1
|
Ayala JC, Balthazar JT, Shafer WM. Transcriptional responses of Neisseria gonorrhoeae to glucose and lactate: implications for resistance to oxidative damage and biofilm formation. mBio 2024; 15:e0176124. [PMID: 39012148 PMCID: PMC11323468 DOI: 10.1128/mbio.01761-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Understanding how bacteria adapt to different environmental conditions is crucial for advancing knowledge regarding pathogenic mechanisms that operate during infection as well as efforts to develop new therapeutic strategies to cure or prevent infections. Here, we investigated the transcriptional response of Neisseria gonorrhoeae, the causative agent of gonorrhea, to L-lactate and glucose, two important carbon sources found in the host environment. Our study revealed extensive transcriptional changes that gonococci make in response to L-lactate, with 37% of the gonococcal transcriptome being regulated, compared to only 9% by glucose. We found that L-lactate induces a transcriptional program that would negatively impact iron transport, potentially limiting the availability of labile iron, which would be important in the face of the multiple hydrogen peroxide attacks encountered by gonococci during its lifecycle. Furthermore, we found that L-lactate-mediated transcriptional response promoted aerobic respiration and dispersal of biofilms, contrasting with an anaerobic condition previously reported to favor biofilm formation. Our findings suggest an intricate interplay between carbon metabolism, iron homeostasis, biofilm formation, and stress response in N. gonorrhoeae, providing insights into its pathogenesis and identifying potential therapeutic targets.IMPORTANCEGonorrhea is a prevalent sexually transmitted infection caused by the human pathogen Neisseria gonorrhoeae, with ca. 82 million cases reported worldwide annually. The rise of antibiotic resistance in N. gonorrhoeae poses a significant public health threat, highlighting the urgent need for alternative treatment strategies. By elucidating how N. gonorrhoeae responds to host-derived carbon sources such as L-lactate and glucose, this study offers insights into the metabolic adaptations crucial for bacterial survival and virulence during infection. Understanding these adaptations provides a foundation for developing novel therapeutic approaches targeting bacterial metabolism, iron homeostasis, and virulence gene expression. Moreover, the findings reported herein regarding biofilm formation and L-lactate transport and metabolism contribute to our understanding of N. gonorrhoeae pathogenesis, offering potential avenues for preventing and treating gonorrhea infections.
Collapse
Affiliation(s)
- Julio C. Ayala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of STD Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jacqueline T. Balthazar
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
2
|
Potter AD, Criss AK. Dinner date: Neisseria gonorrhoeae central carbon metabolism and pathogenesis. Emerg Top Life Sci 2024; 8:15-28. [PMID: 37144661 PMCID: PMC10625648 DOI: 10.1042/etls20220111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection gonorrhea, is a human-adapted pathogen that does not productively infect other organisms. The ongoing relationship between N. gonorrhoeae and the human host is facilitated by the exchange of nutrient resources that allow for N. gonorrhoeae growth in the human genital tract. What N. gonorrhoeae 'eats' and the pathways used to consume these nutrients have been a topic of investigation over the last 50 years. More recent investigations are uncovering the impact of N. gonorrhoeae metabolism on infection and inflammatory responses, the environmental influences driving N. gonorrhoeae metabolism, and the metabolic adaptations enabling antimicrobial resistance. This mini-review is an introduction to the field of N. gonorrhoeae central carbon metabolism in the context of pathogenesis. It summarizes the foundational work used to characterize N. gonorrhoeae central metabolic pathways and the effects of these pathways on disease outcomes, and highlights some of the most recent advances and themes under current investigation. This review ends with a brief description of the current outlook and technologies under development to increase understanding of how the pathogenic potential of N. gonorrhoeae is enabled by metabolic adaptation.
Collapse
Affiliation(s)
- Aimee D. Potter
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
3
|
Hosmer J, McEwan AG, Kappler U. Bacterial acetate metabolism and its influence on human epithelia. Emerg Top Life Sci 2024; 8:1-13. [PMID: 36945843 PMCID: PMC10903459 DOI: 10.1042/etls20220092] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Short-chain fatty acids are known modulators of host-microbe interactions and can affect human health, inflammation, and outcomes of microbial infections. Acetate is the most abundant but least well-studied of these modulators, with most studies focusing on propionate and butyrate, which are considered to be more potent. In this mini-review, we summarize current knowledge of acetate as an important anti-inflammatory modulator of interactions between hosts and microorganisms. This includes a summary of the pathways by which acetate is metabolized by bacteria and human cells, the functions of acetate in bacterial cells, and the impact that microbially derived acetate has on human immune function.
Collapse
Affiliation(s)
- Jennifer Hosmer
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | - Alastair G. McEwan
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
4
|
Central Role of Sibling Small RNAs NgncR_162 and NgncR_163 in Main Metabolic Pathways of Neisseria gonorrhoeae. mBio 2023; 14:e0309322. [PMID: 36598194 PMCID: PMC9973317 DOI: 10.1128/mbio.03093-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Small bacterial regulatory RNAs (sRNAs) have been implicated in the regulation of numerous metabolic pathways. In most of these studies, sRNA-dependent regulation of mRNAs or proteins of enzymes in metabolic pathways has been predicted to affect the metabolism of these bacteria. However, only in a very few cases has the role in metabolism been demonstrated. Here, we performed a combined transcriptome and metabolome analysis to define the regulon of the sibling sRNAs NgncR_162 and NgncR_163 (NgncR_162/163) and their impact on the metabolism of Neisseria gonorrhoeae. These sRNAs have been reported to control genes of the citric acid and methylcitric acid cycles by posttranscriptional negative regulation. By transcriptome analysis, we now expand the NgncR_162/163 regulon by several new members and provide evidence that the sibling sRNAs act as both negative and positive regulators of target gene expression. Newly identified NgncR_162/163 targets are mostly involved in transport processes, especially in the uptake of glycine, phenylalanine, and branched-chain amino acids. NgncR_162/163 also play key roles in the control of serine-glycine metabolism and, hence, probably affect biosyntheses of nucleotides, vitamins, and other amino acids via the supply of one-carbon (C1) units. Indeed, these roles were confirmed by metabolomics and metabolic flux analysis, which revealed a bipartite metabolic network with glucose degradation for the supply of anabolic pathways and the usage of amino acids via the citric acid cycle for energy metabolism. Thus, by combined deep RNA sequencing (RNA-seq) and metabolomics, we significantly extended the regulon of NgncR_162/163 and demonstrated the role of NgncR_162/163 in the regulation of central metabolic pathways of the gonococcus. IMPORTANCE Neisseria gonorrhoeae is a major human pathogen which infects more than 100 million people every year. An alarming development is the emergence of gonococcal strains that are resistant against virtually all antibiotics used for their treatment. Despite the medical importance and the vanishing treatment options of gonococcal infections, the bacterial metabolism and its regulation have been only weakly defined until today. Using RNA-seq, metabolomics, and 13C-guided metabolic flux analysis, we here investigated the gonococcal metabolism and its regulation by the previously studied sibling sRNAs NgncR_162/163. The results demonstrate the regulation of transport processes and metabolic pathways involved in the biosynthesis of nucleotides, vitamins, and amino acids by NgncR_162/163. In particular, the combination of transcriptome and metabolic flux analyses provides a heretofore unreached depth of understanding the core metabolic pathways and their regulation by the neisserial sibling sRNAs. This integrative approach may therefore also be suitable for the functional analysis of a growing number of other bacterial metabolic sRNA regulators.
Collapse
|
5
|
Biochemical Atypia in Russian Neisseria gonorrhoeae Clinical Isolates Belonging to the G807 NG-MAST Genogroup/ST1594 MLST. Microorganisms 2022; 10:microorganisms10112271. [DOI: 10.3390/microorganisms10112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Many current gonococcal clinical isolates in Russia show atypical taxonomically significant biochemical activity, which leads to species misidentification. Molecular typing of such cultures according Neisseria gonorrhoeae multiantigen sequence typing (NG-MAST) and multilocus sequence typing (MLST) protocols assigned them to the G807 NG-MAST GENOGROUP/ST1594 MLST that has been predominant in Russia in recent years. The goal of the study was to analyze the molecular mechanisms of biochemical atypia in N. gonorrhoeae clinical isolates characterized as the members of G807 NG-MAST GENOGROUP/ST1594 MLST. Sixteen isolates of this genogroup were included in the study, eight showed defective amino acid metabolism or loss of D-glucose fermentation. Comparative bioinformatic analysis based on WGS data divided these isolates into two clusters strictly associated with typical or atypical biochemical activity. Cultures with defective amino acid metabolism had a 5-nucleotide insertion in the pip-gene that caused a stop codon and led to synthesis of the non-functional enzyme. Comparison of the sequenced genomes with publicly available N. gonorrhoeae genomes showed the rarity of this insertion. In the global N. gonorrhoeae phylogenetic tree the G807 NG-MAST GENOGROUP/ST1594 MLST forms a distinct branch characterized by 170 SNPs, most of which are non-synonymous. We hypothesized a unique strategy for G807 NG-MAST GENOGROUP/ST1594 MLST clone persistence in the global N. gonorrhoeae population via escape of antimicrobial therapy due to diagnostic misidentification.
Collapse
|
6
|
Daniele S, Scarfò G, Ceccarelli L, Fusi J, Zappelli E, Biagini D, Lomonaco T, Di Francesco F, Franzoni F, Martini C. The Mediterranean Diet Positively Affects Resting Metabolic Rate and Salivary Microbiota in Human Subjects: A Comparison with the Vegan Regimen. BIOLOGY 2021; 10:biology10121292. [PMID: 34943207 PMCID: PMC8699008 DOI: 10.3390/biology10121292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/02/2023]
Abstract
Simple Summary Salivary microbiota has been shown to be individualized and influenced by genetic and environmental factors, including macronutrient intake and lifestyle. Herein, the effect of two long-term dietary patterns, the Mediterranean and the vegan diet, was analyzed on oral microbiota composition and metabolic profile of human subjects. Moreover, we correlated microbial species to metabolic parameters. Subjects following the Mediterranean diet had a wider spectrum of oral bacteria and a better metabolic profile compared to the vegan diet, confirming the positive effects of a Mediterranean diet. Abstract Salivary microbiota, comprising bacteria shed from oral surfaces, has been shown to be individualized, temporally stable, and influenced by macronutrient intake and lifestyle. Nevertheless, the effect of long-term dietary patterns on oral microbiota composition and the relationship between oral microbiota composition and metabolic rate remains to be examined. Herein, salivary microbiota composition and metabolic profile were analyzed in human subjects with vegan (VEG) or Mediterranean (MED) long-term dietary patterns. MED subjects presented significantly higher percentages of Subflava and Prevotella species as compared to VEG ones. Moreover, MED subjects showed a lower carbohydrate and a higher lipid consumption than VEG subjects, and, accordingly, a significantly higher basal metabolic rate (BMR) and a lower respiratory quotient (RQ). Prevotella abundance was demonstrated to be inversely related to RQ and carbohydrate consumption, whereas Subflava percentages were demonstrated to be positively correlated to BMR. Lactobacillus abundance, which was inversely related to Subflava presence in MED subjects, was associated with decreased BMR (Harris–Benedict) values. Overall, our data evidence the influence of macronutrient intake on metabolic profile and oral microbiota and confirm the positive effects of the Mediterranean diet on BMR and on the abundance of microbial species associated with a better macronutrient metabolism.
Collapse
Affiliation(s)
- Simona Daniele
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.D.); (L.C.); (E.Z.); (C.M.)
| | - Giorgia Scarfò
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (G.S.); (J.F.)
| | - Lorenzo Ceccarelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.D.); (L.C.); (E.Z.); (C.M.)
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Jonathan Fusi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (G.S.); (J.F.)
| | - Elisa Zappelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.D.); (L.C.); (E.Z.); (C.M.)
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56126 Pisa, Italy; (D.B.); (T.L.); (F.D.F.)
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56126 Pisa, Italy; (D.B.); (T.L.); (F.D.F.)
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56126 Pisa, Italy; (D.B.); (T.L.); (F.D.F.)
| | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (G.S.); (J.F.)
- Correspondence: ; Tel.: +39-050-2211857; Fax: +39-050-40834
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.D.); (L.C.); (E.Z.); (C.M.)
| |
Collapse
|
7
|
Neisseria gonorrhoeae PBP3 and PBP4 Facilitate NOD1 Agonist Peptidoglycan Fragment Release and Survival in Stationary Phase. Infect Immun 2019; 87:IAI.00833-18. [PMID: 30510100 DOI: 10.1128/iai.00833-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 01/16/2023] Open
Abstract
Neisseria gonorrhoeae releases peptidoglycan fragments during growth, and these molecules induce an inflammatory response in the human host. The proinflammatory molecules include peptidoglycan monomers, peptidoglycan dimers, and free peptides. These molecules can be released by the actions of lytic transglycosylases or an amidase. However, >40% of the gonococcal cell wall is cross-linked, where the peptide stem on one peptidoglycan strand is linked to the peptide stem on a neighboring strand, suggesting that endopeptidases may be required for the release of many peptidoglycan fragments. Therefore, we characterized mutants with individual or combined mutations in genes for the low-molecular-mass penicillin-binding proteins PBP3 and PBP4. Mutations in either dacB, encoding PBP3, or pbpG, encoding PBP4, did not significantly reduce the release of peptidoglycan monomers or free peptides. A mutation in dacB caused the appearance of a larger-sized peptidoglycan monomer, the pentapeptide monomer, and an increased release of peptidoglycan dimers, suggesting the involvement of this enzyme in both the removal of C-terminal d-Ala residues from stem peptides and the cleavage of cross-linked peptidoglycan. Mutation of both dacB and pbpG eliminated the release of tripeptide-containing peptidoglycan fragments concomitantly with the appearance of pentapeptide and dipeptide peptidoglycan fragments and higher-molecular-weight peptidoglycan dimers. In accord with the loss of tripeptide peptidoglycan fragments, the level of human NOD1 activation by the dacB pbpG mutants was significantly lower than that by the wild type. We conclude that PBP3 and PBP4 overlap in function for cross-link cleavage and that these endopeptidases act in the normal release of peptidoglycan fragments during growth.
Collapse
|
8
|
Vincent LR, Kerr SR, Tan Y, Tomberg J, Raterman EL, Dunning Hotopp JC, Unemo M, Nicholas RA, Jerse AE. In Vivo-Selected Compensatory Mutations Restore the Fitness Cost of Mosaic penA Alleles That Confer Ceftriaxone Resistance in Neisseria gonorrhoeae. mBio 2018; 9:e01905-17. [PMID: 29615507 PMCID: PMC5885032 DOI: 10.1128/mbio.01905-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/20/2018] [Indexed: 11/30/2022] Open
Abstract
Resistance to ceftriaxone in Neisseria gonorrhoeae is mainly conferred by mosaic penA alleles that encode penicillin-binding protein 2 (PBP2) variants with markedly lower rates of acylation by ceftriaxone. To assess the impact of these mosaic penA alleles on gonococcal fitness, we introduced the mosaic penA alleles from two ceftriaxone-resistant (Cror) clinical isolates (H041 and F89) into a Cros strain (FA19) by allelic exchange and showed that the resultant Cror mutants were significantly outcompeted by the Cros parent strain in vitro and in a murine infection model. Four Cror compensatory mutants of FA19 penA41 were isolated independently from mice that outcompeted the parent strain both in vitro and in vivo One of these compensatory mutants (LV41C) displayed a unique growth profile, with rapid log growth followed by a sharp plateau/gradual decline at stationary phase. Genome sequencing of LV41C revealed a mutation (G348D) in the acnB gene encoding the bifunctional aconitate hydratase 2/2 methylisocitrate dehydratase. Introduction of the acnBG348D allele into FA19 penA41 conferred both a growth profile that phenocopied that of LV41C and a fitness advantage, although not as strongly as that exhibited by the original compensatory mutant, suggesting the existence of additional compensatory mutations. The mutant aconitase appears to be a functional knockout with lower activity and expression than wild-type aconitase. Transcriptome sequencing (RNA-seq) analysis of FA19 penA41 acnBG348D revealed a large set of upregulated genes involved in carbon and energy metabolism. We conclude that compensatory mutations can be selected in Cror gonococcal strains that increase metabolism to ameliorate their fitness deficit.IMPORTANCE The emergence of ceftriaxone-resistant (Cror) Neisseria gonorrhoeae has led to the looming threat of untreatable gonorrhea. Whether Cro resistance is likely to spread can be predicted from studies that compare the relative fitnesses of susceptible and resistant strains that differ only in the penA gene that confers Cro resistance. We showed that mosaic penA alleles found in Cror clinical isolates are outcompeted by the Cros parent strain in vitro and in vivo but that compensatory mutations that allow ceftriaxone resistance to be maintained by increasing bacterial fitness are selected during mouse infection. One compensatory mutant that was studied in more detail had a mutation in acnB, which encodes the aconitase that functions in the tricarboxylic acid (TCA) cycle. This study illustrates that compensatory mutations can be selected during infection, which we hypothesize may allow the spread of Cro resistance in nature. This study also provides novel insights into gonococcal metabolism and physiology.
Collapse
Affiliation(s)
- Leah R Vincent
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Samuel R Kerr
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yang Tan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joshua Tomberg
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Erica L Raterman
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Julie C Dunning Hotopp
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Magnus Unemo
- World Health Organization Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Swedish Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Robert A Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Nabu S, Lawung R, Isarankura-Na-Ayudhya P, Isarankura-Na-Ayudhya C, Roytrakul S, Prachayasittikul V. Reference map and comparative proteomic analysis of Neisseria gonorrhoeae displaying high resistance against spectinomycin. J Med Microbiol 2014; 63:371-385. [PMID: 24567501 DOI: 10.1099/jmm.0.067595-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A proteome reference map of Neisseria gonorrhoeae was successfully established using two-dimensional gel electrophoresis in conjunction with matrix-assisted laser desorption ionization-time of flight mass spectrometry. This map was further applied to compare protein expression profiles of high-level spectinomycin-resistant (clinical isolate) and -susceptible (reference strain) N. gonorrhoeae following treatment with subminimal inhibitory concentrations (subMICs) of spectinomycin. Approximately 200 protein spots were visualized by Coomassie brilliant blue G-250 staining and 66 spots representing 58 unique proteins were subsequently identified. Most of the identified proteins were analysed as cytoplasmic proteins and belonged to the class of energy metabolism. Comparative proteomic analysis of whole protein expression of susceptible and resistant gonococci showed up to 96% similarity while eight proteins were found to be differentially expressed in the resistant strain. In the presence of subMICs of spectinomycin, it was found that 50S ribosomal protein L7/L12, an essential component for ribosomal translocation, was upregulated in both strains, ranging from 1.5- to 3.5-fold, suggesting compensatory mechanisms of N. gonorrhoeae in response to antibiotic that inhibits protein synthesis. Moreover, the differential expression of proteins involved in energy metabolism, amino acid biosynthesis, and the cell envelope was noticeably detected, indicating significant cellular responses and adaptation against antibiotic stress. Such knowledge provides valuable data, not only fundamental proteomic data, but also knowledge of the mode of action of antibiotic and secondary target proteins implicated in adaptation and compensatory mechanisms.
Collapse
Affiliation(s)
- Sunanta Nabu
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Ratana Lawung
- Center of Medical Laboratory Services, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.,Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | | | | | - Sittiruk Roytrakul
- Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
10
|
Atack JM, Ibranovic I, Ong CLY, Djoko KY, Chen NH, Vanden Hoven R, Jennings MP, Edwards JL, McEwan AG. A role for lactate dehydrogenases in the survival of Neisseria gonorrhoeae in human polymorphonuclear leukocytes and cervical epithelial cells. J Infect Dis 2014; 210:1311-8. [PMID: 24737798 DOI: 10.1093/infdis/jiu230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Lactate is an abundant metabolite, produced by host tissues and commensal organisms, and it represents an important potential carbon source for bacterial pathogens. In the case of Neisseria spp., the importance of the lactate permease in colonization of the host has been demonstrated, but there have been few studies of lactate metabolism in pathogenic Neisseria in the postgenomic era. We describe herein the characterization of genome-annotated, respiratory, and substrate-level lactate dehydrogenases (LDHs) from the obligate human pathogen Neisseria gonorrhoeae. Biochemical assays using N. gonorrhoeae 1291 wild type and isogenic mutant strains showed that cytoplasmic LdhA (NAD(+)-dependent D-lactate dehydrogenase) and the membrane-bound respiratory enzymes, LdhD (D-lactate dehydrogenase) and LldD (L-lactate dehydrogenase) are correctly annotated. Mutants lacking LdhA and LdhD showed greatly reduced survival in neutrophils compared with wild type cells, highlighting the importance of D-lactate metabolism in gonococcal survival. Furthermore, an assay of host colonization using the well-established human primary cervical epithelial cell model revealed that the two respiratory enzymes make a significant contribution to colonization of and survival within the microaerobic environment of the host. Taken together, these data suggest that host-derived lactate is critical for the growth and survival of N. gonorrhoeae in human cells.
Collapse
Affiliation(s)
- John M Atack
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Ines Ibranovic
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane
| | - Cheryl-Lynn Y Ong
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane
| | - Karrera Y Djoko
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane
| | - Nathan H Chen
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane
| | - Rachel Vanden Hoven
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane
| | - Michael P Jennings
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Jennifer L Edwards
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane
| |
Collapse
|
11
|
Isabella VM, Clark VL. Deep sequencing-based analysis of the anaerobic stimulon in Neisseria gonorrhoeae. BMC Genomics 2011; 12:51. [PMID: 21251255 PMCID: PMC3032703 DOI: 10.1186/1471-2164-12-51] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maintenance of an anaerobic denitrification system in the obligate human pathogen, Neisseria gonorrhoeae, suggests that an anaerobic lifestyle may be important during the course of infection. Furthermore, mounting evidence suggests that reduction of host-produced nitric oxide has several immunomodulary effects on the host. However, at this point there have been no studies analyzing the complete gonococcal transcriptome response to anaerobiosis. Here we performed deep sequencing to compare the gonococcal transcriptomes of aerobically and anaerobically grown cells. Using the information derived from this sequencing, we discuss the implications of the robust transcriptional response to anaerobic growth. RESULTS We determined that 198 chromosomal genes were differentially expressed (~10% of the genome) in response to anaerobic conditions. We also observed a large induction of genes encoded within the cryptic plasmid, pJD1. Validation of RNA-seq data using translational-lacZ fusions or RT-PCR demonstrated the RNA-seq results to be very reproducible. Surprisingly, many genes of prophage origin were induced anaerobically, as well as several transcriptional regulators previously unknown to be involved in anaerobic growth. We also confirmed expression and regulation of a small RNA, likely a functional equivalent of fnrS in the Enterobacteriaceae family. We also determined that many genes found to be responsive to anaerobiosis have also been shown to be responsive to iron and/or oxidative stress. CONCLUSIONS Gonococci will be subject to many forms of environmental stress, including oxygen-limitation, during the course of infection. Here we determined that the anaerobic stimulon in gonococci was larger than previous studies would suggest. Many new targets for future research have been uncovered, and the results derived from this study may have helped to elucidate factors or mechanisms of virulence that may have otherwise been overlooked.
Collapse
Affiliation(s)
- Vincent M Isabella
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Virginia L Clark
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
12
|
The fbpABC operon is required for Ton-independent utilization of xenosiderophores by Neisseria gonorrhoeae strain FA19. Infect Immun 2010; 79:267-78. [PMID: 21041493 DOI: 10.1128/iai.00807-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae produces no known siderophores but can employ host-derived, iron-binding proteins, including transferrin and lactoferrin, as iron sources. Given the propensity of this pathogen to hijack rather than synthesize iron-sequestering molecules, we hypothesized that the ability to use siderophores produced by other bacteria, or xenosiderophores, may also play a role in the survival of the gonococcus. Among a panel of diverse siderophores, only the catecholate xenosiderophores enterobactin and salmochelin promoted growth of gonococcal strain FA19. Surprisingly, the internalization pathway was independent of TonB or any of the TonB-dependent transporters. Xenosiderophore-mediated growth was similarly independent of the pilin-extruding secretin formed by PilQ and of the hydrophobic-agent efflux system composed of MtrCDE. The fbpABC operon encodes a periplasmic-binding-protein-dependent ABC transport system that enables the gonococcus to transport iron into the cell subsequent to outer membrane translocation. We hypothesized that the FbpABC proteins, required for ferric iron transport from transferrin and lactoferrin, might also contribute to the utilization of xenosiderophores as iron sources. We created mutants that conditionally expressed FbpABC from an IPTG-inducible promoter. We determined that expression of FbpABC was required for growth of gonococcal strain FA19 in the presence of enterobactin and salmochelin. The monomeric component of enterobactin, dihydroxybenzoylserine (DHBS), and the S2 form of salmochelin specifically promoted FbpABC-dependent growth of FA19. This study demonstrated that the gonococcal FbpABC transport system is required for utilization of some xenosiderophores as iron sources and that growth promotion by these ferric siderophores can occur in the absence of TonB or individual TonB-dependent transporters.
Collapse
|
13
|
Abstract
Previous studies have confirmed the association of the acid producers Streptococcus mutans and Lactobacillus spp. with childhood caries, but they also suggested these microorganisms are not sufficient to explain all cases of caries. In addition, health-associated bacterial community profiles are not well understood, including the importance of base production and acid catabolism in pH homeostasis. The bacterial community composition in health and in severe caries of the young permanent dentition was compared using Sanger sequencing of the ribosomal 16S rRNA genes. Lactobacillus species were dominant in severe caries, and levels rose significantly as caries progressed from initial to deep lesions. S. mutans was often observed at high levels in the early stages of caries but also in some healthy subjects and was not statistically significantly associated with caries progression in the overall model. Lactobacillus or S. mutans was found either at low levels or not present in several samples. Other potential acid producers observed at high levels in these subjects included strains of Selenomonas, Neisseria, and Streptococcus mitis. Propionibacterium FMA5 was significantly associated with caries progression but was not found at high levels. An overall loss of community diversity occurred as caries progressed, and species that significantly decreased included the Streptococcus mitis-S. pneumoniae-S. infantis group, Corynebacterium matruchotii, Streptococcus gordonii, Streptococcus cristatus, Capnocytophaga gingivalis, Eubacterium IR009, Campylobacter rectus, and Lachnospiraceae sp. C1. The relationship of acid-base metabolism to 16S rRNA gene-based species assignments appears to be complex, and metagenomic approaches that would allow functional profiling of entire genomes will be helpful in elucidating the microbial pathogenesis of caries.
Collapse
|
14
|
Wu HJ, Seib KL, Srikhanta YN, Edwards J, Kidd SP, Maguire TL, Hamilton A, Pan KT, Hsiao HH, Yao CW, Grimmond SM, Apicella MA, McEwan AG, Wang AHJ, Jennings MP. Manganese regulation of virulence factors and oxidative stress resistance in Neisseria gonorrhoeae. J Proteomics 2009; 73:899-916. [PMID: 20004262 DOI: 10.1016/j.jprot.2009.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 11/13/2009] [Accepted: 12/01/2009] [Indexed: 01/19/2023]
Abstract
Neisseria gonorrhoeae has evolved a complex and novel network of oxidative stress responses, including defence mechanisms that are dependent on manganese (Mn). We performed systematic analyses at the transcriptomic and proteomic (1D SDS-PAGE and Isotope-Coded Affinity Tag [ICAT]) levels to investigate the global expression changes that take place in a high Mn environment, which results in a Mn-dependent oxidative stress resistance phenotype. These studies revealed that there were proteins regulated at the post-transcriptional level under conditions of increased Mn concentration, including proteins involved in virulence (e.g., pilin, a key adhesin), oxidative stress defence (e.g., superoxide dismutase), cellular metabolism, protein synthesis, RNA processing and cell division. Mn regulation of inorganic pyrophosphatase (Ppa) indicated the potential involvement of phosphate metabolism in the Mn-dependent oxidative stress defence. A detailed analysis of the role of Ppa and polyphosphate kinase (Ppk) in the gonococcal oxidative stress response revealed that ppk and ppa mutant strains showed increased resistance to oxidative stress. Investigation of these mutants grown with high Mn suggests that phosphate and pyrophosphate are involved in Mn-dependent oxidative stress resistance.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Core Facilities for Proteomics Research, Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Baart GJE, Willemsen M, Khatami E, de Haan A, Zomer B, Beuvery EC, Tramper J, Martens DE. Modeling Neisseria meningitidis B metabolism at different specific growth rates. Biotechnol Bioeng 2008; 101:1022-35. [PMID: 18942773 DOI: 10.1002/bit.22016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neisseria meningitidis is a human pathogen that can infect diverse sites within the human host. The major diseases caused by N. meningitidis are responsible for death and disability, especially in young infants. At the Netherlands Vaccine Institute (NVI) a vaccine against serogroup B organisms is currently being developed. This study describes the influence of the growth rate of N. meningitidis on its macro-molecular composition and its metabolic activity and was determined in chemostat cultures. In the applied range of growth rates, no significant changes in RNA content and protein content with growth rate were observed in N. meningitidis. The DNA content in N. meningitidis was somewhat higher at the highest applied growth rate. The phospholipid and lipopolysaccharide content in N. meningitidis changed with growth rate but no specific trends were observed. The cellular fatty acid composition and the amino acid composition did not change significantly with growth rate. Additionally, it was found that the PorA content in outer membrane vesicles was significantly lower at the highest growth rate. The metabolic fluxes at various growth rates were calculated using flux balance analysis. Errors in fluxes were calculated using Monte Carlo Simulation and the reliability of the calculated flux distribution could be indicated, which has not been reported for this type of analysis. The yield of biomass on substrate (Y(x/s)) and the maintenance coefficient (m(s)) were determined as 0.44 (+/-0.04) g g(-1) and 0.04 (+/-0.02) g g(-1) h(-1), respectively. The growth associated energy requirement (Y(x/ATP)) and the non-growth associated ATP requirement for maintenance (m(ATP)) were estimated as 0.13 (+/-0.04) mol mol(-1) and 0.43 (+/-0.14) mol mol(-1) h(-1), respectively. It was found that the split ratio between the Entner-Doudoroff and the pentose phosphate pathway, the sole glucose utilizing pathways in N. meningitidis, had a minor effect on ATP formation rate but a major effect on the fluxes going through for instance the citric-acid cycle. For this reason, we presented flux ranges for underdetermined parts of metabolic network rather than presenting single flux values, which is more commonly done in literature.
Collapse
Affiliation(s)
- Gino J E Baart
- Netherlands Vaccine Institute (NVI), Unit Research & Development, PO Box 457, 3720AL Bilthoven, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Baart GJE, Zomer B, de Haan A, van der Pol LA, Beuvery EC, Tramper J, Martens DE. Modeling Neisseria meningitidis metabolism: from genome to metabolic fluxes. Genome Biol 2008; 8:R136. [PMID: 17617894 PMCID: PMC2323225 DOI: 10.1186/gb-2007-8-7-r136] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 03/16/2007] [Accepted: 07/06/2007] [Indexed: 01/22/2023] Open
Abstract
A genome-scale flux model for primary metabolism of Neisseria meningitidis was constructed; a minimal medium for growth of N. meningitidis was designed using the model and tested successfully in batch and chemostat cultures. Background Neisseria meningitidis is a human pathogen that can infect diverse sites within the human host. The major diseases caused by N. meningitidis are responsible for death and disability, especially in young infants. In general, most of the recent work on N. meningitidis focuses on potential antigens and their functions, immunogenicity, and pathogenicity mechanisms. Very little work has been carried out on Neisseria primary metabolism over the past 25 years. Results Using the genomic database of N. meningitidis serogroup B together with biochemical and physiological information in the literature we constructed a genome-scale flux model for the primary metabolism of N. meningitidis. The validity of a simplified metabolic network derived from the genome-scale metabolic network was checked using flux-balance analysis in chemostat cultures. Several useful predictions were obtained from in silico experiments, including substrate preference. A minimal medium for growth of N. meningitidis was designed and tested succesfully in batch and chemostat cultures. Conclusion The verified metabolic model describes the primary metabolism of N. meningitidis in a chemostat in steady state. The genome-scale model is valuable because it offers a framework to study N. meningitidis metabolism as a whole, or certain aspects of it, and it can also be used for the purpose of vaccine process development (for example, the design of growth media). The flux distribution of the main metabolic pathways (that is, the pentose phosphate pathway and the Entner-Douderoff pathway) indicates that the major part of pyruvate (69%) is synthesized through the ED-cleavage, a finding that is in good agreement with literature.
Collapse
Affiliation(s)
- Gino JE Baart
- Unit Research & Development, Netherlands Vaccine Institute (NVI), PO Box 457, 3720 AL Bilthoven, The Netherlands
- Food and Bioprocess Engineering Group, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Bert Zomer
- Unit Research & Development, Netherlands Vaccine Institute (NVI), PO Box 457, 3720 AL Bilthoven, The Netherlands
| | - Alex de Haan
- Unit Research & Development, Netherlands Vaccine Institute (NVI), PO Box 457, 3720 AL Bilthoven, The Netherlands
| | - Leo A van der Pol
- Unit Research & Development, Netherlands Vaccine Institute (NVI), PO Box 457, 3720 AL Bilthoven, The Netherlands
| | - E Coen Beuvery
- PAT Consultancy, Kerkstraat 66, 4132 BG Vianen, The Netherlands
| | - Johannes Tramper
- Food and Bioprocess Engineering Group, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Dirk E Martens
- Food and Bioprocess Engineering Group, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| |
Collapse
|
17
|
Spence JM, Wright L, Clark VL. Laboratory Maintenance of
Neisseria gonorrhoeae. ACTA ACUST UNITED AC 2008; Chapter 4:Unit 4A.1. [DOI: 10.1002/9780471729259.mc04a01s8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Exley RM, Wu H, Shaw J, Schneider MC, Smith H, Jerse AE, Tang CM. Lactate acquisition promotes successful colonization of the murine genital tract by Neisseria gonorrhoeae. Infect Immun 2006; 75:1318-24. [PMID: 17158905 PMCID: PMC1828543 DOI: 10.1128/iai.01530-06] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies on Neisseria gonorrhoeae have demonstrated that metabolism of lactate in the presence of glucose increases the growth rate of the bacterium and enhances its resistance to complement-mediated killing. Although these findings in vitro suggest that the acquisition of lactate promotes gonococcal colonization, the significance of this carbon source to the survival of the gonococcus in vivo remains unknown. To investigate the importance of lactate utilization during Neisseria gonorrhoeae genital tract infection, we identified the gene lctP, which encodes the gonococcal lactate permease. A mutant that lacks a functional copy of lctP was unable to take up exogenous lactate and did not grow in defined medium with lactate as the sole carbon source, in contrast to the wild-type and complemented strains; the mutant strain exhibited no growth defect in defined medium containing glucose. In defined medium containing physiological concentrations of lactate and glucose, the lctP mutant demonstrated reduced early growth and increased sensitivity to complement-mediated killing compared with the wild-type strain; the enhanced susceptibility to complement was associated with a reduction in lipopolysaccharide sialylation of the lctP mutant. The importance of lactate utilization during colonization was evaluated in the murine model of lower genital tract infection. The lctP mutant was significantly attenuated in its ability to colonize and survive in the genital tract, while the complemented mutant exhibited no defect for colonization. Lactate is a micronutrient in the genital tract that contributes to the survival of the gonococcus.
Collapse
Affiliation(s)
- Rachel M Exley
- The Centre for Molecular Microbiology and Infection, Department of Infectious Diseases, Flowers Building, Imperial College London, Armstrong Road, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
19
|
Baruque-Ramos J, Hiss H, Converti A, Gonçalves VM, Raw I. Accumulation of organic acids in cultivations of Neisseria meningitidis C. J Ind Microbiol Biotechnol 2006; 33:869-77. [PMID: 16736170 DOI: 10.1007/s10295-006-0141-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
Aiming at the industrial production of serogroup C meningococcal vaccine, different experimental protocols were tested to cultivate Neisseria meningitidis C and to investigate the related organic acid release. Correlations were established between specific rates of acetic acid and lactic acid accumulation and specific growth rate, during cultivations carried out on the Frantz medium in a 13 l bioreactor at 35 degrees C, 0.5 atm, 400 rpm and air flowrate of 2 l min(-1). A first set of nine batch runs was carried out: (1) with control of dissolved oxygen (O2) at 10% of its saturation point, (2) with control of pH at 6.5, and (3) without any control, respectively. Additional fed-batch or partial fed-batch cultivations were performed without dissolved O2 control, varying glucose concentration from 1.0 to 3.0 g l(-1), nine of which without pH control and other two with pH control at 6.5. No significant organic acid level was detected with dissolved O2 control, whereas acetic acid formation appeared to depend on biomass growth either in the absence of any pH and dissolved O2 control or when the pH was kept at 6.5. Under these last conditions, lactic acid was released as well, but it did not seem to be associated to biomass growth. A survey of possible metabolic causes of this behavior suggested that N. meningitidis may employ different metabolic pathways for the carbon source uptake depending on the cultivation conditions.
Collapse
Affiliation(s)
- Júlia Baruque-Ramos
- Universidade de São Paulo (EACH-USP), Av. Arlindo Bettio, 1000, 03828-000, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
20
|
Porter E, Yang H, Yavagal S, Preza GC, Murillo O, Lima H, Greene S, Mahoozi L, Klein-Patel M, Diamond G, Gulati S, Ganz T, Rice PA, Quayle AJ. Distinct defensin profiles in Neisseria gonorrhoeae and Chlamydia trachomatis urethritis reveal novel epithelial cell-neutrophil interactions. Infect Immun 2005; 73:4823-33. [PMID: 16040996 PMCID: PMC1201278 DOI: 10.1128/iai.73.8.4823-4833.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Defensins are key participants in mucosal innate defense. The varied antimicrobial activity and differential distribution of defensins at mucosal sites indicate that peptide repertoires are tailored to site-specific innate defense requirements. Nonetheless, few studies have investigated changes in peptide profiles and function after in vivo pathogen challenge. Here, we determined defensin profiles in urethral secretions of healthy men and men with Chlamydia trachomatis- and Neisseria gonorrhoeae-mediated urethritis by immunoblotting for the epithelial defensins HBD1, HBD2, and HD5 and the neutrophil defensins HNP1 to -3 (HNP1-3). HBD1 was not detectable in secretions, and HBD2 was only induced in a small proportion of the urethritis patients; however, HD5 and HNP1-3 were increased in C. trachomatis infection and significantly elevated in N. gonorrhoeae infection. When HNP1-3 levels were low, HD5 appeared mostly as the propeptide; however, when HNP1-3 levels were >10 microg/ml, HD5 was proteolytically processed, suggesting neutrophil proteases might contribute to HD5 processing. HD5 and HNP1-3 were bactericidal against C. trachomatis and N. gonorrhoeae, but HD5 activity was dependent upon N-terminal processing of the peptide. In vitro proteolysis of proHD5 by neutrophil proteases and analysis of urethral secretions by surface-enhanced laser desorption ionization substantiated that neutrophils contribute the key convertases for proHD5 in the urethra during these infections. This contrasts with the small intestine, where Paneth cells secrete both proHD5 and its processing enzyme, trypsin. In conclusion, we describe a unique defensin expression repertoire in response to inflammatory sexually transmitted infections and a novel host defense mechanism wherein epithelial cells collaborate with neutrophils to establish an antimicrobial barrier during infection.
Collapse
Affiliation(s)
- Edith Porter
- Department of Biological Sciences, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Baruque-Ramos J, Hiss H, de Arauz LJ, Mota RL, Ricci-Silva ME, da Paz MF, Tanizaki MM, Raw I. Polysaccharide production of Neisseria meningitidis (Serogroup C) in batch and fed-batch cultivations. Biochem Eng J 2005. [DOI: 10.1016/j.bej.2005.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Bhasin N, Ho Y, Wetzler LM. Neisseria meningitidis lipopolysaccharide modulates the specific humoral immune response to neisserial porins but has no effect on porin-induced upregulation of costimulatory ligand B7-2. Infect Immun 2001; 69:5031-6. [PMID: 11447183 PMCID: PMC98597 DOI: 10.1128/iai.69.8.5031-5036.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of lipopolysaccharide (LPS) in the specific humoral response to meningococcal porins was investigated by measuring anti-PorA or -PorB antibody levels in mice immunized with wild-type meningococcal strain H44/76 or with its recently described LPS-negative mutant. Two murine strains were used for these immunizations: C3H/HeJ, which is LPS hyporesponsive, or C3H/HeOuJ, which is LPS responsive. A high level of anti-PorB immunoglobulin G (IgG) response was induced in both strains of mice immunized with either organism. The response induced by the wild-type strain was greater in C3H/HeOuJ mice than in C3H/HeJ mice, while the response induced by the LPS-negative mutant was similar in the two murine strains. Additionally, the anti-PorB response was similar in C3H/HeJ mice immunized with either bacterial strain. In general, the anti-PorA IgG response was lower than the anti-PorB response. These findings indicate that the presence of LPS is not essential for the induction of an antineisserial porin humoral response but can augment such a response. To determine whether LPS has any effect on the B-cell-stimulatory effect of neisserial porins (essential for the adjuvant activity of neisserial porins), B cells from both murine strains were incubated with outer membrane complexes (OMCs) prepared from strain H44/76 and its LPS-negative mutant. OMCs from either meningococcal strain were able to increase the surface expression of the costimulatory ligand B7-2 on B cells from either murine strain. Consistent with previously reported findings, LPS does not significantly affect the ability of neisserial porins to induce the costimulatory ligand B7-2.
Collapse
Affiliation(s)
- N Bhasin
- Division of Infectious Diseases, Boston University School of Medicine and Evans Biomedical Research Center, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
23
|
McGee DJ, Rest RF. Regulation of gonococcal sialyltransferase, lipooligosaccharide, and serum resistance by glucose, pyruvate, and lactate. Infect Immun 1996; 64:4630-7. [PMID: 8890217 PMCID: PMC174423 DOI: 10.1128/iai.64.11.4630-4637.1996] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Strain F62 of Neisseria gonorrhoeae gonococci (GC) is sensitive to normal human serum unless CMP-N-acetylneuraminic acid (CMP-NANA) is present. NANA is transferred primarily to a 4.5-kDa lipooligosaccharide (LOS) structure by a GC sialyltransferase (Stase). We investigated LOS and Stase expression and serum resistance in strain F62 grown in different carbon sources and growth conditions. Pyruvate-grown GC expressed 1.9- to 5.6-fold more Stase activity than did glucose-grown GC, whereas lactate-grown GC generally expressed intermediate Stase activities. Broth-grown GC expressed two- to fourfold more Stase activity than did plate-grown GC in all carbon sources. Pyruvate- or lactate-grown GC expressed significantly more of the sialylateable 4.5-kDa LOS species than did glucose-grown GC. Anaerobically, the 4.5-kDa LOS species was expressed in greater quantity than the 4.9-kDa N-acetyl galactosamine-terminating species in all carbon sources. Pyruvate-grown GC also incorporated up to threefold more radiolabelled CMP-NANA onto the 4.5-kDa LOS species than did glucose-grown GC. In serum resistance studies, pyruvate-grown GC were 6.5- to 16.1-fold more serum resistant than glucose-grown GC at limiting CMP-NANA concentrations (1.56 to 12.50 microg/ml). Taken together, these results indicate that gonococcal expression of Stase activity is up-regulated by growth in pyruvate or lactate, which correlates with enhanced expression of the sialylateable 4.5-kDa LOS and, for growth in pyruvate, correlates with enhanced sialylation of gonococcal LOS and greater serum resistance. In different in vivo niches, gonococcal LOS sialylation, serum resistance, and interaction with host cells can be highly regulated.
Collapse
Affiliation(s)
- D J McGee
- Department of Microbiology and Immunology, MCP-Hahnemann School of Medicine, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19129, USA
| | | |
Collapse
|
24
|
Gill MJ, McQuillen DP, van Putten JP, Wetzler LM, Bramley J, Crooke H, Parsons NJ, Cole JA, Smith H. Functional characterization of a sialyltransferase-deficient mutant of Neisseria gonorrhoeae. Infect Immun 1996; 64:3374-8. [PMID: 8757878 PMCID: PMC174232 DOI: 10.1128/iai.64.8.3374-3378.1996] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Previous studies indicate that sialylation of lipopolysaccharide (LPS) by host CMP-N-acetylneuraminic acid (CMP-NANA) catalyzed by bacterial sialyltransferase rendered gonococci resistant to killing by phagocytes, to entry into epithelial cell lines, to killing by immune serum and complement, and to absorption of complement component C3. These results have been confirmed by comparing a sialyltransferase-deficient mutant (strain JB1) with its parent (strain F62) in appropriate tests. In contrast to F62, JB1 was very susceptible to killing by human polymorphonuclear phagocytes in opsonophagocytosis tests and incubation with CMP-NANA did not decrease the level of killing. The inherent resistance of F62 in these tests was probably due to LPS sialylation by CMP-NANA and lactate present in the phagocytes. A JB1 variant expressing the invasion-associated Opa protein was as able to enter Chang human conjunctiva epithelial cells as an Opa-positive variant of F62, suggesting that the sialyltransferase is not required for Opa-mediated entry. After incubation with CMP-NANA, the number of F62 variant gonococci entering cells but not that of JB1 variant gonococci was drastically reduced. Both JB1 and F62 were killed by incubation with rabbit antibody to gonococcal major outer membrane protein, protein I, and human complement, but only F62 was rendered resistant to the killing by incubation with CMP-NANA. Finally, both JB1 and F62 absorbed similar amounts of complement component C3 and the binding was decreased by incubation with CMP-NANA only for the wild type, F62.
Collapse
Affiliation(s)
- M J Gill
- Department of Infection, Medical School, University of Birmingham, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fu J, Bailey FJ, King JJ, Parker CB, Robinett RS, Kolodin DG, George HA, Herber WK. Recent advances in the large scale fermentation of Neisseria meningitidis group B for the production of an outer membrane protein complex. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1995; 13:170-4. [PMID: 9634759 DOI: 10.1038/nbt0295-170] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Outer Membrane Protein Complex (OMPC) of the bacterium Neisseria meningitidis group B has been used successfully as a protein carrier in a Haemophilus influenza type b (Hib) polysaccharide conjugate vaccine and a Streptococcus pneumoniae (Pn) polysaccharide conjugate vaccine to elicit antipolysaccharide immune responses in young infants. The OMPC carrier is derived by detergent extraction of whole cells and, thus, the consistent generation of suitable biomass is central to an effective production process. Therefore, we have developed a large-scale, high-cell density (5 g/L dry cell weight) fermentation process for the cultivation of N. meningitidis B11. Since current requirements for the production of human biologics mandate strict control of all aspects of the manufacturing process, several key features of the process, including a chemically defined medium and a rational event-based harvest criterion, support current good manufacturing practice (cGMP) and increased productivity.
Collapse
Affiliation(s)
- J Fu
- Department of Virus & Cell Biology, West Point, PA 19486, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Fischer RS, Martin GC, Rao P, Jensen RA. Neisseria gonorrhoeae possesses two nicotinamide adenine dinucleotide-independent lactate dehydrogenases. FEMS Microbiol Lett 1994; 115:39-44. [PMID: 8125245 DOI: 10.1111/j.1574-6968.1994.tb06611.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
An important metabolic capability of Neisseria gonorrhoeae is the utilization of host-derived lactate. Two isoenzymes of the membrane-associated, pyridine dinucleotide-independent type of lactate dehydrogenase (iLDH) participate in lactate assimilation, but exhibit distinctive properties. Isoenzyme iLDH-I utilized lactate exclusively as substrate, exhibiting a preference for the D-isomer. In contrast, isoenzyme iLDH-II exhibited broad substrate specificity (lactate, phenyllactate, and 4-hydroxyphenyllactate), but was stereospecific for the L-isomers. These results explain the difficulty in isolating mutants unable to utilize lactate.
Collapse
Affiliation(s)
- R S Fischer
- Department of Microbiology and Cell Science, University of Florida, Gainesville 32611
| | | | | | | |
Collapse
|
27
|
Affiliation(s)
- D P McQuillen
- Maxwell Finland Laboratory for Infectious Diseases, Boston City Hospital, Boston University School of Medicine, Massachusetts 02118
| | | | | |
Collapse
|
28
|
Abstract
The Entner-Doudoroff pathway is now known to be very widely distributed in nature. Biochemical and physiological studies show that the Entner-Doudoroff pathway can operate in a linear and catabolic mode, in a 'cyclic' mode, in a modified mode involving non-phosphorylated intermediates, or in alternative modes involving C1 metabolism and anabolism. Molecular and genetic analyses of the Entner-Doudoroff pathway in Zymomonas mobilis, Escherichia coli and Pseudomonas aeruginosa have led to an improved understanding of some fundamental aspects of metabolic controls. It can be argued that the Entner-Doudoroff pathway is more primitive than Embden-Meyerhof-Parnas glycolysis.
Collapse
Affiliation(s)
- T Conway
- School of Biological Sciences, University of Nebraska, Lincoln 68588-0118
| |
Collapse
|
29
|
Le Faou AE, Morse SA. Characterization of a soluble ferric reductase from Neisseria gonorrhoeae. BIOLOGY OF METALS 1991; 4:126-31. [PMID: 1908693 DOI: 10.1007/bf01135390] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An NADH-dependent ferric reductase was identified in extracts of Neisseria gonorrhoeae. Enzyme activity was measured in an assay using ferrozine as the ferrous iron acceptor. Ferric reductase activity was enhanced by Mg2+ and flavine nucleotides. The enzyme reduced both citrate- and diphosphate-bound ferric iron as well as ferric hydroxide (Imferon). However, no activity was observed with either 30%-iron-saturated transferrin or with the gonococcal iron-binding protein, Fbp. The ferric reductase was found primarily within the cytoplasmic cell fraction. The soluble ferric reductase was purified 110-fold by ammonium sulfate precipitation, gel and anion-exchange chromatography. Results obtained following gel chromatography and SDS/polyacrylamide gel electrophoresis suggested that the enzyme had a molecular mass of about 25 kDa.
Collapse
Affiliation(s)
- A E Le Faou
- Division of Sexually Transmitted Diseases Laboratory Research, Centers for Disease Control, Atlanta, Georgia 30333
| | | |
Collapse
|
30
|
Petzel JP, Hartman PA. Aromatic Amino Acid Biosynthesis and Carbohydrate Catabolism in Strictly Anaerobic Mollicutes (Anaeroplasma spp.). Syst Appl Microbiol 1990. [DOI: 10.1016/s0723-2020(11)80192-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Petzel JP, McElwain MC, DeSantis D, Manolukas J, Williams MV, Hartman PA, Allison MJ, Pollack JD. Enzymic activities of carbohydrate, purine, and pyrimidine metabolism in the Anaeroplasmataceae (class Mollicutes). Arch Microbiol 1989; 152:309-16. [PMID: 2818126 DOI: 10.1007/bf00425166] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cell-free extracts of two strictly anaerobic mollicutes, Anaeroplasma intermedium 5LA and Asteroleplasma anaerobium 161T, were tested for enzymic activities of intracellular carbohydrate metabolism. Asteroleplasma anaerobium was also tested for enzymes of purine and pyrimidine metabolism. Both organisms had enzymic activities associated with the nonoxidative portion of the pentose phosphate pathway, and with the Embden-Meyerhoff-Parnas pathway. The 6-phosphofructokinase (PFK) of Asteroleplasma anaerobium was ATP-dependent, whereas the PFK of Anaeroplasma intermedium was PPi-dependent. The two anaerobic mollicutes also differed with respect to the enzymes that converted phosphoenolpyruvate (PEP) to pyruvate; Anaeroplasma intermedium had pyruvate kinase activity, but Asteroleplasma anaerobium had pyruvate, orthophosphate dikinase activity (PPi-dependent). Both organisms had lactate dehydrogenase activity which was activated by fructose 1,6-bisphosphate (Fru-1,6-P2). Anaeroplasma intermedium had activity for PEP carboxykinase (activated by Fru-1,6-P2), but Asteroleplasma anaerobium did not. PEP carboxytransphosphorylase activity was not detected in either organism. Anaeroplasma intermedium had malate dehydrogenase and isocitrate dehydrogenase activities, but it had no activities for the three other tricarboxylic acid cycle enzymes examined; Asteroleplasma anaerobium had malate dehydrogenase activity only. Asteroleplasma anaerobium had enzymic activities for the interconversion of purine nucleobases, (deoxy)ribonucleosides, and (deoxy)ribomononucleotides, including PPi-dependent nucleoside kinase, reported heretofore only in some other mollicutes. Asteroleplasma anaerobium could synthesize dTDP by the thymine salvage pathway if deoxyribose 1-phosphate was provided, and it had dUTPase, ATPase, and dCMP kinase activities. It lacked (deoxy)cytidine deaminase, dCMP deaminase, and deoxycytidine kinase activities.
Collapse
Affiliation(s)
- J P Petzel
- Department of Microbiology, Iowa State University, Ames 50011-3211
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Fu HS, Hassett DJ, Cohen MS. Oxidant stress in Neisseria gonorrhoeae: adaptation and effects on L-(+)-lactate dehydrogenase activity. Infect Immun 1989; 57:2173-8. [PMID: 2543633 PMCID: PMC313857 DOI: 10.1128/iai.57.7.2173-2178.1989] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neisseria gonorrhoeae, an obligate human pathogen, is subjected to oxidant stress when attacked by O2 reduction products formed by neutrophils. In this study, exposure of gonococci to sublethal concentrations of superoxide and hydrogen peroxide (and related O-centered radicals) resulted in phenotypic resistance to oxidant stress. Adaptation required new protein formation but was not related to increases in superoxide dismutase or catalase. We have previously demonstrated that gonococci use phagocyte-derived L-(+)-lactate. Oxidant stress of greater magnitude than that required for adaptation led to a generalized increase in bacterial metabolism, particularly in L-(+)- and D-(-)-lactate utilization and lactate dehydrogenase activity. Increased lactate utilization required new protein synthesis. These results suggest the possibility that lactate metabolism is of importance to N. gonorrhoeae subjected to oxidant stress. Use of lct mutant organisms unable to use L-(+)-lactate should allow examination of this hypothesis.
Collapse
Affiliation(s)
- H S Fu
- Department of Microbiology, University of North Carolina, Chapel Hill 27514
| | | | | |
Collapse
|
33
|
Weber RD, Britigan BE, Svendsen T, Cohen MS. Energy is required for maximal adherence of Neisseria gonorrhoeae to phagocytic and nonphagocytic cells. Infect Immun 1989; 57:785-90. [PMID: 2492970 PMCID: PMC313177 DOI: 10.1128/iai.57.3.785-790.1989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The possibility that gonococcal energy might play a role in the interaction of Neisseria gonorrhoeae with both phagocytic and nonphagocytic cells was examined. Respiratory chain inhibitors including KCN and amobarbital resulted in reduction in gonococcal association with human neutrophils. Similar results were seen with HeLa cells and the human promyelocytic (HL-60) cell line. Identical conditions did not affect the opsonin-dependent association of Staphylococcus aureus with the same cell types. New protein synthesis by gonococci did not account for the observed reduction in association. These results suggest that energy is needed for maximal opsonin-independent association of gonococci with mammalian cells.
Collapse
Affiliation(s)
- R D Weber
- Department of Medicine, University of North Carolina, Chapel Hill 27599-7030
| | | | | | | |
Collapse
|
34
|
Simpson DA, Hausinger RP, Mulks MH. Purification, characterization, and comparison of the immunoglobulin A1 proteases of Neisseria gonorrhoeae. J Bacteriol 1988; 170:1866-73. [PMID: 3127382 PMCID: PMC211043 DOI: 10.1128/jb.170.4.1866-1873.1988] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Each isolate of Neisseria gonorrhoeae produces one of two distinct immunoglobulin A1 (IgA1) proteases, type 1 or type 2, which are known to possess different cleavage specificities for peptide bonds in the hinge region of human IgA1. Both proteases were secreted into the culture medium throughout exponential growth; however, the activity level of the type 2 protease was 10-fold that observed for the type 1 enzyme. The type 2 protease was quite stable and resistant to a variety of inhibitors. In contrast, the type 1 enzyme was highly unstable and inhibited by low concentrations of metal chelators, salts, and thiol- or serine-specific chemical reagents. Both types of gonococcal IgA1 protease were purified from broth culture supernatants by a combination of anion-exchange, chromatofocusing, and molecular sieve chromatography techniques. The stable type 2 enzyme comprised a 114-kilodalton (kDa) peptide which converted to a still active 109-kDa peptide during isolation. In contrast, the type 1 protease possessed a 112-kDa peptide which did not convert to a smaller form and which could not be dissociated from peptides of 34 and 31 kDa without complete loss of enzyme activity.
Collapse
Affiliation(s)
- D A Simpson
- Department of Microbiology and Public Health, Michigan State University, East Lansing 48824
| | | | | |
Collapse
|
35
|
Stoakes L, Schieven B, Hussain Z, Lannigan R. Supplement peptone agar--a simple carbohydrate degradation plate medium for the identification of Neisseria species. ZENTRALBLATT FUR BAKTERIOLOGIE, MIKROBIOLOGIE, UND HYGIENE. SERIES A, MEDICAL MICROBIOLOGY, INFECTIOUS DISEASES, VIROLOGY, PARASITOLOGY 1987; 264:131-6. [PMID: 3115001 DOI: 10.1016/s0176-6724(87)80132-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A carbohydrate degradation medium was developed for the detection of acid production by Neisseria species and Branhamella catarrhalis. A total of 223 clinical isolates were identified by Supplemented Peptone Agar and the results were compared with those of Cystine Trypticase Agar. Supplemented Peptone Agar and Cystine Trypticase Agar correctly identified 99.1% and 93.7% of the total strains respectively within 24 h. With Cystine Trypticase Agar method another 4% of the isolates could be identified but required an additional 24 h of incubation.
Collapse
|
36
|
Archibald FS, Duong MN. Superoxide dismutase and oxygen toxicity defenses in the genus Neisseria. Infect Immun 1986; 51:631-41. [PMID: 3943903 PMCID: PMC262393 DOI: 10.1128/iai.51.2.631-641.1986] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Among aerotolerant cells, Neisseria gonorrhoeae is very unusual because despite its obligately aerobic lifestyle and frequent isolation from purulent exudates containing polymorphonuclear leukocytes vigorously evolving O2- and H2O2, it contains no superoxide dismutase (SOD). Strains (14) of N. gonorrhoeae were compared with each other and with strains of Neisseria meningitidis, Neisseria mucosa, and Neisseria subflava under identical growth conditions for their contents of the oxy-protective enzymes catalase, peroxidase, and SOD, as well as respiratory chain proteins and activity. The absence of SOD from N. gonorrhoeae strains was demonstrated under a variety of oxygen-stress conditions. The neisserial species showed very different SOD, catalase, and peroxidase profiles. These profiles correlated well with the tolerance of the species to various intra- and extracellular oxygen insults. The high tolerance of N. gonorrhoeae for extracellular O2- and H2O2 appeared to be due to very high constitutive levels of peroxidase and catalase activity combined with a cell envelope impervious to O2-. Nevertheless, N. gonorrhoeae 19424 was much more sensitive to an intracellular flux of O2- than were the other (SOD-containing) neisserial species. The responses of N. gonorrhoeae and N. meningitidis respiratory and oxy-protective enzymes to growth under high and low oxygen tensions were followed, and a novel response, the apparent repression of the respiratory chain intermediates, respiration, and SOD, peroxidase, and catalase activity, was observed. The gonococcal catalase was partially purified and characterized. The results suggest that the very active terminal oxidase, low pO2 natural habitat, O2-stable catalase, and possibly the high glutathione content of the organism explain its aerobic survival in the absence of SOD.
Collapse
|
37
|
Britigan BE, Chai Y, Cohen MS. Effects of human serum on the growth and metabolism of Neisseria gonorrhoeae: an alternative view of serum. Infect Immun 1985; 50:738-44. [PMID: 3934080 PMCID: PMC261142 DOI: 10.1128/iai.50.3.738-744.1985] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Humans are the sole reservoir of Neisseria gonorrhoeae, an organism which undergoes a marked increase in metabolic rate after exposure to a low-molecular-weight, heat-stable component(s) of human serum. Further studies on the effect of serum on gonococcal metabolism were undertaken. Gonococcal broth (GCB) is commonly used for in vitro cultivation of gonococci. Gonococci suspended in GCB plus 10% serum exhibited oxygen consumption rates of 139% (P less than 0.01) and 456% (P less than 0.01) of those suspended in GCB or Hanks balanced salt solution, respectively. A twofold increase in growth rate also resulted from the addition of 10% serum to GCB. Gonococcal 14C-labeled adenine incorporation increased threefold with 10% serum supplementation of Hanks balanced salt solution. Dialysis of serum in 1,000-molecular-weight exclusion tubing removed the stimulatory factor(s). Neither correction of anion-cation concentrations altered by dialysis nor addition of substances of known importance to the metabolism of gonococci (i.e., lactate, pyruvate, cysteine, ATP, AMP, NADPH, amino acids, malate, and glutathione) to dialyzed serum reconstituted stimulatory capacity. The effect of serum on gonococcal glucose-catabolic pathways was measured by modified radiospirometry. An apparent threefold increase in Entner-Doudoroff and pentose phosphate pathway activities was induced by 10% serum, as was the increased shunting of glucose-derived glyceraldehyde-3-phosphate into these pathways. These metabolic changes did not allow specific identification of the serum stimulatory factor(s). Acetate, the major by-product of gonococcal glucose catabolism, inhibited gonococcal oxygen consumption as previously reported. A high-molecular-weight serum component, probably albumin, reversed acetate-mediated inhibition of gonococcal oxygen consumption, identifying a second mechanism by which serum increases gonococcal metabolism. These results suggest that supplementation of growth media with serum should be considered to provide N. gonorrhoeae with conditions more consistent with its normal environment.
Collapse
|
38
|
Abstract
The plasmid pCD1 is required for expression of the low-calcium response (LCR), virulence, and production of V antigen in Yersinia pestis KIM. Five independent mutants constitutive for the LCR at 37 degrees C (Lcrc) were obtained through ethyl methanesulfonate mutagenesis followed by ampicillin enrichment. A sixth, spontaneous mutant was obtained directly through ampicillin enrichment. These mutants failed to grow at 37 degrees C regardless of calcium concentration and produced V antigen constitutively at this temperature. All six mutations were located on pCD1. One mutation was mapped to a 1-kilobase region of lcrA. Based on complementation mapping of this mutation, the lcrA locus was divided into two new loci, lcrD and lcrE. This mutation, lcrE1, did not alter the transcription of other genes in the LCR region and was cis-recessive to lcr mutations. Several lower-molecular-weight outer membrane proteins which were observed in the parent strain grown at 37 degrees C in the presence of 2.5 mM calcium were reduced in quantity or absent from the mutant strain.
Collapse
|
39
|
Abstract
A total of 204 Neisseria gonorrhoeae strains, including 39 penicillinase-producing strains, representing 64 distinct auxotype and serovar classes were tested for their ability to grow anaerobically with nitrite as a terminal electron acceptor. All strains grew anaerobically with subtoxic concentrations of nitrite, and all penicillinase-producing strains produced beta-lactamase when grown anaerobically. Nitrite reductase was produced constitutively under aerobic conditions in the absence of nitrite, and cytochrome oxidase was produced constitutively under anaerobic conditions. Strains could not grow anaerobically with sulfite as a terminal electron acceptor. Strain NRL 905 grew anaerobically in broth medium containing nitrite at a rate comparable to its growth rate under aerobic conditions. The feasibility and significance of in vivo anaerobic growth of N. gonorrhoeae is discussed.
Collapse
|
40
|
Keen MG, Hoffman PS. Metabolic pathways and nitrogen metabolism inLegionella pneumophila. Curr Microbiol 1984. [DOI: 10.1007/bf01567708] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
|
42
|
Morse SA, Mintz CS, Sarafian SK, Bartenstein L, Bertram M, Apicella MA. Effect of dilution rate on lipopolysaccharide and serum resistance of Neisseria gonorrhoeae grown in continuous culture. Infect Immun 1983; 41:74-82. [PMID: 6408006 PMCID: PMC264745 DOI: 10.1128/iai.41.1.74-82.1983] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Growth of Neisseria gonorrhoeae strain FA171 in continuous culture under glucose-limiting conditions resulted in a growth-rate-dependent change in the lipopolysaccharide (LPS). The evidence for this change is an alteration in the mobility of purified alkali-treated LPS on sodium dodecyl sulfate-polyacrylamide gels and a quantitative difference in the amount of the LPS serotype antigen. The LPS from cells grown at a low dilution rate (0.12 h-1) contained ca. eightfold less serotype antigen than the LPS from cells grown at a high dilution rate (0.56 h-1). The decrease in LPS serotype antigen was associated with an increase in sensitivity to the bactericidal activity of normal human serum and an increase in cell surface hydrophobicity. An increase in the amount of serotype antigen was associated with a reduction in the accessibility of a monoclonal antibody to a core LPS determinant, an increase in resistance to normal human serum, and a decrease in cell surface hydrophobicity. The microheterogeneity of gonococcal LPS with respect to the content of serotype antigen may result from an alteration in the metabolism of glucose.
Collapse
|
43
|
McFarland L, Mietzner TA, Knapp JS, Sandstrom E, Holmes KK, Morse SA. Gonococcal sensitivity to fecal lipids can be mediated by an Mtr-independent mechanism. J Clin Microbiol 1983; 18:121-7. [PMID: 6411761 PMCID: PMC270754 DOI: 10.1128/jcm.18.1.121-127.1983] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Various factors affect the sensitivity of Neisseria gonorrhoeae to physiological levels of hydrophobic molecules. A total of 98 N. gonorrhoeae strains from rectal, cervical, and urethral cultures of homosexual men and heterosexual men and women were examined for their sensitivities to fecal lipids. Isolates were characterized according to cell envelope phenotype, auxotype, and protein I serogroup. Although cell envelope phenotype was an important factor in the resistance of this organism to fecal lipids (Mtr phenotype greater than wild type greater than Env phenotype), other factors were also of importance. AHU- strains (strains having a requirement for arginine, hypoxanthine, and uracil) uniformly exhibited a wild-type envelope phenotype but were as sensitive to fecal lipids as were Env strains. The protein I serogroup was not a factor in determining the sensitivity of wild-type envelope phenotype non-AHU- strains to fecal lipids. However, sexual preference and site of isolation were important factors. Wild-type envelope phenotype (non-AHU-) strains from homosexual men and heterosexual women were more resistant to fecal lipids than were similar isolates from heterosexual men. When these strains were compared by isolation site, it was observed that rectal isolates from homosexual men and heterosexual women were more resistant than were cervical isolates from heterosexual women or urethral isolates from heterosexual men. Urethral isolates from homosexual men were also more resistant to fecal lipids than were urethral isolates from heterosexual men. These data suggest that the host environment can select for increased resistance to hydrophobic molecules by an Mtr-independent mechanism. The basis for this Mtr-independent resistance is presently unknown, but it is likely that it involves an alteration of the target site(s) for fecal lipid inhibition.
Collapse
|
44
|
Tesh MJ, Morse SA, Miller RD. Intermediary metabolism in Legionella pneumophila: utilization of amino acids and other compounds as energy sources. J Bacteriol 1983; 154:1104-9. [PMID: 6133845 PMCID: PMC217580 DOI: 10.1128/jb.154.3.1104-1109.1983] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The utilization of amino acids and other compounds as carbon and energy sources by Legionella pneumophila was examined. Based on the stimulation of oxygen consumption in washed-cell suspensions, glutamate, serine, threonine, and tyrosine were the only amino acids which were utilized as energy sources. Other stimulators of oxygen uptake were lactate, pyruvate, acetate, fumarate, and succinate. Citrate was a good stimulator only when the bacteria were grown in the presence of the substrate. Radiolabeling studies showed that [14C]glutamate was rapidly metabolized, with the label distributed evenly in all cell fractions. [14C]pyruvate and [14C]acetate were incorporated into the lipid-containing cell fraction, whereas glucose and glycerol were found in both the lipid- and polysaccharide-containing cell fractions. Radiorespirometry of differentially labeled [14C]glucose indicated that this compound was metabolized primarily by the pentose phosphate and Entner-Doudoroff pathways rather than by the glycolytic pathway.
Collapse
|
45
|
Bricker J, Mulks MH, Plaut AG, Moxon ER, Wright A. IgA1 proteases of Haemophilus influenzae: cloning and characterization in Escherichia coli K-12. Proc Natl Acad Sci U S A 1983; 80:2681-5. [PMID: 6341996 PMCID: PMC393891 DOI: 10.1073/pnas.80.9.2681] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Haemophilus influenzae is one of several bacterial pathogens known to release IgA1 proteases into the extracellular environment. Each H. influenzae isolate produces one of at least three distinct types of these enzymes that differ in the specific peptide bond they cleave in the hinge region of human IgA1. We have isolated the gene specifying type 1 IgA1 protease from a total genomic library of H. influenzae, subcloned it into plasmid vectors, and introduced these vectors into Escherichia coli K-12. The enzyme synthesized by E. coli was active and had the same specificity as that of the H. influenzae donor. Unlike that of the donor, E. coli protease activity accumulated in the periplasm rather than being transported extracellularly. The position of the protease gene in H. influenzae DNA and its direction of transcription was approximated by deletion mapping. Tn5 insertions, and examination of the polypeptides synthesized by minicells. A 1-kilobase probe excised from the IgA1 protease gene hybridized with DNA restriction fragments of all H. influenzae serogroups but not with DNA of a nonpathogenic H. parainfluenzae species known to be IgA1 protease negative.
Collapse
|
46
|
Lindmark DG, Jarroll EL, Timoney PJ, Shin SJ. Energy metabolism of the contagious equine metritis bacterium. Infect Immun 1982; 36:531-4. [PMID: 7085071 PMCID: PMC351260 DOI: 10.1128/iai.36.2.531-534.1982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The energy metabolism of the English E-CMO strain of contagious equine metritis bacterium was studied in whole cells and cell extracts. This bacterium appears to have an active Krebs cycle and probably obtains energy by oxidative phosphorylation since glycolysis and the hexose monophosphate pathways appear to be absent. These conclusions are based on the findings that [U-14C]glucose incorporation by this bacterium is below the level of detection, and that respiration is stimulated by Krebs cycle intermediates (i.e., malate, citrate, and succinate), but not by glucose, fructose, maltose, or sucrose. Furthermore, support comes from the fact that enzymes generally associated with the Krebs cycle and electron transport (i.e., malate dehydrogenase, succinate dehydrogenase, isocitrate dehydrogenase, fumarate hydratase, malate dehydrogenase [decarboxylating], cytochrome oxidase, superoxide dismutase, NADH dehydrogenase, and catalase) were detected. Those enzymes normally associated with glycolysis and the hexose monophosphate pathways (i.e., hexokinase, glucose 6-phosphate dehydrogenase, fructose biphosphate aldolase, glycerol 3-phosphate dehydrogenase, phosphoenolpyruvate carboxykinase, pyruvate kinase, phosphate acetyl transferase, acetate kinase, alcohol dehydrogenase, and lactate dehydrogenase) were below the level of detection.
Collapse
|
47
|
Abstract
The pyrimidine metabolism of Giardia lamblia trophozoites (Portland I strain) was studied using whole trophozoites and trophozoite homogenates. Pyrimidines and pyrimidine nucleosides were readily incorporated into nucleic acids. Orotic and aspartic acid incorporations were below the level of detection. Enzymes of the pyrimidine salvage pathway (i.e., thymidine and uridine phosphorylases and thymidine and uridine kinases) were detected in trophozoite homogenates, but the activities of de novo pyrimidine synthesis enzymes (i.e., carbamoyl-phosphate synthase, aspartate transcarbamoylase, dihydroorotase and dihydroorotate dehydrogenase) were below the level of detection in these same homogenates. The evidence presented supports the conclusion that G. lamblia trophozoites appear incapable of synthesizing pyrimidines de novo but are capable of salvaging preformed pyrimidines and pyrimidine nucleosides from the growth medium and the enzymes of this pyrimidine salvage pathway are not organelle associated.
Collapse
|
48
|
Tapsall JW, Cheng JK. Rapid identification of pathogenic species of Neisseria by carbohydrate degradation tests. Importance of glucose in media used for preparation of inocula. Br J Vener Dis 1981; 57:249-52. [PMID: 7023603 PMCID: PMC1045934 DOI: 10.1136/sti.57.4.249] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pathogenic species of Neisseria were identified more readily by carbohydrate degradation tests when 0.5% glucose was used in media from which inocula for the test were obtained. This improved the performance of both non-growth and growth-dependent methods for these tests. One of the three techniques used a non-nutrient buffered salt solution and depended on the presence of preformed enzymes. This test was more accurate and rapid than the two growth-dependent techniques.
Collapse
|
49
|
Abstract
Isogenic variants of antibiotic-resistant and -sensitive Neisseria gonorrhoeae were examined for differences in the inhibition of oxygen uptake by steroid hormones. Mutants designated as env, which possessed cell envelope mutations allowing phenotypic suppression of low-level antibiotic resistance, were more sensitive to steroid hormone inhibition of oxygen uptake than the wild-type parental strains. Possession of an mtr locus, which confers nonspecific resistance to multiple antibiotics, dyes, and detergents, was also associated with an increase in resistance to steroid hormone inhibition of oxygen uptake. The penA2 locus, which confers an eightfold increase in resistance to penicillin, was not responsible for the increased resistance to steroid hormones. Phospholipids in the outer membrane of intact env-2 cells were susceptible to digestion by phospholipase C, indicating exposure of phospholipid head groups on the outer surface. Cells of a wild-type and mtr-2 strain were not susceptible to phospholipase C digestion unless they were pretreated with mixed exoglycosidases. This pretreatment also increased the sensitivity of mtr-2 cells to progesterone inhibition of O2 uptake. These data suggest that the permeability of the gonococcus to hydrophobic antibiotic and steroid molecules is mediated by the degree of phospholipid exposure on the outer membrane.
Collapse
|
50
|
Jarroll EL, Muller PJ, Meyer EA, Morse SA. Lipid and carbohydrate metabolism of Giardia lamblia. Mol Biochem Parasitol 1981; 2:187-96. [PMID: 6783899 DOI: 10.1016/0166-6851(81)90099-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The lipid and carbohydrate metabolism of Giardia lamblia was studied using trophozoites isolated from a human and axenically grown in vitro in medium containing fetal bovine serum. The phospholipid, fatty acid and neutral lipid composition of the G. lamblia trophozoites was similar to that of the medium. Phosphatidylethanolamine, phosphatidylcholine and sphingomyelin were the major phospholipids detected; monoacyl-, diacyl-, triacylglycerides, sterols, and sterol esters were the major neutral lipids found. Several unidentified glycolipids were also detected. Glucose and threonine were readily incorporated by the trophozoites, but not into cellular phospholipids or sterols. However, approximately 86% of the glucose incorporated into the trophozoites was found in the nucleic acids, and 38% of the threonine incorporated was detected in the cellular proteins. Small amounts of the glucose and threonine were incorporated into glycolipid-containing fractions. Glycerol and acetate were not appreciably incorporated into trophozoites while glycerol 3-phosphate incorporation was not detected. Cholesterol was readily assimilated by the trophozoites; 98% of the incorporated was found in the sterol fraction. Radiorespirometric data suggest that the major routes of glucose metabolism in G. lamblia are via Embden- Meyerhof-Parnas and pentose phosphate pathways. However, endogenous acetate (as acetyl-CoA) formed during the metabolism of glucose is not used for lipid biosynthesis. These findings suggest that G. lamblia trophozoites are incapable of synthesizing cellular phospholipids or sterols de novo, but rather, utilize lipids already present in the medium.
Collapse
|