1
|
Abreu S, Lejeune C, David M, Chaminade P, Virolle MJ. Impact of the Deletion of Genes of the Nitrogen Metabolism on Triacylglycerol, Cardiolipin and Actinorhodin Biosynthesis in Streptomyces coelicolor. Microorganisms 2024; 12:1560. [PMID: 39203402 PMCID: PMC11356632 DOI: 10.3390/microorganisms12081560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Since nitrogen limitation is known to be an important trigger of triacylglycerol (TAG) accumulation in most microorganisms, we first assessed the global lipid content of 21 strains derived from Streptomyces coelicolor M145 deleted for genes involved in nitrogen metabolism. Seven of these strains deleted for genes encoding proteins involved in polyamine (GlnA2/SCO2241, GlnA3/SCO6962, GlnA4/SCO1613), or protein (Pup/SCO1646) degradation, in the regulation of nitrogen metabolism (GlnE/SCO2234 and GlnK/SCO5584), or the global regulator DasR/SCO5231 that controls negatively the degradation of N-acetylglucosamine, a constituent of peptidoglycan, had a higher TAG content than the original strain, whereas five of these strains (except the glnA2 and pup mutants) had a lower cardiolipin (CL) content. The production of the blue polyketide actinorhodin (ACT) was totally abolished in the dasR mutant in both Pi conditions, whereas the deletion of pup, glnA2, glnA3, and glnA4 was correlated with a significant increase in total ACT production, but mainly in Pi limitation. Unexpectedly, ACT production was strongly reduced in the glnA3 mutant in Pi proficiency. Altogether, our data suggest that high TAG and ACT biosynthesis and low CL biosynthesis might all contribute to the lowering of oxidative stress resulting from nitrogen limitation or from other causes.
Collapse
Affiliation(s)
- Sonia Abreu
- Lip (Sys)2 (Lipides Systèmes Analytiques et Biologiques), UFR Pharmacie-Bâtiment Henri Moissan, CNRS, CEA, Université Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France; (S.A.); (P.C.)
| | - Clara Lejeune
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CNRS, CEA, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France (M.D.)
| | - Michelle David
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CNRS, CEA, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France (M.D.)
| | - Pierre Chaminade
- Lip (Sys)2 (Lipides Systèmes Analytiques et Biologiques), UFR Pharmacie-Bâtiment Henri Moissan, CNRS, CEA, Université Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France; (S.A.); (P.C.)
| | - Marie-Joelle Virolle
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CNRS, CEA, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France (M.D.)
| |
Collapse
|
2
|
Gong Z, Ye G, Xu S, He X. The characteristics of intestinal flora of Tibetan sheep in different regions at high altitude were revealed based on metagenomic technique. Heliyon 2024; 10:e34380. [PMID: 39816362 PMCID: PMC11734073 DOI: 10.1016/j.heliyon.2024.e34380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 01/18/2025] Open
Abstract
Tibetan sheep play a vital role in the livelihoods of herders and are an important part of the ecosystem of the Tibetan Plateau. In order to study the characteristics of the gut microorganisms of Tibetan sheep at high altitude, this study employed macrogenomic techniques to analyse the diversity and differences in the gut flora of Tibetan sheep in different regions of high altitude and high cold. The results demonstrated that at the phylum level, the dominant phylum in the ileo-cecum segment of Tibetan sheep in Qilian, Henan and Gonghe counties was identical, namely Euryarchaeota, Firmicutes and Ascomycota. At the level of the archaebacterial genus, the dominant bacteria of the ileocecal segment of Tibetan sheep in Qilian County, Henan County and Gonghe County were Methanobrevibacter. At the level of bacterial genus, the dominant bacteria of Tibetan sheep ileocecal in Qilian County and Henan County were Bacteroides, while in Gonghe County, the dominant bacteria were Bifidobacterium. At the level of fungal genus, there were notable differences in the abundance of Tibetan sheep ileocecal genus across different regions. However, the abundance of cecum genus exhibited a more consistent trend across regions. From the perspective of functional prediction, the metabolic pathways enriched in the intestinal segments of Tibetan sheep in different regions were found to be identical, with the relative abundance of each functional gene also being essentially uniform. This result will provide a foundation for further research on the mechanism of action of gut microbes in ruminants at high altitude and alpine regions.
Collapse
Affiliation(s)
- Zifeng Gong
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining, Qinghai, 810016, China
| | - Guisheng Ye
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining, Qinghai, 810016, China
| | - Shuqin Xu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining, Qinghai, 810016, China
| | - Xi He
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining, Qinghai, 810016, China
| |
Collapse
|
3
|
Jaffal H, Kortebi M, Misson P, Tavares P, Ouldali M, Leh H, Lautru S, Lioy VS, Lecointe F, Bury-Moné SG. Prophage induction can facilitate the in vitro dispersal of multicellular Streptomyces structures. PLoS Biol 2024; 22:e3002725. [PMID: 39052683 DOI: 10.1371/journal.pbio.3002725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/06/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Streptomyces are renowned for their prolific production of specialized metabolites with applications in medicine and agriculture. These multicellular bacteria present a sophisticated developmental cycle and play a key role in soil ecology. Little is known about the impact of Streptomyces phage on bacterial physiology. In this study, we investigated the conditions governing the expression and production of "Samy", a prophage found in Streptomyces ambofaciens ATCC 23877. This siphoprophage is produced simultaneously with the activation of other mobile genetic elements. Remarkably, the presence and production of Samy increases bacterial dispersal under in vitro stress conditions. Altogether, this study unveiled a new property of a bacteriophage infection in the context of multicellular aggregate dynamics.
Collapse
Affiliation(s)
- Hoda Jaffal
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Mounia Kortebi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Pauline Misson
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Paulo Tavares
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Malika Ouldali
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Hervé Leh
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sylvie Lautru
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Virginia S Lioy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - François Lecointe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Stéphanie G Bury-Moné
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
4
|
Verschoor JA, Croese MRJ, Lakemeier SE, Mugge A, Burgers CMC, Innocenti P, Willemse J, Crooijmans ME, van Wezel GP, Ram AFJ, de Winde JH. Polyester degradation by soil bacteria: identification of conserved BHETase enzymes in Streptomyces. Commun Biol 2024; 7:725. [PMID: 38867087 PMCID: PMC11169514 DOI: 10.1038/s42003-024-06414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
The rising use of plastic results in an appalling amount of waste which is scattered into the environment. One of these plastics is PET which is mainly used for bottles. We have identified and characterized an esterase from Streptomyces, annotated as LipA, which can efficiently degrade the PET-derived oligomer BHET. The Streptomyces coelicolor ScLipA enzyme exhibits varying sequence similarity to several BHETase/PETase enzymes, including IsPETase, TfCut2, LCC, PET40 and PET46. Of 96 Streptomyces strains, 18% were able to degrade BHET via one of three variants of LipA, named ScLipA, S2LipA and S92LipA. SclipA was deleted from S. coelicolor resulting in reduced BHET degradation. Overexpression of all LipA variants significantly enhanced BHET degradation. All variants were expressed in E. coli for purification and biochemical analysis. The optimum conditions were determined as pH 7 and 25 °C for all variants. The activity on BHET and amorphous PET film was investigated. S2LipA efficiently degraded BHET and caused roughening and indents on the surface of PET films, comparable to the activity of previously described TfCut2 under the same conditions. The abundance of the S2LipA variant in Streptomyces suggests an environmental advantage towards the degradation of more polar substrates including these polluting plastics.
Collapse
Affiliation(s)
- Jo-Anne Verschoor
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Martijn R J Croese
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Sven E Lakemeier
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Annemiek Mugge
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Charlotte M C Burgers
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Paolo Innocenti
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Joost Willemse
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Marjolein E Crooijmans
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Arthur F J Ram
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Johannes H de Winde
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands.
| |
Collapse
|
5
|
You D, Zhao LC, Fu Y, Peng ZY, Chen ZQ, Ye BC. Allosteric regulation by c-di-AMP modulates a complete N-acetylglucosamine signaling cascade in Saccharopolyspora erythraea. Nat Commun 2024; 15:3825. [PMID: 38714645 PMCID: PMC11076491 DOI: 10.1038/s41467-024-48063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 04/18/2024] [Indexed: 05/10/2024] Open
Abstract
c-di-AMP is an essential and widespread nucleotide second messenger in bacterial signaling. For most c-di-AMP synthesizing organisms, c-di-AMP homeostasis and the molecular mechanisms pertaining to its signal transduction are of great concern. Here we show that c-di-AMP binds the N-acetylglucosamine (GlcNAc)-sensing regulator DasR, indicating a direct link between c-di-AMP and GlcNAc signaling. Beyond its foundational role in cell-surface structure, GlcNAc is attractive as a major nutrient and messenger molecule regulating multiple cellular processes from bacteria to humans. We show that increased c-di-AMP levels allosterically activate DasR as a master repressor of GlcNAc utilization, causing the shutdown of the DasR-mediated GlcNAc signaling cascade and leading to a consistent enhancement in the developmental transition and antibiotic production in Saccharopolyspora erythraea. The expression of disA, encoding diadenylate cyclase, is directly repressed by the regulator DasR in response to GlcNAc signaling, thus forming a self-sustaining transcriptional feedback loop for c-di-AMP synthesis. These findings shed light on the allosteric regulation by c-di-AMP, which appears to play a prominent role in global signal integration and c-di-AMP homeostasis in bacteria and is likely widespread in streptomycetes that produce c-di-AMP.
Collapse
Affiliation(s)
- Di You
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Liu-Chang Zhao
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yu Fu
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhi-Yao Peng
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zong-Qin Chen
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
6
|
Li C, Urem M, Du C, Zhang L, van Wezel GP. Systems-wide analysis of the ROK-family regulatory gene rokL6 and its role in the control of glucosamine toxicity in Streptomyces coelicolor. Appl Environ Microbiol 2023; 89:e0167423. [PMID: 37982622 PMCID: PMC10734537 DOI: 10.1128/aem.01674-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/29/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Central metabolism plays a key role in the control of growth and antibiotic production in streptomycetes. Specifically, aminosugars act as signaling molecules that affect development and antibiotic production, via metabolic interference with the global repressor DasR. While aminosugar metabolism directly connects to other major metabolic routes such as glycolysis and cell wall synthesis, several important aspects of their metabolism are yet unresolved. Accumulation of N-acetylglucosamine 6-phosphate or glucosamine 6-phosphate is lethal to many bacteria, a yet unresolved phenomenon referred to as "aminosugar sensitivity." We made use of this concept by selecting for suppressors in genes related to glucosamine toxicity in nagB mutants, which showed that the gene pair of rok-family regulatory gene rokL6 and major facilitator superfamily transporter gene sco1448 forms a cryptic rescue mechanism. Inactivation of rokL6 resulted in the expression of sco1448, which then prevents the toxicity of amino sugar-derived metabolites in Streptomyces. The systems biology of RokL6 and its transcriptional control of sco1448 shed new light on aminosugar metabolism in streptomycetes and on the response of bacteria to aminosugar toxicity.
Collapse
Affiliation(s)
- Chao Li
- Molecular Biotechnology, Leiden University, Leiden, the Netherlands
| | - Mia Urem
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Chao Du
- Molecular Biotechnology, Leiden University, Leiden, the Netherlands
| | - Le Zhang
- Molecular Biotechnology, Leiden University, Leiden, the Netherlands
| | | |
Collapse
|
7
|
Elsayed SS, van der Heul HU, Xiao X, Nuutila A, Baars LR, Wu C, Metsä-Ketelä M, van Wezel GP. Unravelling key enzymatic steps in C-ring cleavage during angucycline biosynthesis. Commun Chem 2023; 6:281. [PMID: 38110491 PMCID: PMC10728087 DOI: 10.1038/s42004-023-01059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/08/2023] [Indexed: 12/20/2023] Open
Abstract
Angucyclines are type II polyketide natural products, often characterized by unusual structural rearrangements through B- or C-ring cleavage of their tetracyclic backbone. While the enzymes involved in B-ring cleavage have been extensively studied, little is known of the enzymes leading to C-ring cleavage. Here, we unravel the function of the oxygenases involved in the biosynthesis of lugdunomycin, a highly rearranged C-ring cleaved angucycline derivative. Targeted deletion of the oxygenase genes, in combination with molecular networking and structural elucidation, showed that LugOI is essential for C12 oxidation and maintaining a keto group at C6 that is reduced by LugOII, resulting in a key intermediate towards C-ring cleavage. An epoxide group is then inserted by LugOIII, and stabilized by the novel enzyme LugOV for the subsequent cleavage. Thus, for the first time we describe the oxidative enzymatic steps that form the basis for a wide range of rearranged angucycline natural products.
Collapse
Affiliation(s)
- Somayah S Elsayed
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands.
| | - Helga U van der Heul
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Xiansha Xiao
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Aleksi Nuutila
- Department of Life Technologies, University of Turku, Tykistökatu 6, FIN-20014, Turku, Finland
| | - Laura R Baars
- Department of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237, Qingdao, P.R. China
| | - Mikko Metsä-Ketelä
- Department of Life Technologies, University of Turku, Tykistökatu 6, FIN-20014, Turku, Finland
| | - Gilles P van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands.
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708PB, Wageningen, The Netherlands.
| |
Collapse
|
8
|
Zeng H, Cheng M, Liu J, Hu C, Lin S, Cui R, Li H, Ye W, Wang L, Huang W. Pyrimirhodomyrtone inhibits Staphylococcus aureus by affecting the activity of NagA. Biochem Pharmacol 2023; 210:115455. [PMID: 36780990 DOI: 10.1016/j.bcp.2023.115455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
The epidemic of methicillin-resistant Staphylococcus aureus (MRSA) infections has created a critical health threat. The drug resistance of MRSA makes the development of drugs with new modes of action particularly urgent. In this study, we found that a natural product derivative pyrimirhodomyrtone (PRM) exerted antibacterial activity against S. aureus, including MRSA, both in vitro and in vivo. Genetic and biochemical studies revealed the interaction between PRM and N-acetylglucosamine-6-phosphate deacetylase (NagA) and the inhibitory effect of PRM on its deacetylation activity. We also found that PRM causes depolarization and destroys the integrity of the cell membrane. The elucidation of the antibacterial mechanism will inspire the subsequent development of new anti-MRSA drugs based on PRM.
Collapse
Affiliation(s)
- Huan Zeng
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, China; Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Minjing Cheng
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, China
| | - Jingyi Liu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Chunxia Hu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Shilin Lin
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, China
| | - Ruiqin Cui
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Haibo Li
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Wencai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, China.
| | - Lei Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, China.
| | - Wei Huang
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Department of Clinical Microbiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| |
Collapse
|
9
|
Zhang L, Willemse J, Yagüe P, de Waal E, Claessen D, van Wezel GP. The SepF-like proteins SflA and SflB prevent ectopic localization of FtsZ and DivIVA during sporulation of Streptomyces coelicolor. Biochem Biophys Res Commun 2023; 645:79-87. [PMID: 36680940 DOI: 10.1016/j.bbrc.2023.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Bacterial cytokinesis starts with the polymerization of the tubulin-like FtsZ, which forms the cell division scaffold. SepF aligns FtsZ polymers and also acts as a membrane anchor for the Z-ring. While in most bacteria cell division takes place at midcell, during sporulation of Streptomyces many septa are laid down almost simultaneously in multinucleoid aerial hyphae. The genomes of streptomycetes encode two additional SepF paralogs, SflA and SflB, which can interact with SepF. Here we show that the sporogenic aerial hyphae of sflA and sflB mutants of Streptomyces coelicolor frequently branch, a phenomenon never seen in the wild-type strain. The branching coincided with ectopic localization of DivIVA along the lateral wall of sporulating aerial hyphae. Constitutive expression of SflA and SflB largely inhibited hyphal growth, further correlating SflAB activity to that of DivIVA. SflAB localized in foci prior to and after the time of sporulation-specific cell division, while SepF co-localized with active septum synthesis. Foci of FtsZ and DivIVA frequently persisted between adjacent spores in spore chains of sflA and sflB mutants, at sites occupied by SflAB in wild-type cells. Taken together, our data show that SflA and SflB play an important role in the control of growth and cell division during Streptomyces development.
Collapse
Affiliation(s)
- Le Zhang
- Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, Leiden, 2300, AB, the Netherlands
| | - Joost Willemse
- Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, Leiden, 2300, AB, the Netherlands
| | - Paula Yagüe
- Departamento de Biología Funcional e IUOPA, Área de Microbiología, Facultad de Medicina, Universidad de Oviedo, Oviedo, 33006, Spain
| | - Ellen de Waal
- Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, Leiden, 2300, AB, the Netherlands
| | - Dennis Claessen
- Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, Leiden, 2300, AB, the Netherlands
| | - Gilles P van Wezel
- Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, Leiden, 2300, AB, the Netherlands.
| |
Collapse
|
10
|
Songwattana P, Boonchuen P, Piromyou P, Wongdee J, Greetatorn T, Inthaisong S, Alisha Tantasawat P, Teamtisong K, Tittabutr P, Boonkerd N, Teaumroong N. Insights into Antifungal Mechanisms of Bacillus velezensis S141 against Cercospora Leaf Spot in Mungbean (V. radiata). Microbes Environ 2023; 38. [PMID: 36935122 PMCID: PMC10037098 DOI: 10.1264/jsme2.me22079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Cercospora leaf spot (CLS) is caused by Cercospora canescens and is one of the most important diseases of mungbean (Vigna radiata). Cercospora leaf spot may result in economic loss in production areas. The present study investigated the potential of Bacillus velezensis S141 as a biocontrol agent for C. canescens PAK1 growth on culture plates. Cell-free secretions from a dual culture of S141+PAK1 inhibited fungal growth more than those from a single culture of S141. The biocontrol efficiency of S141 against Cercospora leaf spot on mungbean was then evaluated by spraying. The disease severity of Cercospora leaf spot was significantly reduced in plants treated with S141, with a control efficiency of 83% after 2 days of infection. Comparative transcriptomics and qRT-PCR ana-lyses of S141 during C. canescens inhibition were performed to elucidate the antifungal mechanisms underlying its antifungal activity against Cercospora leaf spot. According to the differentially expressed genes, most up-regulated genes involved in the biosynthetic genes encoding enzymatic hydrolases, including protease, β-glucanase, and N-acyl glucosaminase, were detected in strain S141 following its interaction. Moreover, genes related to secondary metabolites (surfactin, bacilysin, and bacillomycin D) were up-regulated. Collectively, these results suggest that S141 exhibited strong antifungal activity against C. canescens due to multiple enzymatic hydrolases and secondary metabolites. Therefore, the present study provides insights into the biological network responsible for the antifungal activity of B. velezensis S141 against C. canescens.
Collapse
Affiliation(s)
- Pongpan Songwattana
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Pongdet Piromyou
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Jenjira Wongdee
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Teerana Greetatorn
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Sukanya Inthaisong
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Piyada Alisha Tantasawat
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Kamonluck Teamtisong
- The Center for Scientific and Technological Equipment, Suranaree University of Technology
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| |
Collapse
|
11
|
Abo Elsoud MM, Mohamed SS, Selim MS, Sidkey NM. Characterization and Optimization of Chitosan Production by Aspergillus terreus. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractThe production of the amino polysaccharide (chitosan) from crustacean sources has faced many hindrances due to environmental, seasonal and noneconomic issues. On the other hand, mycogenic chitosan has many advantages that make it suitable for many medical and nutritional applications over the non-mycological counterparts. A number of fungal isolates have been screened for chitosan production, where the most potent fungal isolate has been genetically identified using 18S rDNA and selected to be the focus of the current study. The factors affecting chitosan production by the selected fungal isolate have been studied and numerically optimized and validated using Box–Behnken design. The produced chitosan has been collected, purified and characterized for the degree of deacetylation (DDA), molecular weight (MW), water-binding (WBC) and fat-binding capacities (FBC). Results showed that Aspergillus terreus (F3) was the most potent chitosan-producing fungal isolate with maximum validated productivity (2.92 g/l) at the following conditions: glucose, 35.6 g/l; (NH4)2SO4, 4.6 g/l; CaCl2, 0.29 g/l; and pH 7.9 at 23.2 °C for 10 days. The purified chitosan has the following characteristics: 71.9%, DDA; 54.1165 KD, MW; 58.6%, WBC; and 47.6%, FBC. The features and applications of fungal chitosan are not fully uncovered which necessitates further studies.
Collapse
|
12
|
Duhsaki L, Mukherjee S, Rani TS, Madhuprakash J. Genome analysis of Streptomyces sp. UH6 revealed the presence of potential chitinolytic machinery crucial for chitosan production. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:431-442. [PMID: 34192819 DOI: 10.1111/1758-2229.12986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Chitosan and its derivatives have numerous applications in wastewater treatment as bio-coagulants, flocculants and bio-adsorbents against both particulate and dissolved pollutants. Chitinolytic bacteria secrete an array of enzymes, which play crucial role in chitin to chitosan conversion. Consequently, there is a growing demand for identification and characterization of novel bacterial isolates with potential implications in chitosan production. We describe genomic features of the new isolate Streptomyces sp. UH6. Analysis of the 6.51 Mb genome revealed the GC content as 71.95% and presence of 6990 coding sequences of which 63% were functionally annotated. Further, we identified two possible chitin-utilization pathways, which employ secreted enzymes like lytic polysaccharide monooxygenases and family-18 glycoside hydrolases (GHs). More importantly, the genome has six family-4 polysaccharide deacetylases with probable role in chitin to chitosan conversion, as well as two chitosanases belonging to GH46 and GH75 families. In addition, the gene clusters, dasABC and ngcEFG coding for transporters, which mediate the uptake of N,N'-diacetylchitobiose and N-acetyl-d-glucosamine were identified. Several genes responsible for hydrolysis of other polysaccharides and fermentation of sugars were also identified. Taken together, the phylogenetic and genomic analyses suggest that the isolate Streptomyces sp. UH6 secretes potential chitin-active enzymes responsible for chitin to chitosan conversion.
Collapse
Affiliation(s)
- Lal Duhsaki
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, India
| | - Saumashish Mukherjee
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, India
| | | | - Jogi Madhuprakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, India
| |
Collapse
|
13
|
System-Wide Analysis of the GATC-Binding Nucleoid-Associated Protein Gbn and Its Impact on
Streptomyces
Development. mSystems 2022; 7:e0006122. [PMID: 35575488 PMCID: PMC9239103 DOI: 10.1128/msystems.00061-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A large part of the chemical space of bioactive natural products is derived from
Actinobacteria
. Many of the biosynthetic gene clusters for these compounds are cryptic; in others words, they are expressed in nature but not in the laboratory.
Collapse
|
14
|
Ruiz‐Villafán B, Cruz‐Bautista R, Manzo‐Ruiz M, Passari AK, Villarreal‐Gómez K, Rodríguez‐Sanoja R, Sánchez S. Carbon catabolite regulation of secondary metabolite formation, an old but not well-established regulatory system. Microb Biotechnol 2022; 15:1058-1072. [PMID: 33675560 PMCID: PMC8966007 DOI: 10.1111/1751-7915.13791] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/28/2022] Open
Abstract
Secondary microbial metabolites have various functions for the producer microorganisms, which allow them to interact and survive in adverse environments. In addition to these functions, other biological activities may have clinical relevance, as diverse as antimicrobial, anticancer and hypocholesterolaemic effects. These metabolites are usually formed during the idiophase of growth and have a wide diversity in their chemical structures. Their synthesis is under the impact of the type and concentration of the culture media nutrients. Some of the molecular mechanisms that affect the synthesis of secondary metabolites in bacteria (Gram-positive and negative) and fungi are partially known. Moreover, all microorganisms have their peculiarities in the control mechanisms of carbon sources, even those belonging to the same genus. This regulatory knowledge is necessary to establish culture conditions and manipulation methods for genetic improvement and product fermentation. As the carbon source is one of the essential nutritional factors for antibiotic production, its study has been imperative both at the industrial and research levels. This review aims to draw the utmost recent advances performed to clarify the molecular mechanisms of the negative effect exerted by the carbon source on the secondary metabolite formation, emphasizing those found in Streptomyces, one of the genera most profitable antibiotic producers.
Collapse
Affiliation(s)
- Beatriz Ruiz‐Villafán
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Rodrigo Cruz‐Bautista
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Monserrat Manzo‐Ruiz
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Ajit Kumar Passari
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Karen Villarreal‐Gómez
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Romina Rodríguez‐Sanoja
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Sergio Sánchez
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| |
Collapse
|
15
|
Rajput A, Tsunemoto H, Sastry AV, Szubin R, Rychel K, Sugie J, Pogliano J, Palsson BO. Machine learning from Pseudomonas aeruginosa transcriptomes identifies independently modulated sets of genes associated with known transcriptional regulators. Nucleic Acids Res 2022; 50:3658-3672. [PMID: 35357493 PMCID: PMC9023270 DOI: 10.1093/nar/gkac187] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
The transcriptional regulatory network (TRN) of Pseudomonas aeruginosa coordinates cellular processes in response to stimuli. We used 364 transcriptomes (281 publicly available + 83 in-house generated) to reconstruct the TRN of P. aeruginosa using independent component analysis. We identified 104 independently modulated sets of genes (iModulons) among which 81 reflect the effects of known transcriptional regulators. We identified iModulons that (i) play an important role in defining the genomic boundaries of biosynthetic gene clusters (BGCs), (ii) show increased expression of the BGCs and associated secretion systems in nutrient conditions that are important in cystic fibrosis, (iii) show the presence of a novel ribosomally synthesized and post-translationally modified peptide (RiPP) BGC which might have a role in P. aeruginosa virulence, (iv) exhibit interplay of amino acid metabolism regulation and central metabolism across different carbon sources and (v) clustered according to their activity changes to define iron and sulfur stimulons. Finally, we compared the identified iModulons of P. aeruginosa with those previously described in Escherichia coli to observe conserved regulons across two Gram-negative species. This comprehensive TRN framework encompasses the majority of the transcriptional regulatory machinery in P. aeruginosa, and thus should prove foundational for future research into its physiological functions.
Collapse
Affiliation(s)
- Akanksha Rajput
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Hannah Tsunemoto
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Joseph Sugie
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, USA.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| |
Collapse
|
16
|
Kroef V, Ruegenberg S, Horn M, Allmeroth K, Ebert L, Bozkus S, Miethe S, Elling U, Schermer B, Baumann U, Denzel MS. GFPT2/GFAT2 and AMDHD2 act in tandem to control the hexosamine pathway. eLife 2022; 11:69223. [PMID: 35229715 PMCID: PMC8970586 DOI: 10.7554/elife.69223] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
The hexosamine biosynthetic pathway (HBP) produces the essential metabolite UDP-GlcNAc and plays a key role in metabolism, health, and aging. The HBP is controlled by its rate-limiting enzyme glutamine fructose-6-phosphate amidotransferase (GFPT/GFAT) that is directly inhibited by UDP-GlcNAc in a feedback loop. HBP regulation by GFPT is well studied but other HBP regulators have remained obscure. Elevated UDP-GlcNAc levels counteract the glycosylation toxin tunicamycin (TM), and thus we screened for TM resistance in haploid mouse embryonic stem cells (mESCs) using random chemical mutagenesis to determine alternative HBP regulation. We identified the N-acetylglucosamine deacetylase AMDHD2 that catalyzes a reverse reaction in the HBP and its loss strongly elevated UDP-GlcNAc. To better understand AMDHD2, we solved the crystal structure and found that loss-of-function (LOF) is caused by protein destabilization or interference with its catalytic activity. Finally, we show that mESCs express AMDHD2 together with GFPT2 instead of the more common paralog GFPT1. Compared with GFPT1, GFPT2 had a much lower sensitivity to UDP-GlcNAc inhibition, explaining how AMDHD2 LOF resulted in HBP activation. This HBP configuration in which AMDHD2 serves to balance GFPT2 activity was also observed in other mESCs and, consistently, the GFPT2:GFPT1 ratio decreased with differentiation of human embryonic stem cells. Taken together, our data reveal a critical function of AMDHD2 in limiting UDP-GlcNAc production in cells that use GFPT2 for metabolite entry into the HBP.
Collapse
Affiliation(s)
- Virginia Kroef
- Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Sabine Ruegenberg
- Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Kira Allmeroth
- Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | | | - Stephan Miethe
- Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ulrich Elling
- Vienna Biocenter, Austrian Academy of Sciences, Vienna, Austria
| | | | | | | |
Collapse
|
17
|
N-Acetylglucosamine Sensing and Metabolic Engineering for Attenuating Human and Plant Pathogens. Bioengineering (Basel) 2022; 9:bioengineering9020064. [PMID: 35200417 PMCID: PMC8869657 DOI: 10.3390/bioengineering9020064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
During evolution, both human and plant pathogens have evolved to utilize a diverse range of carbon sources. N-acetylglucosamine (GlcNAc), an amino sugar, is one of the major carbon sources utilized by several human and phytopathogens. GlcNAc regulates the expression of many virulence genes of pathogens. In fact, GlcNAc catabolism is also involved in the regulation of virulence and pathogenesis of various human pathogens, including Candida albicans, Vibrio cholerae, Leishmania donovani, Mycobacterium, and phytopathogens such as Magnaporthe oryzae. Moreover, GlcNAc is also a well-known structural component of many bacterial and fungal pathogen cell walls, suggesting its possible role in cell signaling. Over the last few decades, many studies have been performed to study GlcNAc sensing, signaling, and metabolism to better understand the GlcNAc roles in pathogenesis in order to identify new drug targets. In this review, we provide recent insights into GlcNAc-mediated cell signaling and pathogenesis. Further, we describe how the GlcNAc metabolic pathway can be targeted to reduce the pathogens’ virulence in order to control the disease prevalence and crop productivity.
Collapse
|
18
|
Flores CL, Ariño J, Gancedo C. The N-Acetylglucosamine Kinase from Yarrowia lipolytica Is a Moonlighting Protein. Int J Mol Sci 2021; 22:ijms222313109. [PMID: 34884915 PMCID: PMC8658026 DOI: 10.3390/ijms222313109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
In Yarrowia lipolytica, expression of the genes encoding the enzymes of the N-acetylglucosamine (NAGA) utilization pathway (NAG genes) becomes independent of the presence of NAGA in a Ylnag5 mutant lacking NAGA kinase. We addressed the question of whether the altered transcription was due to a lack of kinase activity or to a moonlighting role of this protein. Glucosamine-6-phosphate deaminase (Nag1) activity was measured as a reporter of NAG genes expression. The NGT1 gene encoding the NAGA transporter was deleted, creating a Ylnag5 ngt1 strain. In glucose cultures of this strain, Nag1 activity was similar to that of the Ylnag5 strain, ruling out the possibility that NAGA derived from cell wall turnover could trigger the derepression. Heterologous NAGA kinases were expressed in a Ylnag5 strain. Among them, the protein from Arabidopsis thaliana did not restore kinase activity but lowered Nag1 activity 4-fold with respect to a control. Expression in the Ylnag5 strain of YlNag5 variants F320S or D214V with low kinase activity caused a repression similar to that of the wild-type protein. Together, these results indicate that YlNag5 behaves as a moonlighting protein. An RNA-seq analysis revealed that the Ylnag5 mutation had a limited transcriptomic effect besides derepression of the NAG genes.
Collapse
Affiliation(s)
- Carmen-Lisset Flores
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, 28029 Madrid, Spain;
- Correspondence: (C.-L.F.); (J.A.)
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Correspondence: (C.-L.F.); (J.A.)
| | - Carlos Gancedo
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, 28029 Madrid, Spain;
| |
Collapse
|
19
|
Itoh T. Structures and functions of carbohydrate-active enzymes of chitinolytic bacteria Paenibacillus sp. str. FPU-7. Biosci Biotechnol Biochem 2021; 85:1314-1323. [PMID: 33792636 DOI: 10.1093/bbb/zbab058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 11/14/2022]
Abstract
Chitin and its derivatives have valuable potential applications in various fields that include medicine, agriculture, and food industries. Paenibacillus sp. str. FPU-7 is one of the most potent chitin-degrading bacteria identified. This review introduces the chitin degradation system of P. str. FPU-7. In addition to extracellular chitinases, P. str. FPU-7 uses a unique multimodular chitinase (ChiW) to hydrolyze chitin to oligosaccharides on the cell surface. Chitin oligosaccharides are converted to N-acetyl-d-glucosamine by β-N-acetylhexosaminidase (PsNagA) in the cytosol. The functions and structures of ChiW and PsNagA are also summarized. The genome sequence of P. str. FPU-7 provides opportunities to acquire novel enzymes. Genome mining has identified a novel alginate lyase, PsAly. The functions and structure of PsAly are reviewed. These findings will inform further improvement of the sustainable conversion of polysaccharides to functional materials.
Collapse
Affiliation(s)
- Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-gun, Fukui, Japan
| |
Collapse
|
20
|
Abstract
Almost all bacteria are surrounded by a cell wall, which protects cells from environmental harm. Formation of the cell wall requires the precursor molecule lipid II, which in bacteria is universally synthesized by the conserved and essential lipid II synthase MurG. The cell wall is a stress-bearing structure and a unifying trait in bacteria. Without exception, synthesis of the cell wall involves formation of the precursor molecule lipid II by the activity of the essential biosynthetic enzyme MurG, which is encoded in the division and cell wall synthesis (dcw) gene cluster. Here, we present the discovery of a cell wall enzyme that can substitute for MurG. A mutant of Kitasatospora viridifaciens lacking a significant part of the dcw cluster, including murG, surprisingly produced lipid II and wild-type peptidoglycan. Genomic analysis identified a distant murG homologue, which encodes a putative enzyme that shares only around 31% amino acid sequence identity with MurG. We show that this enzyme can replace the canonical MurG, and we therefore designated it MglA. Orthologues of mglA are present in 38% of all genomes of Kitasatospora and members of the sister genus Streptomyces. CRISPR interference experiments showed that K. viridifaciens mglA can also functionally replace murG in Streptomyces coelicolor, thus validating its bioactivity and demonstrating that it is active in multiple genera. All together, these results identify MglA as a bona fide lipid II synthase, thus demonstrating plasticity in cell wall synthesis.
Collapse
|
21
|
Xiao X, Elsayed SS, Wu C, van der Heul HU, Metsä-Ketelä M, Du C, Prota AE, Chen CC, Liu W, Guo RT, Abrahams JP, van Wezel GP. Functional and Structural Insights into a Novel Promiscuous Ketoreductase of the Lugdunomycin Biosynthetic Pathway. ACS Chem Biol 2020; 15:2529-2538. [PMID: 32840360 PMCID: PMC7506943 DOI: 10.1021/acschembio.0c00564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Angucyclines are
a structurally diverse class of actinobacterial
natural products defined by their varied polycyclic ring systems,
which display a wide range of biological activities. We recently discovered
lugdunomycin (1), a highly rearranged polyketide antibiotic
derived from the angucycline backbone that is synthesized via several
yet unexplained enzymatic reactions. Here, we show via in
vivo, in vitro, and structural analysis
that the promiscuous reductase LugOII catalyzes both a C6 and an unprecedented
C1 ketoreduction. This then sets the stage for the subsequent C-ring
cleavage that is key to the rearranged scaffolds of 1. The 1.1 Å structures of LugOII in complex with either ligand
8-O-Methylrabelomycin (4) or 8-O-Methyltetrangomycin (5) and of apoenzyme
were resolved, which revealed a canonical Rossman fold and a remarkable
conformational change during substrate capture and release. Mutational
analysis uncovered key residues for substrate access, position, and
catalysis as well as specific determinants that control its dual functionality.
The insights obtained in this work hold promise for the discovery
and engineering of other promiscuous reductases that may be harnessed
for the generation of novel biocatalysts for chemoenzymatic applications.
Collapse
Affiliation(s)
- Xiansha Xiao
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| | - Somayah S. Elsayed
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Helga U. van der Heul
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| | - Mikko Metsä-Ketelä
- Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Chao Du
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| | - Andrea E. Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 43420, P. R. China
| | - Weidong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 43420, P. R. China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 43420, P. R. China
| | - Jan Pieter Abrahams
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
- Bio-nano diffraction Biozentrum, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
- Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Gilles P. van Wezel
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| |
Collapse
|
22
|
Ho LK, Daniel-Ivad M, Jeedigunta SP, Li J, Iliadi KG, Boulianne GL, Hurd TR, Smibert CA, Nodwell JR. Chemical entrapment and killing of insects by bacteria. Nat Commun 2020; 11:4608. [PMID: 32929085 PMCID: PMC7490686 DOI: 10.1038/s41467-020-18462-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Actinobacteria produce antibacterial and antifungal specialized metabolites. Many insects harbour actinobacteria on their bodies or in their nests and use these metabolites for protection. However, some actinobacteria produce metabolites that are toxic to insects and the evolutionary relevance of this toxicity is unknown. Here we explore chemical interactions between streptomycetes and the fruit fly Drosophila melanogaster. We find that many streptomycetes produce specialized metabolites that have potent larvicidal effects against the fly; larvae that ingest spores of these species die. The mechanism of toxicity is specific to the bacterium's chemical arsenal: cosmomycin D producing bacteria induce a cell death-like response in the larval digestive tract; avermectin producing bacteria induce paralysis. Furthermore, low concentrations of volatile terpenes like 2-methylisoborneol that are produced by streptomycetes attract fruit flies such that they preferentially deposit their eggs on contaminated food sources. The resulting larvae are killed during growth and development. The phenomenon of volatile-mediated attraction and specialized metabolite toxicity suggests that some streptomycetes pose an evolutionary risk to insects in nature.
Collapse
Affiliation(s)
- Louis K Ho
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Martin Daniel-Ivad
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Swathi P Jeedigunta
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Jing Li
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Konstantin G Iliadi
- The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., Toronto, ON, M5G 0A4, Canada
| | - Gabrielle L Boulianne
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
- The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., Toronto, ON, M5G 0A4, Canada
| | - Thomas R Hurd
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Craig A Smibert
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
23
|
Chen H, Cui J, Wang P, Wang X, Wen J. Enhancement of bleomycin production in Streptomyces verticillus through global metabolic regulation of N-acetylglucosamine and assisted metabolic profiling analysis. Microb Cell Fact 2020; 19:32. [PMID: 32054531 PMCID: PMC7017467 DOI: 10.1186/s12934-020-01301-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bleomycin is a broad-spectrum glycopeptide antitumor antibiotic produced by Streptomyces verticillus. Clinically, the mixture of bleomycin A2 and bleomycin B2 is widely used in combination with other drugs for the treatment of various cancers. As a secondary metabolite, the biosynthesis of bleomycin is precisely controlled by the complex extra-/intracellular regulation mechanisms, it is imperative to investigate the global metabolic and regulatory system involved in bleomycin biosynthesis for increasing bleomycin production. RESULTS N-acetylglucosamine (GlcNAc), the vital signaling molecule controlling the onset of development and antibiotic synthesis in Streptomyces, was found to increase the yields of bleomycins significantly in chemically defined medium. To mine the gene information relevant to GlcNAc metabolism, the DNA sequences of dasR-dasA-dasBCD-nagB and nagKA in S. verticillus were determined by chromosome walking. From the results of Real time fluorescence quantitative PCR (RT-qPCR) and electrophoretic mobility shift assays (EMSAs), the repression of the expression of nagB and nagKA by the global regulator DasR was released under induction with GlcNAc. The relief of blmT expression repression by BlmR was the main reason for increased bleomycin production. DasR, however, could not directly affect the expression of the pathway-specific repressor BlmR in the bleomycins gene cluster. With at the beginning of bleomycin synthesis, the supply of the specific precursor GDP-mannose played the key role in bleomycin production. Genetic engineering of the GDP-mannose synthesis pathway indicated that phosphomannose isomerase (ManA) and phosphomannomutase (ManB) were key enzymes for bleomycins synthesis. Here, the blmT, manA and manB co-expression strain OBlmT/ManAB was constructed. Based on GlcNAc regulation and assisted metabolic profiling analysis, the yields of bleomycin A2 and B2 were ultimately increased to 61.79 and 36.9 mg/L, respectively. CONCLUSIONS Under GlcNAc induction, the elevated production of bleomycins was mainly associated with the alleviation of the inhibition of BlmT, so blmT and specific precursor synthesis pathways were genetically engineered for bleomycins production improvement. Combination with subsequent metabolomics analysis not only effectively increased the bleomycin yield, but also extended the utilization of chitin-derived substrates in microbial-based antibiotic production.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jiaqi Cui
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Pan Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xin Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
24
|
Fernández-Martínez LT, Hoskisson PA. Expanding, integrating, sensing and responding: the role of primary metabolism in specialised metabolite production. Curr Opin Microbiol 2019; 51:16-21. [DOI: 10.1016/j.mib.2019.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/22/2019] [Accepted: 03/12/2019] [Indexed: 01/30/2023]
|
25
|
Itoh T, Kimoto H. Bacterial Chitinase System as a Model of Chitin Biodegradation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:131-151. [PMID: 31102245 DOI: 10.1007/978-981-13-7318-3_7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chitin, a structural polysaccharide of β-1,4-linked N-acetyl-D-glucosamine residues, is the second most abundant natural biopolymer after cellulose. The metabolism of chitin affects the global carbon and nitrogen cycles, which are maintained by marine and soil-dwelling bacteria. The degradation products of chitin metabolism serve as important nutrient sources for the chitinolytic bacteria. Chitinolytic bacteria have elaborate enzymatic systems for the degradation of the recalcitrant chitin biopolymer. This chapter introduces chitin degradation and utilization systems of the chitinolytic bacteria. These bacteria secrete many chitin-degrading enzymes, including processive chitinases, endo-acting non-processive chitinases, lytic polysaccharide monooxygenases, and N-acetyl-hexosaminidases. Bacterial chitinases play a fundamental role in the degradation of chitin. Enzymatic properties, catalytic mechanisms, and three-dimensional structures of chitinases have been extensively studied by many scientists. These enzymes can be exploited to produce a range of chitin-derived products, e.g., biocontrol agents against many plant pathogenic fungi and insects. We introduce bacterial chitinases in terms of their reaction modes and structural features.
Collapse
Affiliation(s)
- Takafumi Itoh
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan.
| | - Hisashi Kimoto
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan
| |
Collapse
|
26
|
Stress-induced formation of cell wall-deficient cells in filamentous actinomycetes. Nat Commun 2018; 9:5164. [PMID: 30514921 PMCID: PMC6279842 DOI: 10.1038/s41467-018-07560-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022] Open
Abstract
The cell wall is a shape-defining structure that envelopes almost all bacteria and protects them from environmental stresses. Bacteria can be forced to grow without a cell wall under certain conditions that interfere with cell wall synthesis, but the relevance of these wall-less cells (known as L-forms) is unclear. Here, we show that several species of filamentous actinomycetes have a natural ability to generate wall-deficient cells in response to hyperosmotic stress, which we call S-cells. This wall-deficient state is transient, as S-cells are able to switch to the normal mycelial mode of growth. However, prolonged exposure of S-cells to hyperosmotic stress yields variants that are able to proliferate indefinitely without their cell wall, similarly to L-forms. We propose that formation of wall-deficient cells in actinomycetes may serve as an adaptation to osmotic stress. Bacteria can be forced to grow without cell wall if cell wall synthesis is inhibited. Here Ramijan et al. show that, in filamentous actinomycetes, hyperosmotic stress induces formation of wall-deficient cells that can switch to normal mycelial growth, or mutate and proliferate indefinitely as wall-less forms.
Collapse
|
27
|
Ordóñez-Robles M, Rodríguez-García A, Martín JF. Genome-wide transcriptome response of Streptomyces tsukubaensis to N-acetylglucosamine: effect on tacrolimus biosynthesis. Microbiol Res 2018; 217:14-22. [DOI: 10.1016/j.micres.2018.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/04/2018] [Accepted: 08/29/2018] [Indexed: 11/29/2022]
|
28
|
Iinuma C, Saito A, Ohnuma T, Tenconi E, Rosu A, Colson S, Mizutani Y, Liu F, Świątek-Połatyńska M, van Wezel GP, Rigali S, Fujii T, Miyashita K. NgcE Sco Acts as a Lower-Affinity Binding Protein of an ABC Transporter for the Uptake of N,N'-Diacetylchitobiose in Streptomyces coelicolor A3(2). Microbes Environ 2018; 33:272-281. [PMID: 30089751 PMCID: PMC6167110 DOI: 10.1264/jsme2.me17172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In the model species Streptomyces coelicolor A3(2), the uptake of chitin-degradation byproducts, mainly N,N′- diacetylchitobiose ([GlcNAc]2) and N-acetylglucosamine (GlcNAc), is performed by the ATP-binding cassette (ABC) transporter DasABC-MsiK and the sugar-phosphotransferase system (PTS), respectively. Studies on the S. coelicolor chromosome have suggested the occurrence of additional uptake systems of GlcNAc-related compounds, including the SCO6005–7 cluster, which is orthologous to the ABC transporter NgcEFG of S. olivaceoviridis. However, despite conserved synteny between the clusters in S. coelicolor and S. olivaceoviridis, homology between them is low, with only 35% of residues being identical between NgcE proteins, suggesting different binding specificities. Isothermal titration calorimetry experiments revealed that recombinant NgcESco interacts with GlcNAc and (GlcNAc)2, with Kd values (1.15 and 1.53 μM, respectively) that were higher than those of NgcE of S. olivaceoviridis (8.3 and 29 nM, respectively). The disruption of ngcESco delayed (GlcNAc)2 consumption, but did not affect GlcNAc consumption ability. The ngcESco-dasA double mutation severely decreased the ability to consume (GlcNAc)2 and abolished the induction of chitinase production in the presence of (GlcNAc)2, but did not affect the GlcNAc consumption rate. The results of these biochemical and reverse genetic analyses indicate that NgcESco acts as a (GlcNAc)2- binding protein of the ABC transporter NgcEFGSco-MsiK. Transcriptional and biochemical analyses of gene regulation demonstrated that the ngcESco gene was slightly induced by GlcNAc, (GlcNAc)2, and chitin, but repressed by DasR. Therefore, a model was proposed for the induction of the chitinolytic system and import of (GlcNAc)2, in which (GlcNAc)2 generated from chitin by chitinase produced leakily, is mainly transported via NgcEFG-MsiK and induces the expression of chitinase genes and dasABCD.
Collapse
Affiliation(s)
- Chiharu Iinuma
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University
| | - Akihiro Saito
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University.,Department of Materials and Life Science, Shizuoka Institute of Science and Technology
| | | | - Elodie Tenconi
- InBioS-Center for Protein Engineering, Institut de Chimie B6a, University of Liège
| | - Adeline Rosu
- InBioS-Center for Protein Engineering, Institut de Chimie B6a, University of Liège
| | - Séverine Colson
- InBioS-Center for Protein Engineering, Institut de Chimie B6a, University of Liège
| | - Yuuki Mizutani
- Department of Materials and Life Science, Shizuoka Institute of Science and Technology
| | - Feng Liu
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University
| | | | | | - Sébastien Rigali
- InBioS-Center for Protein Engineering, Institut de Chimie B6a, University of Liège
| | | | | |
Collapse
|
29
|
Cao ZL, Tan TT, Zhang YL, Han L, Hou XY, Ma HY, Cai J. NagR Bt Is a Pleiotropic and Dual Transcriptional Regulator in Bacillus thuringiensis. Front Microbiol 2018; 9:1899. [PMID: 30254611 PMCID: PMC6141813 DOI: 10.3389/fmicb.2018.01899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022] Open
Abstract
NagR, belonging to the GntR/HutC family, is a negative regulator that directly represses the nagP and nagAB genes, which are involved in GlcNAc transport and utilization in Bacillus subtilis. Our previous work confirmed that the chitinase B gene (chiB) of Bacillus thuringiensis strain Bti75 is also negatively controlled by YvoABt, the ortholog of NagR from B. subtilis. In this work, we investigated its regulatory network in Bti75 and found that YvoABt is an N-acetylglucosamine utilization regulator primarily involved in GlcNAc catabolism; therefore YvoABt is renamed as NagRBt. The RNA-seq data revealed that 27 genes were upregulated and 14 genes were downregulated in the ΔnagR mutant compared with the wild-type strain. The regulon (exponential phase) was characterized by RNA-seq, bioinformatics software, electrophoretic mobility shift assays, and quantitative real-time reverse transcription PCR. In the Bti75 genome, 19 genes that were directly regulated and 30 genes that were indirectly regulated by NagRBt were identified. We compiled in silico, in vitro, and in vivo evidence that NagRBt behaves as a repressor and activator to directly or indirectly influence major biological processes involved in amino sugar metabolism, nucleotide metabolism, fatty acid metabolism, phosphotransferase system, and the Embden-Meyerhof-Parnas pathway.
Collapse
Affiliation(s)
- Zhang-Lei Cao
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Tong-Tong Tan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yan-Li Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lu Han
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiao-Yue Hou
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hui-Yong Ma
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| |
Collapse
|
30
|
Du C, van Wezel GP. Mining for Microbial Gems: Integrating Proteomics in the Postgenomic Natural Product Discovery Pipeline. Proteomics 2018; 18:e1700332. [PMID: 29708658 PMCID: PMC6175363 DOI: 10.1002/pmic.201700332] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/09/2018] [Indexed: 12/23/2022]
Abstract
Natural products (NPs) are a major source of compounds for medical, agricultural, and biotechnological industries. Many of these compounds are of microbial origin, and, in particular, from Actinobacteria or filamentous fungi. To successfully identify novel compounds that correlate to a bioactivity of interest, or discover new enzymes with desired functions, systematic multiomics approaches have been developed over the years. Bioinformatics tools harness the rapidly expanding wealth of genome sequence information, revealing previously unsuspected biosynthetic diversity. Varying growth conditions or application of elicitors are applied to activate cryptic biosynthetic gene clusters, and metabolomics provide detailed insights into the NPs they specify. Combining these technologies with proteomics-based approaches to profile the biosynthetic enzymes provides scientists with insights into the full biosynthetic potential of microorganisms. The proteomics approaches include enrichment strategies such as employing activity-based probes designed by chemical biology, as well as unbiased (quantitative) proteomics methods. In this review, the opportunities and challenges in microbial NP research are discussed, and, in particular, the application of proteomics to link biosynthetic enzymes to the molecules they produce, and vice versa.
Collapse
Affiliation(s)
- Chao Du
- Microbial Biotechnology & Health Programme Institute of BiologyLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
| | - Gilles P. van Wezel
- Microbial Biotechnology & Health Programme Institute of BiologyLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
| |
Collapse
|
31
|
Rigali S, Anderssen S, Naômé A, van Wezel GP. Cracking the regulatory code of biosynthetic gene clusters as a strategy for natural product discovery. Biochem Pharmacol 2018; 153:24-34. [DOI: 10.1016/j.bcp.2018.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/03/2018] [Indexed: 12/19/2022]
|
32
|
GntR Family Regulator DasR Controls Acetate Assimilation by Directly Repressing the acsA Gene in Saccharopolyspora erythraea. J Bacteriol 2018; 200:JB.00685-17. [PMID: 29686136 DOI: 10.1128/jb.00685-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/16/2018] [Indexed: 01/09/2023] Open
Abstract
The GntR family regulator DasR controls the transcription of genes involved in chitin and N-acetylglucosamine (GlcNAc) metabolism in actinobacteria. GlcNAc is catabolized to ammonia, fructose-6-phosphate (Fru-6P), and acetate, which are nitrogen and carbon sources. In this work, a DasR-responsive element (dre) was observed in the upstream region of acsA1 in Saccharopolyspora erythraea This gene encodes acetyl coenzyme A (acetyl-CoA) synthetase (Acs), an enzyme that catalyzes the conversion of acetate into acetyl-CoA. We found that DasR repressed the transcription of acsA1 in response to carbon availability, especially with GlcNAc. Growth inhibition was observed in a dasR-deleted mutant (ΔdasR) in the presence of GlcNAc in minimal medium containing 10 mM acetate, a condition under which Acs activity is critical to growth. These results demonstrate that DasR controls acetate assimilation by directly repressing the transcription of the acsA1 gene and performs regulatory roles in the production of intracellular acetyl-CoA in response to GlcNAc.IMPORTANCE Our work has identified the DasR GlcNAc-sensing regulator that represses the generation of acetyl-CoA by controlling the expression of acetyl-CoA synthetase, an enzyme responsible for acetate assimilation in S. erythraea The finding provides the first insights into the importance of DasR in the regulation of acetate metabolism, which encompasses the regulatory network between nitrogen and carbon metabolism in actinobacteria, in response to environmental changes.
Collapse
|
33
|
Daniel-Ivad M, Pimentel-Elardo S, Nodwell JR. Control of Specialized Metabolism by Signaling and Transcriptional Regulation: Opportunities for New Platforms for Drug Discovery? Annu Rev Microbiol 2018; 72:25-48. [PMID: 29799791 DOI: 10.1146/annurev-micro-022618-042458] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Specialized metabolites are bacterially produced small molecules that have an extraordinary diversity of important biological activities. They are useful as biochemical probes of living systems, and they have been adapted for use as drugs for human afflictions ranging from infectious diseases to cancer. The biosynthetic genes for these molecules are controlled by a dense network of regulatory mechanisms: Cell-cell signaling and nutrient sensing are conspicuous features of this network. While many components of these mechanisms have been identified, important questions about their biological roles remain shrouded in mystery. In addition to identifying new molecules and solving their mechanisms of action (a central preoccupation in this field), we suggest that addressing questions of quorum sensing versus diffusion sensing and identifying the dominant nutritional and environmental cues for specialized metabolism are important directions for research.
Collapse
Affiliation(s)
- M Daniel-Ivad
- Department of Biochemistry, University of Toronto, Ontario M5G 1M1, Canada;
| | - S Pimentel-Elardo
- Department of Biochemistry, University of Toronto, Ontario M5G 1M1, Canada;
| | - J R Nodwell
- Department of Biochemistry, University of Toronto, Ontario M5G 1M1, Canada;
| |
Collapse
|
34
|
Sporulation-specific cell division defects in ylmE mutants of Streptomyces coelicolor are rescued by additional deletion of ylmD. Sci Rep 2018; 8:7328. [PMID: 29743540 PMCID: PMC5943314 DOI: 10.1038/s41598-018-25782-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/25/2018] [Indexed: 01/15/2023] Open
Abstract
Cell division during the reproductive phase of the Streptomyces life-cycle requires tight coordination between synchronous formation of multiple septa and DNA segregation. One remarkable difference with most other bacterial systems is that cell division in Streptomyces is positively controlled by the recruitment of FtsZ by SsgB. Here we show that deletion of ylmD (SCO2081) or ylmE (SCO2080), which lie in operon with ftsZ in the dcw cluster of actinomycetes, has major consequences for sporulation-specific cell division in Streptomyces coelicolor. Electron and fluorescence microscopy demonstrated that ylmE mutants have a highly aberrant phenotype with defective septum synthesis, and produce very few spores with low viability and high heat sensitivity. FtsZ-ring formation was also highly disturbed in ylmE mutants. Deletion of ylmD had a far less severe effect on sporulation. Interestingly, the additional deletion of ylmD restored sporulation to the ylmE null mutant. YlmD and YlmE are not part of the divisome, but instead localize diffusely in aerial hyphae, with differential intensity throughout the sporogenic part of the hyphae. Taken together, our work reveals a function for YlmD and YlmE in the control of sporulation-specific cell division in S. coelicolor, whereby the presence of YlmD alone results in major developmental defects.
Collapse
|
35
|
Razmilic V, Castro JF, Andrews B, Asenjo JA. Analysis of metabolic networks of Streptomyces leeuwenhoekii C34 by means of a genome scale model: Prediction of modifications that enhance the production of specialized metabolites. Biotechnol Bioeng 2018; 115:1815-1828. [PMID: 29578590 DOI: 10.1002/bit.26598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/03/2018] [Accepted: 03/19/2018] [Indexed: 11/08/2022]
Abstract
The first genome scale model (GSM) for Streptomyces leeuwenhoekii C34 was developed to study the biosynthesis pathways of specialized metabolites and to find metabolic engineering targets for enhancing their production. The model, iVR1007, consists of 1,722 reactions, 1,463 metabolites, and 1,007 genes, it includes the biosynthesis pathways of chaxamycins, chaxalactins, desferrioxamines, ectoine, and other specialized metabolites. iVR1007 was validated using experimental information of growth on 166 different sources of carbon, nitrogen and phosphorous, showing an 83.7% accuracy. The model was used to predict metabolic engineering targets for enhancing the biosynthesis of chaxamycins and chaxalactins. Gene knockouts, such as sle03600 (L-homoserine O-acetyltransferase), and sle39090 (trehalose-phosphate synthase), that enhance the production of the specialized metabolites by increasing the pool of precursors were identified. Using the algorithm of flux scanning based on enforced objective flux (FSEOF) implemented in python, 35 and 25 over-expression targets for increasing the production of chaxamycin A and chaxalactin A, respectively, that were not directly associated with their biosynthesis routes were identified. Nineteen over-expression targets that were common to the two specialized metabolites studied, like the over-expression of the acetyl carboxylase complex (sle47660 (accA) and any of the following genes: sle44630 (accA_1) or sle39830 (accA_2) or sle27560 (bccA) or sle59710) were identified. The predicted knockouts and over-expression targets will be used to perform metabolic engineering of S. leeuwenhoekii C34 and obtain overproducer strains.
Collapse
Affiliation(s)
- Valeria Razmilic
- Department of Chemical Engineering and Biotechnology, Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Chile, Santiago, Chile
| | - Jean F Castro
- Department of Chemical Engineering and Biotechnology, Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Chile, Santiago, Chile
| | - Barbara Andrews
- Department of Chemical Engineering and Biotechnology, Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Chile, Santiago, Chile
| | - Juan A Asenjo
- Department of Chemical Engineering and Biotechnology, Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Chile, Santiago, Chile
| |
Collapse
|
36
|
Kashiwagi N, Ogino C, Kondo A. Production of chemicals and proteins using biomass-derived substrates from a Streptomyces host. BIORESOURCE TECHNOLOGY 2017; 245:1655-1663. [PMID: 28651868 DOI: 10.1016/j.biortech.2017.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
Bioproduction using microbes from biomass feedstocks is of interest in regards to environmental problems and cost reduction. Streptomyces as an industrial microorganism plays an important role in the production of useful secondary metabolites for various applications. This strain also secretes a wide range of extracellular enzymes which degrade various biopolymers in nature, and it consumes these degrading substrates as nutrients. Hence, Streptomyces can be employed as a cell factory for the conversion of biomass-derived substrates into various products. This review focuses on the following two points: (1) Streptomyces as a producer of enzymes for degrading biomass-derived polysaccharides and polymers; and, (2) wild-type and engineered strains of Streptomyces as a host for chemical production from biomass-derived substrates.
Collapse
Affiliation(s)
- Norimasa Kashiwagi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
37
|
Schwarz PN, Buchmann A, Roller L, Kulik A, Gross H, Wohlleben W, Stegmann E. The Immunosuppressant Brasilicardin: Determination of the Biosynthetic Gene Cluster in the Heterologous HostAmycolatopsis japonicum. Biotechnol J 2017; 13. [DOI: 10.1002/biot.201700527] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/05/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Paul N. Schwarz
- Microbiology/Biotechnology; Interfaculty Institute of Microbiology and Infection Medicine (IMIT); Eberhard Karls University of Tübingen; Tübingen Germany
| | - Anina Buchmann
- Department of Pharmaceutical Biology; Pharmaceutical Institute; Eberhard Karls University of Tübingen; Tübingen Germany
| | - Luisa Roller
- Microbiology/Biotechnology; Interfaculty Institute of Microbiology and Infection Medicine (IMIT); Eberhard Karls University of Tübingen; Tübingen Germany
| | - Andreas Kulik
- Microbiology/Biotechnology; Interfaculty Institute of Microbiology and Infection Medicine (IMIT); Eberhard Karls University of Tübingen; Tübingen Germany
| | - Harald Gross
- Department of Pharmaceutical Biology; Pharmaceutical Institute; Eberhard Karls University of Tübingen; Tübingen Germany
- German Centre for Infection Research (DZIF); Partner Site Tübingen; Tübingen Germany
| | - Wolfgang Wohlleben
- Microbiology/Biotechnology; Interfaculty Institute of Microbiology and Infection Medicine (IMIT); Eberhard Karls University of Tübingen; Tübingen Germany
- German Centre for Infection Research (DZIF); Partner Site Tübingen; Tübingen Germany
| | - Evi Stegmann
- Microbiology/Biotechnology; Interfaculty Institute of Microbiology and Infection Medicine (IMIT); Eberhard Karls University of Tübingen; Tübingen Germany
- German Centre for Infection Research (DZIF); Partner Site Tübingen; Tübingen Germany
| |
Collapse
|
38
|
Romero-Rodríguez A, Rocha D, Ruiz-Villafán B, Guzmán-Trampe S, Maldonado-Carmona N, Vázquez-Hernández M, Zelarayán A, Rodríguez-Sanoja R, Sánchez S. Carbon catabolite regulation in Streptomyces: new insights and lessons learned. World J Microbiol Biotechnol 2017; 33:162. [PMID: 28770367 DOI: 10.1007/s11274-017-2328-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/30/2017] [Indexed: 11/25/2022]
Abstract
One of the most significant control mechanisms of the physiological processes in the genus Streptomyces is carbon catabolite repression (CCR). This mechanism controls the expression of genes involved in the uptake and utilization of alternative carbon sources in Streptomyces and is mostly independent of the phosphoenolpyruvate phosphotransferase system (PTS). CCR also affects morphological differentiation and the synthesis of secondary metabolites, although not all secondary metabolite genes are equally sensitive to the control by the carbon source. Even when the outcome effect of CCR in bacteria is the same, their essential mechanisms can be rather different. Although usually, glucose elicits this phenomenon, other rapidly metabolized carbon sources can also cause CCR. Multiple efforts have been put through to the understanding of the mechanism of CCR in this genus. However, a reasonable mechanism to explain the nature of this process in Streptomyces does not yet exist. Several examples of primary and secondary metabolites subject to CCR will be examined in this review. Additionally, recent advances in the metabolites and protein factors involved in the Streptomyces CCR, as well as their mechanisms will be described and discussed in this review.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior de Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Diana Rocha
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior de Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Beatriz Ruiz-Villafán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior de Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Silvia Guzmán-Trampe
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior de Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Nidia Maldonado-Carmona
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior de Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Melissa Vázquez-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior de Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Augusto Zelarayán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior de Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior de Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior de Ciudad Universitaria, Mexico City, 04510, Mexico.
| |
Collapse
|
39
|
Metabolic engineering of Streptomyces coelicolor for enhanced prodigiosins (RED) production. SCIENCE CHINA-LIFE SCIENCES 2017; 60:948-957. [DOI: 10.1007/s11427-017-9117-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/06/2017] [Indexed: 12/14/2022]
|
40
|
van der Meij A, Worsley SF, Hutchings MI, van Wezel GP. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev 2017; 41:392-416. [DOI: 10.1093/femsre/fux005] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
|
41
|
Structural and functional characterization of the alanine racemase from Streptomyces coelicolor A3(2). Biochem Biophys Res Commun 2017; 483:122-128. [DOI: 10.1016/j.bbrc.2016.12.183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 12/28/2016] [Indexed: 02/02/2023]
|
42
|
Zhang L, Willemse J, Claessen D, van Wezel GP. SepG coordinates sporulation-specific cell division and nucleoid organization in Streptomyces coelicolor. Open Biol 2016; 6:150164. [PMID: 27053678 PMCID: PMC4852450 DOI: 10.1098/rsob.150164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial cell division is a highly complex process that requires tight coordination between septum formation and chromosome replication and segregation. In bacteria that divide by binary fission a single septum is formed at mid-cell, a process that is coordinated by the conserved cell division scaffold protein FtsZ. In contrast, during sporulation-specific cell division in streptomycetes, up to a hundred rings of FtsZ (Z rings) are produced almost simultaneously, dividing the multinucleoid aerial hyphae into long chains of unigenomic spores. This involves the active recruitment of FtsZ by the SsgB protein, and at the same time requires sophisticated systems to regulate chromosome dynamics. Here, we show that SepG is required for the onset of sporulation and acts by ensuring that SsgB is localized to future septum sites. Förster resonance energy transfer imaging suggests direct interaction between SepG and SsgB. The beta-lactamase reporter system showed that SepG is a transmembrane protein with its central domain oriented towards the cytoplasm. Without SepG, SsgB fails to localize properly, consistent with a crucial role for SepG in the membrane localization of the SsgB-FtsZ complex. While SsgB remains associated with FtsZ, SepG re-localizes to the (pre)spore periphery. Expanded doughnut-shaped nucleoids are formed in sepG null mutants, suggesting that SepG is required for nucleoid compaction. Taken together, our work shows that SepG, encoded by one of the last genes in the conserved dcw cluster of cell division and cell-wall-related genes in Gram-positive bacteria whose function was still largely unresolved,coordinates septum synthesis and chromosome organization in Streptomyces.
Collapse
Affiliation(s)
- Le Zhang
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| | - Joost Willemse
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| |
Collapse
|
43
|
Petrus MLC, Vijgenboom E, Chaplin AK, Worrall JAR, van Wezel GP, Claessen D. The DyP-type peroxidase DtpA is a Tat-substrate required for GlxA maturation and morphogenesis in Streptomyces. Open Biol 2016; 6:150149. [PMID: 26740586 PMCID: PMC4736821 DOI: 10.1098/rsob.150149] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The filamentous bacterium Streptomyces lividans depends on the radical copper oxidase GlxA for the formation of reproductive aerial structures and, in liquid environments, for the formation of pellets. Incorporation of copper into the active site is essential for the formation of a cross-linked tyrosyl-cysteine cofactor, which is needed for enzymatic activity. In this study, we show a crucial link between GlxA maturation and a group of copper-related proteins including the chaperone Sco and a novel DyP-type peroxidase hereinafter called DtpA. Under copper-limiting conditions, the sco and dtpA deletion mutants are blocked in aerial growth and pellet formation, similarly to a glxA mutant. Western blot analysis showed that GlxA maturation is perturbed in the sco and dtpA mutants, but both maturation and morphology can by rescued by increasing the bioavailability of copper. DtpA acts as a peroxidase in the presence of GlxA and is a substrate for the twin-arginine translocation (Tat) translocation pathway. In agreement, the maturation status of GlxA is also perturbed in tat mutants, which can be compensated for by the addition of copper, thereby partially restoring their morphological defects. Our data support a model wherein a copper-trafficking pathway and Tat-dependent secretion of DtpA link to the GlxA-dependent morphogenesis pathway.
Collapse
Affiliation(s)
- Marloes L C Petrus
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Erik Vijgenboom
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Amanda K Chaplin
- School of Biological Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Jonathan A R Worrall
- School of Biological Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
44
|
Urem M, Świątek-Połatyńska MA, Rigali S, van Wezel GP. Intertwining nutrient-sensory networks and the control of antibiotic production inStreptomyces. Mol Microbiol 2016; 102:183-195. [DOI: 10.1111/mmi.13464] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Mia Urem
- Molecular Biotechnology, Institute of Biology, Leiden University; Sylviusweg 72 Leiden 2333BE The Netherlands
| | - Magdalena A. Świątek-Połatyńska
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 Marburg 35043 Germany
| | - Sébastien Rigali
- InBioS, Centre for Protein Engineering; University of Liège; Liège B-4000 Belgium
| | - Gilles P. van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University; Sylviusweg 72 Leiden 2333BE The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 Wageningen 6708 PB The Netherlands
| |
Collapse
|
45
|
Substrate Inhibition of VanA by d-Alanine Reduces Vancomycin Resistance in a VanX-Dependent Manner. Antimicrob Agents Chemother 2016; 60:4930-9. [PMID: 27270282 DOI: 10.1128/aac.00276-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/30/2016] [Indexed: 12/12/2022] Open
Abstract
The increasing resistance of clinical pathogens against the glycopeptide antibiotic vancomycin, a last-resort drug against infections with Gram-positive pathogens, is a major problem in the nosocomial environment. Vancomycin inhibits peptidoglycan synthesis by binding to the d-Ala-d-Ala terminal dipeptide moiety of the cell wall precursor lipid II. Plasmid-transferable resistance is conferred by modification of the terminal dipeptide into the vancomycin-insensitive variant d-Ala-d-Lac, which is produced by VanA. Here we show that exogenous d-Ala competes with d-Lac as a substrate for VanA, increasing the ratio of wild-type to mutant dipeptide, an effect that was augmented by several orders of magnitude in the absence of the d-Ala-d-Ala peptidase VanX. Liquid chromatography-mass spectrometry (LC-MS) analysis showed that high concentrations of d-Ala led to the production of a significant amount of wild-type cell wall precursors, while vanX-null mutants produced primarily wild-type precursors. This enhanced the efficacy of vancomycin in the vancomycin-resistant model organism Streptomyces coelicolor, and the susceptibility of vancomycin-resistant clinical isolates of Enterococcus faecium (VRE) increased by up to 100-fold. The enhanced vancomycin sensitivity of S. coelicolor cells correlated directly to increased binding of the antibiotic to the cell wall. Our work offers new perspectives for the treatment of diseases associated with vancomycin-resistant pathogens and for the development of drugs that target vancomycin resistance.
Collapse
|
46
|
Fillenberg SB, Friess MD, Körner S, Böckmann RA, Muller YA. Crystal Structures of the Global Regulator DasR from Streptomyces coelicolor: Implications for the Allosteric Regulation of GntR/HutC Repressors. PLoS One 2016; 11:e0157691. [PMID: 27337024 PMCID: PMC4918961 DOI: 10.1371/journal.pone.0157691] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/02/2016] [Indexed: 12/16/2022] Open
Abstract
Small molecule effectors regulate gene transcription in bacteria by altering the DNA-binding affinities of specific repressor proteins. Although the GntR proteins represent a large family of bacterial repressors, only little is known about the allosteric mechanism that enables their function. DasR from Streptomyces coelicolor belongs to the GntR/HutC subfamily and specifically recognises operators termed DasR-responsive elements (dre-sites). Its DNA-binding properties are modulated by phosphorylated sugars. Here, we present several crystal structures of DasR, namely of dimeric full-length DasR in the absence of any effector and of only the effector-binding domain (EBD) of DasR without effector or in complex with glucosamine-6-phosphate (GlcN-6-P) and N-acetylglucosamine-6-phosphate (GlcNAc-6-P). Together with molecular dynamics (MD) simulations and a comparison with other GntR/HutC family members these data allowed for a structural characterisation of the different functional states of DasR. Allostery in DasR and possibly in many other GntR/HutC family members is best described by a conformational selection model. In ligand-free DasR, an increased flexibility in the EBDs enables the attached DNA-binding domains (DBD) to sample a variety of different orientations and among these also a DNA-binding competent conformation. Effector binding to the EBDs of DasR significantly reorganises the atomic structure of the latter. However, rather than locking the orientation of the DBDs, the effector-induced formation of β-strand β* in the DBD-EBD-linker segment merely appears to take the DBDs ‘on a shorter leash’ thereby impeding the ‘downwards’ positioning of the DBDs that is necessary for a concerted binding of two DBDs of DasR to operator DNA.
Collapse
Affiliation(s)
- Simon B. Fillenberg
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Henkestr. 91, D-91052 Erlangen, Germany
| | - Mario D. Friess
- Computational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Samuel Körner
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Henkestr. 91, D-91052 Erlangen, Germany
| | - Rainer A. Böckmann
- Computational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Yves A. Muller
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Henkestr. 91, D-91052 Erlangen, Germany
- * E-mail:
| |
Collapse
|
47
|
OsdR of Streptomyces coelicolor and the Dormancy Regulator DevR of Mycobacterium tuberculosis Control Overlapping Regulons. mSystems 2016; 1:mSystems00014-16. [PMID: 27822533 PMCID: PMC5069765 DOI: 10.1128/msystems.00014-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/29/2016] [Indexed: 11/20/2022] Open
Abstract
Dormancy is a state of growth cessation that allows bacteria to escape the host defense system and antibiotic challenge. Understanding the mechanisms that control dormancy is of key importance for the treatment of latent infections, such as those from Mycobacterium tuberculosis. In mycobacteria, dormancy is controlled by the response regulator DevR, which responds to conditions of hypoxia. Here, we show that OsdR of Streptomyces coelicolor recognizes the same regulatory element and controls a regulon that consists of genes involved in the control of stress and development. Only the core regulon in the direct vicinity of dosR and osdR is conserved between M. tuberculosis and S. coelicolor, respectively. Thus, we show how the system has diverged from allowing escape from the host defense system by mycobacteria to the control of sporulation by complex multicellular streptomycetes. This provides novel insights into how bacterial growth and development are coordinated with the environmental conditions. Two-component regulatory systems allow bacteria to respond adequately to changes in their environment. In response to a given stimulus, a sensory kinase activates its cognate response regulator via reversible phosphorylation. The response regulator DevR activates a state of dormancy under hypoxia in Mycobacterium tuberculosis, allowing this pathogen to escape the host defense system. Here, we show that OsdR (SCO0204) of the soil bacterium Streptomyces coelicolor is a functional orthologue of DevR. OsdR, when activated by the sensory kinase OsdK (SCO0203), binds upstream of the DevR-controlled dormancy genes devR, hspX, and Rv3134c of M. tuberculosis. In silico analysis of the S. coelicolor genome combined with in vitro DNA binding studies identified many binding sites in the genomic region around osdR itself and upstream of stress-related genes. This binding correlated well with transcriptomic responses, with deregulation of developmental genes and genes related to stress and hypoxia in the osdR mutant. A peak in osdR transcription in the wild-type strain at the onset of aerial growth correlated with major changes in global gene expression. Taken together, our data reveal the existence of a dormancy-related regulon in streptomycetes which plays an important role in the transcriptional control of stress- and development-related genes. IMPORTANCE Dormancy is a state of growth cessation that allows bacteria to escape the host defense system and antibiotic challenge. Understanding the mechanisms that control dormancy is of key importance for the treatment of latent infections, such as those from Mycobacterium tuberculosis. In mycobacteria, dormancy is controlled by the response regulator DevR, which responds to conditions of hypoxia. Here, we show that OsdR of Streptomyces coelicolor recognizes the same regulatory element and controls a regulon that consists of genes involved in the control of stress and development. Only the core regulon in the direct vicinity of dosR and osdR is conserved between M. tuberculosis and S. coelicolor, respectively. Thus, we show how the system has diverged from allowing escape from the host defense system by mycobacteria to the control of sporulation by complex multicellular streptomycetes. This provides novel insights into how bacterial growth and development are coordinated with the environmental conditions.
Collapse
|
48
|
Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol Mol Biol Rev 2016; 80:1-43. [PMID: 26609051 PMCID: PMC4711186 DOI: 10.1128/mmbr.00019-15] [Citation(s) in RCA: 1000] [Impact Index Per Article: 111.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems. Many Actinobacteria have a mycelial lifestyle and undergo complex morphological differentiation. They also have an extensive secondary metabolism and produce about two-thirds of all naturally derived antibiotics in current clinical use, as well as many anticancer, anthelmintic, and antifungal compounds. Consequently, these bacteria are of major importance for biotechnology, medicine, and agriculture. Actinobacteria play diverse roles in their associations with various higher organisms, since their members have adopted different lifestyles, and the phylum includes pathogens (notably, species of Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, and Tropheryma), soil inhabitants (e.g., Micromonospora and Streptomyces species), plant commensals (e.g., Frankia spp.), and gastrointestinal commensals (Bifidobacterium spp.). Actinobacteria also play an important role as symbionts and as pathogens in plant-associated microbial communities. This review presents an update on the biology of this important bacterial phylum.
Collapse
Affiliation(s)
- Essaid Ait Barka
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Parul Vatsa
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Lisa Sanchez
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Nathalie Gaveau-Vaillant
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Cedric Jacquard
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | | | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christophe Clément
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Yder Ouhdouch
- Faculté de Sciences Semlalia, Université Cadi Ayyad, Laboratoire de Biologie et de Biotechnologie des Microorganismes, Marrakesh, Morocco
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Sylvius Laboratories, Leiden University, Leiden, The Netherlands
| |
Collapse
|
49
|
Wu C, Medema MH, Läkamp RM, Zhang L, Dorrestein PC, Choi YH, van Wezel GP. Leucanicidin and Endophenasides Result from Methyl-Rhamnosylation by the Same Tailoring Enzymes in Kitasatospora sp. MBT66. ACS Chem Biol 2016; 11:478-90. [PMID: 26675041 DOI: 10.1021/acschembio.5b00801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The increasing bacterial multidrug resistance necessitates novel drug-discovery efforts. One way to obtain novel chemistry is glycosylation, which is prevalent in nature, with high diversity in both the sugar moieties and the targeted aglycones. Kitasatospora sp. MBT66 produces endophenaside antibiotics, which is a family of (methyl-)rhamnosylated phenazines. Here we show that this strain also produces the plecomacrolide leucanicidin (1), which is derived from bafilomycin A1 by glycosylation with the same methyl-rhamnosyl moiety as present in the endophenasides. Immediately adjacent to the baf genes for bafilomycin biosynthesis lie leuA and leuB, which encode a sugar-O-methyltransferase and a glycosyltransferase, respectively. LeuA and LeuB are the only enzymes encoded by the genome of Kitasatospora sp. MBT66 that are candidates for the methyl-rhamnosylation of natural products, and mutation of leuB abolished glycosylation of both families of natural products. Thus, LeuA and -B mediate the post-PKS methyl-rhamnosylation of bafilomycin A1 to leucanicidin and of phenazines to endophenasides, showing surprising promiscuity by tolerating both macrolide and phenazine skeletons as the substrates. Detailed metabolic analysis by MS/MS based molecular networking facilitated the characterization of nine novel phenazine glycosides 6-8, 16, and 22-26, whereby compounds 23 and 24 represent an unprecedented tautomeric glyceride phenazine, further enriching the structural diversity of endophenasides.
Collapse
Affiliation(s)
- Changsheng Wu
- Molecular
Biotechnology, Institute of Biology, Leiden University, Sylviusweg
72, 2333 BE Leiden, The Netherlands
- Natural
Products Laboratory, Institute of Biology, Leiden University, Sylviusweg
72, 2333 BE Leiden, The Netherlands
| | - Marnix H. Medema
- Bioinformatics
Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Rianne M. Läkamp
- Molecular
Biotechnology, Institute of Biology, Leiden University, Sylviusweg
72, 2333 BE Leiden, The Netherlands
- Collaborative
Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0751, United States
| | - Le Zhang
- Molecular
Biotechnology, Institute of Biology, Leiden University, Sylviusweg
72, 2333 BE Leiden, The Netherlands
| | - Pieter C. Dorrestein
- Collaborative
Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0751, United States
| | - Young Hae Choi
- Natural
Products Laboratory, Institute of Biology, Leiden University, Sylviusweg
72, 2333 BE Leiden, The Netherlands
| | - Gilles P. van Wezel
- Molecular
Biotechnology, Institute of Biology, Leiden University, Sylviusweg
72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
50
|
Metabolic profiling as a tool for prioritizing antimicrobial compounds. J Ind Microbiol Biotechnol 2015; 43:299-312. [PMID: 26335567 PMCID: PMC4752588 DOI: 10.1007/s10295-015-1666-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/25/2015] [Indexed: 11/29/2022]
Abstract
Metabolomics is an analytical technique that allows scientists to globally profile low molecular weight metabolites between samples in a medium- or high-throughput environment. Different biological samples are statistically analyzed and correlated to a bioactivity of interest, highlighting differentially produced compounds as potential biomarkers. Here, we review NMR- and MS-based metabolomics as technologies to facilitate the identification of novel antimicrobial natural products from microbial sources. Approaches to elicit the production of poorly expressed (cryptic) molecules are thereby a key to allow statistical analysis of samples to identify bioactive markers, while connection of compounds to their biosynthetic gene cluster is a determining step in elucidating the biosynthetic pathway and allows downstream process optimization and upscaling. The review focuses on approaches built around NMR-based metabolomics, which enables efficient dereplication and guided fractionation of (antimicrobial) compounds.
Collapse
|