1
|
Kadkhoda H, Gholizadeh P, Samadi Kafil H, Ghotaslou R, Pirzadeh T, Ahangarzadeh Rezaee M, Nabizadeh E, Feizi H, Aghazadeh M. Role of CRISPR-Cas systems and anti-CRISPR proteins in bacterial antibiotic resistance. Heliyon 2024; 10:e34692. [PMID: 39149034 PMCID: PMC11325803 DOI: 10.1016/j.heliyon.2024.e34692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
The emergence and development of antibiotic resistance in bacteria is a serious threat to global public health. Antibiotic resistance genes (ARGs) are often located on mobile genetic elements (MGEs). They can be transferred among bacteria by horizontal gene transfer (HGT), leading to the spread of drug-resistant strains and antibiotic treatment failure. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated genes) is one of the many strategies bacteria have developed under long-term selection pressure to restrict the HGT. CRISPR-Cas systems exist in about half of bacterial genomes and play a significant role in limiting the spread of antibiotic resistance. On the other hand, bacteriophages and other MGEs encode a wide range of anti-CRISPR proteins (Acrs) to counteract the immunity of the CRISPR-Cas system. The Acrs could decrease the CRISPR-Cas system's activity against phages and facilitate the acquisition of ARGs and virulence traits for bacteria. This review aimed to assess the relationship between the CRISPR-Cas systems and Acrs with bacterial antibiotic resistance. We also highlighted the CRISPR technology and Acrs to control and prevent antibacterial resistance. The CRISPR-Cas system can target nucleic acid sequences with high accuracy and reliability; therefore, it has become a novel gene editing and gene therapy tool to prevent the spread of antibiotic resistance. CRISPR-based approaches may pave the way for developing smart antibiotics, which could eliminate multidrug-resistant (MDR) bacteria and distinguish between pathogenic and beneficial microorganisms. Additionally, the engineered anti-CRISPR gene-containing phages in combination with antibiotics could be used as a cutting-edge treatment approach to reduce antibiotic resistance.
Collapse
Affiliation(s)
- Hiva Kadkhoda
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hossein Samadi Kafil
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Pirzadeh
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Edris Nabizadeh
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Feizi
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Microbiology, Aalinasab Hospital, Social Security Organization, Tabriz, Iran
| | - Mohammad Aghazadeh
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Wu Y, Garushyants SK, van den Hurk A, Aparicio-Maldonado C, Kushwaha SK, King CM, Ou Y, Todeschini TC, Clokie MRJ, Millard AD, Gençay YE, Koonin EV, Nobrega FL. Bacterial defense systems exhibit synergistic anti-phage activity. Cell Host Microbe 2024; 32:557-572.e6. [PMID: 38402614 PMCID: PMC11009048 DOI: 10.1016/j.chom.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Bacterial defense against phage predation involves diverse defense systems acting individually and concurrently, yet their interactions remain poorly understood. We investigated >100 defense systems in 42,925 bacterial genomes and identified numerous instances of their non-random co-occurrence and negative association. For several pairs of defense systems significantly co-occurring in Escherichia coli strains, we demonstrate synergistic anti-phage activity. Notably, Zorya II synergizes with Druantia III and ietAS defense systems, while tmn exhibits synergy with co-occurring systems Gabija, Septu I, and PrrC. For Gabija, tmn co-opts the sensory switch ATPase domain, enhancing anti-phage activity. Some defense system pairs that are negatively associated in E. coli show synergy and significantly co-occur in other taxa, demonstrating that bacterial immune repertoires are largely shaped by selection for resistance against host-specific phages rather than negative epistasis. Collectively, these findings demonstrate compatibility and synergy between defense systems, allowing bacteria to adopt flexible strategies for phage defense.
Collapse
Affiliation(s)
- Yi Wu
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Sofya K Garushyants
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Anne van den Hurk
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | | | - Simran Krishnakant Kushwaha
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Claire M King
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yaqing Ou
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Thomas C Todeschini
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Martha R J Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Andrew D Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Franklin L Nobrega
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
3
|
Dion MB, Shah SA, Deng L, Thorsen J, Stokholm J, Krogfelt KA, Schjørring S, Horvath P, Allard A, Nielsen DS, Petit MA, Moineau S. Escherichia coli CRISPR arrays from early life fecal samples preferentially target prophages. THE ISME JOURNAL 2024; 18:wrae005. [PMID: 38366192 PMCID: PMC10910852 DOI: 10.1093/ismejo/wrae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/18/2024]
Abstract
CRISPR-Cas systems are defense mechanisms against phages and other nucleic acids that invade bacteria and archaea. In Escherichia coli, it is generally accepted that CRISPR-Cas systems are inactive in laboratory conditions due to a transcriptional repressor. In natural isolates, it has been shown that CRISPR arrays remain stable over the years and that most spacer targets (protospacers) remain unknown. Here, we re-examine CRISPR arrays in natural E. coli isolates and investigate viral and bacterial genomes for spacer targets using a bioinformatics approach coupled to a unique biological dataset. We first sequenced the CRISPR1 array of 1769 E. coli isolates from the fecal samples of 639 children obtained during their first year of life. We built a network with edges between isolates that reflect the number of shared spacers. The isolates grouped into 34 modules. A search for matching spacers in bacterial genomes showed that E. coli spacers almost exclusively target prophages. While we found instances of self-targeting spacers, those involving a prophage and a spacer within the same bacterial genome were rare. The extensive search for matching spacers also expanded the library of known E. coli protospacers to 60%. Altogether, these results favor the concept that E. coli's CRISPR-Cas is an antiprophage system and highlight the importance of reconsidering the criteria use to deem CRISPR-Cas systems active.
Collapse
Affiliation(s)
- Moïra B Dion
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| | - Ling Deng
- Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Jonathan Thorsen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
- Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Karen A Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300S Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Susanne Schjørring
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300S Copenhagen, Denmark
| | - Philippe Horvath
- IFF Danisco, Health & Biosciences, Dangé-Saint-Romain 86220, France
| | - Antoine Allard
- Département de physique, de génie physique et d’optique, Université Laval, Québec, QC G1V 0A6, Canada
- Centre interdisciplinaire en modélisation mathématique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Dennis S Nielsen
- Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Micalis, Jouy-en-Josas 78350, France
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC G1V 0A6, Canada
- Félix d’Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Ha EJ, Hong SM, Kim SJ, Ahn SM, Kim HW, Choi KS, Kwon HJ. Tracing the Evolutionary Pathways of Serogroup O78 Avian Pathogenic Escherichia coli. Antibiotics (Basel) 2023; 12:1714. [PMID: 38136748 PMCID: PMC10740950 DOI: 10.3390/antibiotics12121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Avian pathogenic E. coli (APEC) causes severe economic losses in the poultry industry, and O78 serogroup APEC strains are prevalent in chickens. In this study, we aimed to understand the evolutionary pathways and relationships between O78 APEC and other E. coli strains. To trace these evolutionary pathways, we classified 3101 E. coli strains into 306 subgenotypes according to the numbers and types of single nucleotide polymorphisms (RST0 to RST63-1) relative to the consensus sequence (RST0) of the RNA polymerase beta subunit gene and performed network analysis. The E. coli strains showed four apparently different evolutionary pathways (I-1, I-2, I-3, and II). The thirty-two Korean O78 APEC strains tested in this study were classified into RST4-4 (45.2%), RST3-1 (32.3%), RST21-1 (12.9%), RST4-5 (3.2%), RST5-1 (3.2%), and RST12-6 (3.2%), and all RSTs except RST21-1 (I-2) may have evolved through the same evolutionary pathway (I-1). A comparative genomic study revealed the highest relatedness between O78 strains of the same RST in terms of genome sequence coverage/identity and the spacer sequences of CRISPRs. The early-appearing RST3-1 and RST4-4 prevalence among O78 APEC strains may reflect the early settlement of O78 E. coli in chickens, after which these bacteria accumulated virulence and antibiotic resistance genes to become APEC strains. The zoonotic risk of the conventional O78 APEC strains is low at present, but the appearance of genetically distinct and multiple virulence gene-bearing RST21-1 O78 APEC strains may alert us to a need to evaluate their virulence in chickens as well as their zoonotic risk.
Collapse
Affiliation(s)
- Eun-Jin Ha
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea; (E.-J.H.); (S.-M.H.); (S.-J.K.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea; (S.-M.A.); (H.-W.K.)
| | - Seung-Min Hong
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea; (E.-J.H.); (S.-M.H.); (S.-J.K.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea; (S.-M.A.); (H.-W.K.)
| | - Seung-Ji Kim
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea; (E.-J.H.); (S.-M.H.); (S.-J.K.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea; (S.-M.A.); (H.-W.K.)
| | - Sun-Min Ahn
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea; (S.-M.A.); (H.-W.K.)
| | - Ho-Won Kim
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea; (S.-M.A.); (H.-W.K.)
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea; (E.-J.H.); (S.-M.H.); (S.-J.K.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea; (S.-M.A.); (H.-W.K.)
| | - Hyuk-Joon Kwon
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea; (S.-M.A.); (H.-W.K.)
- Laboratory of Poultry Medicine, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea
- Farm Animal Clinical Training and Research Center (FACTRC), GBST, Seoul National University, Pyeongchang 25354, Republic of Korea
- GeNiner Inc., Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Ohadi E, Azarnezhad A, Lotfollahi L, Asadollahi P, Kaviar VH, Razavi S, Sadeghi Kalani B. Evaluation of Genetic Content of the CRISPR Locus in Listeria monocytogenes Isolated From Clinical, Food, Seafood and Animal Samples in Iran. Curr Microbiol 2023; 80:388. [PMID: 37878078 DOI: 10.1007/s00284-023-03508-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 11/14/2022] [Indexed: 10/26/2023]
Abstract
CRISPR arrays, which are organized to fight against non-self DNA elements, have shown sequence diversity that could be useful in evolution and typing studies. In this study, 55 samples of L. monocytogenes isolated from different sources were evaluated for CRISPR sequence polymorphism. The CRISPR loci were identified using CRISPR databases. A single PCR assay was designed to amplify the target CRISPRs using an appropriate universal primer. Sequencing results were analyzed using CRISPR databases and BLASTn, and the CRISPR locus was present in all the strains. Three hundred repeats including 55 terminal repeats were identified. Four types of consensuses direct repeat (DR) with different lengths and sequences were characterized. Sixty repeat variants were observed which possessed different polymorphisms. Two hundred and fifty spacers were identified from which 35 consensus sequences were determined, indicating the high polymorphism of the CRISPR spacers. The identified spacers showed similarities to listeria phage sequences, other bacterial phage sequences, plasmid sequences and bacterial sequences. In order to control the bacterial outbreaks, a robust and precise system of subtyping is required. High levels of polymorphism in the CRISPR loci in this study might be related to the origin and time of the samples' isolation. However, it is essential to assess, on a case-by-case basis, the characteristics of any given CRISPR locus before its use as an epidemiological marker. In conclusion, the results of this study showed that the use of sequence content of CRISPR area could provide new and valuable information on the evolution and typing of the L. monocytogenes bacterium.
Collapse
Affiliation(s)
- Elnaz Ohadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Asaad Azarnezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Lida Lotfollahi
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Parisa Asadollahi
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Vahab Hasan Kaviar
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Shabnam Razavi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran.
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Behrooz Sadeghi Kalani
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
6
|
Shin H, Kim Y, Unno T, Hur HG. Prevalence and Characterization of CRISPR Locus 2.1 Spacers in Escherichia coli Isolates Obtained from Feces of Animals and Humans. Microbiol Spectr 2023; 11:e0493422. [PMID: 36719193 PMCID: PMC10101085 DOI: 10.1128/spectrum.04934-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 02/01/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR) has been studied as an immune system in prokaryotes for the survival of bacteriophages. The CRISPR system in prokaryotes records the invasion of bacteriophages or other genetic materials in CRISPR loci. Accordingly, CRISPR loci can reveal a history of infection records of bacteriophages and other genetic materials. Therefore, identification of the CRISPR array may help trace the events that bacteria have undergone. In this study, we characterized and identified the spacers of the CRISPR loci in Escherichia coli isolates obtained from the feces of animals and humans. Most CRISPR spacers were found to stem from phages. Although we did not find any patterns in CRISPR spacers according to sources, our results showed that phage-derived spacers mainly originated from the families Inoviridae, Myoviridae, Podoviridae, and Siphoviridae and the order Caudovirales, whereas plasmid-derived CRISPR spacers were mainly from the Enterobacteriaceae family. In addition, it is worth noting that the isolates from each animal and human source harbored source-specific spacers. Considering that some of these taxa are likely found in the gut of mammalian animals, CRISPR spacers identified in these E. coli isolates were likely derived from the bacteriophageome and microbiome in closed gut environments. Although the bacteriophageome database limits the characterization of CRISPR arrays, the present study showed that some spacers were specifically found in both animal and human sources. Thus, this finding may suggest the possible use of E. coli CRISPR spacers as a microbial source tracking tool. IMPORTANCE We characterized spacers of CRISPR locus 2.1 in E. coli isolates obtained from the feces of various sources. Phage-derived CRISPR spacers are mainly acquired from the order Caudovirales, and plasmid-derived CRISPR spacers are mostly from the Enterobacteriaceae family. This is thought to reflect the microbiome and phageome of the gut environment of the sources. Hence, spacers may help track the encounter of bacterial cells with bacterial cells, viruses, or other genetic materials. Interestingly, source-specific spacers are also observed. The identification of source-specific spacers is thought to help develop the methodology of microbial source tracking and understanding the interactions between viruses and bacteria. However, very few spacers have been uncovered to track where they originate. The accumulation of genome sequences can help identify the hosts of spacers and can be applied for microbial source tracking.
Collapse
Affiliation(s)
- Hanseob Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yongjin Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Tatsuya Unno
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju, Republic of Korea
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
7
|
Song S, Semenova E, Severinov K, Fernández-García L, Benedik MJ, Maeda T, Wood TK. CRISPR-Cas Controls Cryptic Prophages. Int J Mol Sci 2022; 23:16195. [PMID: 36555835 PMCID: PMC9782134 DOI: 10.3390/ijms232416195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The bacterial archetypal adaptive immune system, CRISPR-Cas, is thought to be repressed in the best-studied bacterium, Escherichia coli K-12. We show here that the E. coli CRISPR-Cas system is active and serves to inhibit its nine defective (i.e., cryptic) prophages. Specifically, compared to the wild-type strain, reducing the amounts of specific interfering RNAs (crRNA) decreases growth by 40%, increases cell death by 700%, and prevents persister cell resuscitation. Similar results were obtained by inactivating CRISPR-Cas by deleting the entire 13 spacer region (CRISPR array); hence, CRISPR-Cas serves to inhibit the remaining deleterious effects of these cryptic prophages, most likely through CRISPR array-derived crRNA binding to cryptic prophage mRNA rather than through cleavage of cryptic prophage DNA, i.e., self-targeting. Consistently, four of the 13 E. coli spacers contain complementary regions to the mRNA sequences of seven cryptic prophages, and inactivation of CRISPR-Cas increases the level of mRNA for lysis protein YdfD of cryptic prophage Qin and lysis protein RzoD of cryptic prophage DLP-12. In addition, lysis is clearly seen via transmission electron microscopy when the whole CRISPR-Cas array is deleted, and eliminating spacer #12, which encodes crRNA with complementary regions for DLP-12 (including rzoD), Rac, Qin (including ydfD), and CP4-57 cryptic prophages, also results in growth inhibition and cell lysis. Therefore, we report the novel results that (i) CRISPR-Cas is active in E. coli and (ii) CRISPR-Cas is used to tame cryptic prophages, likely through RNAi, i.e., unlike with active lysogens, active CRISPR-Cas and cryptic prophages may stably co-exist.
Collapse
Affiliation(s)
- Sooyeon Song
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Animal Science, Jeonbuk National University, Jeonju-Si 54896, Republic of Korea
- Agricultural Convergence Technology, Jeonbuk National University, Jeonju-Si 54896, Republic of Korea
| | - Ekaterina Semenova
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Laura Fernández-García
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael J. Benedik
- Office of the Provost, Hamad bin Khalifa University, Education City, Doha P.O. Box 34110, Qatar
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
The coordination of anti-phage immunity mechanisms in bacterial cells. Nat Commun 2022; 13:7412. [PMID: 36456580 PMCID: PMC9715693 DOI: 10.1038/s41467-022-35203-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
Bacterial cells are equipped with a variety of immune strategies to fight bacteriophage infections. Such strategies include unspecific mechanisms directed against any phage infecting the cell, ranging from the identification and cleavage of the viral DNA by restriction nucleases (restriction-modification systems) to the suicidal death of infected host cells (abortive infection, Abi). In addition, CRISPR-Cas systems generate an immune memory that targets specific phages in case of reinfection. However, the timing and coordination of different antiviral systems in bacterial cells are poorly understood. Here, we use simple mathematical models of immune responses in individual bacterial cells to propose that the intracellular dynamics of phage infections are key to addressing these questions. Our models suggest that the rates of viral DNA replication and cleavage inside host cells define functional categories of phages that differ in their susceptibility to bacterial anti-phage mechanisms, which could give raise to alternative phage strategies to escape bacterial immunity. From this viewpoint, the combined action of diverse bacterial defenses would be necessary to reduce the chances of phage immune evasion. The decision of individual infected cells to undergo suicidal cell death or to incorporate new phage sequences into their immune memory would be determined by dynamic interactions between the host's immune mechanisms and the phage DNA. Our work highlights the importance of within-cell dynamics to understand bacterial immunity, and formulates hypotheses that may inspire future research in this area.
Collapse
|
9
|
Kang HJ, Lim SK, Lee YJ. Genetic characterization of third- or fourth-generation cephalosporin-resistant avian pathogenic Escherichia coli isolated from broilers. Front Vet Sci 2022; 9:1055320. [PMID: 36504870 PMCID: PMC9732669 DOI: 10.3389/fvets.2022.1055320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/04/2022] [Indexed: 11/26/2022] Open
Abstract
The third- or fourth-generation cephalosporins (3GC or 4 GC) are classified as "critically important antimicrobials for human medicine" by WHO, but resistance to these drugs is increasing rapidly in avian pathogenic E. coli (APEC). This study investigated the distribution and genetic characteristics of 3GC- or 4 GC-resistant APEC isolates from five major integrated broiler operations in Korea. The prevalence of 3GC- or 4GC-resistant APEC isolates in 1-week-old broilers was the highest in farms of operation C (53.3%); however, the highest prevalence of these isolates in 4-week-old broilers was the highest on the farms of operation A (60.0%), followed by operations E (50.0%) and C (35.7%). All 49 3GC- or 4GC-resistant APEC isolates had at least one β-lactamase-encoding gene. The most common β-lactamase-encoding genes was extended-spectrum β-lactamase gene, bla CTX-M-15, detected in 24 isolates (49.0%), followed by bla TEM-1 (32.7%). Sixteen isolates (32.7%) harbored class 1 integrons, and four isolates (8.2%) showed different gene cassette-arrangements. However, only 1 of 26 isolates harboring class 2 integrons carried a gene cassette. Furthermore, both CRISPR 1 and 2 arrays were detected in most isolates (36 isolates; 73.5%), followed by CRISPR 2 (18.4%) and CRISPR 1 (4.1%). Interestingly, CRISPR 2 was significantly more prevalent in multidrug resistant (MDR)-APEC isolates than in non-MDR APEC isolates, whereas CRISPR 3 and 4 were significantly more prevalent in non-MDR APEC isolates (each 11.1%; p < 0.05). None of the protospacers of CRISPR arrays were directly associated with antimicrobial resistance. Our findings indicate that the distribution and characteristics of 3GC or 4GC-resistant APEC isolates differed among the integrated broiler operations; moreover, improved management protocols are needed to control the horizontal transmission of 3GC or 4GC-resistant APEC isolates.
Collapse
Affiliation(s)
- Hyo Jung Kang
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu, South Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Young Ju Lee
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
10
|
Iordache D, Baci GM, Căpriță O, Farkas A, Lup A, Butiuc-Keul A. Correlation between CRISPR Loci Diversity in Three Enterobacterial Taxa. Int J Mol Sci 2022; 23:12766. [PMID: 36361556 PMCID: PMC9658729 DOI: 10.3390/ijms232112766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
CRISPR-Cas is an adaptive immunity system of prokaryotes, composed of CRISPR arrays and the associated proteins. The successive addition of spacer sequences in the CRISPR array has made the system a valuable molecular marker, with multiple applications. Due to the high degree of polymorphism of the CRISPR loci, their comparison in bacteria from various sources may provide insights into the evolution and spread of the CRISPR-Cas systems. The aim of this study was to establish a correlation between the enterobacterial CRISPR loci, the sequence of direct repeats (DR), and the number of spacer units, along with the geographical origin and collection source. For this purpose, 3474 genomes containing CRISPR loci from the CRISPRCasdb of Salmonella enterica, Escherichia coli, and Klebsiella pneumoniae were analyzed, and the information regarding the isolates was recorded from the NCBI database. The most prevalent was the I-E CRISPR-Cas system in all three studied taxa. E. coli also presents the I-F type, but in a much lesser percentage. The systems found in K. pneumoniae can be classified into I-E and I-E*. The I-E and I-F systems have two CRISPR loci, while I-E* has only one locus upstream of the Cas cluster. PCR primers have been developed in this study for each CRISPR locus. Distinct clustering was not evident, but statistically significant relationships occurred between the different CRISPR loci and the number of spacer units. For each of the queried taxa, the number of spacers was significantly different (p < 0.01) by origin (Africa, Asia, Australia and Oceania, Europe, North America, and South America) but was not linked to the isolation source type (human, animal, plant, food, or laboratory strains).
Collapse
Affiliation(s)
- Dumitrana Iordache
- Doctoral School of Integrative Biology, Babeș-Bolyai University, 44 Republicii street, 400015 Cluj-Napoca, Romania
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Oana Căpriță
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania
| | - Anca Farkas
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Andreea Lup
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania
| | - Anca Butiuc-Keul
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| |
Collapse
|
11
|
Walker AR, Shields RC. Investigating CRISPR spacer targets and their impact on genomic diversification of Streptococcus mutans. Front Genet 2022; 13:997341. [PMID: 36186424 PMCID: PMC9522601 DOI: 10.3389/fgene.2022.997341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas is a bacterial immune system that restricts the acquisition of mobile DNA elements. These systems provide immunity against foreign DNA by encoding CRISPR spacers that help target DNA if it re-enters the cell. In this way, CRISPR spacers are a type of molecular tape recorder of foreign DNA encountered by the host microorganism. Here, we extracted ∼8,000 CRISPR spacers from a collection of over three hundred Streptococcus mutans genomes. Phage DNA is a major target of S. mutans spacers. S. mutans strains have also generated immunity against mobile DNA elements such as plasmids and integrative and conjugative elements. There may also be considerable immunity generated against bacterial DNA, although the relative contribution of self-targeting versus bona fide intra- or inter-species targeting needs to be investigated further. While there was clear evidence that these systems have acquired immunity against foreign DNA, there appeared to be minimal impact on horizontal gene transfer (HGT) constraints on a species-level. There was little or no impact on genome size, GC content and ‘openness’ of the pangenome when comparing between S. mutans strains with low or high CRISPR spacer loads. In summary, while there is evidence of CRISPR spacer acquisition against self and foreign DNA, CRISPR-Cas does not act as a barrier on the expansion of the S. mutans accessory genome.
Collapse
Affiliation(s)
- Alejandro R. Walker
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| | - Robert C. Shields
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States
- *Correspondence: Robert C. Shields,
| |
Collapse
|
12
|
Kushwaha SK, Narasimhan LP, Chithananthan C, Marathe SA. Clustered regularly interspaced short palindromic repeats-Cas system: diversity and regulation in Enterobacteriaceae. Future Microbiol 2022; 17:1249-1267. [PMID: 36006039 DOI: 10.2217/fmb-2022-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Insights into the arms race between bacteria and invading mobile genetic elements have revealed the intricacies of the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system and the counter-defenses of bacteriophages. Incredible spacer diversity but significant spacer conservation among species/subspecies dictates the specificity of the CRISPR-Cas system. Researchers have exploited this feature to type/subtype the bacterial strains, devise targeted antimicrobials and regulate gene expression. This review focuses on the nuances of the CRISPR-Cas systems in Enterobacteriaceae that predominantly harbor type I-E and I-F CRISPR systems. We discuss the systems' regulation by the global regulators, H-NS, LeuO, LRP, cAMP receptor protein and other regulators in response to environmental stress. We further discuss the regulation of noncanonical functions like DNA repair pathways, biofilm formation, quorum sensing and virulence by the CRISPR-Cas system. The review comprehends multiple facets of the CRISPR-Cas system in Enterobacteriaceae including its diverse attributes, association with genetic features, regulation and gene regulatory mechanisms.
Collapse
Affiliation(s)
- Simran K Kushwaha
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, 333031, India
| | - Lakshmi P Narasimhan
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, 333031, India
| | - Chandrananthi Chithananthan
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, 333031, India
| | - Sandhya A Marathe
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, 333031, India
| |
Collapse
|
13
|
Fong K, Lu YT, Brenner T, Falardeau J, Wang S. Prophage Diversity Across Salmonella and Verotoxin-Producing Escherichia coli in Agricultural Niches of British Columbia, Canada. Front Microbiol 2022; 13:853703. [PMID: 35935192 PMCID: PMC9355379 DOI: 10.3389/fmicb.2022.853703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Prophages have long been regarded as an important contributor to the evolution of Salmonella and Verotoxin-producing E. coli (VTEC), members of the Enterobacteriaceae that cause millions of cases of foodborne illness in North America. In S. Typhimurium, prophages provide many of the genes required for invasion; similarly, in VTEC, the Verotoxin-encoding genes are located in cryptic prophages. The ability of prophages to quickly acquire and lose genes have driven their rapid evolution, leading to highly diversified populations of phages that can infect distantly-related bacterial hosts. To defend against foreign genetic materials (i.e., phages), bacteria have evolved Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) immunity, consisting of variable spacer regions that match short nucleic acid sequences of invaders previously encountered. The number of spacer regions varies widely amongst Enterobacteriaceae, and there is currently no clear consensus if the accumulation of spacers is linked to genomic prophage abundance. Given the immense prophage diversity and contribution to bacterial host phenotypes, we analyzed the prophage sequences within 118 strains of Salmonella and VTEC, 117 of which are of agricultural origin. Overall, 130 unique prophage sequences were identified and they were found to be remarkably diverse with <50% nucleotide similarity, particularly with the Gifsy-1 group which was identified in several Salmonella serovars and interestingly, a strain of VTEC. Additionally, we identified a novel plasmid-like phage that carried antibiotic resistance and bacteriocin resistance genes. The strains analyzed carried at least six distinct spacers which did not possess homology to prophages identified in the same genome. In fact, only a fraction of all identified spacers (14%) possessed significant homology to known prophages. Regression models did not discern a correlation between spacer and prophage abundance in our strains, although the relatively high number of spacers in our strains (an average of 27 in Salmonella and 19 in VTEC) suggest that high rates of infection may occur in agricultural niches and be a contributing driver in bacterial evolution. Cumulatively, these results shed insight into prophage diversity of Salmonella and VTEC, which will have further implications when informing development of phage therapies against these foodborne pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Siyun Wang
- Food, Nutrition and Health, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Chitra MA, Varughese HS. Analysis of CRISPR-Cas system and antimicrobial resistance in Staphylococcus coagulans isolates. Lett Appl Microbiol 2022; 75:126-134. [PMID: 35366350 DOI: 10.1111/lam.13713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/05/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022]
Abstract
CRISPR-Cas system contributes adaptive immunity to protect the bacterial and archaeal genome against invading mobile genetic elements. In this study, an attempt was made to characterize the CRISPR-Cas system in S. coagulans, the second most prevalent coagulase positive staphylococci causing skin infections in dogs. Out of 45 S. coagulans isolates, 42/45 (93.33%) strains contained CRISPR-Cas system and 45 confirmed CRISPR system was identified in 42 S. coagulans isolates. The length of CRISPR loci ranged from 167 bp to 2477 bp, and the number of spacers in each CRISPR was varied from two spacers to as high as 37 numbers. Direct repeat (DR) sequences were between 30 and 37, but most (35/45) of the direct repeats contained 36 sequences. The predominant S. coagulans strains 29/45 did not possess any antimicrobial resistant genes (ARG); 26/29 strains contained Type IIC CRISPR-Cas system. Three isolates from Antarctica seals neither contain CRISPR-Cas system nor ARG. Only 15/45 S. coagulans strains (33.33%) harboured at least one ARG and 13/15 of them were having mecA gene. All the methicillin susceptible S. coagulans isolates contained Type IIC CRISPR-Cas system. In contrast, many (10/13) S. coagulans isolates which were methicillin resistant had Type IIIA CRISPR-Cas system, and this Type IIIA CRISPR-Cas system was present within the SCCmec mobile genetic element. Hence, this study suggests that Type II CRISPR-Cas in S. coagulans isolates might have played a possible role in preventing acquisition of plasmid/ phage invasion and Type IIIA CRISPR-Cas system may have an insignificant role in the prevention of horizontal gene transfer of antimicrobial resistance genes in S. coagulans species.
Collapse
Affiliation(s)
- M Ananda Chitra
- Department of Veterinary Microbiology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600007
| | - Hridya Susan Varughese
- Department of Veterinary Microbiology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600007
| |
Collapse
|
15
|
Kang HJ, Lee YJ. Distribution of CRISPR in Escherichia coli Isolated from Bulk Tank Milk and Its Potential Relationship with Virulence. Animals (Basel) 2022; 12:503. [PMID: 35203211 PMCID: PMC8868466 DOI: 10.3390/ani12040503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Escherichia coli is one of the most common causes of mastitis on dairy farms around the world, but its clinical severity is determined by a combination of virulence factors. Recently, clustered regularly interspaced short palindromic repeat (CRISPR) arrays have been reported as a novel typing method because of their usefulness in discriminating pathogenic bacterial isolates. Therefore, this study aimed to investigate the virulence potential of E. coli isolated from bulk tank milk, not from mastitis, and to analyze its pathogenic characterization using the CRISPR typing method. In total, 164 (89.6%) out of 183 E. coli isolated from the bulk tank milk of 290 farms carried one or more of eighteen virulence genes. The most prevalent virulence gene was fimH (80.9%), followed by iss (38.3%), traT (26.8%), ompT (25.7%), afa/draBC (24.0%), and univcnf (21.9%). Moreover, the phylogenetic group with the highest prevalence was B1 (64.0%), followed by A (20.1%), D (8.5%), and C (7.3%) (p < 0.05). Among the four CRISPR loci, only two, CRISPR 1 and CRISPR 2, were found. Interestingly, the distribution of CRISPR 1 was significantly higher in groups A and B1 compared to that of CRISPR 2 (p < 0.05), but there were no significant differences in groups C and D. The prevalence of CRISPR 1 by virulence gene ranged from 91.8% to 100%, whereas that of CRISPR 2 ranged from 57.5% to 93.9%. The distribution of CRISPR 1 was significantly higher in fimH, ompT, afa/draBC, and univcnf genes than that of CRISPR 2 (p < 0.05). The most prevalent E. coli sequence types (EST) among 26 ESTs was EST 22 (45.1%), followed by EST 4 (23.2%), EST 16 (20.1%), EST 25 (19.5%), and EST 24 (18.3%). Interestingly, four genes, fimH, ompT, afa/draBC, and univcnf, had a significantly higher prevalence in both EST 4 and EST 22 (p < 0.05). Among the seven protospacers derived from CRISPR 1, protospacer 163 had the highest prevalence (20.4%), and it only existed in EST 4 and EST 22. This study suggests that the CRISPR sequence-typing approach can help to clarify and trace virulence potential, although the E. coli isolates were from normal bulk tank milk and not from mastitis.
Collapse
Affiliation(s)
| | - Young-Ju Lee
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Korea;
| |
Collapse
|
16
|
Large-Scale Phylogenetic Analysis Reveals a New Genetic Clade among Escherichia coli O26 Strains. Microbiol Spectr 2022; 10:e0252521. [PMID: 35107330 PMCID: PMC8809355 DOI: 10.1128/spectrum.02525-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O26 is the predominant non-O157 serogroup causing hemolytic uremic syndrome worldwide. Moreover, the serogroup is highly dynamic and harbors several pathogenic clones. Here, we investigated the phylogenetic relationship of STEC O26 at a global level based on 1,367 strains from 20 countries deposited in NCBI and Enterobase databases. The whole-genome-based analysis identified a new genetic clade, called ST29C4. The new clade was unique in terms of multilocus sequence type (ST29), CRISPR (group Ia), and dominant plasmid gene profile (ehxA+/katP-/espP-/etpD-). Moreover, the combination of multiple typing methods (core genome single nucleotide polymorphism [SNP] typing, CRISPR typing, and virulence genes analysis) demonstrated that this new lineage ST29C4 was in the intermediate phylogenetic position between ST29C3 and other non-ST29C3 strains. Besides, we observed that ST29C4 harbored extraintestinal pathogenic E. coli (ExPEC)-related virulence gene (VG), tsh, and STEC-associated VG, stx2a, suggesting the emergence of a hybrid pathogen. The ST29C4 strains also exhibited high similarity in stx2a-prophage and integrase with the O104:H4 strain, further demonstrating its potential risk to human health. Collectively, the large-scale phylogenetic analysis extends the understanding of the clonal structure of O26 strains and provides new insights for O26 strain microevolution. IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) O26 is the second prevalent STEC serogroup only to O157, which can cause a series of diseases ranging from mild diarrhea to life-threatening hemolytic uremic syndrome (HUS). The serogroup is highly diverse and multiple clones are characterized, including ST29C1-C3 and ST21C1-C2. However, the phylogenetic relationship of these clones remains fully unclear. In this study, we revealed a new genetic clade among O26 strains, ST29C4, which was unique in terms of CRISPR, multilocus sequence type (MLST), and plasmid gene profile (PGP). Moreover, the combination of multiple typing methods demonstrated that this new clone was located in the intermediate phylogenetic position between ST29C3 and other non-ST29C3 strains (i.e., ST29C1-C2 and ST21C1-C2). Overall, the large-scale phylogenetic analysis extends our current understanding of O26 microevolution.
Collapse
|
17
|
Kim K, Lee YJ. Relationship between CRISPR sequence type and antimicrobial resistance in avian pathogenic Escherichia coli. Vet Microbiol 2022; 266:109338. [PMID: 35051827 DOI: 10.1016/j.vetmic.2022.109338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/09/2021] [Accepted: 01/08/2022] [Indexed: 12/24/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) is a primary cause of extraintestinal disease and respiratory infections in chickens; therefore, various antimicrobials applied via mass medication in farms to control APEC in Korea. In this study, we analyzed the relationship between CRISPR sequence type and antimicrobial resistance (AMR) in APEC isolates. Based on spacer distribution, a total of 103 CRISPR-positive APEC isolates were classified into 25 E. coli sequence types (ESTs), largely into two clusters that were correlated with phylogenetic groups: isolates appearing to have CRISPR 1 and/or 2 (93.2 %) and those having CRISPR 3 and 4 (6.8 %). Moreover, ESTs were divided into three AMR pattern-based groups: cephems-resistant group, non-cephems-resistant group, and antimicrobial sensitive group. There were significant differences among the groups (p < 0.05). Sixteen of the 25 ESTs had a significantly higher distribution of multidrug-resistant (MDR) isolates than the other ESTs (p < 0.05), and the ratio of MDR isolates was significantly higher than that of non-MDR isolates in the CRISPR 1 and 2 arrays (p < 0.05). A total of 9 protospacers were identified with protospacer, with protospacer 1 in CRISPR 1 being the most prevalent among the isolates (41.7 %). The protospacers of CRISPR 1 and 2 loci were associated with protection against external invaders such as bacteriophage or endogenous gene regulation. However, each protospacer of the CRISPR 3 and 4 loci originated from genes associated with AMR plasmids. These results indicate that CRISPR sequence type can improve AMR bacteria and enhance strategies for tackling the complexity of AMR in bacterial pathogens.
Collapse
Affiliation(s)
- Koeun Kim
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
18
|
Rykachevsky A, Stepakov A, Muzyukina P, Medvedeva S, Dobrovolski M, Burnaev E, Severinov K, Savitskaya E. SCRAMBLER: A Tool for De Novo CRISPR Array Reconstruction and Its Application for Analysis of the Structure of Prokaryotic Populations. CRISPR J 2021; 4:673-685. [PMID: 34661428 DOI: 10.1089/crispr.2021.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
CRISPR arrays are prokaryotic genomic loci consisting of repeat sequences alternating with unique spacers acquired from foreign nucleic acids. As one of the fastest-evolving parts of the genome, CRISPR arrays can be used to differentiate closely related prokaryotic lineages and track individual strains in prokaryotic communities. However, the assembly of full-length CRISPR arrays sequences remains a problem. Here, we developed SCRAMBLER, a tool that includes several pipelines for assembling CRISPR arrays from high-throughput short-read sequencing data. We assessed its performance with model data sets (Escherichia coli strains containing different CRISPR arrays and imitating prokaryotic communities of different complexities) and intestinal microbiomes of extant and extinct pachyderms. Evaluation of SCRAMBLER's performance using model data sets demonstrated its ability to assemble CRISPR arrays correctly from reads containing pairs of spacers, yielding a precision rate of >80% and a recall rate of 60-85% when checked against ground-truth data. Likewise, SCRAMBLER successfully assembled CRISPR arrays from the environmental samples, as attested by their matching with database entries. SCRAMBLER, an open-source software (github.com/biolab-tools/SCRAMBLER), can facilitate analysis of the composition and dynamics of CRISPR arrays in complex communities.
Collapse
Affiliation(s)
- Anton Rykachevsky
- Center for Computational and Data-Intensive Science and Engineering and Rutgers, State University of New Jersey, Piscataway, USA
| | - Alexander Stepakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia; Rutgers, State University of New Jersey, Piscataway, USA
| | - Polina Muzyukina
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Rutgers, State University of New Jersey, Piscataway, USA
| | - Sofia Medvedeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Rutgers, State University of New Jersey, Piscataway, USA
| | - Mark Dobrovolski
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Rutgers, State University of New Jersey, Piscataway, USA
| | - Evgeny Burnaev
- Center for Computational and Data-Intensive Science and Engineering and Rutgers, State University of New Jersey, Piscataway, USA
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Rutgers, State University of New Jersey, Piscataway, USA.,Laboratory of Genetic Regulation of Prokaryotic Mobile Genetic Elements, Institute of Molecular Genetics of National Research Center "Kurchatov Institute," Moscow, Russia; and Rutgers, State University of New Jersey, Piscataway, USA.,Waksman Institute, Rutgers, State University of New Jersey, Piscataway, USA
| | - Ekaterina Savitskaya
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Rutgers, State University of New Jersey, Piscataway, USA
| |
Collapse
|
19
|
Viral recombination systems limit CRISPR-Cas targeting through the generation of escape mutations. Cell Host Microbe 2021; 29:1482-1495.e12. [PMID: 34582782 DOI: 10.1016/j.chom.2021.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 06/24/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas systems provide immunity to bacteria by programing Cas nucleases with RNA guides that recognize and cleave infecting viral genomes. Bacteria and their viruses each encode recombination systems that could repair the cleaved viral DNA. However, it is unknown whether and how these systems can affect CRISPR immunity. Bacteriophage λ uses the Red system (gam-exo-bet) to promote recombination between related phages. Here, we show that λ Red also mediates evasion of CRISPR-Cas targeting. Gam inhibits the host E. coli RecBCD recombination system, allowing recombination and repair of the cleaved DNA by phage Exo-Beta, which promotes the generation of mutations within the CRISPR target sequence. Red recombination is strikingly more efficient than the host's RecBCD-RecA in the production of large numbers of phages that escape CRISPR targeting. These results reveal a role for Red-like systems in the protection of bacteriophages against sequence-specific nucleases, which may facilitate their spread across viral genomes.
Collapse
|
20
|
Perez M, Angers B, Young CR, Juniper SK. Shining light on a deep-sea bacterial symbiont population structure with CRISPR. Microb Genom 2021; 7:000625. [PMID: 34448690 PMCID: PMC8549365 DOI: 10.1099/mgen.0.000625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
Many foundation species in chemosynthesis-based ecosystems rely on environmentally acquired symbiotic bacteria for their survival. Hence, understanding the biogeographic distributions of these symbionts at regional scales is key to understanding patterns of connectivity and predicting resilience of their host populations (and thus whole communities). However, such assessments are challenging because they necessitate measuring bacterial genetic diversity at fine resolutions. For this purpose, the recently discovered clustered regularly interspaced short palindromic repeats (CRISPR) constitutes a promising new genetic marker. These DNA sequences harboured by about half of bacteria hold their viral immune memory, and as such, might allow discrimination of different lineages or strains of otherwise indistinguishable bacteria. In this study, we assessed the potential of CRISPR as a hypervariable phylogenetic marker in the context of a population genetic study of an uncultured bacterial species. We used high-throughput CRISPR-based typing along with multi-locus sequence analysis (MLSA) to characterize the regional population structure of the obligate but environmentally acquired symbiont species Candidatus Endoriftia persephone on the Juan de Fuca Ridge. Mixed symbiont populations of Ca. Endoriftia persephone were sampled across individual Ridgeia piscesae hosts from contrasting habitats in order to determine if environmental conditions rather than barriers to connectivity are more important drivers of symbiont diversity. We showed that CRISPR revealed a much higher symbiont genetic diversity than the other housekeeping genes. Several lines of evidence imply this diversity is indicative of environmental strains. Finally, we found with both CRISPR and gene markers that local symbiont populations are strongly differentiated across sites known to be isolated by deep-sea circulation patterns. This research showed the high power of CRISPR to resolve the genetic structure of uncultured bacterial populations and represents a step towards making keystone microbial species an integral part of conservation policies for upcoming mining operations on the seafloor.
Collapse
|
21
|
|
22
|
Alonso CA, de Toro M, de la Cruz F, Torres C. Genomic Insights into Drug Resistance and Virulence Platforms, CRISPR-Cas Systems and Phylogeny of Commensal E. coli from Wildlife. Microorganisms 2021; 9:999. [PMID: 34063152 PMCID: PMC8148099 DOI: 10.3390/microorganisms9050999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
Commensal bacteria act as important reservoirs of virulence and resistance genes. However, existing data are generally only focused on the analysis of human or human-related bacterial populations. There is a lack of genomic studies regarding commensal bacteria from hosts less exposed to antibiotics and other selective forces due to human activities, such as wildlife. In the present study, the genomes of thirty-eight E. coli strains from the gut of various wild animals were sequenced. The analysis of their accessory genome yielded a better understanding of the role of the mobilome on inter-bacterial dissemination of mosaic virulence and resistance plasmids. The study of the presence and composition of the CRISPR/Cas systems in E. coli from wild animals showed some viral and plasmid sequences among the spacers, as well as the relationship between CRISPR/Cas and E. coli phylogeny. Further, we constructed a single nucleotide polymorphisms-based core tree with E. coli strains from different sources (humans, livestock, food and extraintestinal environments). Bacteria from humans or highly human-influenced settings exhibit similar genetic patterns in CRISPR-Cas systems, plasmids or virulence/resistance genes-carrying modules. These observations, together with the absence of significant genetic changes in their core genome, suggest an ongoing flow of both mobile elements and E. coli lineages between human and natural ecosystems.
Collapse
Affiliation(s)
- Carla Andrea Alonso
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, 26006 Logroño, Spain;
- Servicio de Microbiología, Hospital San Pedro, 26006 Logroño, Spain
| | - María de Toro
- Plataforma de Genómica y Bioinformática, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain;
| | - Fernando de la Cruz
- Departamento de Biología Molecular, Universidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria-CSIC), 39011 Santander, Spain;
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, 26006 Logroño, Spain;
| |
Collapse
|
23
|
CRISPR-Cas systems in Proteus mirabilis. INFECTION GENETICS AND EVOLUTION 2021; 92:104881. [PMID: 33905883 DOI: 10.1016/j.meegid.2021.104881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/14/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a bacterial defense mechanism against bacteriophages composed of two different parts: the CRISPR array and the Cas genes. The spacer acquisition is done by the adaptation module consisting of the hallmark Cas1 Cas2 proteins, which inserts new spacers into the CRISPR array. Here we aimed to describe the CRISPR-Cas system in Proteus mirabilis (P. mirabilis) isolates. CRISPR loci was observed in 30 genomic contents of 109 P. mirabilis isolates that each locus was consisted of two CRISPR arrays and each array had a different preserved leader sequences. Only the type I-E CRISPR-Cas system was common in these isolates. The source of the spacers was identified, including phages and prophages. CRISPR spacer origin analysis also identified a conserved PAM sequence of 5'-AAG-3' nucleotide stretch. Through collecting spacers, CRISPR arrays of P. mirabilis isolates were expanded mostly by integration of bacteriophageal source of spacers. This study shows novel findings in the area of the P-mirabilis CRISPR-Cas system. In this regard, among analyzed genome of P. mirabilis isolates, Class I CRISR-Cas systems were dominant, and all belonged to type I-E. In the flanks of the CRISPR, some other elements with regulatory role were also found. A motif of 11 nt size was found to be preserved among the analyzed genome. We believe that it might has a CRISPR-Cas system transcription facilitator by targeting the Rho element.
Collapse
|
24
|
Wang L, Wang L, Liu Y, Wang Z, Chen Q, Liu Z, Hu J. Characterization of type I-F CRISPR-Cas system in Laribacter hongkongensis isolates from animals, the environment and diarrhea patients. Int J Food Microbiol 2021; 346:109153. [PMID: 33744818 DOI: 10.1016/j.ijfoodmicro.2021.109153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Laribacter hongkongensis is a foodborne organism that is associated with gastroenteritis and diarrhea in humans. Here we describe the structural characteristics and potential function of CRISPR systems to obtain insight into the genotypic diversity of L. hongkongensis. Specifically, we analyzed the genomic content of six L. hongkongensis genomes and identified two CRISPR loci (CRISPR1 and CRISPR2) belonging to the I-F subtype of CRISPR systems. CRISPR1 was flanked on one side by cas genes and a 170 bp-long putative leader sequence, while CRISPR2 arrays located further and processed by the same cas genes. Then a combination of PCR and sequencing was used to determine the prevalence and distribution of the two CRISPR arrays in 112 L. hongkongensis strains isolated from patients, animals, and water reservoirs. In total, the CRISPR1-Cas system of complete subtype I-F was detected in 91.5% (108/118) of the isolates, whereas CRISPR2 locus existed in 72.0% (85/118). Ten strains only possessed part of the cas genes of subtype I-F and four of them with CRISPR2 array. The two loci contained highly conserved and identical direct repeat sequences which were stable in their RNA secondary structure. Additionally, 2564 total spacers including 980 unique spacers arranged in 59 alleles were identified. Homology analysis showed only 1.8% (18/980) of the spacers matched with plasmid or phage. CRISPR polymorphism present in human isolates and frog isolates was more closely related and more extensive than that of fish isolates based on spacer polymorphism. The elucidation of the structural characteristics of the CRISPR-Cas system may be helpful for further studying the specific mechanism of adaptive immunity and other biological functions mediated by CRISPR in L. hongkongensis. The conservation of CRISPR loci and hypervariable repeat-spacer arrays imply the potential for molecular typing of L. hongkongensis.
Collapse
Affiliation(s)
- Ling Wang
- Department of Nosocomial Infection Administration, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Li Wang
- Office, Luohu district Center for Disease Control and Prevention, Shenzhen 518000, China
| | - Youzhao Liu
- Department of AIDS Prevention and Control, Guangdong Center for Disease Control and Prevention, Guangzhou 510300, China
| | - Zhiyun Wang
- Department of Immunization Programmes, Baiyun district Center for Disease Control and Prevention, Guangzhou 510540, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhihua Liu
- Department of Infectious Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Jing Hu
- Department of Nosocomial Infection Administration, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
25
|
Roy S, Naha S, Rao A, Basu S. CRISPR-Cas system, antibiotic resistance and virulence in bacteria: Through a common lens. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 178:123-174. [PMID: 33685595 DOI: 10.1016/bs.pmbts.2020.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CRISPR-Cas system, antibiotic resistance and virulence are different modes of survival for the bacteria. CRISPR-Cas is an adaptive immune system that can degrade foreign DNA, antibiotic resistance helps bacteria to evade drugs that can threaten their existence and virulence determinants are offensive tools that can facilitate the establishment of infection by pathogens. This chapter focuses on these three aspects, providing insights about the CRISPR system and resistance mechanisms in brief, followed by understanding the synergistic or antagonistic relationship of resistance and virulence determinants in connection to the CRISPR system. We have addressed the discussion of this evolving topic through specific examples and studies. Different approaches for successful detection of this unique defense system in bacteria and various applications of the CRISPR-Cas systems to show how it can be harnessed to tackle the increasing problem of antibiotic resistance have been put forth. World Health Organization has declared antibiotic resistance as a serious global problem of the 21st century. As antibiotic-resistant bacteria increase their footprint across the globe, newer tools such as the CRISPR-Cas system hold immense promise to tackle this problem.
Collapse
Affiliation(s)
- Subhasree Roy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Scheme XM, Beliaghata, Kolkata, India
| | - Sharmi Naha
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Scheme XM, Beliaghata, Kolkata, India
| | - Ankur Rao
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Scheme XM, Beliaghata, Kolkata, India
| | - Sulagna Basu
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Scheme XM, Beliaghata, Kolkata, India.
| |
Collapse
|
26
|
Abstract
CRISPR-Cas systems, widespread in bacteria and archaea, are mainly responsible for adaptive cellular immunity against exogenous DNA (plasmid and phage). However, the latest research shows their involvement in other functions, such as gene expression regulation, DNA repair and virulence. In recent years, they have undergone intensive research as convenient tools for genomic editing, with Cas9 being the most commonly used nuclease. Gene editing may be of interest in biotechnology, medicine (treatment of inherited disorders, cancer, etc.), and in the development of model systems for various genetic diseases. The dCas9 system, based on a modified Cas9 devoid of nuclease activity, called CRISPRi, is widely used to control gene expression in bacteria for new drug biotargets validation and is also promising for therapy of genetic diseases. In addition to direct use for genomic editing in medicine, CRISPR-Cas can also be used in diagnostics, for microorganisms’ genotyping, controlling the spread of drug resistance, or even directly as “smart” antibiotics. This review focuses on the main applications of CRISPR-Cas in medicine, and challenges and perspectives of these approaches.
Collapse
|
27
|
Al-Farsi HM, Camporeale A, Ininbergs K, Al-Azri S, Al-Muharrmi Z, Al-Jardani A, Giske CG. Clinical and molecular characteristics of carbapenem non-susceptible Escherichia coli: A nationwide survey from Oman. PLoS One 2020; 15:e0239924. [PMID: 33036018 PMCID: PMC7546912 DOI: 10.1371/journal.pone.0239924] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023] Open
Abstract
The prevalence of carbapenem-resistant Enterobacterales (CRE) in the Arabian Peninsula is predicted to be high, as suggested from published case reports. Of particular concern, is carbapenem-resistant E. coli (CR-EC), due to the importance of this species as a community pathogen. Herein, we conducted a comprehensive molecular characterization of putative CR-EC strains from Oman. We aim to establish a baseline for future molecular monitoring. We performed whole-genome sequencing (WGS) for 35 putative CR-EC. Isolates were obtained from patients at multiple centers in 2015. Genetic relatedness was investigated using several typing approaches such as MLST, SNP calling, phylogroup and CRISPR typing. Maxiuium likelihood SNP-tree was performed by RAxML after variant calling and removal of recombination regions with Snippy and Gubbins, respectively. Resistance genes, plasmid replicon types, virulence genes, and prophage were also characterised. The online databases CGE, CRISPRcasFinder, Phaster and EnteroBase were used for the in silico analyses. Screening for mutations in genes regulating the expression of porins and efflux pump as well as mutations lead to fluoroquinolones resistance were performed with CLC Genomics Workbench. The genetic diversity suggests a polyclonal population structure with 21 sequence types (ST), of which ST38 being the most prevalent (11%). SNPs analysis revealed possible transmission episodes. Whereas, CRISPR typing helped to spot outlier strains belonged to phylogroups other than B2 which was CRISPR-free. The virulent phylogroups B2 and D were detected in 4 and 9 isolates, respectively. In some strains bacteriophages acted as vectors for virulence genes. Regarding resistance to β-lactam, 22 were carbapenemase producers, 3 carbapenem non-susceptible but carbapenemase-negative, 9 resistant to expanded-spectrum cephalosporins, and one isolate with susceptibility to cephalosporins and carbapenems. Thirteen out of the 22 (59%) carbapenemase-producing isolates were NDM and 7 (23%) were OXA-48-like which mirrors the situation in Indian subcontinent. Two isolates co-produced NDM and OXA-48-like enzymes. In total, 80% (28/35) were CTX-M-15 producers and 23% (8/35) featured AmpC. The high-risk subclones ST131-H30Rx/C2, ST410-H24RxC and ST1193-H64RxC were detected, the latter associated with NDM. To our knowledge, this is the first report of ST1193-H64Rx subclone with NDM. In conclusion, strains showed polyclonal population structure with OXA-48 and NDM as the only carbapenemases in CR-EC from Oman. We detected the high-risk subclone ST131-H30Rx/C2, ST410-H24RxC and ST1193-H64RxC. The latter was reported with carbapenemase gene for the first time here.
Collapse
Affiliation(s)
- Hissa M. Al-Farsi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Central Public Health Laboratories, Ministry of Health, Muscat, Oman
| | - Angela Camporeale
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Ininbergs
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Saleh Al-Azri
- Central Public Health Laboratories, Ministry of Health, Muscat, Oman
| | - Zakariya Al-Muharrmi
- Department of Clinical Microbiology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Amina Al-Jardani
- Central Public Health Laboratories, Ministry of Health, Muscat, Oman
| | - Christian G. Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
28
|
Blankenship HM, Mosci RE, Phan Q, Fontana J, Rudrik JT, Manning SD. Genetic Diversity of Non-O157 Shiga Toxin-Producing Escherichia coli Recovered From Patients in Michigan and Connecticut. Front Microbiol 2020; 11:529. [PMID: 32300338 PMCID: PMC7145412 DOI: 10.3389/fmicb.2020.00529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are important foodborne pathogens and non-O157 serotypes have been gradually increasing in frequency. The non-O157 STEC population is diverse and is often characterized using serotyping and/or multilocus sequence typing (MLST). Although spacers within clustered regularly interspaced repeat (CRISPR) regions were shown to comprise horizontally acquired DNA elements, this region does not actively acquire spacers in STEC. Hence, it is useful for further characterizing non-O157 STEC and examining relationships between strains. Our study goal was to evaluate the genetic relatedness of 41 clinical non-O157 isolates identified in Michigan between 2001 and 2005 while comparing to 114 isolates from Connecticut during an overlapping time period. Whole genome sequencing (WGS) was performed, and sequences were extracted for serotyping, MLST and CRISPR analysis. Phylogenetic analysis of MLST and CRISPR data was performed using the Neighbor joining and unweighted pair group method with arithmetic mean (UPGMA) algorithms, respectively. In all, 29 serogroups were identified; eight were unique to Michigan and 13 to Connecticut. “Big-six” serogroup frequencies were similar by state (Michigan: 73.2%, Connecticut: 81.6%), though STEC O121 was not found in Michigan. The distribution of sequence types (STs) and CRISPR profiles was also similar across states. Interestingly, big-six serogroups such as O103 and O26, grouped into different STs located on distinct branches of the phylogeny, further confirming that serotyping alone is not adequate for evaluating strain relatedness. Comparatively, the CRISPR analysis identified 361 unique spacers that grouped into 80 different CRISPR profiles. CRISPR spacers 231 and 317 were isolated from 79.2% (n = 118) and 59.1% (n = 88) of strains, respectively, regardless of serogroup and ST. Spacer profiles clustered according to the MLST analysis, though some discrepancies were noted. Indeed, use of both MLST and CRISPR typing enhanced the discriminatory power when compared to the use of each tool separately. These data highlight the genetic diversity of clinical STEC from different locations and show that CRISPR profiling can be used alongside MLST to discriminate related strains. Use of targeted sequencing approaches are particularly helpful for sites without WGS capabilities and can help define which strains require additional characterization using more discriminatory methods.
Collapse
Affiliation(s)
- Heather M Blankenship
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Rebekah E Mosci
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Quyen Phan
- Connecticut Department of Public Health, Hartford, CT, United States
| | - John Fontana
- Connecticut Department of Public Health, Hartford, CT, United States
| | - James T Rudrik
- Bureau of Laboratories, Michigan Department of Health and Human Services, Lansing, MI, United States
| | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
29
|
Recording mobile DNA in the gut microbiota using an Escherichia coli CRISPR-Cas spacer acquisition platform. Nat Commun 2020; 11:95. [PMID: 31911609 PMCID: PMC6946703 DOI: 10.1038/s41467-019-14012-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
The flow of genetic material between bacteria is central to the adaptation and evolution of bacterial genomes. However, our knowledge about DNA transfer within complex microbiomes is lacking, with most studies of horizontal gene transfer (HGT) relying on bioinformatic analyses of genetic elements maintained on evolutionary timescales or experimental measurements of phenotypically trackable markers. Here, we utilize the CRISPR-Cas spacer acquisition process to detect DNA acquisition events from complex microbiota in real-time and at nucleotide resolution. In this system, an E. coli recording strain is exposed to a microbial sample and spacers are acquired from transferred plasmids and permanently stored in genomic CRISPR arrays. Sequencing and analysis of acquired spacers enables identification of the transferred plasmids. This approach allowed us to identify individual mobile elements without relying on phenotypic markers or post-transfer replication. We found that HGT into the recording strain in human clinical fecal samples can be extensive and is driven by different plasmid types, with the IncX type being the most actively transferred.
Collapse
|
30
|
Prophages contribute to genome plasticity of Klebsiella pneumoniae and may involve the chromosomal integration of ARGs in CG258. Genomics 2020; 112:998-1010. [DOI: 10.1016/j.ygeno.2019.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/21/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022]
|
31
|
Scrascia M, D'Addabbo P, Roberto R, Porcelli F, Oliva M, Calia C, Dionisi AM, Pazzani C. Characterization of CRISPR-Cas Systems in Serratia marcescens Isolated from Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Curculionidae). Microorganisms 2019; 7:microorganisms7090368. [PMID: 31546915 PMCID: PMC6780938 DOI: 10.3390/microorganisms7090368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
The CRISPR-Cas adaptive immune system has been attracting increasing scientific interest for biological functions and biotechnological applications. Data on the Serratia marcescens system are scarce. Here, we report a comprehensive characterisation of CRISPR-Cas systems identified in S. marcescens strains isolated as secondary symbionts of Rhynchophorus ferrugineus, also known as Red Palm Weevil (RPW), one of the most invasive pests of major cultivated palms. Whole genome sequencing was performed on four strains (S1, S5, S8, and S13), which were isolated from the reproductive apparatus of RPWs. Subtypes I-F and I-E were harboured by S5 and S8, respectively. No CRISPR-Cas system was detected in S1 or S13. Two CRISPR arrays (4 and 51 spacers) were detected in S5 and three arrays (11, 31, and 30 spacers) were detected in S8. The CRISPR-Cas systems were located in the genomic region spanning from ybhR to phnP, as if this were the only region where CRISPR-Cas loci were acquired. This was confirmed by analyzing the S. marcescens complete genomes available in the NCBI database. This region defines a genomic hotspot for horizontally acquired genes and/or CRISPR-Cas systems. This study also supplies the first identification of subtype I-E in S. marcescens.
Collapse
Affiliation(s)
- Maria Scrascia
- Department of Biology, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Pietro D'Addabbo
- Department of Biology, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Roberta Roberto
- Department of Plants, Food, and Soil Sciences, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Francesco Porcelli
- Department of Plants, Food, and Soil Sciences, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Marta Oliva
- Department of Biology, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Carla Calia
- Department of Biology, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Anna Maria Dionisi
- Department of Infectious diseases, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Carlo Pazzani
- Department of Biology, University of Bari Aldo Moro, 70124 Bari, Italy.
| |
Collapse
|
32
|
Long J, Xu Y, Ou L, Yang H, Xi Y, Chen S, Duan G. Polymorphism of Type I-F CRISPR/Cas system in Escherichia coli of phylogenetic group B2 and its application in genotyping. INFECTION GENETICS AND EVOLUTION 2019; 74:103916. [PMID: 31195154 DOI: 10.1016/j.meegid.2019.103916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/22/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022]
Abstract
E. coli of phylogenetic group B2 is responsible for many extraintestinal infections, posing a great threat to health. The relatively polymorphic nature of CRISPR in phylogenetically related E. coli strains makes them potential markers for bacterial typing and evolutionary studies. In the current work, we investigated the occurrence and diversity of CRISPR/Cas system and explored its potential for genotyping. Type I-F CRISPR/Cas systems were found in 413 of 1190 strains of E. coli and exhibited the clustering within certain CCs and STs. And CRISPR spacer contents correlated well with MLST types. The divergence analysis of CRISPR showed stronger discriminatory power than MLST, and CRISPR polymorphism was instrumental for differentiating highly closely related strains. The timeline of spacer acquisition and deletion provided important information for inferring the evolution model between distinct serotypes. Identical spacer sequences were shared by strains with the same H-antigen type but not strains with the same O-antigen type. The homology between spacers and antibiotic-resistant plasmids demonstrated the role of Type I-F system in limiting the acquisition of antimicrobial resistance. Collectively, our data presents the dynamic nature of Type I-F CRISPR in E. coli of phylogenetic group B2 and provides new insights into the application of CRISPR-based typing in the species.
Collapse
Affiliation(s)
- Jinzhao Long
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yake Xu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China; School Hospital, Henan University of Science and Technology, Luoyang, Henan, China
| | - Liuyang Ou
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanlin Xi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuaiyin Chen
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| | - Guangcai Duan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China; Henan Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
33
|
A phylogenetic test of the role of CRISPR-Cas in limiting plasmid acquisition and prophage integration in bacteria. Plasmid 2019; 104:102418. [PMID: 31195029 DOI: 10.1016/j.plasmid.2019.102418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 12/17/2022]
Abstract
CRISPR-Cas is a prokaryotic defense system capable of protecting the cell from damaging foreign genetic elements. However, some genetic elements can be beneficial, which suggests the hypothesis that bacteria with CRISPR-Cas incur a cost of reduced intake of mutualistic plasmids and prophage. Here we present the first robust test of this hypothesis that controls for phylogenic and ecological biases in the distribution of CRISPR-Cas. We filtered the available genomic data (~7000 strains from ~2100 species) by first selecting all pairs of conspecific strains, one with and one without CRISPR-Cas (controlling ecological bias), and second by retaining only one such pair per bacterial family (controlling phylogenetic bias), resulting in pairs representing 38 bacterial families. Analysis of these pairs of bacterial strains showed that on average the CRISPR-Cas strain of each pair contained significantly fewer plasmids than its CRISPR-Cas negative partner (0.86 vs. 1.86). It also showed that the CRISPR-Cas positive strains had 31% fewer intact prophage (1.17 vs. 1.75), but the effect was highly variable and not significant. These results support the hypothesis that CRISPR-Cas reduces the rate of plasmid-mediated HGT and, given the abundant evidence of beneficial genes carried by plasmids, provide a clear example of a cost associated with the CRISPR-Cas system.
Collapse
|
34
|
Shehreen S, Chyou TY, Fineran PC, Brown CM. Genome-wide correlation analysis suggests different roles of CRISPR-Cas systems in the acquisition of antibiotic resistance genes in diverse species. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180384. [PMID: 30905286 PMCID: PMC6452267 DOI: 10.1098/rstb.2018.0384] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2018] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems are widespread in bacterial and archaeal genomes, and in their canonical role in phage defence they confer a fitness advantage. However, CRISPR-Cas may also hinder the uptake of potentially beneficial genes. This is particularly true under antibiotic selection, where preventing the uptake of antibiotic resistance genes could be detrimental. Newly discovered features within these evolutionary dynamics are anti-CRISPR genes, which inhibit specific CRISPR-Cas systems. We hypothesized that selection for antibiotic resistance might have resulted in an accumulation of anti-CRISPR genes in genomes that harbour CRISPR-Cas systems and horizontally acquired antibiotic resistance genes. To assess that question, we analysed correlations between the CRISPR-Cas, anti-CRISPR and antibiotic resistance gene content of 104 947 reference genomes, including 5677 different species. In most species, the presence of CRISPR-Cas systems did not correlate with the presence of antibiotic resistance genes. However, in some clinically important species, we observed either a positive or negative correlation of CRISPR-Cas with antibiotic resistance genes. Anti-CRISPR genes were common enough in four species to be analysed. In Pseudomonas aeruginosa, the presence of anti-CRISPRs was associated with antibiotic resistance genes. This analysis indicates that the role of CRISPR-Cas and anti-CRISPRs in the spread of antibiotic resistance is likely to be very different in particular pathogenic species and clinical environments. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
- Saadlee Shehreen
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Te-yuan Chyou
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, New Zealand
| | - Chris M. Brown
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, New Zealand
| |
Collapse
|
35
|
Xue C, Sashital DG. Mechanisms of Type I-E and I-F CRISPR-Cas Systems in Enterobacteriaceae. EcoSal Plus 2019; 8:10.1128/ecosalplus.ESP-0008-2018. [PMID: 30724156 PMCID: PMC6368399 DOI: 10.1128/ecosalplus.esp-0008-2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 12/17/2022]
Abstract
CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against invasion by bacteriophages and other mobile genetic elements. Short fragments of invader DNA are stored as immunological memories within CRISPR (clustered regularly interspaced short palindromic repeat) arrays in the host chromosome. These arrays provide a template for RNA molecules that can guide CRISPR-associated (Cas) proteins to specifically neutralize viruses upon subsequent infection. Over the past 10 years, our understanding of CRISPR-Cas systems has benefited greatly from a number of model organisms. In particular, the study of several members of the Gram-negative Enterobacteriaceae family, especially Escherichia coli and Pectobacterium atrosepticum, have provided significant insights into the mechanisms of CRISPR-Cas immunity. In this review, we provide an overview of CRISPR-Cas systems present in members of the Enterobacteriaceae. We also detail the current mechanistic understanding of the type I-E and type I-F CRISPR-Cas systems that are commonly found in enterobacteria. Finally, we discuss how phages can escape or inactivate CRISPR-Cas systems and the measures bacteria can enact to counter these types of events.
Collapse
Affiliation(s)
- Chaoyou Xue
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA
- Present address: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY
| | - Dipali G Sashital
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA
| |
Collapse
|
36
|
Weissman JL, Fagan WF, Johnson PLF. Selective Maintenance of Multiple CRISPR Arrays Across Prokaryotes. CRISPR J 2018; 1:405-413. [PMID: 31021246 DOI: 10.1089/crispr.2018.0034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Prokaryotes are under nearly constant attack by viral pathogens. To protect against this threat of infection, bacteria and archaea have evolved a wide array of defense mechanisms, singly and in combination. While immune diversity in a single organism likely reduces the chance of pathogen evolutionary escape, it remains puzzling why many prokaryotes also have multiple, seemingly redundant, copies of the same type of immune system. Here, we focus on the highly flexible CRISPR adaptive immune system, which is present in multiple copies in a surprising 28% of the prokaryotic genomes in RefSeq. We use a comparative genomics approach looking across all prokaryotes to demonstrate that on average, organisms are under selection to maintain more than one CRISPR array. Given this surprising conclusion, we consider several hypotheses concerning the source of selection and include a theoretical analysis of the possibility that a trade-off between memory span and learning speed could select for both "long-term memory" and "short-term memory" CRISPR arrays.
Collapse
Affiliation(s)
- Jake L Weissman
- Department of Biology, University of Maryland College Park , College Park, Maryland
| | - William F Fagan
- Department of Biology, University of Maryland College Park , College Park, Maryland
| | - Philip L F Johnson
- Department of Biology, University of Maryland College Park , College Park, Maryland
| |
Collapse
|
37
|
Tymensen L, Zaheer R, Cook SR, Amoako KK, Goji N, Read R, Booker CW, Hannon SJ, Neumann N, McAllister TA. Clonal expansion of environmentally-adapted Escherichia coli contributes to propagation of antibiotic resistance genes in beef cattle feedlots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:657-664. [PMID: 29758422 DOI: 10.1016/j.scitotenv.2018.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Livestock wastewater lagoons represent important environmental reservoirs of antibiotic resistance genes (ARGs), although factors contributing to their proliferation within these reservoirs remain poorly understood. Here, we characterized Escherichia coli from feedlot cattle feces and associated wastewater lagoons using CRISPR1 subtyping, and demonstrated that while generic E. coli were genetically diverse, populations were dominated by several 'feedlot-adapted' CRISPR types (CTs) that were widely distributed throughout the feedlot. Moreover, E. coli bearing beta-lactamase genes, which confer reduced susceptibility to third-generation cephalosporin's, predominantly belonged to these feedlot-adapted CTs. Remarkably, the genomic region containing the CRISPR1 allele was more frequently subject to genetic exchange among wastewater isolates compared to fecal isolates, implicating this region in environmental adaptation. This allele is proximal to the mutS-rpoS-nlpD region, which is involved in regulating recombination barriers and adaptive stress responses. There were no loss-of-function mutS or rpoS mutations or beneficial accessory genes present within the mutS-rpoS-nlpD region that would account for increased environmental fitness among feedlot-adapted isolates. However, comparative sequence analysis revealed that protein sequences within this region were conserved among most feedlot-adapted CTs, but not transient fecal CTs, and did not reflect phylogenetic relatedness, implying that adaptation to wastewater environments may be associated with genetic variation related to stress resistance. Collectively, our findings suggest adaptation of E. coli to feedlot environments may contribute to propagation of ARGs in wastewater lagoons.
Collapse
Affiliation(s)
- Lisa Tymensen
- Alberta Agriculture and Forestry, Irrigation and Farm Water Branch, Lethbridge, Alberta T1J 4V6, Canada.
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada
| | - Shaun R Cook
- Alberta Agriculture and Forestry, Irrigation and Farm Water Branch, Lethbridge, Alberta T1J 4V6, Canada
| | - Kingsley K Amoako
- Canadian Food Inspection Agency, National Center for Animal Disease, Lethbridge, Alberta, Canada
| | - Noriko Goji
- Canadian Food Inspection Agency, National Center for Animal Disease, Lethbridge, Alberta, Canada
| | - Ron Read
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Alberta T1Y 6J4, Canada
| | - Calvin W Booker
- Feedlot Health Management Services, Ltd., Okotoks, Alberta T1S 2A2, Canada
| | - Sherry J Hannon
- Feedlot Health Management Services, Ltd., Okotoks, Alberta T1S 2A2, Canada
| | - Norman Neumann
- School of Public Health, University of Alberta, 3-300 Edmonton Clinic Health Authority, 11405-87 Ave, Edmonton, Alberta T6G 1C9, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada
| |
Collapse
|
38
|
Medina-Aparicio L, Dávila S, Rebollar-Flores JE, Calva E, Hernández-Lucas I. The CRISPR-Cas system in Enterobacteriaceae. Pathog Dis 2018; 76:4794941. [PMID: 29325038 DOI: 10.1093/femspd/fty002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022] Open
Abstract
In nature, microorganisms are constantly exposed to multiple viral infections and thus have developed many strategies to survive phage attack and invasion by foreign DNA. One of such strategies is the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) bacterial immunological system. This defense mechanism is widespread in prokaryotes including several families such as Enterobacteriaceae. Much knowledge about the CRISPR-Cas system has been generated, including its biological functions, transcriptional regulation, distribution, utility as a molecular marker and as a tool for specific genome editing. This review focuses on these aspects and describes the state of the art of the CRISPR-Cas system in the Enterobacteriaceae bacterial family.
Collapse
Affiliation(s)
- Liliana Medina-Aparicio
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Sonia Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Cuernavaca, Morelos 62209, México
| | - Javier E Rebollar-Flores
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Ismael Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| |
Collapse
|
39
|
Hidalgo-Cantabrana C, Sanozky-Dawes R, Barrangou R. Insights into the Human Virome Using CRISPR Spacers from Microbiomes. Viruses 2018; 10:v10090479. [PMID: 30205462 PMCID: PMC6165519 DOI: 10.3390/v10090479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022] Open
Abstract
Due to recent advances in next-generation sequencing over the past decade, our understanding of the human microbiome and its relationship to health and disease has increased dramatically. Yet, our insights into the human virome, and its interplay with important microbes that impact human health, is relatively limited. Prokaryotic and eukaryotic viruses are present throughout the human body, comprising a large and diverse population which influences several niches and impacts our health at various body sites. The presence of prokaryotic viruses like phages, has been documented at many different body sites, with the human gut being the richest ecological niche. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and associated proteins constitute the adaptive immune system of bacteria, which prevents attack by invasive nucleic acid. CRISPR-Cas systems function by uptake and integration of foreign genetic element sequences into the CRISPR array, which constitutes a genomic archive of iterative vaccination events. Consequently, CRISPR spacers can be investigated to reconstruct interplay between viruses and bacteria, and metagenomic sequencing data can be exploited to provide insights into host-phage interactions within a niche. Here, we show how the CRISPR spacer content of commensal and pathogenic bacteria can be used to determine the evidence of their phage exposure. This framework opens new opportunities for investigating host-virus dynamics in metagenomic data, and highlights the need to dedicate more efforts for virome sampling and sequencing.
Collapse
Affiliation(s)
- Claudio Hidalgo-Cantabrana
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Campus BOX 7624, Raleigh, NC 27695, USA.
| | - Rosemary Sanozky-Dawes
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Campus BOX 7624, Raleigh, NC 27695, USA.
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Campus BOX 7624, Raleigh, NC 27695, USA.
| |
Collapse
|
40
|
Pérez-Losada M, Arenas M, Castro-Nallar E. Microbial sequence typing in the genomic era. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 63:346-359. [PMID: 28943406 PMCID: PMC5908768 DOI: 10.1016/j.meegid.2017.09.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022]
Abstract
Next-generation sequencing (NGS), also known as high-throughput sequencing, is changing the field of microbial genomics research. NGS allows for a more comprehensive analysis of the diversity, structure and composition of microbial genes and genomes compared to the traditional automated Sanger capillary sequencing at a lower cost. NGS strategies have expanded the versatility of standard and widely used typing approaches based on nucleotide variation in several hundred DNA sequences and a few gene fragments (MLST, MLVA, rMLST and cgMLST). NGS can now accommodate variation in thousands or millions of sequences from selected amplicons to full genomes (WGS, NGMLST and HiMLST). To extract signals from high-dimensional NGS data and make valid statistical inferences, novel analytic and statistical techniques are needed. In this review, we describe standard and new approaches for microbial sequence typing at gene and genome levels and guidelines for subsequent analysis, including methods and computational frameworks. We also present several applications of these approaches to some disciplines, namely genotyping, phylogenetics and molecular epidemiology.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Ashburn, VA 20147, USA; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal; Children's National Medical Center, Washington, DC 20010, USA.
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - Eduardo Castro-Nallar
- Universidad Andrés Bello, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Santiago 8370146, Chile
| |
Collapse
|
41
|
Vazquez N, Sanchez L, Marks R, Martinez E, Fanniel V, Lopez A, Salinas A, Flores I, Hirschmann J, Gilkerson R, Schuenzel E, Dearth R, Halaby R, Innis-Whitehouse W, Keniry M. A protocol for custom CRISPR Cas9 donor vector construction to truncate genes in mammalian cells using pcDNA3 backbone. BMC Mol Biol 2018; 19:3. [PMID: 29540148 PMCID: PMC5853148 DOI: 10.1186/s12867-018-0105-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/06/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Clustered regularly interspaced short palindromic repeat (CRISPR) RNA-guided adaptive immune systems are found in prokaryotes to defend cells from foreign DNA. CRISPR Cas9 systems have been modified and employed as genome editing tools in wide ranging organisms. Here, we provide a detailed protocol to truncate genes in mammalian cells using CRISPR Cas9 editing. We describe custom donor vector construction using Gibson assembly with the commonly utilized pcDNA3 vector as the backbone. RESULTS We describe a step-by-step method to truncate genes of interest in mammalian cell lines using custom-made donor vectors. Our method employs 2 guide RNAs, mutant Cas9D10A nickase (Cas9 = CRISPR associated sequence 9), and a custom-made donor vector for homologous recombination to precisely truncate a gene of interest with a selectable neomycin resistance cassette (NPTII: Neomycin Phosphotransferase II). We provide a detailed protocol on how to design and construct a custom donor vector using Gibson assembly (and the commonly utilized pcDNA3 vector as the backbone) allowing researchers to obtain specific gene modifications of interest (gene truncation, gene deletion, epitope tagging or knock-in mutation). Selection of mutants in mammalian cell lines with G418 (Geneticin) combined with several screening methods: western blot analysis, polymerase chain reaction, and Sanger sequencing resulted in streamlined mutant isolation. Proof of principle experiments were done in several mammalian cell lines. CONCLUSIONS Here we describe a detailed protocol to employ CRISPR Cas9 genome editing to truncate genes of interest using the commonly employed expression vector pcDNA3 as the backbone for the donor vector. Providing a detailed protocol for custom donor vector design and construction will enable researchers to develop unique genome editing tools. To date, detailed protocols for CRISPR Cas9 custom donor vector construction are limited (Lee et al. in Sci Rep 5:8572, 2015; Ma et al. in Sci Rep 4:4489, 2014). Custom donor vectors are commercially available, but can be expensive. Our goal is to share this protocol to aid researchers in performing genetic investigations that require custom donor vectors for specialized applications (specific gene truncations, knock-in mutations, and epitope tagging applications).
Collapse
Affiliation(s)
- Neftali Vazquez
- Department of Biology, University of Texas-Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539 USA
| | - Lilia Sanchez
- Department of Biology, University of Texas-Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539 USA
| | - Rebecca Marks
- Department of Biology, University of Texas-Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539 USA
| | - Eduardo Martinez
- Department of Biology, University of Texas-Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539 USA
| | - Victor Fanniel
- Department of Biology, University of Texas-Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539 USA
| | - Alma Lopez
- Department of Biology, University of Texas-Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539 USA
| | - Andrea Salinas
- Department of Biology, University of Texas-Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539 USA
| | - Itzel Flores
- Department of Biology, University of Texas-Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539 USA
| | - Jesse Hirschmann
- Department of Biology, University of Texas-Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539 USA
| | - Robert Gilkerson
- Department of Biology, University of Texas-Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539 USA
| | - Erin Schuenzel
- Department of Biology, University of Texas-Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539 USA
| | - Robert Dearth
- Department of Biology, University of Texas-Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539 USA
| | - Reginald Halaby
- Department of Biology, Montclair State University, 1 Normal Ave., Montclair, NJ 07043 USA
| | - Wendy Innis-Whitehouse
- School of Medicine, University of Texas-Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539 USA
| | - Megan Keniry
- Department of Biology, University of Texas-Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539 USA
| |
Collapse
|
42
|
Kimura S, Uehara M, Morimoto D, Yamanaka M, Sako Y, Yoshida T. Incomplete Selective Sweeps of Microcystis Population Detected by the Leader-End CRISPR Fragment Analysis in a Natural Pond. Front Microbiol 2018; 9:425. [PMID: 29568293 PMCID: PMC5852275 DOI: 10.3389/fmicb.2018.00425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/22/2018] [Indexed: 11/13/2022] Open
Abstract
The freshwater cyanobacterium Microcystis aeruginosa frequently forms toxic massive blooms and exists in an arms race with its infectious phages in aquatic natural environments, and as a result, has evolved extremely diverse and elaborate antiviral defense systems, including the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated genes (Cas) system. Here, to assess Microcystis population dynamics associated with exogenous mobile genetic elements such as phages and plasmids, we examined the temporal variation in CRISPR genotypes (CTs) by analyzing spacer sequences detected in a natural pond between June and October 2013 when a cyanobacterial bloom occurred. A total of 463,954 high-quality leader-end CRISPR sequences were obtained and the sequences containing spacers were classified into 31 previously reported CTs and 68 new CTs based on the shared order of the leader-end spacers. CT19 was the most dominant genotype (32%) among the 16 most common CTs, followed by CT52 (14%) and CT58 (9%). Spacer repertoires of CT19 showed mainly two different types; CT19origin, which was identical to the CT19 spacer repertoire of previously isolated strains, and CT19new+, which contained a new spacer at the leader-end of the CRISPR region of CT19origin, which were present in almost equal abundance, accounting for up to 99.94% of CT19 sequences. Surprisingly, we observed the spacer repertoires of the second to tenth spacers of CT19origin at the most leader-end of proto-genotype sequences of CT19origin. These were observed during the sampling in this study and our previous study at the same ecosystem in 2010 and 2011, suggesting these CTs persisted from 2011 to 2013 in spite of phage pressure. The leader-end variants were observed in other CT genotypes. These findings indicated an incomplete selective sweep of Microcystis populations. We explained the phenomenon as follow; the abundance of Microcystis varied seasonally and drastically, resulting that Microcystis populations experience a bottleneck once a year, and thereby founder effects following a bottleneck mean that older CTs have an equal chance of increasing in prevalence as the CTs generated following acquisition of newer spacers.
Collapse
Affiliation(s)
- Shigeko Kimura
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,School of Environmental Science, The University of Shiga Prefecture, Hikone, Japan
| | - Mika Uehara
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Daichi Morimoto
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Momoko Yamanaka
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihiko Sako
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
43
|
Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The Biology of CRISPR-Cas: Backward and Forward. Cell 2018. [DOI: 10.1016/j.cell.2017.11.032] [Citation(s) in RCA: 333] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Rodic A, Blagojevic B, Djordjevic M, Severinov K, Djordjevic M. Features of CRISPR-Cas Regulation Key to Highly Efficient and Temporally-Specific crRNA Production. Front Microbiol 2017; 8:2139. [PMID: 29163425 PMCID: PMC5675862 DOI: 10.3389/fmicb.2017.02139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/19/2017] [Indexed: 12/15/2022] Open
Abstract
Bacterial immune systems, such as CRISPR-Cas or restriction-modification (R-M) systems, affect bacterial pathogenicity and antibiotic resistance by modulating horizontal gene flow. A model system for CRISPR-Cas regulation, the Type I-E system from Escherichia coli, is silent under standard laboratory conditions and experimentally observing the dynamics of CRISPR-Cas activation is challenging. Two characteristic features of CRISPR-Cas regulation in E. coli are cooperative transcription repression of cas gene and CRISPR array promoters, and fast non-specific degradation of full length CRISPR transcripts (pre-crRNA). In this work, we use computational modeling to understand how these features affect the system expression dynamics. Signaling which leads to CRISPR-Cas activation is currently unknown, so to bypass this step, we here propose a conceptual setup for cas expression activation, where cas genes are put under transcription control typical for a restriction-modification (R-M) system and then introduced into a cell. Known transcription regulation of an R-M system is used as a proxy for currently unknown CRISPR-Cas transcription control, as both systems are characterized by high cooperativity, which is likely related to similar dynamical constraints of their function. We find that the two characteristic CRISPR-Cas control features are responsible for its temporally-specific dynamical response, so that the system makes a steep (switch-like) transition from OFF to ON state with a time-delay controlled by pre-crRNA degradation rate. We furthermore find that cooperative transcription regulation qualitatively leads to a cross-over to a regime where, at higher pre-crRNA processing rates, crRNA generation approaches the limit of an infinitely abrupt system induction. We propose that these dynamical properties are associated with rapid expression of CRISPR-Cas components and efficient protection of bacterial cells against foreign DNA. In terms of synthetic applications, the setup proposed here should allow highly efficient expression of small RNAs in a narrow time interval, with a specified time-delay with respect to the signal onset.
Collapse
Affiliation(s)
- Andjela Rodic
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Belgrade, Serbia.,Multidisciplinary PhD Program in Biophysics, University of Belgrade, Belgrade, Serbia
| | - Bojana Blagojevic
- Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia
| | | | - Konstantin Severinov
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States.,Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Marko Djordjevic
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
45
|
Ogrodzki P, Forsythe SJ. DNA-Sequence Based Typing of the Cronobacter Genus Using MLST, CRISPR- cas Array and Capsular Profiling. Front Microbiol 2017; 8:1875. [PMID: 29033918 PMCID: PMC5626840 DOI: 10.3389/fmicb.2017.01875] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/13/2017] [Indexed: 11/13/2022] Open
Abstract
The Cronobacter genus is composed of seven species, within which a number of pathovars have been described. The most notable infections by Cronobacter spp. are of infants through the consumption of contaminated infant formula. The description of the genus has greatly improved in recent years through DNA sequencing techniques, and this has led to a robust means of identification. However some species are highly clonal and this limits the ability to discriminate between unrelated strains by some methods of genotyping. This article updates the application of three genotyping methods across the Cronobacter genus. The three genotyping methods were multilocus sequence typing (MLST), capsular profiling of the K-antigen and colanic acid (CA) biosynthesis regions, and CRISPR-cas array profiling. A total of 1654 MLST profiled and 286 whole genome sequenced strains, available by open access at the PubMLST Cronobacter database, were used this analysis. The predominance of C. sakazakii and C. malonaticus in clinical infections was confirmed. The majority of clinical strains being in the C. sakazakii clonal complexes (CC) 1 and 4, sequence types (ST) 8 and 12 and C. malonaticus ST7. The capsular profile K2:CA2, previously proposed as being strongly associated with C. sakazakii and C. malonaticus isolates from severe neonatal infections, was also found in C. turicensis, C. dublinensis and C. universalis. The majority of CRISPR-cas types across the genus was the I-E (Ecoli) type. Some strains of C. dublinensis and C. muytjensii encoded the I-F (Ypseudo) type, and others lacked the cas gene loci. The significance of the expanding profiling will be of benefit to researchers as well as governmental and industrial risk assessors.
Collapse
Affiliation(s)
- Pauline Ogrodzki
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | | |
Collapse
|
46
|
Delannoy S, Mariani-Kurkdjian P, Webb HE, Bonacorsi S, Fach P. The Mobilome; A Major Contributor to Escherichia coli stx2-Positive O26:H11 Strains Intra-Serotype Diversity. Front Microbiol 2017; 8:1625. [PMID: 28932209 PMCID: PMC5592225 DOI: 10.3389/fmicb.2017.01625] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
Shiga toxin-producing Escherichia coli of serotype O26:H11/H- constitute a diverse group of strains and several clones with distinct genetic characteristics have been identified and characterized. Whole genome sequencing was performed using Illumina and PacBio technologies on eight stx2-positive O26:H11 strains circulating in France. Comparative analyses of the whole genome of the stx2-positive O26:H11 strains indicate that several clones of EHEC O26:H11 are co-circulating in France. Phylogenetic analysis of the French strains together with stx2-positive and stx-negative E. coli O26:H11 genomes obtained from Genbank indicates the existence of four clonal complexes (SNP-CCs) separated in two distinct lineages, one of which comprises the "new French clone" (SNP-CC1) that appears genetically closely related to stx-negative attaching and effacing E. coli (AEEC) strains. Interestingly, the whole genome SNP (wgSNP) phylogeny is summarized in the cas gene phylogeny, and a simple qPCR assay targeting the CRISPR array specific to SNP-CC1 (SP_O26-E) can distinguish between the two main lineages. The PacBio sequencing allowed a detailed analysis of the mobile genetic elements (MGEs) of the strains. Numerous MGEs were identified in each strain, including a large number of prophages and up to four large plasmids, representing overall 8.7-19.8% of the total genome size. Analysis of the prophage pool of the strains shows a considerable diversity with a complex history of recombination. Each clonal complex (SNP-CC) is characterized by a unique set of plasmids and phages, including stx-prophages, suggesting evolution through separate acquisition events. Overall, the MGEs appear to play a major role in O26:H11 intra-serotype clonal diversification.
Collapse
Affiliation(s)
- Sabine Delannoy
- Université Paris-Est, ANSES, Food Safety Laboratory, Platform IdentyPathMaisons-Alfort, France
| | - Patricia Mariani-Kurkdjian
- Assistance Publique Hopitaux de Paris, Hôpital Robert-Debré, Service de Microbiologie, CNR Associé Escherichia coliParis, France
- Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Institut National de la Santé et de la Recherche MédicaleParis, France
- Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Univ Paris Diderot, Sorbonne Paris CitéParis, France
| | - Hattie E. Webb
- Department of Animal and Food Sciences, Texas Tech UniversityLubbock, TX, United States
| | - Stephane Bonacorsi
- Assistance Publique Hopitaux de Paris, Hôpital Robert-Debré, Service de Microbiologie, CNR Associé Escherichia coliParis, France
- Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Institut National de la Santé et de la Recherche MédicaleParis, France
- Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Univ Paris Diderot, Sorbonne Paris CitéParis, France
| | - Patrick Fach
- Université Paris-Est, ANSES, Food Safety Laboratory, Platform IdentyPathMaisons-Alfort, France
| |
Collapse
|
47
|
Aydin S, Personne Y, Newire E, Laverick R, Russell O, Roberts AP, Enne VI. Presence of Type I-F CRISPR/Cas systems is associated with antimicrobial susceptibility in Escherichia coli. J Antimicrob Chemother 2017; 72:2213-2218. [DOI: 10.1093/jac/dkx137] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/11/2017] [Indexed: 01/19/2023] Open
|
48
|
Militello KT, Lazatin JC. Discovery of Escherichia coli CRISPR sequences in an undergraduate laboratory. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 45:262-269. [PMID: 27677251 DOI: 10.1002/bmb.21025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPRs) represent a novel type of adaptive immune system found in eubacteria and archaebacteria. CRISPRs have recently generated a lot of attention due to their unique ability to catalog foreign nucleic acids, their ability to destroy foreign nucleic acids in a mechanism that shares some similarity to RNA interference, and the ability to utilize reconstituted CRISPR systems for genome editing in numerous organisms. In order to introduce CRISPR biology into an undergraduate upper-level laboratory, a five-week set of exercises was designed to allow students to examine the CRISPR status of uncharacterized Escherichia coli strains and to allow the discovery of new repeats and spacers. Students started the project by isolating genomic DNA from E. coli and amplifying the iap CRISPR locus using the polymerase chain reaction (PCR). The PCR products were analyzed by Sanger DNA sequencing, and the sequences were examined for the presence of CRISPR repeat sequences. The regions between the repeats, the spacers, were extracted and analyzed with BLASTN searches. Overall, CRISPR loci were sequenced from several previously uncharacterized E. coli strains and one E. coli K-12 strain. Sanger DNA sequencing resulted in the discovery of 36 spacer sequences and their corresponding surrounding repeat sequences. Five of the spacers were homologous to foreign (non-E. coli) DNA. Assessment of the laboratory indicates that improvements were made in the ability of students to answer questions relating to the structure and function of CRISPRs. Future directions of the laboratory are presented and discussed. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):262-269, 2017.
Collapse
Affiliation(s)
- Kevin T Militello
- Biology Department, State University of New York at Geneseo, Geneseo, New York, 14454
| | - Justine C Lazatin
- Biology Department, State University of New York at Geneseo, Geneseo, New York, 14454
| |
Collapse
|
49
|
Savitskaya E, Lopatina A, Medvedeva S, Kapustin M, Shmakov S, Tikhonov A, Artamonova II, Logacheva M, Severinov K. Dynamics of Escherichia coli type I-E CRISPR spacers over 42 000 years. Mol Ecol 2017; 26:2019-2026. [PMID: 27997045 PMCID: PMC5851898 DOI: 10.1111/mec.13961] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 01/14/2023]
Abstract
CRISPR-Cas are nucleic acid-based prokaryotic immune systems. CRISPR arrays accumulate spacers from foreign DNA and provide resistance to mobile genetic elements containing identical or similar sequences. Thus, the set of spacers present in a given bacterium can be regarded as a record of encounters of its ancestors with genetic invaders. Such records should be specific for different lineages and change with time, as earlier acquired spacers get obsolete and are lost. Here, we studied type I-E CRISPR spacers of Escherichia coli from extinct pachyderm. We find that many spacers recovered from intestines of a 42 000-year-old mammoth match spacers of present-day E. coli. Present-day CRISPR arrays can be reconstructed from palaeo sequences, indicating that the order of spacers has also been preserved. The results suggest that E. coli CRISPR arrays were not subject to intensive change through adaptive acquisition during this time.
Collapse
Affiliation(s)
- Ekaterina Savitskaya
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Anna Lopatina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sofia Medvedeva
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey Shmakov
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Alexey Tikhonov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Applied Ecology of the North, North-Eastern Federal University, Yakutsk, Russia
| | - Irena I. Artamonova
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.A. Kharkevich Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Konstantin Severinov
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
50
|
Geue L, Menge C, Eichhorn I, Semmler T, Wieler LH, Pickard D, Berens C, Barth SA. Evidence for Contemporary Switching of the O-Antigen Gene Cluster between Shiga Toxin-Producing Escherichia coli Strains Colonizing Cattle. Front Microbiol 2017; 8:424. [PMID: 28377748 PMCID: PMC5359238 DOI: 10.3389/fmicb.2017.00424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/28/2017] [Indexed: 11/13/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) comprise a group of zoonotic enteric pathogens with ruminants, especially cattle, as the main reservoir. O-antigens are instrumental for host colonization and bacterial niche adaptation. They are highly immunogenic and, therefore, targeted by the adaptive immune system. The O-antigen is one of the most diverse bacterial cell constituents and variation not only exists between different bacterial species, but also between individual isolates/strains within a single species. We recently identified STEC persistently infecting cattle and belonging to the different serotypes O156:H25 (n = 21) and O182:H25 (n = 15) that were of the MLST sequence types ST300 or ST688. These STs differ by a single nucleotide in purA only. Fitness-, virulence-associated genome regions, and CRISPR/CAS (clustered regularly interspaced short palindromic repeats/CRISPR associated sequence) arrays of these STEC O156:H25 and O182:H25 isolates were highly similar, and identical genomic integration sites for the stx converting bacteriophages and the core LEE, identical Shiga toxin converting bacteriophage genes for stx1a, identical complete LEE loci, and identical sets of chemotaxis and flagellar genes were identified. In contrast to this genomic similarity, the nucleotide sequences of the O-antigen gene cluster (O-AGC) regions between galF and gnd and very few flanking genes differed fundamentally and were specific for the respective serotype. Sporadic aEPEC O156:H8 isolates (n = 5) were isolated in temporal and spatial proximity. While the O-AGC and the corresponding 5' and 3' flanking regions of these aEPEC isolates were identical to the respective region in the STEC O156:H25 isolates, the core genome, the virulence associated genome regions and the CRISPR/CAS elements differed profoundly. Our cumulative epidemiological and molecular data suggests a recent switch of the O-AGC between isolates with O156:H8 strains having served as DNA donors. Such O-antigen switches can affect the evaluation of a strain's pathogenic and virulence potential, suggesting that NGS methods might lead to a more reliable risk assessment.
Collapse
Affiliation(s)
- Lutz Geue
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular PathogenesisJena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular PathogenesisJena, Germany
| | - Inga Eichhorn
- Institute of Microbiology and Epizootics, Free University BerlinBerlin, Germany
| | - Torsten Semmler
- Institute of Microbiology and Epizootics, Free University BerlinBerlin, Germany
- Robert Koch InstituteBerlin, Germany
| | - Lothar H. Wieler
- Institute of Microbiology and Epizootics, Free University BerlinBerlin, Germany
- Robert Koch InstituteBerlin, Germany
| | - Derek Pickard
- Wellcome Trust Sanger Institute, Pathogen GenomicsCambridge, UK
| | - Christian Berens
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular PathogenesisJena, Germany
| | - Stefanie A. Barth
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular PathogenesisJena, Germany
| |
Collapse
|