1
|
Galea D, Herzberg M, Dobritzsch D, Fuszard M, Nies DH. Linking the transcriptome to physiology: response of the proteome of Cupriavidus metallidurans to changing metal availability. Metallomics 2024; 16:mfae058. [PMID: 39562290 DOI: 10.1093/mtomcs/mfae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024]
Abstract
Cupriavidus metallidurans CH34 is a metal-resistant bacterium. Its metal homeostasis is based on a flow equilibrium of metal ion uptake and efflux reactions, which adapts to changing metal concentrations within an hour. At high metal concentrations, upregulation of the genes for metal efflux systems occurs within minutes. Here, we investigate the changes in the bacterial proteome accompanying these genetic and physiological events after 1.5 cell duplications, which took 3 h. To that end, C. metallidurans CH34 and its plasmid-free derivative, AE104, either were challenged with a toxic metal mix or were cultivated under metal-starvation conditions, followed by bottom-up proteomics. When metal-shocked or -starved cells were compared with their respective controls, 3540 proteins changed in abundance, with 76% appearing in one, but not the other, condition; the remaining 24% were up- or downregulated. Metal-shocked C. metallidurans strains had adjusted their proteomes to combat metal stress. The most prominent polypeptides were the products of the plasmid-encoded metal-resistance determinants in strain CH34, particularly the CzcCBA transenvelope efflux system. Moreover, the influence of antisense transcripts on the proteome was also revealed. In one specific example, the impact of an asRNA on the abundance of gene products could be demonstrated and this yielded new insights into the function of the transmembrane efflux complex ZniCBA under conditions of metal starvation.
Collapse
Affiliation(s)
- Diana Galea
- Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Martin Herzberg
- Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| | - Dirk Dobritzsch
- Core Facility-Proteomic Mass Spectrometry, Charles Tanford Center, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Matt Fuszard
- Core Facility-Proteomic Mass Spectrometry, Charles Tanford Center, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Dietrich H Nies
- Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
2
|
Große C, Grau J, Herzberg M, Nies DH. Antisense transcription is associated with expression of metal resistance determinants in Cupriavidus metallidurans CH34. Metallomics 2024; 16:mfae057. [PMID: 39562278 DOI: 10.1093/mtomcs/mfae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024]
Abstract
Cupriavidus metallidurans is able to thrive in metal-rich environments but also survives metal starvation. Expression of metal resistance determinants in C. metallidurans was investigated on a global scale. Cupriavidus metallidurans was challenged with a MultiTox metal mix specifically designed for the wildtype strain CH34 and its plasmid-free derivative AE104, including treatment with ethylenediamintetraacetate (EDTA), or without challenge. The sense and antisense transcripts were analyzed in both strains and under all three conditions by RNASeq. A total of 10 757 antisense transcripts (ASTs) were assigned to sense signals from genes and untranslated regions, and 1 319 of these ASTs were expressed and were longer than 50 bases. Most of these (82%) were dual-use transcripts that contained antisense and sense regions, but ASTs (16%) were also observed that had no sense regions. Especially in metal-treated cells of strains CH34 and AE104, up- or down-regulated sense transcripts were accompanied by antisense transcription activities that were also regulated. The presence of selected asRNAs was verified by reverse transcription polymerase chain reaction (RT-PCR). Following metal stress, expression of genes encoding components of the respiratory chain, motility, transcription, translation, and protein export were down-regulated. This should also affect the integration of the metal efflux pumps into the membrane and the supply of the energy required to operate them. To solve this dilemma, transcripts for the metal efflux pumps may be stabilized by interactions with ASTs to allow their translation and import into the membrane. Alternatively, metal stress possibly causes recruitment of RNA polymerase from housekeeping genes for preferential expression of metal resistance determinants.
Collapse
Affiliation(s)
- Cornelia Große
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jan Grau
- Computer Sciences, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Martin Herzberg
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Dietrich H Nies
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
3
|
Schulz V, Galea D, Schleuder G, Strohmeyer P, Große C, Herzberg M, Nies DH. The efflux system CdfX exports zinc that cannot be transported by ZntA in Cupriavidus metallidurans. J Bacteriol 2024; 206:e0029924. [PMID: 39475293 PMCID: PMC11580412 DOI: 10.1128/jb.00299-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024] Open
Abstract
Cupriavidus metallidurans is able to survive exposure to high concentrations of transition metals, but is also able to grow under metal starvation conditions. A prerequisite of cellular zinc homeostasis is a flow equilibrium combining zinc uptake and efflux processes. The mutant strain ∆e4 of the parental plasmid-free strain AE104 with a deletion of all four chromosomally encoded genes of previously known efflux systems ZntA, CadA, DmeF, and FieF was still able to efflux zinc in a pulse-chase experiment, indicating the existence of a fifth efflux system. The gene cdfX, encoding a protein of the cation diffusion facilitator (CDF) family, is located in proximity to the cadA gene, encoding a P-type ATPase. Deletion of cdfX in the ∆e4 mutant resulted in a further decrease in zinc resistance. Pulse-chase experiments with radioactive 65Zn(II) and stable-isotope-enriched 67Zn(II) provided evidence that CdfX was responsible for the residual zinc efflux activity of the mutant strain ∆e4. Reporter gene fusions with cdfX-lacZ indicated that the MerR-type regulator ZntR, the main regulator of zntA expression, was responsible for zinc- and cadmium-dependent upregulation of cdfX expression, especially in mutant cells lacking one or both of the previously characterized efflux systems, ZntA and CadA. Expression of zntR also proved to be controlled by ZntR itself as well as by zinc and cadmium availability. These data indicate that the cdfX-cadA region provides C. metallidurans with a backup system for the zinc-cadmium-exporting P-type ATPase ZntA, with CdfX exporting zinc and CadA cadmium.IMPORTANCEBacteria have evolved the ability to supply the important trace element zinc to zinc-dependent proteins, despite external zinc concentrations varying over a wide range. Zinc homeostasis can be understood as adaptive layering of homeostatic systems, allowing coverage from extreme starvation to extreme resistance. Central to zinc homeostasis is a flow equilibrium of zinc comprising uptake and efflux reactions, which adjusts the cytoplasmic zinc content. This report describes what happens when an imbalance in zinc and cadmium concentrations impairs the central inner-membrane zinc efflux system for zinc by competitive inhibition for this exporter. The problem is solved by activation of Cd-exporting CadA or Zn-exporting CdfX as additional efflux systems.
Collapse
Affiliation(s)
- Vladislava Schulz
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Diana Galea
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Grit Schleuder
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Philipp Strohmeyer
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Cornelia Große
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Martin Herzberg
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Dietrich H. Nies
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| |
Collapse
|
4
|
Galea D, Herzberg M, Nies DH. The metal-binding GTPases CobW2 and CobW3 are at the crossroads of zinc and cobalt homeostasis in Cupriavidus metallidurans. J Bacteriol 2024; 206:e0022624. [PMID: 39041725 PMCID: PMC11340326 DOI: 10.1128/jb.00226-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024] Open
Abstract
The metal-resistant beta-proteobacterium Cupriavidus metallidurans is also able to survive conditions of metal starvation. We show that zinc-starved cells can substitute some of the required zinc with cobalt but not with nickel ions. The zinc importer ZupT was necessary for this process but was not essential for either zinc or cobalt import. The cellular cobalt content was also influenced by the two COG0523-family proteins, CobW2 and CobW3. Pulse-chase experiments with radioactive and isotope-enriched zinc demonstrated that both proteins interacted with ZupT to control the cellular flow-equilibrium of zinc, a central process of zinc homeostasis. Moreover, an antagonistic interplay of CobW2 and CobW3 in the presence of added cobalt caused a growth defect in mutant cells devoid of the cobalt efflux system DmeF. Full cobalt resistance also required a synergistic interaction of ZupT and DmeF. Thus, the two transporters along with CobW2 and CobW3 interact to control cobalt homeostasis in a process that depends on zinc availability. Because ZupT, CobW2, and CobW3 also direct zinc homeostasis, this process links the control of cobalt and zinc homeostasis, which subsequently protects C. metallidurans against cadmium stress and general metal starvation.IMPORTANCEIn bacterial cells, zinc ions need to be allocated to zinc-dependent proteins without disturbance of this process by other transition metal cations. Under zinc-starvation conditions, C. metallidurans floods the cell with cobalt ions, which protect the cell against cadmium toxicity, help withstand metal starvation, and provide cobalt to metal-promiscuous paralogs of essential zinc-dependent proteins. The number of cobalt ions needs to be carefully controlled to avoid a toxic cobalt overload. This is accomplished by an interplay of the zinc importer ZupT with the COG0523-family proteins, CobW3, and CobW2. At high external cobalt concentrations, this trio of proteins additionally interacts with the cobalt efflux system, DmeF, so that these four proteins form an inextricable link between zinc and cobalt homeostasis.
Collapse
Affiliation(s)
- Diana Galea
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Dietrich H. Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
5
|
Nies DH, Schleuder G, Galea D, Herzberg M. A flow equilibrium of zinc in cells of Cupriavidus metallidurans. J Bacteriol 2024; 206:e0008024. [PMID: 38661374 PMCID: PMC11112998 DOI: 10.1128/jb.00080-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
The hypothesis was tested that a kinetical flow equilibrium of uptake and efflux reactions is responsible for balancing the cellular zinc content. The experiments were done with the metal-resistant bacterium Cupriavidus metallidurans. In pulse-chase experiments, the cells were loaded with radioactive 65Zn and chased with the 100-fold concentration of non-radioactive zinc chloride. In parallel, the cells were loaded with isotope-enriched stable 67Zn and chased with non-enriched zinc to differentiate between zinc pools in the cell. The experiments demonstrated the existence of a kinetical flow equilibrium, resulting in a constant turnover of cell-bound zinc ions. The absence of the metal-binding cytoplasmic components, polyphosphate and glutathione, metal uptake, and metal efflux systems influenced the flow equilibrium. The experiments also revealed that not all zinc uptake and efflux systems are known in C. metallidurans. Cultivation of the cells under zinc-replete, zinc-, and zinc-magnesium-starvation conditions influenced zinc import and export rates. Here, magnesium starvation had a stronger influence compared to zinc starvation. Other metal cations, especially cobalt, affected the cellular zinc pools and zinc export during the chase reaction. In summary, the experiments with 65Zn and 67Zn demonstrated a constant turnover of cell-bound zinc. This indicated that simultaneously occurring import and export reactions in combination with cytoplasmic metal-binding components resulted in a kinetical flow equilibrium that was responsible for the adjustment of the cellular zinc content. IMPORTANCE Understanding the biochemical action of a single enzyme or transport protein is the pre-requisite to obtain insight into its cellular function but this is only one half of the coin. The other side concerns the question of how central metabolic functions of a cell emerge from the interplay of different proteins and other macromolecules. This paper demonstrates that a flow equilibrium of zinc uptake and efflux reactions is at the core of cellular zinc homeostasis and identifies the most important contributors to this flow equilibrium: the uptake and efflux systems and metal-binding components of the cytoplasm.
Collapse
Affiliation(s)
- Dietrich H. Nies
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Grit Schleuder
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Diana Galea
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
| | - Martin Herzberg
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Halle (Saale), Germany
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| |
Collapse
|
6
|
Hirth N, Wiesemann N, Krüger S, Gerlach MS, Preußner K, Galea D, Herzberg M, Große C, Nies DH. A gold speciation that adds a second layer to synergistic gold-copper toxicity in Cupriavidus metallidurans. Appl Environ Microbiol 2024; 90:e0014624. [PMID: 38557120 PMCID: PMC11022561 DOI: 10.1128/aem.00146-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
The metal-resistant bacterium Cupriavidus metallidurans occurs in metal-rich environments. In auriferous soils, the bacterium is challenged by a mixture of copper ions and gold complexes, which exert synergistic toxicity. The previously used, self-made Au(III) solution caused a synergistic toxicity of copper and gold that was based on the inhibition of the CupA-mediated efflux of cytoplasmic Cu(I) by Au(I) in this cellular compartment. In this publication, the response of the bacterium to gold and copper was investigated by using a commercially available Au(III) solution instead of the self-made solution. The new solution was five times more toxic than the previously used one. Increased toxicity was accompanied by greater accumulation of gold atoms by the cells. The contribution of copper resistance determinants to the commercially available Au(III) solution and synergistic gold-copper toxicity was studied using single- and multiple-deletion mutants. The commercially available Au(III) solution inhibited periplasmic Cu(I) homeostasis, which is required for the allocation of copper ions to copper-dependent proteins in this compartment. The presence of the gene for the periplasmic Cu(I) and Au(I) oxidase, CopA, decreased the cellular copper and gold content. Transcriptional reporter gene fusions showed that up-regulation of gig, encoding a minor contributor to copper resistance, was strictly glutathione dependent. Glutathione was also required to resist synergistic gold-copper toxicity. The new data indicated a second layer of synergistic copper-gold toxicity caused by the commercial Au(III) solution, inhibition of the periplasmic copper homeostasis in addition to the cytoplasmic one.IMPORTANCEWhen living in auriferous soils, Cupriavidus metallidurans is not only confronted with synergistic toxicity of copper ions and gold complexes but also by different gold species. A previously used gold solution made by using aqua regia resulted in the formation of periplasmic gold nanoparticles, and the cells were protected against gold toxicity by the periplasmic Cu(I) and Au(I) oxidase CopA. To understand the role of different gold species in the environment, another Au(III) solution was commercially acquired. This compound was more toxic due to a higher accumulation of gold atoms by the cells and inhibition of periplasmic Cu(I) homeostasis. Thus, the geo-biochemical conditions might influence Au(III) speciation. The resulting Au(III) species may subsequently interact in different ways with C. metallidurans and its copper homeostasis system in the cytoplasm and periplasm. This study reveals that the geochemical conditions may decide whether bacteria are able to form gold nanoparticles or not.
Collapse
Affiliation(s)
- Niklas Hirth
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nicole Wiesemann
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stephanie Krüger
- Microscopy Unit, Biocenter, Martin Luther University Halle Wittenberg, Wittenberg, Germany
| | - Michelle-Sophie Gerlach
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kilian Preußner
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Diana Galea
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Cornelia Große
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
7
|
Schulz V, Galea D, Herzberg M, Nies DH. Protecting the Achilles heel: three FolE_I-type GTP-cyclohydrolases needed for full growth of metal-resistant Cupriavidus metallidurans under a variety of conditions. J Bacteriol 2024; 206:e0039523. [PMID: 38226602 PMCID: PMC10882993 DOI: 10.1128/jb.00395-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
In Cupriavidus metallidurans and other bacteria, biosynthesis of the essential biochemical cofactor tetrahydrofolate (THF) initiates from guanosine triphosphate (GTP). This step is catalyzed by FolE_I-type GTP cyclohydrolases, which are either zinc-dependent FolE_IA-type or metal-promiscuous FolE_IB-type enzymes. As THF is also essential for GTP biosynthesis, GTP and THF synthesis form a cooperative cycle, which may be influenced by the cellular homeostasis of zinc and other metal cations. Metal-resistant C. metallidurans harbors one FolE_IA-type and two FolE_IB-type enzymes. All three proteins were produced in Escherichia coli. FolE_IA was indeed zinc dependent and the two FolE_IB enzymes metal-promiscuous GTP cyclohydrolases in vitro, the latter, for example, functioning with iron, manganese, or cobalt. Single and double mutants of C. metallidurans with deletions in the folE_I genes were constructed to analyze the contribution of the individual FolE_I-type enzymes under various conditions. FolE_IA was required in the presence of cadmium, hydrogen peroxide, metal chelators, and under general metal starvation conditions. FolE_IB1 was important when zinc uptake was impaired in cells without the zinc importer ZupT (ZIP family) and in the presence of trimethoprim, an inhibitor of THF biosynthesis. FolE_IB2 was needed under conditions of low zinc and cobalt but high magnesium availability. Together, these data demonstrate that C. metallidurans requires all three enzymes to allow efficient growth under a variety of conditions.IMPORTANCETetrahydrofolate (THF) is an important cofactor in microbial biochemistry. This "Achilles heel" of metabolism has been exploited by anti-metabolites and antibiotics such as sulfonamide and trimethoprim. Since THF is essential for the synthesis of guanosine triphosphate (GTP) and THF biosynthesis starts from GTP, synthesis of both compounds forms a cooperative cycle. The first step of THF synthesis by GTP cyclohydrolases (FolEs) is metal dependent and catalyzed by zinc- or metal-promiscuous enzymes, so that the cooperative THF and GTP synthesis cycle may be influenced by the homeostasis of several metal cations, especially that of zinc. The metal-resistant bacterium C. metallidurans needs three FolEs to grow in environments with both high and low zinc and cadmium content. Consequently, bacterial metal homeostasis is required to guarantee THF biosynthesis.
Collapse
Affiliation(s)
- Vladislava Schulz
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Diana Galea
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Martin Herzberg
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Dietrich H. Nies
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
8
|
Hirth N, Gerlach MS, Wiesemann N, Herzberg M, Große C, Nies DH. Full Copper Resistance in Cupriavidus metallidurans Requires the Interplay of Many Resistance Systems. Appl Environ Microbiol 2023:e0056723. [PMID: 37191542 DOI: 10.1128/aem.00567-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The metal-resistant bacterium Cupriavidus metallidurans uses its copper resistance components to survive the synergistic toxicity of copper ions and gold complexes in auriferous soils. The cup, cop, cus, and gig determinants encode as central component the Cu(I)-exporting PIB1-type ATPase CupA, the periplasmic Cu(I)-oxidase CopA, the transenvelope efflux system CusCBA, and the Gig system with unknown function, respectively. The interplay of these systems with each other and with glutathione (GSH) was analyzed. Copper resistance in single and multiple mutants up to the quintuple mutant was characterized in dose-response curves, Live/Dead-staining, and atomic copper and glutathione content of the cells. The regulation of the cus and gig determinants was studied using reporter gene fusions and in case of gig also RT-PCR studies, which verified the operon structure of gigPABT. All five systems contributed to copper resistance in the order of importance: Cup, Cop, Cus, GSH, and Gig. Only Cup was able to increase copper resistance of the Δcop Δcup Δcus Δgig ΔgshA quintuple mutant but the other systems were required to increase copper resistance of the Δcop Δcus Δgig ΔgshA quadruple mutant to the parent level. Removal of the Cop system resulted in a clear decrease of copper resistance in most strain backgrounds. Cus cooperated with and partially substituted Cop. Gig and GSH cooperated with Cop, Cus, and Cup. Copper resistance is thus the result of an interplay of many systems. IMPORTANCE The ability of bacteria to maintain homeostasis of the essential-but-toxic "Janus"-faced element copper is important for their survival in many natural environments but also in case of pathogenic bacteria in their respective host. The most important contributors to copper homeostasis have been identified in the last decades and comprise PIB1-type ATPases, periplasmic copper- and oxygen-dependent copper oxidases, transenvelope efflux systems, and glutathione; however, it is not known how all these players interact. This publication investigates this interplay and describes copper homeostasis as a trait emerging from a network of interacting resistance systems.
Collapse
Affiliation(s)
- Niklas Hirth
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | - Nicole Wiesemann
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Martin Herzberg
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Cornelia Große
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Dietrich H Nies
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
9
|
He Z, Shen J, Li Q, Yang Y, Zhang D, Pan X. Bacterial metal(loid) resistance genes (MRGs) and their variation and application in environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162148. [PMID: 36758696 DOI: 10.1016/j.scitotenv.2023.162148] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Toxic metal(loid)s are widespread and permanent in the biosphere, and bacteria have evolved a wide variety of metal(loid) resistance genes (MRGs) to resist the stress of excess metal(loid)s. Via active efflux, permeability barriers, extracellular/intracellular sequestration, enzymatic detoxification and reduction in metal(loid)s sensitivity of cellular targets, the key components of bacterial cells are protected from toxic metal(loid)s to maintain their normal physiological functions. Exploiting bacterial metal(loid) resistance mechanisms, MRGs have been applied in many environmental fields. Based on the specific binding ability of MRGs-encoded regulators to metal(loid)s, MRGs-dependent biosensors for monitoring environmental metal(loid)s are developed. MRGs-related biotechnologies have been applied to environmental remediation of metal(loid)s by using the metal(loid) tolerance, biotransformation, and biopassivation abilities of MRGs-carrying microorganisms. In this work, we review the historical evolution, resistance mechanisms, environmental variation, and environmental applications of bacterial MRGs. The potential hazards, unresolved problems, and future research directions are also discussed.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jiaquan Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Qunqun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yingli Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
10
|
Wang J, Xiu L, Qiao Y, Zhang Y. Virulence regulation of Zn2+ uptake system znuABC on mesophilic Aeromonas salmonicida SRW-OG1. Front Vet Sci 2023; 10:1172123. [PMID: 37065252 PMCID: PMC10090552 DOI: 10.3389/fvets.2023.1172123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Psychrophilic Aeromonas salmonicida could not grow above 25°C and therefore thought unable to infect mammals and humans. In our previous study, a mesophilic A. salmonicida SRW-OG1 was isolated from Epinephelus coioides with furunculosis. Through the analysis of preliminary RNA-seq, it was found that the Zn2+ uptake related genes znuA, znuB and znuC might be involved in the virulence regulation of A. salmonicida SRW-OG1. Therefore, the purpose of this study was to explore the effect of znuABC silencing on the virulence regulation of A. salmonicida SRW-OG1. The results showed that the growth of the znuA-RNAi, znuB-RNAi, and znuC-RNAi strains was severely restricted under the Fe2+ starvation, but surprisingly there was no significant difference under the Zn2+ restriction. In the absence of Zn2+ and Fe2+, the expression level of znuABC was significantly increased. The motility, biofilm formation, adhesion and hemolysis of the znuA-RNAi, znuB-RNAi, and znuC-RNAi strains were significantly reduced. We also detected the expression of znuABC under different growth periods, temperatures, pH, as well as Cu2+ and Pb2+ stresses. The results showed that znuABC was significantly up-regulated in the logarithmic phase and the decline phase of A. salmonicida. Interestingly, the trend of expression levels of the znuABC at 18, 28, and 37°C was reversed to another Zn2+ uptake related gene zupT. Taken together, these indicated that the znuABC was necessary for A. salmonicida SRW-OG1 pathogenicity and environmental adaptability, and was cross regulated by iron starvation, but it was not irreplaceable for A. salmonicida SRW-OG1 Zn2+ uptake in the host.
Collapse
Affiliation(s)
- Jiajia Wang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Lijun Xiu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Ying Qiao
- Fourth Institute of Oceanography, Key Laboratory of Tropical Marine Ecosystem and Bioresource, Ministry of Natural Resources, Beihai, China
| | - Youyu Zhang
- Institute of Electromagnetics and Acoustics, School of Electronic Science and Engineering, Xiamen University, Xiamen, China
- *Correspondence: Youyu Zhang
| |
Collapse
|
11
|
Liu X, Miao Q, Zhou Z, Lu S, Li J. Identification of Three Novel Conidiogenesis-Related Genes in the Nematode-Trapping Fungus Arthrobotrys oligospora. Pathogens 2022; 11:pathogens11070717. [PMID: 35889964 PMCID: PMC9324328 DOI: 10.3390/pathogens11070717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
For filamentous fungi, conidiogenesis is the most common reproductive strategy for environmental dispersal, invasion, and proliferation. Understanding the molecular mechanisms controlling conidiation and increasing conidium yield may provide promising applications in commercial development in the future for nematode-trapping fungi. However, the molecular mechanism for regulating conidium production of filamentous fungi is not fully understood. In this study, we characterized three novel conidiogenesis-related genes via gene knockout in A. oligospora. The absence of the genes AoCorA and AoRgsD caused significant increases in conidia production, while the absence of AoXlnR resulted in a decrease in conidiogenesis. Moreover, we characterized the ortholog of AbaA, a well-known conidiogenesis-related gene in Aspergillus nidulans. The deletion of AoAbaA not only completely abolished conidium production but also affected the production of nematode-trapping traps.
Collapse
|
12
|
Subirana MA, Riemschneider S, Hause G, Dobritzsch D, Schaumlöffel D, Herzberg M. High spatial resolution imaging of subcellular macro and trace element distribution during phagocytosis. Metallomics 2022; 14:6530650. [PMID: 35179212 DOI: 10.1093/mtomcs/mfac011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022]
Abstract
The bioavailability of trace elements in the course of evolution had an essential influence on the emergence of life itself. This is reflected in the co-evolution between eukaryotes and prokaryotes. In this study, the influence and cellular distribution of bioelements during phagocytosis at the host-pathogen interface was investigated using high-resolution nanoscale secondary ion mass spectrometry (NanoSIMS) and quantitative inductively coupled plasma mass spectrometry (ICP-MS). In the eukaryotic murine macrophages (RAW 264.7 cell line), the cellular Fe / Zn ratio was found to be balanced, whereas the dominance of iron in the prokaryotic cells of the pathogen Salmonella enterica Serovar Enteritidis was about 90% compared to zinc. This confirms the evolutionary increased zinc requirement of the eukaryotic animal cell. Using NanoSIMS, the Cs+ primary ion source allowed high spatial resolution mapping of cell morphology down to subcellular level. At a comparable resolution, several low abundant trace elements could be mapped during phagocytosis with a RF plasma O- primary ion source. An enrichment of copper and nickel could be detected in the prokaryotic cells. Surprisingly, an accumulation of cobalt in the area of nuclear envelope was observed indicating an interesting but still unknown distribution of this trace element in murine macrophages.
Collapse
Affiliation(s)
- Maria Angels Subirana
- CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, 64000 Pau, France
| | - Sina Riemschneider
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany
| | - Gerd Hause
- Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Dirk Dobritzsch
- Martin-Luther-University Halle-Wittenberg, Core Facility - Proteomic Mass Spectrometry, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Dirk Schaumlöffel
- CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, 64000 Pau, France.,Peoples' Friendship University of Russia (RUDN University), Mklukho-Maklaya str. 6, 117198 Moscow, Russia
| | - Martin Herzberg
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany
| |
Collapse
|
13
|
Loss of mobile genomic islands in metal resistant, hydrogen-oxidizing Cupriavidus metallidurans. Appl Environ Microbiol 2021; 88:e0204821. [PMID: 34910578 DOI: 10.1128/aem.02048-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the metal resistant, hydrogen-oxidizing bacterium Cupriavidus metallidurans strain CH34 contains horizontally acquired plasmids and genomic islands. Metal-resistance determinants on the two plasmids may exert genetic dominance over other related determinants. To investigate whether these recessive determinants can be activated in the absence of the dominant ones, the transcriptome of the highly zinc-sensitive deletion mutant Δe4 (ΔcadA ΔzntA ΔdmeF ΔfieF) of the plasmid-free parent AE104 was characterized using gene arrays. As a consequence of some unexpected results, close examination by PCR and genomic re-resequencing of strains CH34, AE104, Δe4 and others revealed that the genomic islands CMGIs 2, 3, 4, D, E, but no other islands or recessive determinants, were deleted in some of these strains. Provided CH34 wild type was kept under alternating zinc and nickel selection pressure, no comparable deletions occurred. All current data suggest that genes were actually deleted and were not, as previously surmised, simply absent from the respective strain. As a consequence, a cured database was compiled from the newly generated and previously published gene array data. Analysis of data from this database indicated that some genes of recessive, no longer needed determinants were nevertheless expressed and up-regulated. Their products may interact with those of the dominant determinants to mediate a mosaic phenotype. The ability to contribute to such a mosaic phenotype may prevent deletion of the recessive determinant. The data suggest that the bacterium actively modifies its genome to deal with metal stress and the same time ensures metal homeostasis. Significance In their natural environment, bacteria continually acquire genes by horizontal gene transfer and newly acquired determinants may become dominant over related ones already present in the host genome. When a bacterium is taken into laboratory culture, it is isolated from the horizontal gene transfer network. It can no longer gain genes, but instead may lose them. This was indeed observed in Cupriavidus metallidurans for loss key metal-resistance determinants when no selection pressure was continuously kept. However, some recessive metal-resistance determinants were maintained in the genome. It is proposed that they might contribute some accessory genes to related dominant resistance determinants, for instance periplasmic metal-binding proteins or two-component regulatory systems. Alternatively, they may only remain in the genome because their DNA serves as a scaffold for the nucleoid. Using C. metallidurans as an example, this study sheds light on the fate and function of horizontally acquired genes in bacteria.
Collapse
|
14
|
Clavero-León C, Ruiz D, Cillero J, Orlando J, González B. The multi metal-resistant bacterium Cupriavidus metallidurans CH34 affects growth and metal mobilization in Arabidopsis thaliana plants exposed to copper. PeerJ 2021; 9:e11373. [PMID: 34040892 PMCID: PMC8127957 DOI: 10.7717/peerj.11373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/07/2021] [Indexed: 11/20/2022] Open
Abstract
Copper (Cu) is important for plant growth, but high concentrations can lead to detrimental effects such as primary root length inhibition, vegetative tissue chlorosis, and even plant death. The interaction between plant-soil microbiota and roots can potentially affect metal mobility and availability, and, therefore, overall plant metal concentration. Cupriavidus metallidurans CH34 is a multi metal-resistant bacterial model that alters metal mobility and bioavailability through ion pumping, metal complexation, and reduction processes. The interactions between strain CH34 and plants may affect the growth, metal uptake, and translocation of Arabidopsis thaliana plants that are exposed to or not exposed to Cu. In this study, we looked also at the specific gene expression changes in C. metallidurans when co-cultured with Cu-exposed A. thaliana. We found that A. thaliana’s rosette area, primary and secondary root growth, and dry weight were affected by strain CH34, and that beneficial or detrimental effects depended on Cu concentration. An increase in some plant growth parameters was observed at copper concentrations lower than 50 µM and significant detrimental effects were found at concentrations higher than 50 µM Cu. We also observed up to a 90% increase and 60% decrease in metal accumulation and mobilization in inoculated A. thaliana. In turn, copper-stressed A. thaliana altered C. metallidurans colonization, and cop genes that encoded copper resistance in strain CH34 were induced by the combination of A. thaliana and Cu. These results reveal the complexity of the plant-bacteria-metal triad and will contribute to our understanding of their applications in plant growth promotion, protection, and phytoremediation strategies.
Collapse
Affiliation(s)
- Claudia Clavero-León
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,(CAPES), Center of Applied Ecology and Sustainability, Santiago, Chile
| | - Daniela Ruiz
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,(CAPES), Center of Applied Ecology and Sustainability, Santiago, Chile
| | - Javier Cillero
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,(CAPES), Center of Applied Ecology and Sustainability, Santiago, Chile
| | - Julieta Orlando
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Bernardo González
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,(CAPES), Center of Applied Ecology and Sustainability, Santiago, Chile
| |
Collapse
|
15
|
Behind the shield of Czc: ZntR controls expression of the gene for the zinc-exporting P-type ATPase ZntA in Cupriavidus metallidurans. J Bacteriol 2021; 203:JB.00052-21. [PMID: 33685972 PMCID: PMC8117531 DOI: 10.1128/jb.00052-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the metallophilic beta-proteobacterium Cupriavidus metallidurans, the plasmid-encoded Czc metal homeostasis system adjusts the periplasmic zinc, cobalt and cadmium concentration, which influences subsequent uptake of these metals into the cytoplasm. Behind this shield, the PIB2-type APTase ZntA is responsible for removal of surplus cytoplasmic zinc ions, thereby providing a second level of defense against toxic zinc concentrations. ZntA is the counterpart to the Zur-regulated zinc uptake system ZupT and other import systems; however, the regulator of zntA expression was unknown. The chromid-encoded zntA gene is adjacent to the genes czcI2C2B2', which are located on the complementary DNA strand and transcribed from a common promoter region. These genes encode homologs of plasmid pMOL30-encoded Czc components. Candidates for possible regulators of zntA were identified and subsequently tested: CzcI, CzcI2, and the MerR-type gene products of the locus tags Rmet_2302, Rmet_0102, Rmet_3456. This led to the identification of Rmet_3456 as ZntR, the main regulator of zntA expression. Moreover, both CzcIs decreased Czc-mediated metal resistance, possibly to avoid "over-excretion" of periplasmic zinc ions, which could result in zinc starvation due to diminished zinc uptake into the cytoplasm. Rmet_2302 was identified as CadR, the regulator of the cadA gene for an important cadmium-exporting PIB2-type ATPase, which provides another system for removal of cytoplasmic zinc and cadmium. Rmet_0102 was not involved in regulation of the metal resistance systems examined here. Thus, ZntR forms a complex regulatory network with CadR, Zur and the CzcIs. Moreover, these discriminating regulatory proteins assign the efflux systems to their particular function.ImportanceZinc is an essential metal for numerous organisms from humans to bacteria. The transportome of zinc uptake and efflux systems controls the overall cellular composition and zinc content in a double feed-back loop. Zinc starvation mediates, via the Zur regulator, an up-regulation of the zinc import capacity via the ZIP-type zinc importer ZupT and an amplification of zinc storage capacity, which together raise the cellular zinc content again. On the other hand, an increasing zinc content leads to ZntR-mediated up-regulation of the zinc efflux system ZntA, which decreases the zinc content. Together, the Zur regulon components and ZntR/ZntA balance the cellular zinc content under both high external zinc concentrations and zinc starvation conditions.
Collapse
|
16
|
LeVatte M, Lipfert M, Roy D, Kovalenko A, Wishart DS. Cloning and high-level expression of monomeric human superoxide dismutase 1 (SOD1) and its interaction with pyrimidine analogs. PLoS One 2021; 16:e0247684. [PMID: 33635895 PMCID: PMC7909654 DOI: 10.1371/journal.pone.0247684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/11/2021] [Indexed: 11/18/2022] Open
Abstract
Superoxide dismutase 1 (SOD1) is known to be involved in the pathogenesis of Amyotrophic Lateral Sclerosis (ALS) and is therefore considered to be an important ALS drug target. Identifying potential drug leads that bind to SOD1 and characterizing their interactions by nuclear magnetic resonance (NMR) spectroscopy is complicated by the fact that SOD1 is a homodimer. Creating a monomeric version of SOD1 could alleviate these issues. A specially designed monomeric form of human superoxide dismutase (T2M4SOD1) was cloned into E. coli and its expression significantly enhanced using a number of novel DNA sequence, leader peptide and growth condition optimizations. Uniformly 15N-labeled T2M4SOD1 was prepared from minimal media using 15NH4Cl as the 15N source. The T2M4SOD1 monomer (both 15N labeled and unlabeled) was correctly folded as confirmed by 1H-NMR spectroscopy and active as confirmed by an in-gel enzymatic assay. To demonstrate the utility of this new SOD1 expression system for NMR-based drug screening, eight pyrimidine compounds were tested for binding to T2M4SOD1 by monitoring changes in their 1H NMR and/or 19F-NMR spectra. Weak binding to 5-fluorouridine (FUrd) was observed via line broadening, but very minimal spectral changes were seen with uridine, 5-bromouridine or trifluridine. On the other hand, 1H-NMR spectra of T2M4SOD1 with uracil or three halogenated derivatives of uracil changed dramatically suggesting that the pyrimidine moiety is the crucial binding component of FUrd. Interestingly, no change in tryptophan 32 (Trp32), the putative receptor for FUrd, was detected in the 15N-NMR spectra of 15N-T2M4SOD1 when mixed with these uracil analogs. Molecular docking and molecular dynamic (MD) studies indicate that interaction with Trp32 of SOD1 is predicted to be weak and that there was hydrogen bonding with the nearby aspartate (Asp96), potentiating the Trp32-uracil interaction. These studies demonstrate that monomeric T2M4SOD1 can be readily used to explore small molecule interactions via NMR.
Collapse
Affiliation(s)
- Marcia LeVatte
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Matthias Lipfert
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Dipankar Roy
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Andriy Kovalenko
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
- Nanotechnology Research Centre, Edmonton, AB, Canada
| | - David Scott Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Computing Science, University of Alberta, Edmonton, AB, Canada
- * E-mail:
| |
Collapse
|
17
|
Portelinha J, Angeles-Boza AM. The Antimicrobial Peptide Gad-1 Clears Pseudomonas aeruginosa Biofilms under Cystic Fibrosis Conditions. Chembiochem 2021; 22:1646-1655. [PMID: 33428273 DOI: 10.1002/cbic.202000816] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/09/2021] [Indexed: 02/06/2023]
Abstract
Bacterial infections in cystic fibrosis (CF) patients are an emerging health issue and lead to a premature death. CF is a hereditary disease that creates a thick mucus in the lungs that is prone to bacterial biofilm formation, specifically Pseudomonas aeruginosa biofilms. These biofilms are very difficult to treat because many of them have antibiotic resistance that is worsened by the presence of extracellular DNA (eDNA). eDNA helps to stabilize biofilms and can bind antimicrobial compounds to lessen their effects. The metallo-antimicrobial peptide Gaduscidin-1 (Gad-1) eradicates established P. aeruginosa biofilms through a combination of modes of action that includes nuclease activity that can cleave eDNA in biofilms. In addition, Gad-1 exhibits synergistic activity when used with the antibiotics kanamycin and ciprofloxacin, thus making Gad-1 a new lead compound for the potential treatment of bacterial biofilms in CF patients.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road Storrs, Connecticut, CT 06269, USA
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road Storrs, Connecticut, CT 06269, USA.,Institute of Material Science, University of Connecticut, 97 N. Eagleville Road Storrs, Connecticut, CT 06269, USA
| |
Collapse
|
18
|
Van Houdt R, Vandecraen J, Leys N, Monsieurs P, Aertsen A. Adaptation of Cupriavidus metallidurans CH34 to Toxic Zinc Concentrations Involves an Uncharacterized ABC-Type Transporter. Microorganisms 2021; 9:microorganisms9020309. [PMID: 33540705 PMCID: PMC7912956 DOI: 10.3390/microorganisms9020309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/30/2022] Open
Abstract
Cupriavidus metallidurans CH34 is a well-studied metal-resistant β-proteobacterium and contains a battery of genes participating in metal metabolism and resistance. Here, we generated a mutant (CH34ZnR) adapted to high zinc concentrations in order to study how CH34 could adaptively further increase its resistance against this metal. Characterization of CH34ZnR revealed that it was also more resistant to cadmium, and that it incurred seven insertion sequence-mediated mutations. Among these, an IS1088 disruption of the glpR gene (encoding a DeoR-type transcriptional repressor) resulted in the constitutive expression of the neighboring ATP-binding cassette (ABC)-type transporter. GlpR and the adjacent ABC transporter are highly similar to the glycerol operon regulator and ATP-driven glycerol importer of Rhizobium leguminosarum bv. viciae VF39, respectively. Deletion of glpR or the ABC transporter and complementation of CH34ZnR with the parental glpR gene further demonstrated that loss of GlpR function and concomitant derepression of the adjacent ABC transporter is pivotal for the observed resistance phenotype. Importantly, addition of glycerol, presumably by glycerol-mediated attenuation of GlpR activity, also promoted increased zinc and cadmium resistance in the parental CH34 strain. Upregulation of this ABC-type transporter is therefore proposed as a new adaptation route towards metal resistance.
Collapse
Affiliation(s)
- Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.V.); (N.L.); (P.M.)
- Correspondence:
| | - Joachim Vandecraen
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.V.); (N.L.); (P.M.)
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, 3000 Leuven, Belgium;
| | - Natalie Leys
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.V.); (N.L.); (P.M.)
| | - Pieter Monsieurs
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.V.); (N.L.); (P.M.)
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
19
|
Bleichert P, Bütof L, Rückert C, Herzberg M, Francisco R, Morais PV, Grass G, Kalinowski J, Nies DH. Mutant Strains of Escherichia coli and Methicillin-Resistant Staphylococcus aureus Obtained by Laboratory Selection To Survive on Metallic Copper Surfaces. Appl Environ Microbiol 2020; 87:e01788-20. [PMID: 33067196 PMCID: PMC7755237 DOI: 10.1128/aem.01788-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/09/2020] [Indexed: 01/27/2023] Open
Abstract
Artificial laboratory evolution was used to produce mutant strains of Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) able to survive on antimicrobial metallic copper surfaces. These mutants were 12- and 60-fold less susceptible to the copper-mediated contact killing process than their respective parent strains. Growth levels of the mutant and its parent in complex growth medium were similar. Tolerance to copper ions of the mutants was unchanged. The mutant phenotype remained stable over about 250 generations under nonstress conditions. The mutants and their respective parental strains accumulated copper released from the metallic surfaces to similar extents. Nevertheless, only the parental strains succumbed to copper stress when challenged on metallic copper surfaces, suffering complete destruction of the cell structure. Whole-genome sequencing and global transcriptome analysis were used to decipher the genetic alterations in the mutant strains; however, these results did not explain the copper-tolerance phenotypes on the systemic level. Instead, the mutants shared features with those of stressed bacterial subpopulations entering the early or "shallow" persister state. In contrast to the canonical persister state, however, the ability to survive on solid copper surfaces was adopted by the majority of the mutant strain population. This indicated that application of solid copper surfaces in hospitals and elsewhere has to be accompanied by strict cleaning regimens to keep the copper surfaces active and prevent evolution of tolerant mutant strains.IMPORTANCE Microbes are rapidly killed on solid copper surfaces by contact killing. Copper surfaces thus have an important role to play in preventing the spread of nosocomial infections. Bacteria adapt to challenging natural and clinical environments through evolutionary processes, for instance, by acquisition of beneficial spontaneous mutations. We wish to address the question of whether mutants can be selected that have evolved to survive contact killing on solid copper surfaces. We isolated such mutants from Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) by artificial laboratory evolution. The ability to survive on solid copper surfaces was a stable phenotype of the mutant population and not restricted to a small subpopulation. As a consequence, standard operation procedures with strict hygienic measures are extremely important to prevent the emergence and spread of copper-surface-tolerant persister-like bacterial strains if copper surfaces are to be sustainably used to limit the spread of pathogenic bacteria, e.g., to curb nosocomial infections.
Collapse
Affiliation(s)
| | - Lucy Bütof
- Martin-Luther University Halle-Wittenberg, Institute of Molecular Microbiology, Halle (Saale), Germany
| | | | - Martin Herzberg
- Martin-Luther University Halle-Wittenberg, Institute of Molecular Microbiology, Halle (Saale), Germany
| | - Romeu Francisco
- CEMMPRE-Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Paula V Morais
- CEMMPRE-Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Gregor Grass
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Jörn Kalinowski
- Bielefeld University, Center for Biotechnology, Bielefeld, Germany
| | - Dietrich H Nies
- Martin-Luther University Halle-Wittenberg, Institute of Molecular Microbiology, Halle (Saale), Germany
| |
Collapse
|
20
|
Kumar P, Dalal V, Sharma N, Kokane S, Ghosh DK, Kumar P, Sharma AK. Characterization of the heavy metal binding properties of periplasmic metal uptake protein CLas-ZnuA2. Metallomics 2020; 12:280-289. [DOI: 10.1039/c9mt00200f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Candidatus Liberibacter asiaticus (CLas), a phloem-limited unculturable Gram-negative bacterium, causes citrus greening disease.
Collapse
Affiliation(s)
- Pranav Kumar
- Department of Biotechnology
- Indian Institute of Technology Roorkee
- Roorkee-247 667
- India
| | - Vikram Dalal
- Department of Biotechnology
- Indian Institute of Technology Roorkee
- Roorkee-247 667
- India
| | - Nidhi Sharma
- Department of Biotechnology
- Indian Institute of Technology Roorkee
- Roorkee-247 667
- India
| | - Sunil Kokane
- Plant Virology Laboratory
- ICAR-Central Citrus Research Institute
- Nagpur-440 010
- India
| | - Dilip Kumar Ghosh
- Plant Virology Laboratory
- ICAR-Central Citrus Research Institute
- Nagpur-440 010
- India
| | - Pravindra Kumar
- Department of Biotechnology
- Indian Institute of Technology Roorkee
- Roorkee-247 667
- India
| | - Ashwani Kumar Sharma
- Department of Biotechnology
- Indian Institute of Technology Roorkee
- Roorkee-247 667
- India
| |
Collapse
|
21
|
Interplay between the Zur Regulon Components and Metal Resistance in Cupriavidus metallidurans. J Bacteriol 2019; 201:JB.00192-19. [PMID: 31109989 DOI: 10.1128/jb.00192-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022] Open
Abstract
The Zur regulon is central to zinc homeostasis in the zinc-resistant bacterium Cupriavidus metallidurans It comprises the transcription regulator Zur, the zinc importer ZupT, and three members of the COG0523 family of metal-chaperoning G3E-type GTPases, annotated as CobW1, CobW2, and CobW3. The operon structures of the zur and cobW1 loci were determined. To analyze the interplay between the Zur regulon components and metal resistance, deletion mutants were constructed from the wild-type strain CH34 and various other strains. The Zur regulon components interacted with the plasmid-encoded and chromosomally encoded metal resistance factors to acquire metals from complexes of EDTA and for homeostasis of and resistance to zinc, nickel, cobalt, and cadmium. The three G3E-type GTPases were characterized in more detail. CobW1 bound only 1 Zn atom per mol of protein with a stability constant slightly above that of 2-carboxy-2'-hydroxy-5'-sulfoformazylbenzene (Zincon) and an additional 0.5 Zn with low affinity. The CobW1 system was necessary to obtain metals from EDTA complexes. The GTPase CobW2 is a zinc storage compound and bound 0.5 to 1.5 Zn atoms tightly and up to 6 more with lower affinity. The presence of MgGTP unfolded the protein partially. CobW3 had no GTPase activity and equilibrated metal import by ZupT with that of the other metal transport systems. It sequestered 8 Zn atoms per mol with decreasing affinity. The three CobWs bound to the metal-dependent protein FolEIB2, which is encoded directly downstream of cobW1 This demonstrated an important contribution of the Zur regulon components to metal homeostasis in C. metallidurans IMPORTANCE Zinc is an important transition metal cation and is present as an essential component in many enzymes, such as RNA polymerase. As with other transition metals, zinc is also toxic at higher concentrations so that living cells have to maintain strict control of their zinc homeostasis. Members of the COG0523 family of metal-chaperoning GE3-type GTPases exist in archaea, bacteria, and eucaryotes, including humans, and they may be involved in delivery of zinc to thousands of different proteins. We used a combination of molecular, physiological, and biochemical methods to demonstrate the important but diverse functions of COG0523 proteins in C. metallidurans, which are produced as part of the Zur-controlled zinc starvation response in this bacterium.
Collapse
|
22
|
Nies DH. The ancient alarmone ZTP and zinc homeostasis in Bacillus subtilis. Mol Microbiol 2019; 112:741-746. [PMID: 31220391 DOI: 10.1111/mmi.14332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 12/26/2022]
Abstract
In Bacillus subtilis a sophisticated regulatory circuit that involves Z nucleoside triphosphate (ZTP) is recruited to optimize cellular zinc distribution when cytoplasmic zinc is scarce. This process uses enzymatic reactions to measure the pool of available zinc ions and amplifies this signal to control the activity of zinc chaperones. The ZTP-dependent regulatory circuit that is exploited for zinc homeostasis controls purine and folate biosynthesis, which starts with GTP as initial substrate. Low concentrations of formyl-tetrahydrofolate (fTHF) lead to accumulation of the intermediate 5'-phosphoribosyl-4-carboxyamide-5-aminoimidazole (AICAR or ZMP), which is pyrophosphorylated by another intermediate to ZTP. This alarmone activates expression of genes using a ZTP-dependent riboswitch in many bacterial strains. In this way, the cellular folate concentration controls folate biosynthesis via the enzymatic activity of the fTHF-dependent AICAR-transforming reaction. Zinc distribution control is layered onto this circuit. The 'sensor' is the activity of the initial reaction of folate synthesis from GTP, which is catalyzed by a zinc-dependent enzyme FolEIA or its metal-cambialistic paralog FolEIB . Consequently, low zinc lowers folate levels, causing AICAR accumulation and ZTP formation. In addition to the riboswitch, ZTP activates the zinc chaperone ZagA of the COG0523 protein family, which efficiently allocate zinc to zinc-dependent enzymes such as FolEIA .
Collapse
Affiliation(s)
- Dietrich H Nies
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06099 Halle/Saale, Germany
| |
Collapse
|
23
|
Nongkhlaw M, Joshi SR. Molecular insight into the expression of metal transporter genes in Chryseobacterium sp. PMSZPI isolated from uranium deposit. PLoS One 2019; 14:e0216995. [PMID: 31120947 PMCID: PMC6532875 DOI: 10.1371/journal.pone.0216995] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/02/2019] [Indexed: 11/18/2022] Open
Abstract
Metal tolerant bacterium Chryseobacterium sp. PMSZPI previously isolated and characterized from uranium ore deposit was studied for elucidating the role of metal transporter genes belonging to the Cation Diffusion Facilitator (CDF), Root-Nodulation-Division (RND) and PIB-type ATPase family in cadmium and uranium tolerance. The bacterium showed tolerance towards cadmium (MIC~6mM) and uranium (MIC~2mM) and was found to harbor metal transporter genes belonging to CDF, RND and PIB-type ATPase family of proteins. Expression studies by real-time PCR showed an upregulation of czcA(RND), czcD(CDF) and cadA(PIB-type ATPase) genes in presence of cadmium or uranium. Higher expression of czcA and czcD was found when the bacterium was treated with cadmium and uranium respectively. This study provides significant insight into the molecular mechanism that plays a role in cadmium and uranium tolerance in bacteria.
Collapse
Affiliation(s)
- Macmillan Nongkhlaw
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Mawlai, Umshing, Shillong, Meghalaya, India
| | - Santa Ram Joshi
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Mawlai, Umshing, Shillong, Meghalaya, India
- * E-mail:
| |
Collapse
|
24
|
Recent Progress in Metal-Microbe Interactions: Prospects in Bioremediation. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.02] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Große C, Poehlein A, Blank K, Schwarzenberger C, Schleuder G, Herzberg M, Nies DH. The third pillar of metal homeostasis inCupriavidus metalliduransCH34: preferences are controlled by extracytoplasmic function sigma factors. Metallomics 2019; 11:291-316. [DOI: 10.1039/c8mt00299a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
InC. metallidurans, a network of 11 extracytoplasmic function sigma factors forms the third pillar of metal homeostasis acting in addition to the metal transportome and metal repositories as the first and second pillar.
Collapse
Affiliation(s)
- Cornelia Große
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Anja Poehlein
- Göttingen Genomics Laboratory
- Georg-August-University Göttingen, Grisebachstr. 8
- 37077 Göttingen
- Germany
| | - Kathrin Blank
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Claudia Schwarzenberger
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Grit Schleuder
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Martin Herzberg
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Dietrich H. Nies
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| |
Collapse
|
26
|
Millacura FA, Janssen PJ, Monsieurs P, Janssen A, Provoost A, Van Houdt R, Rojas LA. Unintentional Genomic Changes Endow Cupriavidus metallidurans with an Augmented Heavy-Metal Resistance. Genes (Basel) 2018; 9:E551. [PMID: 30428624 PMCID: PMC6266692 DOI: 10.3390/genes9110551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 12/04/2022] Open
Abstract
For the past three decades, Cupriavidus metallidurans has been one of the major model organisms for bacterial tolerance to heavy metals. Its type strain CH34 contains at least 24 gene clusters distributed over four replicons, allowing for intricate and multilayered metal responses. To gain organic mercury resistance in CH34, broad-spectrum mer genes were introduced in a previous work via conjugation of the IncP-1β plasmid pTP6. However, we recently noted that this CH34-derived strain, MSR33, unexpectedly showed an increased resistance to other metals (i.e., Co2+, Ni2+, and Cd2+). To thoroughly investigate this phenomenon, we resequenced the entire genome of MSR33 and compared its DNA sequence and basal gene expression profile to those of its parental strain CH34. Genome comparison identified 11 insertions or deletions (INDELs) and nine single nucleotide polymorphisms (SNPs), whereas transcriptomic analysis displayed 107 differentially expressed genes. Sequence data implicated the transposition of IS1088 in higher Co2+ and Ni2+ resistances and altered gene expression, although the precise mechanisms of the augmented Cd2+ resistance in MSR33 remains elusive. Our work indicates that conjugation procedures involving large complex genomes and extensive mobilomes may pose a considerable risk toward the introduction of unwanted, undocumented genetic changes. Special efforts are needed for the applied use and further development of small nonconjugative broad-host plasmid vectors, ideally involving CRISPR-related and advanced biosynthetic technologies.
Collapse
Affiliation(s)
- Felipe A Millacura
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JQ, UK.
| | - Paul J Janssen
- Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK•CEN, 2400 Mol, Belgium.
| | - Pieter Monsieurs
- Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK•CEN, 2400 Mol, Belgium.
| | - Ann Janssen
- Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK•CEN, 2400 Mol, Belgium.
| | - Ann Provoost
- Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK•CEN, 2400 Mol, Belgium.
| | - Rob Van Houdt
- Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK•CEN, 2400 Mol, Belgium.
| | - Luis A Rojas
- Chemistry Department, Faculty of Sciences, Universidad Católica del Norte, UCN, Antofagasta 1240000, Chile.
| |
Collapse
|
27
|
Rensing C, Moodley A, Cavaco LM, McDevitt SF. Resistance to Metals Used in Agricultural Production. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0025-2017. [PMID: 29676247 PMCID: PMC11633777 DOI: 10.1128/microbiolspec.arba-0025-2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
Metals and metalloids have been used alongside antibiotics in livestock production for a long time. The potential and acute negative impact on the environment and human health of these livestock feed supplements has prompted lawmakers to ban or discourage the use of some or all of these supplements. This article provides an overview of current use in the European Union and the United States, detected metal resistance determinants, and the proteins and mechanisms responsible for conferring copper and zinc resistance in bacteria. A detailed description of the most common copper and zinc metal resistance determinants is given to illustrate not only the potential danger of coselecting antibiotic resistance genes but also the potential to generate bacterial strains with an increased potential to be pathogenic to humans. For example, the presence of a 20-gene copper pathogenicity island is highlighted since bacteria containing this gene cluster could be readily isolated from copper-fed pigs, and many pathogenic strains, including Escherichia coli O104:H4, contain this potential virulence factor, suggesting a potential link between copper supplements in livestock and the evolution of pathogens.
Collapse
Affiliation(s)
- Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Arshnee Moodley
- Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Lina M Cavaco
- Department for Bacteria, Parasites, and Fungi, Infectious Disease Preparedness, Statens Serum Institut and Faculty of Health and Medical Sciences, University of Copenhagen, 2300 Copenhagen, Denmark
| | | |
Collapse
|
28
|
Abstract
Aerobic methanotrophs have long been known to play a critical role in the global carbon cycle, being capable of converting methane to biomass and carbon dioxide. Interestingly, these microbes exhibit great sensitivity to copper and rare-earth elements, with the expression of key genes involved in the central pathway of methane oxidation controlled by the availability of these metals. That is, these microbes have a "copper switch" that controls the expression of alternative methane monooxygenases and a "rare-earth element switch" that controls the expression of alternative methanol dehydrogenases. Further, it has been recently shown that some methanotrophs can detoxify inorganic mercury and demethylate methylmercury; this finding is remarkable, as the canonical organomercurial lyase does not exist in these methanotrophs, indicating that a novel mechanism is involved in methylmercury demethylation. Here, we review recent findings on methanotrophic interactions with metals, with a particular focus on these metal switches and the mechanisms used by methanotrophs to bind and sequester metals.
Collapse
|
29
|
Bütof L, Wiesemann N, Herzberg M, Altzschner M, Holleitner A, Reith F, Nies DH. Synergistic gold–copper detoxification at the core of gold biomineralisation inCupriavidus metallidurans. Metallomics 2018; 10:278-286. [DOI: 10.1039/c7mt00312a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cupriavidus metalliduransescapes synergistic Cu/Au toxicity by re-oxidation of Au(i) back to Au(iii) using the periplasmic oxidase CopA.
Collapse
Affiliation(s)
- L. Bütof
- Molecular Microbiology, Institute for Biology/Microbiology
- Martin-Luther-University Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| | - N. Wiesemann
- Molecular Microbiology, Institute for Biology/Microbiology
- Martin-Luther-University Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| | - M. Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology
- Martin-Luther-University Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| | - M. Altzschner
- Walter Schottky Institut and Physik-Department
- Technical University Munich
- Garching
- Germany
| | - A. Holleitner
- Walter Schottky Institut and Physik-Department
- Technical University Munich
- Garching
- Germany
| | - F. Reith
- The University of Adelaide
- School of Biological Sciences
- Adelaide
- Australia
| | - D. H. Nies
- Molecular Microbiology, Institute for Biology/Microbiology
- Martin-Luther-University Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| |
Collapse
|
30
|
Synergistic Toxicity of Copper and Gold Compounds in Cupriavidus metallidurans. Appl Environ Microbiol 2017; 83:AEM.01679-17. [PMID: 28939602 DOI: 10.1128/aem.01679-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/12/2017] [Indexed: 11/20/2022] Open
Abstract
The bacterium Cupriavidus metallidurans can reduce toxic gold(I/III) complexes and biomineralize them into metallic gold (Au) nanoparticles, thereby mediating the (trans)formation of Au nuggets. In Au-rich soils, most transition metals do not interfere with the resistance of this bacterium to toxic mobile Au complexes and can be removed from the cell by plasmid-encoded metal efflux systems. Copper is a noticeable exception: the presence of Au complexes and Cu ions results in synergistic toxicity, which is accompanied by an increased cytoplasmic Cu content and formation of Au nanoparticles in the periplasm. The periplasmic Cu-oxidase CopA was not essential for formation of the periplasmic Au nanoparticles. As shown with the purified and reconstituted Cu efflux system CupA, Au complexes block Cu-dependent release of phosphate from ATP by CupA, indicating inhibition of Cu transport. Moreover, Cu resistance of Au-inhibited cells was similar to that of mutants carrying deletions in the genes for the Cu-exporting PIB1-type ATPases. Consequently, Au complexes inhibit export of cytoplasmic Cu ions, leading to an increased cellular Cu content and decreased Cu and Au resistance. Uncovering the biochemical mechanisms of synergistic Au and Cu toxicity in C. metallidurans explains the issues this bacterium has to face in auriferous environments, where it is an important contributor to the environmental Au cycle.IMPORTANCE C. metallidurans lives in metal-rich environments, including auriferous soils that contain a mixture of toxic transition metal cations. We demonstrate here that copper ions and gold complexes exert synergistic toxicity because gold ions inhibit the copper-exporting P-type ATPase CupA, which is central to copper resistance in this bacterium. Such a situation should occur in soils overlying Au deposits, in which Cu/Au ratios usually are ≫1. Appreciating how C. metallidurans solves the problem of living in environments that contain both Au and Cu is a prerequisite to understand the molecular mechanisms underlying gold cycling in the environment, and the significance and opportunities of microbiota for specific targeting to Au in mineral exploration and ore processing.
Collapse
|
31
|
Nies DH. The biological chemistry of the transition metal "transportome" of Cupriavidus metallidurans. Metallomics 2017; 8:481-507. [PMID: 27065183 DOI: 10.1039/c5mt00320b] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review tries to illuminate how the bacterium Cupriavidus metallidurans CH34 is able to allocate essential transition metal cations to their target proteins although these metals have similar charge-to-surface ratios and chemical features, exert toxic effects, compete with each other, and occur in the bacterial environment over a huge range of concentrations and speciations. Central to this ability is the "transportome", the totality of all interacting metal import and export systems, which, as an emergent feature, transforms the environmental metal content and speciation into the cellular metal mélange. In a kinetic flow equilibrium resulting from controlled uptake and efflux reactions, the periplasmic and cytoplasmic metal content is adjusted in a way that minimizes toxic effects. A central core function of the transportome is to shape the metal ion composition using high-rate and low-specificity reactions to avoid time and/or energy-requiring metal discrimination reactions. This core is augmented by metal-specific channels that may even deliver metals all the way from outside of the cell to the cytoplasm. This review begins with a description of the basic chemical features of transition metal cations and the biochemical consequences of these attributes, and which transition metals are available to C. metallidurans. It then illustrates how the environment influences the metal content and speciation, and how the transportome adjusts this metal content. It concludes with an outlook on the fate of metals in the cytoplasm. By generalization, insights coming from C. metallidurans shed light on multiple transition metal homoeostatic mechanisms in all kinds of bacteria including pathogenic species, where the "battle" for metals is an important part of the host-pathogen interaction.
Collapse
Affiliation(s)
- Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Germany.
| |
Collapse
|
32
|
The Components of the Unique Zur Regulon of Cupriavidus metallidurans Mediate Cytoplasmic Zinc Handling. J Bacteriol 2017; 199:JB.00372-17. [PMID: 28808127 DOI: 10.1128/jb.00372-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
Zinc is an essential trace element, yet it is toxic at high concentrations. In the betaproteobacterium Cupriavidus metallidurans, the highly efficient removal of surplus zinc from the periplasm is responsible for the outstanding metal resistance of the organism. Rather than having a typical Zur-dependent, high-affinity ATP-binding cassette transporter of the ABC protein superfamily for zinc uptake at low concentrations, C. metallidurans has the secondary zinc importer ZupT of the zinc-regulated transporter, iron-regulated transporter (ZRT/IRT)-like protein (ZIP) family. It is important to understand, therefore, how this zinc-resistant bacterium copes with exposure to low zinc concentrations. Members of the Zur regulon in C. metallidurans were identified by comparing the transcriptomes of a Δzur mutant and its parent strain. The consensus sequence of the Zur-binding box was derived for the zupTp promoter-regulatory region by use of a truncation assay. The motif was used to predict possible Zur boxes upstream of Zur regulon members. The binding of Zur to these boxes was confirmed. Two Zur boxes upstream of the cobW 1 gene, encoding a putative zinc chaperone, proved to be required for complete repression of cobW 1 and its downstream genes in cells cultivated in mineral salts medium. A Zur box upstream of each of zur-cobW 2, cobW 3, and zupT permitted both low expression levels of these genes and their upregulation under conditions of zinc starvation. This demonstrates a compartmentalization of zinc homeostasis in C. metallidurans, where the periplasm is responsible for the removal of surplus zinc, cytoplasmic components are responsible for the management of zinc as an essential cofactor, and the two compartments are connected by ZupT.IMPORTANCE Elucidating zinc homeostasis is necessary for understanding both host-pathogen interactions and the performance of free-living bacteria in their natural environments. Escherichia coli acquires zinc under conditions of low zinc concentrations via the Zur-controlled ZnuABC importer of the ABC superfamily, and this was also the paradigm for other bacteria. In contrast, the heavy-metal-resistant bacterium C. metallidurans achieves high tolerance to zinc through sophisticated zinc handling and efflux systems operating on periplasmic zinc ions, so that removal of surplus zinc is a periplasmic feature in this bacterium. It is shown here that this process is augmented by the management of zinc by cytoplasmic zinc chaperones, whose synthesis is controlled by the Zur regulator. This demonstrates a new mechanism, involving compartmentalization, for organizing zinc homeostasis.
Collapse
|
33
|
Seker UOS, Chen AY, Citorik RJ, Lu TK. Synthetic Biogenesis of Bacterial Amyloid Nanomaterials with Tunable Inorganic-Organic Interfaces and Electrical Conductivity. ACS Synth Biol 2017; 6:266-275. [PMID: 27794590 PMCID: PMC6422533 DOI: 10.1021/acssynbio.6b00166] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyloids are highly ordered, hierarchal protein nanoassemblies. Functional amyloids in bacterial biofilms, such as Escherichia coli curli fibers, are formed by the polymerization of monomeric proteins secreted into the extracellular space. Curli is synthesized by living cells, is primarily composed of the major curlin subunit CsgA, and forms biological nanofibers with high aspect ratios. Here, we explore the application of curli fibers for nanotechnology by engineering curli to mediate tunable biological interfaces with inorganic materials and to controllably form gold nanoparticles and gold nanowires. Specifically, we used cell-synthesized curli fibers as templates for nucleating and growing gold nanoparticles and showed that nanoparticle size could be modulated as a function of curli fiber gold-binding affinity. Furthermore, we demonstrated that gold nanoparticles can be preseeded onto curli fibers and followed by gold enhancement to form nanowires. Using these two approaches, we created artificial cellular systems that integrate inorganic-organic materials to achieve tunable electrical conductivity. We envision that cell-synthesized amyloid nanofibers will be useful for interfacing abiotic and biotic systems to create living functional materials..
Collapse
Affiliation(s)
- Urartu Ozgur Safak Seker
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Allen Y. Chen
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert J. Citorik
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- MIT Microbiology Program, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Timothy K. Lu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- MIT Microbiology Program, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| |
Collapse
|
34
|
Barwinska-Sendra A, Waldron KJ. The Role of Intermetal Competition and Mis-Metalation in Metal Toxicity. Adv Microb Physiol 2017; 70:315-379. [PMID: 28528650 DOI: 10.1016/bs.ampbs.2017.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The metals manganese, iron, cobalt, nickel, copper and zinc are essential for almost all bacteria, but their precise metal requirements vary by species, by ecological niche and by growth condition. Bacteria thus must acquire each of these essential elements in sufficient quantity to satisfy their cellular demand, but in excess these same elements are toxic. Metal toxicity has been exploited by humanity for centuries, and by the mammalian immune system for far longer, yet the mechanisms by which these elements cause toxicity to bacteria are not fully understood. There has been a resurgence of interest in metal toxicity in recent decades due to the problematic spread of antibiotic resistance amongst bacterial pathogens, which has led to an increased research effort to understand these toxicity mechanisms at the molecular level. A recurring theme from these studies is the role of intermetal competition in bacterial metal toxicity. In this review, we first survey biological metal usage and introduce some fundamental chemical concepts that are important for understanding bacterial metal usage and toxicity. Then we introduce a simple model by which to understand bacterial metal homeostasis in terms of the distribution of each essential metal ion within cellular 'pools', and dissect how these pools interact with each other and with key proteins of bacterial metal homeostasis. Finally, using a number of key examples from the recent literature, we look at specific metal toxicity mechanisms in model bacteria, demonstrating the role of metal-metal competition in the toxicity mechanisms of diverse essential metals.
Collapse
Affiliation(s)
- Anna Barwinska-Sendra
- Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kevin J Waldron
- Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
35
|
Wątły J, Potocki S, Rowińska-Żyrek M. Zinc Homeostasis at the Bacteria/Host Interface-From Coordination Chemistry to Nutritional Immunity. Chemistry 2016; 22:15992-16010. [DOI: 10.1002/chem.201602376] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Joanna Wątły
- Faculty of Chemistry; University of Wroclaw; F. Joliot-Curie 14 50-383 Wroclaw Poland
| | - Sławomir Potocki
- Faculty of Chemistry; University of Wroclaw; F. Joliot-Curie 14 50-383 Wroclaw Poland
| | | |
Collapse
|
36
|
Characterization of the Δ7 Mutant of Cupriavidus metallidurans with Deletions of Seven Secondary Metal Uptake Systems. mSystems 2016; 1:mSystems00004-16. [PMID: 27822513 PMCID: PMC5069749 DOI: 10.1128/msystems.00004-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/04/2016] [Indexed: 12/18/2022] Open
Abstract
Bacteria, including pathogenic strains, need to make use of the metal composition and speciation of their environment to fulfill the requirement of the cytoplasmic metal content and composition. This task is performed by the bacterial metal transportome, composed of uptake and efflux systems. Seven interacting secondary metal uptake systems are at the core of the metal transportome in C. metallidurans. This publication verifies that posttranscriptional events are responsible for activation of even more, yet-unknown, metal import systems in the 7-fold deletion mutant Δ7. Two P-type ATPases were identified as new members of the metal uptake transportome. This publication demonstrates the complexity of the metal transportome and the regulatory processes involved. Central to the ability of Cupriavidus metallidurans to maintain its metal homoeostasis is the metal transportome, composed of uptake and efflux systems. Seven secondary metal import systems, ZupT, PitA, CorA1, CorA2, CorA3, ZntB, and HoxN, interact and are at the core of the metal uptake transportome. The 7-fold deletion mutant Δ7 (ΔzupT ΔpitA ΔcorA1ΔcorA2ΔcorA3ΔzntB ΔhoxN) of parent strain AE104 is still able to maintain its cellular metal content, although at the cost of reduced fitness (M. Herzberg, L. Bauer, A. Kirsten, and D. H. Nies, Metallomics, in press, http://dx.doi.org/10.1039/C5MT00295H). Strain Δ7 does not express genes for backup importers, and so Δ7 should use metal uptake systems also produced in the AE104 parent cells. These systems should be activated in Δ7 by posttranscriptional regulatory processes. The decreased fitness of Δ7 correlated with a zinc-dependent downregulation of the overall metabolic backbone of the cells even at nontoxic external zinc concentrations. Responsible for this decreased fitness of Δ7 was a negative interference of the activity of two P-type ATPases, MgtA and MgtB, which, on the other hand, kept Δ7 at a fitness level higher than that of the Δ9 (Δ7 ΔmgtA::kan ΔmgtB) mutant strain. This revealed a complicated interplay of the metal uptake transportome of C. metallidurans, which is composed of the seven secondary uptake systems, MgtA, MgtB, and yet-unknown components, with cytoplasmic transition metal pools and posttranscriptional regulatory processes. IMPORTANCE Bacteria, including pathogenic strains, need to make use of the metal composition and speciation of their environment to fulfill the requirement of the cytoplasmic metal content and composition. This task is performed by the bacterial metal transportome, composed of uptake and efflux systems. Seven interacting secondary metal uptake systems are at the core of the metal transportome in C. metallidurans. This publication verifies that posttranscriptional events are responsible for activation of even more, yet-unknown, metal import systems in the 7-fold deletion mutant Δ7. Two P-type ATPases were identified as new members of the metal uptake transportome. This publication demonstrates the complexity of the metal transportome and the regulatory processes involved.
Collapse
|
37
|
Maillard AP, Künnemann S, Große C, Volbeda A, Schleuder G, Petit-Härtlein I, de Rosny E, Nies DH, Covès J. Response of CnrX from Cupriavidus metallidurans CH34 to nickel binding. Metallomics 2016; 7:622-31. [PMID: 25628016 DOI: 10.1039/c4mt00293h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Resistance to high concentration of nickel ions is mediated in Cupriavidus metallidurans by the CnrCBA transenvelope efflux complex. Expression of the cnrCBA genes is regulated by the transmembrane signal transduction complex CnrYXH. Together, the metal sensor CnrX and the transmembrane antisigma factor CnrY control the availability of the extracytoplasmic function sigma factor CnrH. Release of CnrH from sequestration by CnrY at the cytoplasmic side of the membrane depends essentially on the binding of the agonist metal ion Ni(ii) to the periplasmic metal sensor domain of CnrX. CnrH availability leads to transcription initiation at the promoters cnrYp and cnrCp and to the expression of the genes in the cnrYXHCBA nickel resistance determinant. The first steps of signal propagation by CnrX rely on subtle metal-dependent allosteric modifications. To study the nickel-mediated triggering process by CnrX, we have altered selected residues, F66, M123, and Y135, and explored the physiological consequences of these changes with respect to metal resistance, expression of a cnrCBA-lacZ reporter fusion and protein production. M123C- and Y135F-CnrXs have been further characterized in vitro by metal affinity measurements and crystallographic structure analysis. Atomic-resolution structures of metal-bound M123C- and Y135F-CnrXs showed that Ni(ii) binds two of the three canonical conformations identified and that Ni(ii) sensing likely proceeds by conformation selection.
Collapse
Affiliation(s)
- Antoine P Maillard
- Institut de Biologie Structurale, UMR 5075 CNRS-CEA-Université Grenoble-Alpes, 71, Avenue des Martyrs, 38044 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Herzberg M, Bauer L, Kirsten A, Nies DH. Interplay between seven secondary metal uptake systems is required for full metal resistance of Cupriavidus metallidurans. Metallomics 2016; 8:313-26. [DOI: 10.1039/c5mt00295h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Marker Exchange Mutagenesis of mxaF, Encoding the Large Subunit of the Mxa Methanol Dehydrogenase, in Methylosinus trichosporium OB3b. Appl Environ Microbiol 2015; 82:1549-1555. [PMID: 26712545 DOI: 10.1128/aem.03615-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/17/2015] [Indexed: 02/05/2023] Open
Abstract
Methanotrophs have remarkable redundancy in multiple steps of the central pathway of methane oxidation to carbon dioxide. For example, it has been known for over 30 years that two forms of methane monooxygenase, responsible for oxidizing methane to methanol, exist in methanotrophs, i.e., soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO), and that expression of these two forms is controlled by the availability of copper. Specifically, sMMO expression occurs in the absence of copper, while pMMO expression increases with increasing copper concentrations. More recently, it was discovered that multiple forms of methanol dehydrogenase (MeDH), Mxa MeDH and Xox MeDH, also exist in methanotrophs and that the expression of these alternative forms is regulated by the availability of cerium. That is, expression of Xox MeDH increases in the presence of cerium, while Mxa MeDH expression decreases in the presence of cerium. As it had been earlier concluded that pMMO and Mxa MeDH form a supercomplex in which electrons from Mxa MeDH are back donated to pMMO to drive the initial oxidation of methane, we speculated that Mxa MeDH could be rendered inactive through marker-exchange mutagenesis but growth on methane could still be possible if cerium was added to increase the expression of Xox MeDH under sMMO-expressing conditions. Here we report that mxaF, encoding the large subunit of Mxa MeDH, could indeed be knocked out in Methylosinus trichosporium OB3b, yet growth on methane was still possible, so long as cerium was added. Interestingly, growth of this mutant occurred in both the presence and the absence of copper, suggesting that Xox MeDH can replace Mxa MeDH regardless of the form of MMO expressed.
Collapse
|
40
|
Monsieurs P, Hobman J, Vandenbussche G, Mergeay M, Van Houdt R. Response of Cupriavidus metallidurans CH34 to Metals. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-20594-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
41
|
Rurangwa E, Sipkema D, Kals J, Ter Veld M, Forlenza M, Bacanu GM, Smidt H, Palstra AP. Impact of a novel protein meal on the gastrointestinal microbiota and the host transcriptome of larval zebrafish Danio rerio. Front Physiol 2015; 6:133. [PMID: 25983694 PMCID: PMC4415425 DOI: 10.3389/fphys.2015.00133] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/14/2015] [Indexed: 01/06/2023] Open
Abstract
Larval zebrafish was subjected to a methodological exploration of the gastrointestinal microbiota and transcriptome. Assessed was the impact of two dietary inclusion levels of a novel protein meal (NPM) of animal origin (ragworm Nereis virens) on the gastrointestinal tract (GIT). Microbial development was assessed over the first 21 days post egg fertilization (dpf) through 16S rRNA gene-based microbial composition profiling by pyrosequencing. Differentially expressed genes in the GIT were demonstrated at 21 dpf by whole transcriptome sequencing (mRNAseq). Larval zebrafish showed rapid temporal changes in microbial colonization but domination occurred by one to three bacterial species generally belonging to Proteobacteria and Firmicutes. The high iron content of NPM may have led to an increased relative abundance of bacteria that were related to potential pathogens and bacteria with an increased iron metabolism. Functional classification of the 328 differentially expressed genes indicated that the GIT of larvae fed at higher NPM level was more active in transmembrane ion transport and protein synthesis. mRNAseq analysis did not reveal a major activation of genes involved in the immune response or indicating differences in iron uptake and homeostasis in zebrafish fed at the high inclusion level of NPM.
Collapse
Affiliation(s)
- Eugene Rurangwa
- Institute for Marine Resources and Ecosystem Studies, Wageningen University and Research Centre Yerseke, Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | - Jeroen Kals
- Institute for Marine Resources and Ecosystem Studies, Wageningen University and Research Centre Yerseke, Netherlands
| | - Menno Ter Veld
- Aquaculture and Fisheries Group, Wageningen University Wageningen, Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Wageningen University Wageningen, Netherlands
| | - Gianina M Bacanu
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | - Arjan P Palstra
- Institute for Marine Resources and Ecosystem Studies, Wageningen University and Research Centre Yerseke, Netherlands
| |
Collapse
|
42
|
Herzberg M, Schüttau M, Reimers M, Große C, Hans-Günther-Schlegel HGS, Nies DH. Synthesis of nickel–iron hydrogenase in Cupriavidus metallidurans is controlled by metal-dependent silencing and un-silencing of genomic islands. Metallomics 2015; 7:632-49. [DOI: 10.1039/c4mt00297k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
43
|
Herzberg M, Dobritzsch D, Helm S, Baginsky S, Nies DH. The zinc repository of Cupriavidus metallidurans. Metallomics 2014; 6:2157-65. [DOI: 10.1039/c4mt00171k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
Moulis JM, Bourguignon J, Catty P. Cadmium. BINDING, TRANSPORT AND STORAGE OF METAL IONS IN BIOLOGICAL CELLS 2014. [DOI: 10.1039/9781849739979-00695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cadmium is not an essential element for life. It is geologically marginal but anthropogenic activities have contributed significantly to its dispersion in the environment and to cadmium exposure of living species. The natural speciation of the divalent cation Cd2+ is dominated by its high propensity to bind to sulfur ligands, but Cd2+ may also occupy sites providing imidazole and carboxylate ligands. It binds to cell walls by passive adsorption (bio-sorption) and it may interact with surface receptors. Cellular uptake can occur by ion mimicry through a variety of transporters of essential divalent cations, but not always. Once inside cells, Cd2+ preferentially binds to thiol-rich molecules. It can accumulate in intracellular vesicles. It may also be transported over long distances within multicellular organisms and be trapped in locations devoid of efficient excretion systems. These locations include the renal cortex of animals and the leaves of hyper-accumulating plants. No specific regulatory mechanism monitors Cd2+ cellular concentrations. Thiol recruitment by cadmium is a major interference mechanism with many signalling pathways that rely on thiolate-disulfide equilibria and other redox-related processes. Cadmium thus compromises the antioxidant intracellular response that relies heavily on molecules with reactive thiolates. These biochemical features dominate cadmium toxicity, which is complex because of the diversity of the biological targets and the consequent pleiotropic effects. This chapter compares the cadmium-handling systems known throughout phylogeny and highlights the basic principles underlying the impact of cadmium in biology.
Collapse
Affiliation(s)
- Jean-Marc Moulis
- CEA, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire Chimie et Biologie des Métaux 17 rue des Martyrs F-38054 Grenoble France
- CNRS UMR5249 F-38054 Grenoble France
- Université Joseph Fourier-Grenoble I UMR5249 F-38041 Grenoble France
| | - Jacques Bourguignon
- CEA, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire Physiologie Cellulaire et Végétale F-38054 Grenoble France
- CNRS UMR5168 F-38054 Grenoble France
- Université Joseph Fourier-Grenoble I UMR5168 F-38041 Grenoble France
- INRA USC1359 F-38054 Grenoble France
| | - Patrice Catty
- CEA, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire Chimie et Biologie des Métaux 17 rue des Martyrs F-38054 Grenoble France
- CNRS UMR5249 F-38054 Grenoble France
- Université Joseph Fourier-Grenoble I UMR5249 F-38041 Grenoble France
| |
Collapse
|
45
|
FurC regulates expression of zupT for the central zinc importer ZupT of Cupriavidus metallidurans. J Bacteriol 2014; 196:3461-71. [PMID: 25049092 DOI: 10.1128/jb.01713-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The zinc importer ZupT is required for the efficient allocation of zinc to zinc-dependent proteins in the metal-resistant bacterium Cupriavidus metallidurans but not for zinc import per se. The expression of zupT is upregulated under conditions of zinc starvation. C. metallidurans contains three members of the Fur family of regulators that qualify as candidates for the zupT regulator. The expression of a zupT-lacZ reporter gene fusion was strongly upregulated in a ΔfurC mutant but not in a ΔfurA or ΔfurB mutant. Expression of the genes for transition-metal importers (pitA, corA1, corA2, and corA3) was not changed in this pattern in all three Δfur mutants, but they were still downregulated under conditions of elevated zinc concentrations, indicating the presence of another zinc-dependent regulator. FurA was a central regulator of the iron metabolism in C. metallidurans, and furA was constitutively expressed under the conditions tested. Expression of furB was upregulated under conditions of iron starvation, and FurB could be an iron starvation Fur connecting general metal and iron homeostasis, as indicated by the phenotype of a ΔfurB ΔfurC double mutant. FurC was purified as a Strep-tagged protein and retarded the electrophoretic mobility of a DNA fragment upstream of zupT. Binding of FurC to this operator region was influenced by the presence of zinc ions and EDTA. Thus, FurC is the main zinc uptake regulator (Zur) of C. metallidurans and represses synthesis of the central zinc importer ZupT when sufficient zinc is present.
Collapse
|
46
|
Chen L, Zhu Y, Song Z, Wang J, Zhang W. An orphan response regulator Sll0649 involved in cadmium tolerance and metal homeostasis in photosynthetic Synechocystis sp. PCC 6803. J Proteomics 2014; 103:87-102. [DOI: 10.1016/j.jprot.2014.03.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/07/2014] [Accepted: 03/23/2014] [Indexed: 10/25/2022]
|
47
|
Herzberg M, Bauer L, Nies DH. Deletion of the zupT gene for a zinc importer influences zinc pools in Cupriavidus metallidurans CH34. Metallomics 2014; 6:421-36. [DOI: 10.1039/c3mt00267e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Tseng HW, Tsai YJ, Yen JH, Chen PH, Yeh YC. A fluorescence-based microbial sensor for the selective detection of gold. Chem Commun (Camb) 2014; 50:1735-7. [DOI: 10.1039/c3cc48028c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Influence of copper resistance determinants on gold transformation by Cupriavidus metallidurans strain CH34. J Bacteriol 2013; 195:2298-308. [PMID: 23475973 DOI: 10.1128/jb.01951-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cupriavidus metallidurans is associated with gold grains and may be involved in their formation. Gold(III) complexes influence the transcriptome of C. metallidurans (F. Reith et al., Proc. Natl. Acad. Sci. U. S. A. 106:17757-17762, 2009), leading to the upregulation of genes involved in the detoxification of reactive oxygen species and metal ions. In a systematic study, the involvement of these systems in gold transformation was investigated. Treatment of C. metallidurans cells with Au(I) complexes, which occur in this organism's natural environment, led to the upregulation of genes similar to those observed for treatment with Au(III) complexes. The two indigenous plasmids of C. metallidurans, which harbor several transition metal resistance determinants, were not involved in resistance to Au(I/III) complexes nor in their transformation to metallic nanoparticles. Upregulation of a cupA-lacZ fusion by the MerR-type regulator CupR with increasing Au(III) concentrations indicated the presence of gold ions in the cytoplasm. A hypothesis stating that the Gig system detoxifies gold complexes by the uptake and reduction of Au(III) to Au(I) or Au(0) reminiscent to detoxification of Hg(II) was disproven. ZupT and other secondary uptake systems for transition metal cations influenced Au(III) resistance but not the upregulation of the cupA-lacZ fusion. The two copper-exporting P-type ATPases CupA and CopF were also not essential for gold resistance. The copABCD determinant on chromosome 2, which encodes periplasmic proteins involved in copper resistance, was required for full gold resistance in C. metallidurans. In conclusion, biomineralization of gold particles via the reduction of mobile Au(I/III) complexes in C. metallidurans appears to primarily occur in the periplasmic space via copper-handling systems.
Collapse
|
50
|
Nies DH, Herzberg M. A fresh view of the cell biology of copper in enterobacteria. Mol Microbiol 2012; 87:447-54. [PMID: 23217080 DOI: 10.1111/mmi.12123] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2012] [Indexed: 11/27/2022]
Abstract
Copper ions are essential but also very toxic. Copper resistance in bacteria is based on export of the toxic ion, oxidation from Cu(I) to Cu(II), and sequestration by copper-binding metal chaperones, which deliver copper ions to efflux systems or metal-binding sites of copper-requiring proteins. In their publication in this issue, Osman et al. (2013) demonstrate how tightly copper resistance, homeostasis and delivery pathways are interwoven in Salmonella enterica sv. Typhimurium. Copper is transported from the cytoplasm by the two P-type ATPases CopA and GolT to the periplasm and transferred to SodCII by CueP, a periplasmic copper chaperone. When copper levels are higher, SodCII is also able to bind copper without the help of CueP. This scheme raises the question as to why copper ions present in the growth medium have to make the detour through the cytoplasm. The data presented in the publication by Osman et al. (2013) change our view of the cell biology of copper in enterobacteria.
Collapse
Affiliation(s)
- Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany.
| | | |
Collapse
|