industrial Area, Tarabanahalli, Devanagonthi, Hoskote, Bengaluru 560067, India
| | - Steffi Jose
- Hindustan Petroleum Green R&D Centre, KIADB Industrial Area, Tarabanahalli, Devanagonthi, Hoskote, Bengaluru 560067, India
| | - Sriganesh Gandham
- Hindustan Petroleum Green R&D Centre, KIADB Industrial Area, Tarabanahalli, Devanagonthi, Hoskote, Bengaluru 560067, India
| | - Harshad Ravindra Velankar
- Hindustan Petroleum Green R&D Centre, KIADB Industrial Area, Tarabanahalli, Devanagonthi, Hoskote, Bengaluru 560067, India.
| |
Collapse
|
10
|
Patterns of Lignocellulosic Sugar Assimilation and Lipid Production by Newly Isolated Yeast Strains From Chilean Valdivian Forest. Appl Biochem Biotechnol 2020; 192:1124-1146. [PMID: 32700200 DOI: 10.1007/s12010-020-03398-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022]
Abstract
Three yeast strains were isolated from decaying wood of Chilean Valdivian forest and identified as Meyerozyma guilliermondii, Scheffersomyces coipomensis, and Sugiyamaella paludigena. These strains were able to efficiently grow on the major monomers contained in Pinus spp. and Eucalyptus spp. wood that includes glucose (Glc), xylose (Xyl), and mannose (Man), showing at 28 °C higher uptake rates for Man, and in some cases for Glc, than for Xyl, used as single carbon sources. Nevertheless, in cultures performed on sugar mixtures, the strains displayed a notable preference for Glc. Additionally, in sugar mixtures, the absence of regulatory mechanisms in sugar assimilation (e.g., catabolic repression) was observed and documented when the activities of several enzymes involved in sugar assimilation (i.e., phosphoglucose isomerase, phosphomannose isomerase, and xylulokinase) were determined. The activity of the key enzymes involved in the onset of lipid accumulation (i.e., NAD+-ICDH) and in fatty acid (FA) biosynthesis (i.e., ATP:CL) indicated a significant accumulation of storage lipids (i.e., up to 24%, w/w) containing oleic and palmitic acids as the major components. The present paper is the first report on the potential of M. guilliermondii, S. coipomensis, and S. paludigena as oleaginous yeasts. We conclude that the new isolates, being able to simultaneously assimilate the major lignocellulosic sugars and efficiently convert them into oily biomass, present a biotechnological potential which deserve further investigation.
Collapse
|
11
|
Diauxie and co-utilization of carbon sources can coexist during bacterial growth in nutritionally complex environments. Nat Commun 2020; 11:3135. [PMID: 32561713 PMCID: PMC7305145 DOI: 10.1038/s41467-020-16872-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
It is commonly thought that when multiple carbon sources are available, bacteria metabolize them either sequentially (diauxic growth) or simultaneously (co-utilization). However, this view is mainly based on analyses in relatively simple laboratory settings. Here we show that a heterotrophic marine bacterium, Pseudoalteromonas haloplanktis, can use both strategies simultaneously when multiple possible nutrients are provided in the same growth experiment. The order of nutrient uptake is partially determined by the biomass yield that can be achieved when the same compounds are provided as single carbon sources. Using transcriptomics and time-resolved intracellular 1H-13C NMR, we reveal specific pathways for utilization of various amino acids. Finally, theoretical modelling indicates that this metabolic phenotype, combining diauxie and co-utilization of substrates, is compatible with a tight regulation that allows the modulation of assimilatory pathways. It is thought that when multiple carbon sources are available, bacteria metabolize them either sequentially or simultaneously. Here, the authors show that a marine bacterium can use a mixed strategy when multiple possible nutrients are provided, and analyse the metabolic pathways involved.
Collapse
|
12
|
Metcalfe GD, Alahmari S, Smith TW, Hippler M. Cavity-Enhanced Raman and Helmholtz Resonator Photoacoustic Spectroscopy to Monitor the Mixed Sugar Metabolism of E. coli. Anal Chem 2019; 91:13096-13104. [PMID: 31525022 PMCID: PMC7006961 DOI: 10.1021/acs.analchem.9b03284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
We
introduce and compare two powerful new techniques for headspace
gas analysis above bacterial batch cultures by spectroscopy, Raman
spectroscopy enhanced in an optical cavity (CERS), and photoacoustic
detection in a differential Helmholtz resonator (DHR). Both techniques
are able to monitor O2 and CO2 and its isotopomers
with excellent sensitivity and time resolution to characterize bacterial
growth and metabolism. We discuss and show some of the shortcomings
of more conventional optical density (OD) measurements if used on
their own without more sophisticated complementary measurements. The
spectroscopic measurements can clearly and unambiguously distinguish
the main phases of bacterial growth in the two media studied, LB and
M9. We demonstrate how 13C isotopic labeling of sugars
combined with spectroscopic detection allows the study of bacterial
mixed sugar metabolism to establish whether sugars are sequentially
or simultaneously metabolized. For E. coli, we have
characterized the shift from glucose to lactose metabolism without
a classic diauxic lag phase. DHR and CERS are shown to be cost-effective
and highly selective analytical tools in the biosciences and in biotechnology,
complementing and superseding existing conventional techniques. They
also provide new capabilities for mechanistic investigations and show
a great deal of promise for use in stable isotope bioassays.
Collapse
Affiliation(s)
- George D Metcalfe
- Department of Chemistry , University of Sheffield , Sheffield S3 7HF , U.K
| | - Saeed Alahmari
- Department of Chemistry , University of Sheffield , Sheffield S3 7HF , U.K
| | - Thomas W Smith
- Department of Chemistry , University of Sheffield , Sheffield S3 7HF , U.K.,Water and Environmental Engineering Group, Faculty of Engineering and Physical Sciences , University of Southampton , Southampton SO17 1BJ , U.K
| | - Michael Hippler
- Department of Chemistry , University of Sheffield , Sheffield S3 7HF , U.K
| |
Collapse
|
13
|
Hackley RK, Schmid AK. Global Transcriptional Programs in Archaea Share Features with the Eukaryotic Environmental Stress Response. J Mol Biol 2019; 431:4147-4166. [PMID: 31437442 PMCID: PMC7419163 DOI: 10.1016/j.jmb.2019.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 01/06/2023]
Abstract
The environmental stress response (ESR), a global transcriptional program originally identified in yeast, is characterized by a rapid and transient transcriptional response composed of large, oppositely regulated gene clusters. Genes induced during the ESR encode core components of stress tolerance, macromolecular repair, and maintenance of homeostasis. In this review, we investigate the possibility for conservation of the ESR across the eukaryotic and archaeal domains of life. We first re-analyze existing transcriptomics data sets to illustrate that a similar transcriptional response is identifiable in Halobacterium salinarum, an archaeal model organism. To substantiate the archaeal ESR, we calculated gene-by-gene correlations, gene function enrichment, and comparison of temporal dynamics. We note reported examples of variation in the ESR across fungi, then synthesize high-level trends present in expression data of other archaeal species. In particular, we emphasize the need for additional high-throughput time series expression data to further characterize stress-responsive transcriptional programs in the Archaea. Together, this review explores an open question regarding features of global transcriptional stress response programs shared across domains of life.
Collapse
Affiliation(s)
- Rylee K Hackley
- Department of Biology, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Amy K Schmid
- Department of Biology, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA; Center for Genomics and Computational Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
14
|
Park JO, Liu N, Holinski KM, Emerson DF, Qiao K, Woolston BM, Xu J, Lazar Z, Islam MA, Vidoudez C, Girguis PR, Stephanopoulos G. Synergistic substrate cofeeding stimulates reductive metabolism. Nat Metab 2019; 1:643-651. [PMID: 32694804 DOI: 10.1038/s42255-019-0077-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 05/13/2019] [Indexed: 11/09/2022]
Abstract
Advanced bioproduct synthesis via reductive metabolism requires coordinating carbons, ATP and reducing agents, which are generated with varying efficiencies depending on metabolic pathways. Substrate mixtures with direct access to multiple pathways may optimally satisfy these biosynthetic requirements. However, native regulation favouring preferential use precludes cells from co-metabolizing multiple substrates. Here we explore mixed substrate metabolism and tailor pathway usage to synergistically stimulate carbon reduction. By controlled cofeeding of superior ATP and NADPH generators as 'dopant' substrates to cells primarily using inferior substrates, we circumvent catabolite repression and drive synergy in two divergent organisms. Glucose doping in Moorella thermoacetica stimulates CO2 reduction (2.3 g gCDW-1 h-1) into acetate by augmenting ATP synthesis via pyruvate kinase. Gluconate doping in Yarrowia lipolytica accelerates acetate-driven lipogenesis (0.046 g gCDW-1 h-1) by obligatory NADPH synthesis through the pentose cycle. Together, synergistic cofeeding produces CO2-derived lipids with 38% energy yield and demonstrates the potential to convert CO2 into advanced bioproducts. This work advances the systems-level control of metabolic networks and CO2 use, the most pressing and difficult reduction challenge.
Collapse
Affiliation(s)
- Junyoung O Park
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nian Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kara M Holinski
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David F Emerson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kangjian Qiao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin M Woolston
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jingyang Xu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, China
| | - Zbigniew Lazar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Monskiego, Wroclaw, Poland
| | - M Ahsanul Islam
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| | - Charles Vidoudez
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
15
|
A defined cultivation medium for Sulfolobus acidocaldarius. J Biotechnol 2019; 301:56-67. [PMID: 31153897 DOI: 10.1016/j.jbiotec.2019.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022]
Abstract
The thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius is an important model organism for Archaea and genetic systems are well established. To date, the organism is routinely cultivated on complex media based on protein hydrolysates and no common defined medium is established. In this work we address this lack of a standardized defined medium and replaced the complex protein hydrolysate with sodium glutamate as primary substrate. Starting from an existing medium formulation we stepwise managed to improve the medium regarding formation of precipitates, buffer capacity, concentration of basal salts and trace elements, and optimized growth rates. The differences on the cellular level between the original medium and our new formulation, called VD Medium, were investigated by comparative gene expression analysis and significant differences were discussed. The final formulation of the VD Medium contains 1.75 g/L Na-glutamate, 3 g/L D-glucose and 0.5 g/L citric acid as carbon sources. Using the described medium for the cultivation of S. acidocaldarius DSM 639 in shake flasks yields 1.1 g/L dry cell weight (OD600 = 1.7) after a typical incubation time of 95 h with an overall biomass yield of 0.33 gDCW/gsubstrate.
Collapse
|
16
|
Schocke L, Bräsen C, Siebers B. Thermoacidophilic Sulfolobus species as source for extremozymes and as novel archaeal platform organisms. Curr Opin Biotechnol 2019; 59:71-77. [PMID: 30875666 DOI: 10.1016/j.copbio.2019.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/29/2019] [Accepted: 02/09/2019] [Indexed: 12/16/2022]
Abstract
Archaea dominate extreme habitats and possess unique cellular and metabolic properties with novel or modified metabolic pathways and unusual enzymes. Thermoacidophilic Sulfolobus species and their thermo(acido)philic enzymes gained special attention due to their adaptation toward two extremes, high temperature (75-80°C) and low pH (pH 2-5), that matches harsh process conditions in industrial applications. For different Sulfolobus species versatile genetic systems have been established and significant metabolic and physiological information from classical biochemistry and genetic as well as poly-omics and systems biology approaches is available. Their ease of growth under aerobic or microaerophilic conditions and established fermentation technologies gaining high cell yields promote Sulfolobus as source for extremozymes and as valuable novel platform organism for industrial biotechnology.
Collapse
Affiliation(s)
- Larissa Schocke
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany.
| |
Collapse
|
17
|
Abstract
Metabolomics is valuable for studying microbial metabolism, which is often used to elucidate biological functions. Effective application of metabolomics is enhanced by fundamental understanding of microbial physiology and metabolism. This review briefly highlights important aspects of metabolism that are essential for designing and executing effective metabolic and metabolomics studies. The influence of microbial physiology and metabolism on growth, energy metabolism and regulation is briefly reviewed. The chapter also evaluates factors affecting metabolic prediction.
Collapse
Affiliation(s)
- Chijioke J Joshua
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Joint BioEnergy Institute, Emeryville, CA, USA.
| |
Collapse
|
18
|
Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway. Appl Environ Microbiol 2018; 84:AEM.01273-17. [PMID: 29150511 DOI: 10.1128/aem.01273-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/12/2017] [Indexed: 12/15/2022] Open
Abstract
Sulfolobus spp. possess a great metabolic versatility and grow heterotrophically on various carbon sources, such as different sugars and peptides. Known sugar transporters in Archaea predominantly belong to ABC transport systems. Although several ABC transporters for sugar uptake have been characterized in the crenarchaeon Sulfolobus solfataricus, only one homologue of these transporters, the maltose/maltooligomer transporter, could be identified in the closely related Sulfolobus acidocaldarius Comparison of the transcriptome of S. acidocaldarius MW001 grown on peptides alone and peptides in the presence of d-xylose allowed for the identification of the ABC transporter for d-xylose and l-arabinose transport and the gaining of deeper insights into pentose catabolism under the respective growth conditions. The d-xylose/l-arabinose substrate binding protein (SBP) (Saci_2122) of the ABC transporter is unique in Archaea and shares more similarity to bacterial SBPs of the carbohydrate uptake transporter-2 (CUT2) family than to any characterized archaeal one. The identified pentose transporter is the first CUT2 family ABC transporter analyzed in the domain of Archaea Single-gene deletion mutants of the ABC transporter subunits exemplified the importance of the transport system for d-xylose and l-arabinose uptake. Next to the transporter operon, enzymes of the aldolase-independent pentose catabolism branch were found to be upregulated in N-Z-Amine and d-xylose medium. The α-ketoglutarate semialdehyde dehydrogenase (KGSADH; Saci_1938) seemed not to be essential for growth on pentoses. However, the deletion mutant of the 2-keto-3-deoxyarabinoate/xylonate dehydratase (KDXD [also known as KDAD]; Saci_1939) was no longer able to catabolize d-xylose or l-arabinose, suggesting the absence of the aldolase-dependent branch in S. acidocaldarius IMPORTANCE Thermoacidophilic microorganisms are emerging model organisms for biotechnological applications, as their optimal growth conditions resemble conditions used in certain biotechnologies such as industrial plant waste degradation. Because of its high genome stability, Sulfolobus acidocaldarius is especially suited as a platform organism for such applications. For use in (ligno)cellulose degradation, it was important to understand pentose uptake and metabolism in S. acidocaldarius This study revealed that only the aldolase-independent Weimberg pathway is required for growth of S. acidocaldarius MW001 on d-xylose and l-arabinose. Moreover, S. acidocaldarius employs a CUT2 ABC transporter for pentose uptake, which is more similar to bacterial than to archaeal ABC transporters. The identification of pentose-inducible promoters will expedite the metabolic engineering of S. acidocaldarius for its development into a platform organism for (ligno)cellulose degradation.
Collapse
|
19
|
Quehenberger J, Shen L, Albers SV, Siebers B, Spadiut O. Sulfolobus - A Potential Key Organism in Future Biotechnology. Front Microbiol 2017; 8:2474. [PMID: 29312184 PMCID: PMC5733018 DOI: 10.3389/fmicb.2017.02474] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/28/2017] [Indexed: 11/13/2022] Open
Abstract
Extremophilic organisms represent a potentially valuable resource for the development of novel bioprocesses. They can act as a source for stable enzymes and unique biomaterials. Extremophiles are capable of carrying out microbial processes and biotransformations under extremely hostile conditions. Extreme thermoacidophilic members of the well-characterized genus Sulfolobus are outstanding in their ability to thrive at both high temperatures and low pH. This review gives an overview of the biological system Sulfolobus including its central carbon metabolism and the development of tools for its genetic manipulation. We highlight findings of commercial relevance and focus on potential industrial applications. Finally, the current state of bioreactor cultivations is summarized and we discuss the use of Sulfolobus species in biorefinery applications.
Collapse
Affiliation(s)
- Julian Quehenberger
- Research Division Biochemical Engineering, Faculty of Technical Chemistry, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Vienna, Austria
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Faculty of Chemistry – Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II-Microbiology, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Faculty of Chemistry – Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Oliver Spadiut
- Research Division Biochemical Engineering, Faculty of Technical Chemistry, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
20
|
Lee BD, Apel WA, DeVeaux LC, Sheridan PP. Concurrent metabolism of pentose and hexose sugars by the polyextremophile Alicyclobacillus acidocaldarius. J Ind Microbiol Biotechnol 2017; 44:1443-1458. [PMID: 28776272 DOI: 10.1007/s10295-017-1968-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 07/18/2017] [Indexed: 11/24/2022]
Abstract
Alicyclobacillus acidocaldarius is a thermoacidophilic bacterium capable of growth on sugars from plant biomass. Carbon catabolite repression (CCR) allows bacteria to focus cellular resources on a sugar that provides efficient growth, but also allows sequential, rather than simultaneous use when more than one sugar is present. The A. acidocaldarius genome encodes all components of CCR, but transporters encoded are multifacilitator superfamily and ATP-binding cassette-type transporters, uncommon for CCR. Therefore, global transcriptome analysis of A. acidocaldarius grown on xylose or fructose was performed in chemostats, followed by attempted induction of CCR with glucose or arabinose. Alicyclobacillus acidocaldarius grew while simultaneously metabolizing xylose and glucose, xylose and arabinose, and fructose and glucose, indicating that CCR did not control carbon metabolism. Microarrays showed down-regulation of genes during growth on one sugar compared to two, and occurred primarily in genes encoding: (1) regulators; (2) enzymes for cell wall synthesis; and (3) sugar transporters.
Collapse
Affiliation(s)
- Brady D Lee
- Idaho National Laboratory, Biological Systems Department, Idaho Falls, ID, USA. .,Department of Biological Sciences, Idaho State University, Pocatello, ID, USA. .,Pacific Northwest National Laboratory, Energy and Environment Directorate, Richland, WA, USA.
| | - William A Apel
- Idaho National Laboratory, Biological Systems Department, Idaho Falls, ID, USA.,Aspenglow Associates, LLC, P. O. Box 12692, Jackson, WY, 83002, USA
| | - Linda C DeVeaux
- Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Peter P Sheridan
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| |
Collapse
|
21
|
Cordova LT, Lu J, Cipolla RM, Sandoval NR, Long CP, Antoniewicz MR. Co-utilization of glucose and xylose by evolved Thermus thermophilus LC113 strain elucidated by (13)C metabolic flux analysis and whole genome sequencing. Metab Eng 2016; 37:63-71. [PMID: 27164561 DOI: 10.1016/j.ymben.2016.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/04/2016] [Accepted: 05/05/2016] [Indexed: 01/20/2023]
Abstract
We evolved Thermus thermophilus to efficiently co-utilize glucose and xylose, the two most abundant sugars in lignocellulosic biomass, at high temperatures without carbon catabolite repression. To generate the strain, T. thermophilus HB8 was first evolved on glucose to improve its growth characteristics, followed by evolution on xylose. The resulting strain, T. thermophilus LC113, was characterized in growth studies, by whole genome sequencing, and (13)C-metabolic flux analysis ((13)C-MFA) with [1,6-(13)C]glucose, [5-(13)C]xylose, and [1,6-(13)C]glucose+[5-(13)C]xylose as isotopic tracers. Compared to the starting strain, the evolved strain had an increased growth rate (~2-fold), increased biomass yield, increased tolerance to high temperatures up to 90°C, and gained the ability to grow on xylose in minimal medium. At the optimal growth temperature of 81°C, the maximum growth rate on glucose and xylose was 0.44 and 0.46h(-1), respectively. In medium containing glucose and xylose the strain efficiently co-utilized the two sugars. (13)C-MFA results provided insights into the metabolism of T. thermophilus LC113 that allows efficient co-utilization of glucose and xylose. Specifically, (13)C-MFA revealed that metabolic fluxes in the upper part of metabolism adjust flexibly to sugar availability, while fluxes in the lower part of metabolism remain relatively constant. Whole genome sequence analysis revealed two large structural changes that can help explain the physiology of the evolved strain: a duplication of a chromosome region that contains many sugar transporters, and a 5x multiplication of a region on the pVV8 plasmid that contains xylose isomerase and xylulokinase genes, the first two enzymes of xylose catabolism. Taken together, (13)C-MFA and genome sequence analysis provided complementary insights into the physiology of the evolved strain.
Collapse
Affiliation(s)
- Lauren T Cordova
- Department of Chemical & Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA
| | - Jing Lu
- Department of Chemical & Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA
| | - Robert M Cipolla
- Department of Chemical & Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA
| | - Nicholas R Sandoval
- Department of Chemical & Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA
| | - Christopher P Long
- Department of Chemical & Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA
| | - Maciek R Antoniewicz
- Department of Chemical & Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
22
|
Wu SG, Shimizu K, Tang JKH, Tang YJ. Facilitate Collaborations among Synthetic Biology, Metabolic Engineering and Machine Learning. CHEMBIOENG REVIEWS 2016. [DOI: 10.1002/cben.201500024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Sayed M, Dishisha T, Sayed WF, Salem WM, Temerk HA, Pyo SH. Selective oxidation of trimethylolpropane to 2,2-bis(hydroxymethyl)butyric acid using growing cells of Corynebacterium sp. ATCC 21245. J Biotechnol 2016; 221:62-9. [PMID: 26804932 DOI: 10.1016/j.jbiotec.2016.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 01/04/2016] [Accepted: 01/19/2016] [Indexed: 11/27/2022]
Abstract
Multifunctional chemicals including hydroxycarboxylic acids are gaining increasing interest due to their growing applications in the polymer industry. One approach for their production is a biological selective oxidation of polyols, which is difficult to achieve by conventional chemical catalysis. In the present study, trimethylolpropane (TMP), a trihydric alcohol, was subjected to selective oxidation using growing cells of Corynebacterium sp. ATCC 21245 as a biocatalyst and yielding the dihydroxy-monocarboxylic acid, 2,2-bis(hydroxymethyl)butyric acid (BHMB). The study revealed that co-substrates are crucial for this reaction. Among the different evaluated co-substrates, a mixture of glucose, xylose and acetate at a ratio of 5:5:2 was found optimum. The optimal conditions for biotransformation were pH 8, 1v/v/m airflow and 500rpm stirring speed. In batch mode of operation, 70.6% of 5g/l TMP was converted to BHMB in 10 days. For recovery of the product the adsorption pattern of BHMB to the anion exchange resin, Ambersep(®) 900 (OH(-)), was investigated in batch and column experiments giving maximum static and dynamic binding capacities of 135 and 144mg/g resin, respectively. BHMB was separated with 89.7% of recovery yield from the fermentation broth. The approach is applicable for selective oxidation of other highly branched polyols by biotransformation.
Collapse
Affiliation(s)
- Mahmoud Sayed
- Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden; Department of Botany, Faculty of Science, South Valley University, Qena, Egypt
| | - Tarek Dishisha
- Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden; Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Egypt
| | - Waiel F Sayed
- Department of Botany, Faculty of Science, South Valley University, Qena, Egypt
| | - Wesam M Salem
- Department of Botany, Faculty of Science, South Valley University, Qena, Egypt
| | - Hanan A Temerk
- Department of Botany, Faculty of Science, South Valley University, Qena, Egypt
| | - Sang-Hyun Pyo
- Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden; Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
24
|
Simultaneous glucose and xylose uptake by an acetone/butanol/ethanol producing laboratory Clostridium beijerinckii strain SE-2. Biotechnol Lett 2016; 38:611-7. [PMID: 26721235 DOI: 10.1007/s10529-015-2028-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Most butanol-producing strains of Clostridium prefer glucose over xylose, leading to a slower butanol production from lignocellulose hydrolysates. It is therefore beneficial to find and use a strain that can simultaneously use both glucose and xylose. RESULTS Clostridium beijerinckii SE-2 strain assimilated glucose and xylose simultaneously and produced ABE (acetone/butanol/ethanol). The classic diauxic growth behavior was not seen. Similar rates of sugar consumption (4.44 mM glucose h(-1) and 6.66 mM xylose h(-1)) were observed suggesting this strain could use either glucose or xylose as the substrate and it has a similar capability to degrade these two sugars. With different initial glucose:xylose ratios, glucose and xylose were consumed simultaneously at rates roughly proportional to their individual concentrations in the medium, leading to complete utilization of both sugars at the same time. CONCLUSIONS ABE production profiles were similar on different substrates. Transcriptional studies on the effect of glucose and xylose supplementation, however, suggests a clear glucose inhibition on xylose metabolism-related genes is still present.
Collapse
|
25
|
Constraints based analysis of extended cybernetic models. Biosystems 2015; 137:45-54. [DOI: 10.1016/j.biosystems.2015.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 05/11/2015] [Accepted: 09/01/2015] [Indexed: 11/19/2022]
|
26
|
Hermsen R, Okano H, You C, Werner N, Hwa T. A growth-rate composition formula for the growth of E.coli on co-utilized carbon substrates. Mol Syst Biol 2015; 11:801. [PMID: 25862745 PMCID: PMC4422558 DOI: 10.15252/msb.20145537] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
When bacteria are cultured in medium with multiple carbon substrates, they frequently consume these substrates simultaneously. Building on recent advances in the understanding of metabolic coordination exhibited by Escherichia coli cells through cAMP-Crp signaling, we show that this signaling system responds to the total carbon-uptake flux when substrates are co-utilized and derive a mathematical formula that accurately predicts the resulting growth rate, based only on the growth rates on individual substrates.
Collapse
Affiliation(s)
- Rutger Hermsen
- Department of Physics, University of California at San Diego, La Jolla, CA, USA TBB Group, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Hiroyuki Okano
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Conghui You
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Nicole Werner
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Terence Hwa
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
27
|
Afroz T, Biliouris K, Boykin KE, Kaznessis Y, Beisel CL. Trade-offs in engineering sugar utilization pathways for titratable control. ACS Synth Biol 2015; 4:141-9. [PMID: 24735079 PMCID: PMC4384834 DOI: 10.1021/sb400162z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Titratable
systems are common tools in metabolic engineering to
tune the levels of enzymes and cellular components as part of pathway
optimization. For nonmodel microorganisms with limited genetic tools,
inducible sugar utilization pathways offer built-in titratable systems.
However, these pathways can exhibit undesirable single-cell behaviors
that hamper the uniform and tunable control of gene expression. Here,
we applied mathematical modeling and single-cell measurements of l-arabinose utilization in Escherichia coli to systematically explore how sugar utilization pathways can be
altered to achieve desirable inducible properties. We found that different
pathway alterations, such as the removal of catabolism, constitutive
expression of high-affinity or low-affinity transporters, or further
deletion of the other transporters, came with trade-offs specific
to each alteration. For instance, sugar catabolism improved the uniformity
and linearity of the response at the cost of requiring higher sugar
concentrations to induce the pathway. Within these alterations, we
also found that a uniform and linear response could be achieved with
a single alteration: constitutively expressing the high-affinity transporter.
Equivalent modifications to the d-xylose utilization pathway
yielded similar responses, demonstrating the applicability of our
observations. Overall, our findings indicate that there is no ideal
set of typical alterations when co-opting natural utilization pathways
for titratable control and suggest design rules for manipulating these
pathways to advance basic genetic studies and the metabolic engineering
of microorganisms for optimized chemical production.
Collapse
Affiliation(s)
- Taliman Afroz
- Department
of Chemical and Biomolecular Engineering North Carolina State University Raleigh, North Carolina 27695, United States
| | - Konstantinos Biliouris
- Department
of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455, United States
| | - Kelsey E. Boykin
- Department
of Chemical and Biomolecular Engineering North Carolina State University Raleigh, North Carolina 27695, United States
| | - Yiannis Kaznessis
- Department
of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455, United States
| | - Chase L. Beisel
- Department
of Chemical and Biomolecular Engineering North Carolina State University Raleigh, North Carolina 27695, United States
| |
Collapse
|
28
|
Abstract
Engineering microbial hosts for the production of fungible fuels requires mitigation of limitations posed on the production capacity. One such limitation arises from the inherent toxicity of solvent-like biofuel compounds to production strains, such as Escherichia coli. Here we show the importance of host engineering for the production of short-chain alcohols by studying the overexpression of genes upregulated in response to exogenous isopentenol. Using systems biology data, we selected 40 genes that were upregulated following isopentenol exposure and subsequently overexpressed them in E. coli. Overexpression of several of these candidates improved tolerance to exogenously added isopentenol. Genes conferring isopentenol tolerance phenotypes belonged to diverse functional groups, such as oxidative stress response (soxS, fpr, and nrdH), general stress response (metR, yqhD, and gidB), heat shock-related response (ibpA), and transport (mdlB). To determine if these genes could also improve isopentenol production, we coexpressed the tolerance-enhancing genes individually with an isopentenol production pathway. Our data show that expression of 6 of the 8 candidates improved the production of isopentenol in E. coli, with the methionine biosynthesis regulator MetR improving the titer for isopentenol production by 55%. Additionally, expression of MdlB, an ABC transporter, facilitated a 12% improvement in isopentenol production. To our knowledge, MdlB is the first example of a transporter that can be used to improve production of a short-chain alcohol and provides a valuable new avenue for host engineering in biogasoline production. The use of microbial host platforms for the production of bulk commodities, such as chemicals and fuels, is now a focus of many biotechnology efforts. Many of these compounds are inherently toxic to the host microbe, which in turn places a limit on production despite efforts to optimize the bioconversion pathways. In order to achieve economically viable production levels, it is also necessary to engineer production strains with improved tolerance to these compounds. We demonstrate that microbial tolerance engineering using transcriptomics data can also identify targets that improve production. Our results include an exporter and a methionine biosynthesis regulator that improve isopentenol production, providing a starting point to further engineer the host for biogasoline production.
Collapse
|
29
|
Substrate-Specific Development of Thermophilic Bacterial Consortia by Using Chemically Pretreated Switchgrass. Appl Environ Microbiol 2014; 80:7423-32. [PMID: 25261509 DOI: 10.1128/aem.02795-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/19/2014] [Indexed: 12/14/2022] Open
Abstract
Microbial communities that deconstruct plant biomass have broad relevance in biofuel production and global carbon cycling. Biomass pretreatments reduce plant biomass recalcitrance for increased efficiency of enzymatic hydrolysis. We exploited these chemical pretreatments to study how thermophilic bacterial consortia adapt to deconstruct switchgrass (SG) biomass of various compositions. Microbial communities were adapted to untreated, ammonium fiber expansion (AFEX)-pretreated, and ionic-liquid (IL)-pretreated SG under aerobic, thermophilic conditions using green waste compost as the inoculum to study biomass deconstruction by microbial consortia. After microbial cultivation, gravimetric analysis of the residual biomass demonstrated that both AFEX and IL pretreatment enhanced the deconstruction of the SG biomass approximately 2-fold. Two-dimensional nuclear magnetic resonance (2D-NMR) experiments and acetyl bromide-reactive-lignin analysis indicated that polysaccharide hydrolysis was the dominant process occurring during microbial biomass deconstruction, and lignin remaining in the residual biomass was largely unmodified. Small-subunit (SSU) rRNA gene amplicon libraries revealed that although the dominant taxa across these chemical pretreatments were consistently represented by members of the Firmicutes, the Bacteroidetes, and Deinococcus-Thermus, the abundance of selected operational taxonomic units (OTUs) varied, suggesting adaptations to the different substrates. Combining the observations of differences in the community structure and the chemical and physical structure of the biomass, we hypothesize specific roles for individual community members in biomass deconstruction.
Collapse
|
30
|
Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev 2014; 78:89-175. [PMID: 24600042 DOI: 10.1128/mmbr.00041-13] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many "classical" pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of "new," unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented.
Collapse
|
31
|
Tanaka T, Hirata Y, Nakano M, Kawabata H, Kondo A. Creation of cellobiose and xylooligosaccharides-coutilizing Escherichia coli displaying both β-glucosidase and β-xylosidase on its cell surface. ACS Synth Biol 2014; 3:446-53. [PMID: 24156762 DOI: 10.1021/sb400070q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We demonstrated direct utilization of xylooligosaccharides using β-xylosidase-displaying Escherichia coli. After screening active β-xylosidases, BSU17580 from Bacillus subtilis or Tfu1616 from Thermobifida fusca YX, were successfully displayed on the E. coli cell surface using Blc or HdeD as anchor proteins, and these transformants directly assimilated xylooligosaccharides as a carbon source. The final OD 600 in minimal medium containing 2% xylooligosaccharides was 1.09 (after 12 h of cultivation) and 1.30 (after 40 h of cultivation). We then constructed an E. coli strain displaying both β-glucosidase and β-xylosidase. β-glucosidase- and β-xylosidase-displaying E. coli was successfully grown on a 1% cellobiose and 1% xylooligosaccharides mixture, and the OD 600 was 1.76 after 10 h of cultivation, which was higher and reached faster than that grown on a glucose/xylose mixture (1.20 after 30 h of cultivation).
Collapse
Affiliation(s)
- Tsutomu Tanaka
- Department
of Chemical Science
and Engineering, Graduate School of Engineering, Kobe University, 1-1
Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yuuki Hirata
- Department
of Chemical Science
and Engineering, Graduate School of Engineering, Kobe University, 1-1
Rokkodai, Nada, Kobe 657-8501, Japan
| | - Mariko Nakano
- Department
of Chemical Science
and Engineering, Graduate School of Engineering, Kobe University, 1-1
Rokkodai, Nada, Kobe 657-8501, Japan
| | - Hitomi Kawabata
- Department
of Chemical Science
and Engineering, Graduate School of Engineering, Kobe University, 1-1
Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Department
of Chemical Science
and Engineering, Graduate School of Engineering, Kobe University, 1-1
Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
32
|
Simultaneous fermentation of glucose and xylose to butanol by Clostridium sp. strain BOH3. Appl Environ Microbiol 2014; 80:4771-8. [PMID: 24858088 DOI: 10.1128/aem.00337-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cellulose and hemicellulose constitute the major components in sustainable feedstocks which could be used as substrates for biofuel generation. However, following hydrolysis to monomer sugars, the solventogenic Clostridium will preferentially consume glucose due to transcriptional repression of xylose utilization genes. This is one of the major barriers in optimizing lignocellulosic hydrolysates that produce butanol. Unlike studies on existing bacteria, this study demonstrates that newly reported Clostridium sp. strain BOH3 is capable of fermenting 60 g/liter of xylose to 14.9 g/liter butanol, which is similar to the 14.5 g/liter butanol produced from 60 g/liter of glucose. More importantly, strain BOH3 consumes glucose and xylose simultaneously, which is shown by its capability for generating 11.7 g/liter butanol from a horticultural waste cellulosic hydrolysate containing 39.8 g/liter glucose and 20.5 g/liter xylose, as well as producing 11.9 g/liter butanol from another horticultural waste hemicellulosic hydrolysate containing 58.3 g/liter xylose and 5.9 g/liter glucose. The high-xylose-utilization capability of strain BOH3 is attributed to its high xylose-isomerase (0.97 U/mg protein) and xylulokinase (1.16 U/mg protein) activities compared to the low-xylose-utilizing solventogenic strains, such as Clostridium sp. strain G117. Interestingly, strain BOH3 was also found to produce riboflavin at 110.5 mg/liter from xylose and 76.8 mg/liter from glucose during the fermentation process. In summary, Clostridium sp. strain BOH3 is an attractive candidate for application in efficiently converting lignocellulosic hydrolysates to biofuels and other value-added products, such as riboflavin.
Collapse
|
33
|
Genomic analysis of Chthonomonas calidirosea, the first sequenced isolate of the phylum Armatimonadetes. ISME JOURNAL 2014; 8:1522-33. [PMID: 24477196 DOI: 10.1038/ismej.2013.251] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/08/2013] [Accepted: 12/11/2013] [Indexed: 02/08/2023]
Abstract
Most of the lineages of bacteria have remained unknown beyond environmental surveys using molecular markers. Until the recent characterisation of several strains, the phylum Armatimonadetes (formerly known as 'candidate division OP10') was a dominant and globally-distributed lineage within this 'uncultured majority'. Here we report the first Armatimonadetes genome from the thermophile Chthonomonas calidirosea T49(T) and its role as a saccharide scavenger in a geothermal steam-affected soil environment. Phylogenomic analysis indicates T49(T) to be related closely to the phylum Chloroflexi. The predicted genes encoding for carbohydrate transporters (27 carbohydrate ATP-binding cassette transporter-related genes) and carbohydrate-metabolising enzymes (including at least 55 putative enzymes with glycosyl hydrolase domains) within the 3.43 Mb genome help explain its ability to utilise a wide range of carbohydrates as well as its inability to break down extracellular cellulose. The presence of only a single class of branched amino acid transporter appears to be the causative step for the requirement of isoleucine for growth. The genome lacks many commonly conserved operons (for example, lac and trp). Potential causes for this, such as dispersion of functionally related genes via horizontal gene transfer from distant taxa or recent genome recombination, were rejected. Evidence suggests T49(T) relies on the relatively abundant σ-factors, instead of operonic organisation, as the primary means of transcriptional regulation. Examination of the genome with physiological data and environmental dynamics (including interspecific interactions) reveals ecological factors behind the apparent elusiveness of T49(T) to cultivation and, by extension, the remaining 'uncultured majority' that have so far evaded conventional microbiological techniques.
Collapse
|
34
|
Functional characterization of the origin of replication of pRN1 from Sulfolobus islandicus REN1H1. PLoS One 2013; 8:e84664. [PMID: 24376833 PMCID: PMC3869888 DOI: 10.1371/journal.pone.0084664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 11/18/2013] [Indexed: 11/19/2022] Open
Abstract
Plasmid pRN1 from Sulfolobus islandicus REN1H1 is believed to replicate by a rolling circle mechanism but its origin and mechanism of replication are not well understood. We sought to create minimal expression vectors based on pRN1 that would be useful for heterologous gene expression in S. acidocaldarius, and in the process improve our understanding of the mechanism of replication. We constructed and transformed shuttle vectors that harbored different contiguous stretches of DNA from pRN1 into S. acidocaldarius E4-39, a uracil auxotroph. A 232-bp region 3’ of orf904 was found to be critical for pRN1 replication and is therefore proposed to be the putative origin of replication. This 232-bp region contains a 100-bp stem-loop structure believed to be the double-strand origin of replication. The loop of the 100-bp structure contains a GTG tri-nucleotide motif, a feature that was previously reported to be important for the primase activity of Orf904. This putative origin and the associated orf56 and orf904 were identified as the minimal replicon of pRN1 because transformants of plasmids lacking any of these three features were not recovered. Plasmids lacking orf904 and orf56 but harboring the putative origin were transformable when orf904 and orf56 were provided in-trans; a 75-bp region 5’ of the orf904 start codon was found to be essential for this complementation. Detailed knowledge of the pRN1 origin of replication will broaden the application of the plasmid as a genetic tool for Sulfolobus species.
Collapse
|
35
|
Investigation of the malE promoter and MalR, a positive regulator of the maltose regulon, for an improved expression system in Sulfolobus acidocaldarius. Appl Environ Microbiol 2013; 80:1072-81. [PMID: 24271181 DOI: 10.1128/aem.03050-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, the regulator MalR (Saci_1161) of the TrmB family from Sulfolobus acidocaldarius was identified and was shown to be involved in transcriptional control of the maltose regulon (Saci_1660 to Saci_1666), including the ABC transporter (malEFGK), α-amylase (amyA), and α-glycosidase (malA). The ΔmalR deletion mutant exhibited a significantly decreased growth rate on maltose and dextrin but not on sucrose. The expression of the genes organized in the maltose regulon was induced only in the presence of MalR and maltose in the growth medium, indicating that MalR, in contrast to its TrmB and TrmB-like homologues, is an activator of the maltose gene cluster. Electrophoretic mobility shift assays revealed that the binding of MalR to malE was independent of sugars. Here we report the identification of the archaeal maltose regulator protein MalR, which acts as an activator and controls the expression of genes involved in maltose transport and metabolic conversion in S. acidocaldarius, and its use for improvement of the S. acidocaldarius expression system under the control of an optimized maltose binding protein (malE) promoter by promoter mutagenesis.
Collapse
|
36
|
Vinuselvi P, Kim MK, Lee SK, Ghim CM. Rewiring carbon catabolite repression for microbial cell factory. BMB Rep 2012; 45:59-70. [PMID: 22360882 DOI: 10.5483/bmbrep.2012.45.2.59] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbon catabolite repression (CCR) is a key regulatory system found in most microorganisms that ensures preferential utilization of energy-efficient carbon sources. CCR helps microorganisms obtain a proper balance between their metabolic capacity and the maximum sugar uptake capability. It also constrains the deregulated utilization of a preferred cognate substrate, enabling microorganisms to survive and dominate in natural environments. On the other side of the same coin lies the tenacious bottleneck in microbial production of bioproducts that employs a combination of carbon sources in varied proportion, such as lignocellulose-derived sugar mixtures. Preferential sugar uptake combined with the transcriptional and/or enzymatic exclusion of less preferred sugars turns out one of the major barriers in increasing the yield and productivity of fermentation process. Accumulation of the unused substrate also complicates the downstream processes used to extract the desired product. To overcome this difficulty and to develop tailor-made strains for specific metabolic engineering goals, quantitative and systemic understanding of the molecular interaction map behind CCR is a prerequisite. Here we comparatively review the universal and strain-specific features of CCR circuitry and discuss the recent efforts in developing synthetic cell factories devoid of CCR particularly for lignocellulose- based biorefinery.
Collapse
Affiliation(s)
- Parisutham Vinuselvi
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | | | | | | |
Collapse
|
37
|
Hu C, Wu S, Wang Q, Jin G, Shen H, Zhao ZK. Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:25. [PMID: 21864398 PMCID: PMC3174874 DOI: 10.1186/1754-6834-4-25] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 08/24/2011] [Indexed: 05/05/2023]
Abstract
BACKGROUND Biochemical conversion of lignocellulose hydrolysates remains challenging, largely because most microbial processes have markedly reduced efficiency in the presence of both hexoses and pentoses. Thus, identification of microorganisms capable of efficient and simultaneous utilization of both glucose and xylose is pivotal to improving this process. RESULTS In this study, we found that the oleaginous yeast strain Trichosporon cutaneum AS 2.571 assimilated glucose and xylose simultaneously, and accumulated intracellular lipid up to 59 wt% with a lipid coefficient up to 0.17 g/g sugar, upon cultivation on a 2:1 glucose/xylose mixture in a 3-liter stirred-tank bioreactor. In addition, no classic pattern of diauxic growth behavior was seen; the microbial cell mass increased during the whole culture process without any lag periods. In shake-flask cultures with different initial glucose:xylose ratios, glucose and xylose were consumed simultaneously at rates roughly proportional to their individual concentrations in the medium, leading to complete utilization of both sugars at the same time. Simultaneous utilization of glucose and xylose was also seen during fermentation of corn-stover hydrolysate with a lipid content and coefficient of 39.2% and 0.15 g/g sugar, respectively. The lipid produced had a fatty-acid compositional profile similar to those of conventional vegetable oil, indicating that it could have potential as a raw material for biodiesel production. CONCLUSION Efficient lipid production with simultaneous consumption of glucose and xylose was achieved in this study. This process provides an exciting opportunity to transform lignocellulosic materials into biofuel molecules, and should also encourage further study to elucidate this unique sugar-assimilation mechanism.
Collapse
Affiliation(s)
- Cuimin Hu
- Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Siguo Wu
- Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| | - Qian Wang
- Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| | - Guojie Jin
- Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Shen
- Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| | - Zongbao K Zhao
- Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|