1
|
Su MSW, Cheng YL, Lin YS, Wu JJ. Interplay between group A Streptococcus and host innate immune responses. Microbiol Mol Biol Rev 2024; 88:e0005222. [PMID: 38451081 PMCID: PMC10966951 DOI: 10.1128/mmbr.00052-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
SUMMARYGroup A Streptococcus (GAS), also known as Streptococcus pyogenes, is a clinically well-adapted human pathogen that harbors rich virulence determinants contributing to a broad spectrum of diseases. GAS is capable of invading epithelial, endothelial, and professional phagocytic cells while evading host innate immune responses, including phagocytosis, selective autophagy, light chain 3-associated phagocytosis, and inflammation. However, without a more complete understanding of the different ways invasive GAS infections develop, it is difficult to appreciate how GAS survives and multiplies in host cells that have interactive immune networks. This review article attempts to provide an overview of the behaviors and mechanisms that allow pathogenic GAS to invade cells, along with the strategies that host cells practice to constrain GAS infection. We highlight the counteractions taken by GAS to apply virulence factors such as streptolysin O, nicotinamide-adenine dinucleotidase, and streptococcal pyrogenic exotoxin B as a hindrance to host innate immune responses.
Collapse
Affiliation(s)
- Marcia Shu-Wei Su
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Wilde S, Dash A, Johnson A, Mackey K, Okumura CYM, LaRock CN. Detoxification of reactive oxygen species by the hyaluronic acid capsule of group A Streptococcus. Infect Immun 2023; 91:e0025823. [PMID: 37874162 PMCID: PMC10652860 DOI: 10.1128/iai.00258-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023] Open
Abstract
The pro-inflammatory cytokine IL-6 regulates antimicrobial responses that are broadly crucial in the defense against infection. Our prior work shows that IL-6 promotes the killing of the M4 serotype group A Streptococcus (GAS) but does not impact the globally disseminated M1T1 serotype associated with invasive infections. Using in vitro and in vivo infection models, we show that IL-6 induces phagocyte reactive oxygen species (ROS) that are responsible for the differential susceptibility of M4 and M1T1 GAS to IL-6-mediated defenses. Clinical isolates naturally deficient in capsule, or M1T1 strains deficient in capsule production, are sensitive to this ROS killing. The GAS capsule is made of hyaluronic acid, an antioxidant that detoxifies ROS and can protect acapsular M4 GAS when added exogenously. During in vitro interactions with macrophages and neutrophils, acapsular GAS can also be rescued with the antioxidant N-acetylcysteine, suggesting this is a major virulence contribution of the capsule. In an intradermal infection model with gp91phox -/- (chronic granulomatous disease [CGD]) mice, phagocyte ROS production had a modest effect on bacterial proliferation and the cytokine response but significantly limited the size of the bacterial lesion in the skin. These data suggest that the capsule broadly provides enhanced resistance to phagocyte ROS but is not essential for invasive infection. Since capsule-deficient strains are observed across several GAS serotypes and are competent for transmission and both mild and invasive infections, additional host or microbe factors may contribute to ROS detoxification during GAS infections.
Collapse
Affiliation(s)
- Shyra Wilde
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Ananya Dash
- Immunology and Molecular Pathogenesis Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Anders Johnson
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Kialani Mackey
- Department of Biology, Occidental College, Los Angeles, California, USA
| | | | - Christopher N. LaRock
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Jiang X, Lin A, Li S, Shi Y, Zhou F, Felix Gomez GG, Gregory RL, Zhang C, Chen S, Huang R. Effects of artificial honey and epigallocatechin-3-gallate on streptococcus pyogenes. BMC Microbiol 2022; 22:207. [PMID: 36028794 PMCID: PMC9419396 DOI: 10.1186/s12866-022-02611-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/04/2022] [Indexed: 12/01/2022] Open
Abstract
Background Streptococcus pyogenes is an important global human pathogen that causes pharyngitis, and antibacterial therapy has become an important part of the overall therapy for pharyngitis. As natural derivatives, honey and green tea are often recommended for patients with pharyngitis in traditional Chinese medicine without experimental theoretical basis on wether the combined effect of honey and green tea on pharyngitis is better than they alone. The aims of this study were to explore the effects of artificial honey (AH) and epigallocatechin-3-gallate (EGCG) on S. pyogenes and elucidate the possible mechanisms, which were investigated using MIC (the minimum inhibitory concentration), FIC (fractional inhibitory concentration) index, growth pattern, biofilm formation and RT-qPCR. Results The MIC of AH on S. pyogenes was 12.5% (v/v) and the MIC of EGCG was 1250 μg/ml. The FIC index of AH and EGCG was 0.5. The planktonic cell growth, growth pattern and biofilm formation assays showed that AH and EGCG mixture had stronger inhibitory effect on S. pyogenes than they alone. RT-qPCR confirmed that the expression of hasA and luxS gene were inhibited by AH and EGCG mixture. Conclusions AH and EGCG mixture can inhibit the planktonic cell growth, biofilm formation and some virulence genes expression of S. pyogenes, better than they alone. The combination of honey and green tea have the potential to treat pharyngitis as natural derivatives, avoiding drug resistance and double infection.
Collapse
Affiliation(s)
- Xiaoge Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Orthodontics Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - An Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shijia Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Orthodontics Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yangyang Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Endodontic Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangjie Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Endodontic Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Richard L Gregory
- Department of Oral Biology, School of Dentistry, Indiana University, Indianapolis, USA
| | - Chaoliang Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. .,Department of Orthodontics Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ruijie Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. .,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. .,Department of Oral Biology, School of Dentistry, Indiana University, Indianapolis, USA.
| |
Collapse
|
4
|
Streptococcus pyogenes Capsule Promotes Microcolony-Independent Biofilm Formation. J Bacteriol 2019; 201:JB.00052-19. [PMID: 31085695 PMCID: PMC6707922 DOI: 10.1128/jb.00052-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/07/2019] [Indexed: 01/03/2023] Open
Abstract
Biofilms play an important role in the pathogenesis of group A streptococcus (GAS), a Gram-positive pathogen responsible for a wide range of infections and with a significant public health impact. Although most GAS serotypes are able to form biofilms, there is a large amount of heterogeneity between individual strains in biofilm formation, as measured by standard crystal violet assays. It is generally accepted that biofilm formation includes the initial adhesion of bacterial cells to a surface followed by microcolony formation, biofilm maturation, and extensive production of extracellular matrix that links together proliferating cells and provides a scaffold for the three-dimensional (3D) biofilm structure. However, our studies show that for GAS strain JS95, microcolony formation is not an essential step in static biofilm formation, and instead, biofilm can be effectively formed from slow-growing or nonreplicating late-exponential- or early-stationary-phase planktonic cells via sedimentation and fixation of GAS chains. In addition, we show that the GAS capsule specifically contributes to the alternative sedimentation-initiated biofilms. Microcolony-independent sedimentation biofilms are similar in morphology and 3D structure to biofilms initiated by actively dividing planktonic bacteria. We conclude that GAS can form biofilms by an alternate noncanonical mechanism that does not require transition from microcolony formation to biofilm maturation and which may be obscured by biofilm phenotypes that arise via the classical biofilm maturation processes.IMPORTANCE The static biofilm assay is a common tool for easy biomass quantification of biofilm-forming bacteria. However, Streptococcus pyogenes biofilm formation as measured by the static assay is strain dependent and yields heterogeneous results for different strains of the same serotype. In this study, we show that two independent mechanisms, for which the protective capsule contributes opposing functions, may contribute to static biofilm formation. We propose that separation of these mechanisms for biofilm formation might uncover previously unappreciated biofilm phenotypes that may otherwise be masked in the classic static assay.
Collapse
|
5
|
Zheng W, Tan TK, Paterson IC, Mutha NVR, Siow CC, Tan SY, Old LA, Jakubovics NS, Choo SW. StreptoBase: An Oral Streptococcus mitis Group Genomic Resource and Analysis Platform. PLoS One 2016; 11:e0151908. [PMID: 27138013 PMCID: PMC4854451 DOI: 10.1371/journal.pone.0151908] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/06/2016] [Indexed: 11/19/2022] Open
Abstract
The oral streptococci are spherical Gram-positive bacteria categorized under the phylum Firmicutes which are among the most common causative agents of bacterial infective endocarditis (IE) and are also important agents in septicaemia in neutropenic patients. The Streptococcus mitis group is comprised of 13 species including some of the most common human oral colonizers such as S. mitis, S. oralis, S. sanguinis and S. gordonii as well as species such as S. tigurinus, S. oligofermentans and S. australis that have only recently been classified and are poorly understood at present. We present StreptoBase, which provides a specialized free resource focusing on the genomic analyses of oral species from the mitis group. It currently hosts 104 S. mitis group genomes including 27 novel mitis group strains that we sequenced using the high throughput Illumina HiSeq technology platform, and provides a comprehensive set of genome sequences for analyses, particularly comparative analyses and visualization of both cross-species and cross-strain characteristics of S. mitis group bacteria. StreptoBase incorporates sophisticated in-house designed bioinformatics web tools such as Pairwise Genome Comparison (PGC) tool and Pathogenomic Profiling Tool (PathoProT), which facilitate comparative pathogenomics analysis of Streptococcus strains. Examples are provided to demonstrate how StreptoBase can be employed to compare genome structure of different S. mitis group bacteria and putative virulence genes profile across multiple streptococcal strains. In conclusion, StreptoBase offers access to a range of streptococci genomic resources as well as analysis tools and will be an invaluable platform to accelerate research in streptococci. Database URL: http://streptococcus.um.edu.my.
Collapse
Affiliation(s)
- Wenning Zheng
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tze King Tan
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ian C. Paterson
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Naresh V. R. Mutha
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Cheuk Chuen Siow
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shi Yang Tan
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Lesley A. Old
- Center for Oral Health Research, School of Dental Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Nicholas S. Jakubovics
- Center for Oral Health Research, School of Dental Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
- Genome Solutions Sdn Bhd, Suite 8, Innovation Incubator UM, Level 5, Research Management & Innovation Complex, University of Malaya, 50603 Kuala Lumpur, Malaysia
- * E-mail: (SWC); (NSJ)
| | - Siew Woh Choo
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
- * E-mail: (SWC); (NSJ)
| |
Collapse
|
6
|
Ashwinkumar Subramenium G, Viszwapriya D, Iyer PM, Balamurugan K, Karutha Pandian S. covR Mediated Antibiofilm Activity of 3-Furancarboxaldehyde Increases the Virulence of Group A Streptococcus. PLoS One 2015; 10:e0127210. [PMID: 25978065 PMCID: PMC4433207 DOI: 10.1371/journal.pone.0127210] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/13/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Group A streptococcus (GAS, Streptococcus pyogenes), a multi-virulent, exclusive human pathogen responsible for various invasive and non-invasive diseases possesses biofilm forming phenomenon as one of its pathogenic armaments. Recently, antibiofilm agents have gained prime importance, since inhibiting the biofilm formation is expected to reduce development of antibiotic resistance and increase their susceptibility to the host immune cells. PRINCIPAL FINDINGS The current study demonstrates the antibiofilm activity of 3Furancarboxaldehyde (3FCA), a floral honey derived compound, against GAS biofilm, which was divulged using crystal violet assay, light microscopy, and confocal laser scanning microscopy. The report is extended to study its effect on various aspects of GAS (morphology, virulence, aggregation) at its minimal biofilm inhibitory concentration (132μg/ml). 3FCA was found to alter the growth pattern of GAS in solid and liquid medium and increased the rate of auto-aggregation. Electron microscopy unveiled the increase in extra polymeric substances around cell. Gene expression studies showed down-regulation of covR gene, which is speculated to be the prime target for the antibiofilm activity. Increased hyaluronic acid production and down regulation of srtB gene is attributed to the enhanced rate of auto-aggregation. The virulence genes (srv, mga, luxS and hasA) were also found to be over expressed, which was manifested with the increased susceptibility of the model organism Caenorhabditis elegans to 3FCA treated GAS. The toxicity of 3FCA was ruled out with no adverse effect on C. elegans. SIGNIFICANCE Though 3FCA possess antibiofilm activity against GAS, it was also found to increase the virulence of GAS. This study demonstrates that, covR mediated antibiofilm activity may increase the virulence of GAS. This also emphasizes the importance to analyse the acclimatization response and virulence of the pathogen in the presence of antibiofilm compounds prior to their clinical trials.
Collapse
Affiliation(s)
| | | | - Prasanth Mani Iyer
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | | | | |
Collapse
|
7
|
Henningham A, Döhrmann S, Nizet V, Cole JN. Mechanisms of group A Streptococcus resistance to reactive oxygen species. FEMS Microbiol Rev 2015; 39:488-508. [PMID: 25670736 PMCID: PMC4487405 DOI: 10.1093/femsre/fuu009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/19/2014] [Indexed: 12/16/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. This review discusses the mechanisms utilized by the bacterial pathogen group A Streptococcus to detoxify reactive oxygen species and survive in the human host under conditions of oxidative stress.
Collapse
Affiliation(s)
- Anna Henningham
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Simon Döhrmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA Rady Children's Hospital, San Diego, CA 92123, USA
| | - Jason N Cole
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
8
|
Ferrari FA, Motta FL, Bastos RG, Santana MHA. The solid-state cultivation of Streptococcus zooepidemicus in polyurethane foam as a strategy for the production of hyaluronic acid. Appl Biochem Biotechnol 2013; 170:1491-502. [PMID: 23690173 DOI: 10.1007/s12010-013-0293-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
Hyaluronic acid (HA) is a biopolymer with important applications in the pharmaceutical, medical, and cosmetic fields. This work explores the potentialities of a cylindrical polyurethane foam dowel with central aeration as a novel packed bed bioreactor for the production of HA. The goals were to provide a large surface area for oxygen transfer through the patches of liquid film that form in the pores of the foam in which cell proliferation and HA production occur and to easily recover the HA produced. The resulting yields of HA/cell were higher than 1, and the produced HA was completely recovered by pressing the foam. The external conditions that inhibit catabolism, the deviation of energetic metabolism toward the production of HA, were modulated by aeration and the initial glucose concentration. The production of HA was reproducible in 12 successive fermentation cycles. These findings contribute to the development of efficient strategies for the controlled production and recovery of HA.
Collapse
Affiliation(s)
- Felipe Augusto Ferrari
- School of Chemical Engineering, Department of Materials and Bioprocesses Engineering, University of Campinas, 13083-852 Campinas, SP, Brazil
| | | | | | | |
Collapse
|
9
|
de Macedo AC, Santana MHA. Hyaluronic acid depolymerization by ascorbate-redox effects on solid state cultivation of Streptococcus zooepidemicus in cashew apple fruit bagasse. World J Microbiol Biotechnol 2012; 28:2213-9. [DOI: 10.1007/s11274-012-1028-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 02/15/2012] [Indexed: 11/24/2022]
|
10
|
Izawa N, Serata M, Sone T, Omasa T, Ohtake H. Hyaluronic acid production by recombinant Streptococcus thermophilus. J Biosci Bioeng 2011; 111:665-70. [DOI: 10.1016/j.jbiosc.2011.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 11/25/2022]
|
11
|
Murano E, Perin D, Khan R, Bergamin M. Hyaluronan: From Biomimetic to Industrial Business Strategy. Nat Prod Commun 2011. [DOI: 10.1177/1934578x1100600415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hyaluronan (hyaluronic acid) is a naturally occurring polysaccharide of a linear repeating disaccharide unit consisting of β-(1→4)-linked D-glucopyranuronic acid and β-(1→3)-linked 2-acetamido-2-deoxy-D-glucopyranose, which is present in extracellular matrices, the synovial fluid of joints, and scaffolding that comprises cartilage. In its mechanism of synthesis, its size, and its physico-chemical properties, hyaluronan is unique amongst other glycosaminoglycans. The network-forming, viscoelastic and its charge characteristics are important to many biochemical properties of living tissues. It is an important pericellular and cell surface constituent; its interaction with other macromolecules such as proteins, participates in regulating cell behavior during numerous morphogenic, restorative, and pathological processes in the body. The knowledge of HA in diseases such as various forms of cancers, arthritis and osteoporosis has led to new impetus in research and development in the preparation of biomaterials for surgical implants and drug conjugates for targeted delivery. A concise and focused review on hyaluronan is timely. This review will cover the following important aspects of hyaluronan: (i) biological functions and synthesis in nature; (ii) current industrial production and potential biosynthetic processes of hyaluronan; (iii) chemical modifications of hyaluronan leading to products of commercial significance; and (iv) and the global market position and manufacturers of hyaluronan.
Collapse
Affiliation(s)
- Erminio Murano
- PROTOS Research Institute, via Flavia 23/1c/o BIC Incubatori FVG, 34148, Trieste, Italy
- NEALYS srl, via Flavia 23/1c/o BIC Incubatori FVG, 34148, Trieste, Italy
| | - Danilo Perin
- PROTOS Research Institute, via Flavia 23/1c/o BIC Incubatori FVG, 34148, Trieste, Italy
| | - Riaz Khan
- PROTOS Research Institute, via Flavia 23/1c/o BIC Incubatori FVG, 34148, Trieste, Italy
| | - Massimo Bergamin
- PROTOS Research Institute, via Flavia 23/1c/o BIC Incubatori FVG, 34148, Trieste, Italy
- NEALYS srl, via Flavia 23/1c/o BIC Incubatori FVG, 34148, Trieste, Italy
| |
Collapse
|
12
|
Pires AMB, Santana MHA. Metabolic effects of the initial glucose concentration on microbial production of hyaluronic acid. Appl Biochem Biotechnol 2010; 162:1751-61. [PMID: 20411440 DOI: 10.1007/s12010-010-8956-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
Abstract
The objective of the present work was to evaluate the metabolic effects induced by the initial glucose concentration (IGC) on the cultivation of Streptococcus zooepidemicus for the production of hyaluronic acid (HA). These effects were monitored along non-controlled pH cultivations, carried out in 250-mL Erlenmeyer flasks (natural aeration) and in a 3-L bioreactor (forced aeration) as well. Effects of the IGC were observed with focus on the main metabolites, cell growth, production, and average molecular weight of HA. The absence of glucose resulted in a mixed acid metabolism independent of the oxygen supply, while, for IGCs ranging from 5 to 90 g L(-1), the homolactic metabolism was prevalent. The IGC had no influence on the amounts of either biomass or HA produced in the cultivations carried out in flasks; however, cultivations in 3-L bioreactor were found to be strongly dependent on it. The highest concentration of HA (1.21 g L(-1)) was obtained from 25 g L(-1) IGC, the only cultivation where the conversion of glucose to HA was higher than the one of glucose to biomass. Average molecular weight of HA increased concomitant with the IGC, independently of aeration; nevertheless, it decreased along cultivation under forced aeration, due to the shear imparted by stirring.
Collapse
Affiliation(s)
- Aline Mara Barbosa Pires
- Laboratory of Development of Biotechnological Processes School of Chemical Engineering, University of Campinas, Campinas, SP, Brazil.
| | | |
Collapse
|
13
|
Kinetics of hyaluronic acid production by Streptococcus zooepidemicus considering the effect of glucose. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2009.12.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Liu L, Yang H, Du G, Chen J, Wang M. Enhanced Hyaluronic Acid Production ofStreptococcus zooepidemicusby Shifting Dissolved Oxygen Level Based on Broth Rheology and Oxygen Mass Transfer Characteristics. FOOD BIOTECHNOL 2009. [DOI: 10.1080/08905430902876257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Liu L, Du G, Chen J, Wang M, Sun J. Comparative study on the influence of dissolved oxygen control approaches on the microbial hyaluronic acid production of Streptococcus zooepidemicus. Bioprocess Biosyst Eng 2009; 32:755-63. [DOI: 10.1007/s00449-009-0300-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 01/10/2009] [Indexed: 11/29/2022]
|
16
|
Ke C, Qiao D, Gan D, Sun Y, Ye H, Zeng X. Antioxidant acitivity in vitro and in vivo of the capsule polysaccharides from Streptococcus equi subsp. zooepidemicus. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2008.09.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Liu L, Du G, Chen J, Zhu Y, Wang M, Sun J. Microbial production of low molecular weight hyaluronic acid by adding hydrogen peroxide and ascorbate in batch culture of Streptococcus zooepidemicus. BIORESOURCE TECHNOLOGY 2009; 100:362-367. [PMID: 18619838 DOI: 10.1016/j.biortech.2008.05.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/24/2008] [Accepted: 05/27/2008] [Indexed: 05/26/2023]
Abstract
Microbial production of low molecular weight hyaluronic acid (HA) by the addition of hydrogen peroxide and ascorbate during the batch culture of Streptococcus zooepidemicus was investigated. Hydrogen peroxide (1.0 mmol/g HA) and ascorbate (0.5 mmol/g HA) were added at 8h and 12h to degrade HA. With the redox depolymerization of HA, the HA molecular weight decreased from 1,300 kDa for the control to 80 kDa, and the average broth viscosity during 8-16 h decreased from 360 mPa s for the control to 290 mPa s. The average oxygen mass transfer coefficient K(L)a increased from 10h(-1) for the control to 35 h(-1) and the average dissolved oxygen level increased from 1% of air saturation in the control to 10%. HA production increased from 5.0 g/L for the control to 6.5 g/L, and contributed to the increased redox potential and energy charge. This novel process not only significantly enhanced production of low molecular weight HA, but also improved purification efficiency due to a decreased broth viscosity. Low molecular weight HA finds applications in biomedical and healthcare fields.
Collapse
Affiliation(s)
- Long Liu
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Mashitah M, Masitah H, Ramachandran K. Sensitivity to Hydrogen Peroxide of Growth and Hyaluronic Acid Production by Streptococcus zooepidemicus ATCC 39920. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/apj.5500130503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Liu L, Du G, Chen J, Wang M, Sun J. Influence of hyaluronidase addition on the production of hyaluronic acid by batch culture of Streptococcuszooepidemicus. Food Chem 2008; 110:923-6. [PMID: 26047280 DOI: 10.1016/j.foodchem.2008.02.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 02/18/2008] [Accepted: 02/27/2008] [Indexed: 10/22/2022]
Abstract
Enhancement of hyaluronic acid (HA) production by Streptococcus zooepidemicus through increasing oxygen transfer rate via degradation of HA by hyaluronidase was investigated. Dissolved oxygen (DO) level became a limiting factor for HA production during 8-16h, and thus hyaluronidase (0.05, 0.10, 0.15, 0.20, 0.25g/l) was added at 8h to degrade HA. Oxygen transfer rate coefficient and DO level during 8-16h increased with increased hyaluronidase concentration. Compared to 5.0±0.1g/l of the control without hyaluronidase addition, HA production was increased from 5.0±0.1g/l to 6.0±0.1g/l when hyaluronidase concentration was 0.15g/l. Further increase of hyaluronidase concentration had no effect on HA production. The molecular weight of HA decreased with the increased hyaluronidase concentration and decreased to 21kDa when hyaluronidase concentration was 0.25g/l from 1300kDa of the control. The prepared low molecular weight HA (LMW-HA) could function as potential anti-angiogenic substances, antiviral and anti-tumor agents to possibly be used as functional food ingredients.
Collapse
Affiliation(s)
- Long Liu
- School of Biotechnology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- School of Biotechnology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Maio Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jun Sun
- Institute of Information Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
21
|
Deficiency of the Rgg regulator promotes H2O2 resistance, AhpCF-mediated H2O2 decomposition, and virulence in Streptococcus pyogenes. J Bacteriol 2008; 190:3225-35. [PMID: 18310340 DOI: 10.1128/jb.01843-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes (group A streptococcus [GAS]), a catalase-negative gram-positive bacterium, is aerotolerant and survives H2O2 exposures that kill many catalase-positive bacteria. The molecular basis of the H2O2 resistance is poorly known. Here, we demonstrate that serotype M49 GAS lacking the Rgg regulator is more resistant to H2O2 and also decomposes more H2O2 than the parental strain. Subgenomic transcriptional profiling and genome-integrated green fluorescent protein reporters showed that a bicistronic operon, a homolog of the Streptococcus mutans ahpCF operon, is transcriptionally up-regulated in the absence of Rgg. Phenotypic assays with ahpCF operon knockouts demonstrated that the gene products decompose H2O2 and protect GAS against peroxide stress. In a murine intraperitoneal-infection model, Rgg deficiency increased the virulence of GAS, although in an ahpCF-independent manner. Rgg-mediated repression of H2O2 resistance is divergent from the previously characterized peroxide resistance repressor PerR. Moreover, Rgg-mediated repression of H2O2 resistance is inducible by cellular stresses of diverse natures--ethanol, organic hydroperoxide, and H2O2. Rgg is thus identified as a novel sensoregulator of streptococcal H2O2 resistance with potential implications for the virulence of the catalase-negative GAS.
Collapse
|
22
|
Huang WC, Chen SJ, Chen TL. The role of dissolved oxygen and function of agitation in hyaluronic acid fermentation. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2006.10.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Graham MR, Virtaneva K, Porcella SF, Gardner DJ, Long RD, Welty DM, Barry WT, Johnson CA, Parkins LD, Wright FA, Musser JM. Analysis of the transcriptome of group A Streptococcus in mouse soft tissue infection. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:927-42. [PMID: 16936267 PMCID: PMC1698835 DOI: 10.2353/ajpath.2006.060112] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Molecular mechanisms mediating group A Streptococcus (GAS)-host interactions remain poorly understood but are crucial for diagnostic, therapeutic, and vaccine development. An optimized high-density microarray was used to analyze the transcriptome of GAS during experimental mouse soft tissue infection. The transcriptome of a wild-type serotype M1 GAS strain and an isogenic transcriptional regulator knockout mutant (covR) also were compared. Array datasets were verified by quantitative real-time reverse transcriptase-polymerase chain reaction and in situ immunohistochemistry. The results unambiguously demonstrate that coordinated expression of proven and putative GAS virulence factors is directed toward overwhelming innate host defenses leading to severe cellular damage. We also identified adaptive metabolic responses triggered by nutrient signals and hypoxic/acidic conditions in the host, likely facilitating pathogen persistence and proliferation in soft tissues. Key discoveries included that oxidative stress genes, virulence genes, genes related to amino acid and maltodextrin utilization, and several two-component transcriptional regulators were highly expressed in vivo. This study is the first global analysis of the GAS transcriptome during invasive infection. Coupled with parallel analysis of the covR mutant strain, novel insights have been made into the regulation of GAS virulence in vivo, resulting in new avenues for targeted therapeutic and vaccine research.
Collapse
Affiliation(s)
- Morag R Graham
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hasegawa S, Nagatsuru M, Shibutani M, Yamamoto S, Hasebe S. Productivity of concentrated hyaluronic acid using a Maxblend fermentor. J Biosci Bioeng 2005; 88:68-71. [PMID: 16232576 DOI: 10.1016/s1389-1723(99)80178-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/1999] [Accepted: 03/30/1999] [Indexed: 11/20/2022]
Abstract
Application of the Maxblend impeller to the fermentative production of hyaluronic acid (HA) was investigated. A 2-m3-scale fermentor fitted with this impeller (MBF) was used and the main fermentation was started with 85% of the nominal volume containing the pre-culture broth and medium. The kinetic characteristics of the MBF were compared with those of a conventional-type fermentor fitted with a turbine blade (TBN). The HA production yield in the MBF was over 20% higher than that in the TBN under the operating conditions of a high aeration rate and low vessel pressure since the broth viscosity increased. The apparent viscosity of the broth at the end of the cultivation rose to about 70 Pa.s. The molecular weight of the HA produced was independent of the agitation speed within the investigated range, and no significant difference was observed between the viscosity-average molecular weights of the HA obtained in the two types of fermentor, each having an estimated value of 4.3 x 10(6) under the same agitation power.
Collapse
Affiliation(s)
- S Hasegawa
- Pharmaceutical Department, Shiseido Kakegawa Factory Ltd., 1120 Nagaya, Kakegawa, Shizuoka 436-0047, Japan
| | | | | | | | | |
Collapse
|
25
|
Yamada T, Kawasaki T. Microbial synthesis of hyaluronan and chitin: New approaches. J Biosci Bioeng 2005; 99:521-8. [PMID: 16233827 DOI: 10.1263/jbb.99.521] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 04/06/2005] [Indexed: 11/17/2022]
Abstract
Hyaluronan (HA) is an important structural element in the vitreous humor of the eye, synovial fluid, and skin of vertebrates. Moreover, HA interacts with proteins such as CD44, RHAMM, and fibrinogen, thereby influencing many natural processes such as angiogenesis, cancer, cell motility, wound healing, and cell adhesion. Reflecting such a variety of functions, HA has attracted attention from a wide range of application fields such as medicine (including surgery), cosmetics, and health foods. Traditionally HA was extracted from rooster combs, but nowadays is produced by the fermentation of streptococci. At present, quality issues such as purity and molecular weight distribution, rather than quantity, have been the focus of strain and process development in HA production. To meet ever-increasing public demand, novel systems that can yield sufficient amounts of high-quality of HA and related materials are required.
Collapse
Affiliation(s)
- Takashi Yamada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan.
| | | |
Collapse
|
26
|
Chong BF, Blank LM, Mclaughlin R, Nielsen LK. Microbial hyaluronic acid production. Appl Microbiol Biotechnol 2004; 66:341-51. [PMID: 15599518 DOI: 10.1007/s00253-004-1774-4] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 09/13/2004] [Accepted: 09/17/2004] [Indexed: 10/26/2022]
Abstract
Hyaluronic acid (HA) is a commercially valuable medical biopolymer increasingly produced through microbial fermentation. Viscosity limits product yield and the focus of research and development has been on improving the key quality parameters, purity and molecular weight. Traditional strain and process optimisation has yielded significant improvements, but appears to have reached a limit. Metabolic engineering is providing new opportunities and HA produced in a heterologous host is about to enter the market. In order to realise the full potential of metabolic engineering, however, greater understanding of the mechanisms underlying chain termination is required.
Collapse
Affiliation(s)
- Barrie Fong Chong
- Department of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | |
Collapse
|
27
|
Leite B, Andersen PC, Ishida ML. Colony aggregation and biofilm formation in xylem chemistry-based media for Xylella fastidiosa. FEMS Microbiol Lett 2004; 230:283-90. [PMID: 14757251 DOI: 10.1016/s0378-1097(03)00917-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Two chemically defined media based on xylem fluid chemistry were developed for Xylella fastidiosa. These media were tested and compared to chemically defined media XDM2, XDM4 and XF-26. New media were evaluated for the Pierce's disease (PD) strain UCLA-PD. Our media either was similar to the concentration of some amino acids found in the xylem fluid of the PD-susceptible Vitis vinifera cv. Chardonnay (medium CHARD2) or incorporated the tripeptide glutathione found in xylem fluid composition (medium 3G10-R). CHARD2 and 3G10-R are among the simplest chemically defined media available. Xylem fluid chemistry-based media supported X. fastidiosa growth and especially stimulated aggregation and biofilm formation.
Collapse
Affiliation(s)
- Breno Leite
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 155 Research Road, Quincy, FL 32351, USA.
| | | | | |
Collapse
|
28
|
|
29
|
Janulczyk R, Ricci S, Björck L. MtsABC is important for manganese and iron transport, oxidative stress resistance, and virulence of Streptococcus pyogenes. Infect Immun 2003; 71:2656-64. [PMID: 12704140 PMCID: PMC153223 DOI: 10.1128/iai.71.5.2656-2664.2003] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MtsABC is a Streptococcus pyogenes ABC transporter which was previously shown to be involved in iron and zinc accumulation. In this study, we showed that an mtsABC mutant has impaired growth, particularly in a metal-depleted medium and an aerobic environment. In metal-depleted medium, growth was restored by the addition of 10 microM MnCl(2), whereas other metals had modest or no effect. A characterization of metal radioisotope accumulation showed that manganese competes with iron accumulation in a dose-dependent manner. Conversely, iron competes with manganese accumulation but to a lesser extent. The mutant showed a pronounced reduction (>90%) of (54)Mn accumulation, showing that MtsABC is also involved in Mn transport. Using paraquat and hydrogen peroxide to induce oxidative stress, we show that the mutant has an increased susceptibility to reactive oxygen species. Moreover, activity of the manganese-cofactored superoxide dismutase in the mutant is reduced, probably as a consequence of reduced intracellular availability of manganese. The enzyme functionality was restored by manganese supplementation during growth. The mutant was also attenuated in virulence, as shown in animal experiments. These results emphasize the role of MtsABC and trace metals, especially manganese, for S. pyogenes growth, susceptibility to oxidative stress, and virulence.
Collapse
Affiliation(s)
- Robert Janulczyk
- Section for Molecular Pathogenesis, Department of Cell and Molecular Biology, BMC, University of Lund, 221 84 Lund, Sweden.
| | | | | |
Collapse
|
30
|
Saito M, Ohga S, Endoh M, Nakayama H, Mizunoe Y, Hara T, Yoshida SI. H(2)O(2)-nonproducing Streptococcus pyogenes strains: survival in stationary phase and virulence in chronic granulomatous disease. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2469-2477. [PMID: 11535787 DOI: 10.1099/00221287-147-9-2469] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The production of hydrogen peroxide (H(2)O(2)) and related phenotypes were studied with Streptococcus pyogenes strains isolated from cases of pharyngitis or severe group A streptococcal infections. Of the 46 strains examined (34 from severe infections and 12 from pharyngitis cases), 25 strains accumulated H(2)O(2) in the culture medium when grown under glucose-limited, aerobic conditions, whereas the rest of the strains did not. There was no correlation between these traits and the type of disease from which each strain had been isolated. The H(2)O(2)-nonproducing strains tested in this study belonged to T type 3 or T type 12. The accumulation of H(2)O(2) started when the culture reached the late exponential phase. A rapid loss of cell viability accompanied H(2)O(2) accumulation but was completely prevented by the addition of a catalase, indicating that the lethality was actually caused by H(2)O(2). Cells of H(2)O(2)-nonproducing strains were resistant to killing by phagocytes from patients with chronic granulomatous disease (CGD), whereas those of H(2)O(2)-producing strains were subject to killing. Subcutaneous inoculation of 10(5) c.f.u. H(2)O(2)-nonproducing S. pyogenes strains into the hind footpads of CGD mice provoked more prominent swelling of the footpad than did H(2)O(2)-producing strains. The mortality rate in the CGD mice infected with the H(2)O(2)-nonproducing strains was higher than that produced by the H(2)O(2)-producing strains. It is suggested that H(2)O(2)-nonproducing S. pyogenes strains are prevalent in humans and that they may be a potential threat to the health of CGD patients.
Collapse
Affiliation(s)
- Mitsumasa Saito
- Departments of Bacteriology1 and Pediatrics2, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shouichi Ohga
- Departments of Bacteriology1 and Pediatrics2, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Miyoko Endoh
- Department of Microbiology, Tokyo Metropolitan Research and Laboratory of Public Health, Tokyo 169-0073, Japan3
| | - Hiroaki Nakayama
- Department of Microbiology, Faculty of Dentistry, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan4
| | - Yoshimitsu Mizunoe
- Departments of Bacteriology1 and Pediatrics2, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Toshiro Hara
- Departments of Bacteriology1 and Pediatrics2, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shin-Ichi Yoshida
- Departments of Bacteriology1 and Pediatrics2, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
31
|
Woischnik M, Buttaro BA, Podbielski A. Inactivation of the cysteine protease SpeB affects hyaluronic acid capsule expression in group A streptococci. Microb Pathog 2000; 28:221-6. [PMID: 10764613 DOI: 10.1006/mpat.1999.0341] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human pathogen Streptococcus pyogenes expresses several virulence factors that are required for the pathogens survival within the host and the concomitant development of disease. To examine the influence of one virulence factor, the extracellular cysteine protease SpeB, on the expression of other virulence factors, the speB structural gene of a serotype M3 and M49 strain was inactivated. Morphologic examination, quantification of extracellular hyaluronic acid capsule, and Northern blot analysis of the isogenic speB -mutants revealed a strain-dependent decrease of hyaluronic acid capsule production and an increase in superoxide dismutase transcription. The transcription of streptolysin O (slo), di- and oligo-peptide permease (dpp, opp), hyaluronidase (hyl), streptokinase (ska) and streptococcal pyrogenic exotoxin A (speA) was unaffected.
Collapse
Affiliation(s)
- M Woischnik
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA.
| | | | | |
Collapse
|
32
|
Darmstadt GL, Mentele L, Podbielski A, Rubens CE. Role of group A streptococcal virulence factors in adherence to keratinocytes. Infect Immun 2000; 68:1215-21. [PMID: 10678929 PMCID: PMC97270 DOI: 10.1128/iai.68.3.1215-1221.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To evaluate the role of putative group A streptococcal virulence factors in the initiation of skin infections, we compared the adherence of a wild-type M49-protein skin-associated strain to that of a series of 16 isogenic mutants created by insertional inactivation of virulence genes. None of the mutants, including the M-protein-deficient (emm mutant) strain, displayed reduced adherence to early-passage cultured human keratinocytes, but adherence of the mutant lacking hyaluronic acid capsule expression (has mutant) was increased 13-fold. In contrast, elimination of capsule expression in M2-, M3-, and M18-protein has mutants increased adherence only slightly (1.3- to 2.3-fold) compared to their respective wild-type strains. A mutant with inactivation of both emm and has displayed high-level adherence (34.9 +/- 4.1%) equal to that of the has mutant strain (40.7 + 8.0%), confirming the lack of involvement of M49 protein in attachment. Moreover, adherence of the M49-protein-deficient (emm mutant) and wild-type strains was increased to the same level (57 and 55%, respectively) following enzymatic digestion of their hyaluronic acid capsule. Adherence of mutants lacking oligopeptide permease (Opp) expression was increased 3.8- to 5.5-fold, in association with decreased cell-associated hyaluronic acid capsule. Finally, soluble CD46 failed to inhibit adherence of M49- and M52-serotype skin strains. We conclude that (i) bacterial M protein and keratinocyte CD46 do not mediate adherence of M49 skin-associated Streptococcus pyogenes to epidermal keratinocytes, (ii) hyaluronic acid capsule impedes the interaction of bacterial adhesins with keratinocyte receptors, (iii) modulation of capsule expression may be important in the pathogenesis of skin infections, and (iv) the molecular interactions in attachment of skin strains of S. pyogenes to keratinocytes are unique and remain unidentified.
Collapse
Affiliation(s)
- G L Darmstadt
- Departments of Pediatrics, University of Washington School of Medicine, Seattle, Washington 98105, USA
| | | | | | | |
Collapse
|
33
|
Heath A, DiRita VJ, Barg NL, Engleberg NC. A two-component regulatory system, CsrR-CsrS, represses expression of three Streptococcus pyogenes virulence factors, hyaluronic acid capsule, streptolysin S, and pyrogenic exotoxin B. Infect Immun 1999; 67:5298-305. [PMID: 10496909 PMCID: PMC96884 DOI: 10.1128/iai.67.10.5298-5305.1999] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain Tn916 insertions in the chromosome of an M1-type, nonmucoid Streptococcus pyogenes isolate (MGAS166) were previously shown to result in stable mucoidy with increased expression of the capsular synthetic genes. The transposon insertions in these strains are directly upstream of an apparent operon encoding a two-component regulatory system, designated csrR-csrS. Compared with MGAS166, these mucoid mutants are more hemolytic and cause significantly more tissue damage in a murine model of skin infection. To extend these observations, we constructed an in-frame deletion in the gene encoding the response regulator, csrR, and we evaluated the expression of other known S. pyogenes virulence factors. We discovered that csrR mutants have enhanced transcription of sagA, a gene associated with streptolysin S (SLS) and speB, the gene encoding pyrogenic exotoxin B (SpeB). The mutants also express substantially higher SLS activity and SpeB antigen in late-exponential-phase cultures. There is no change in expression of emm, scpA, sic, or cpa (genes encoding other S. pyogenes virulence factors). CsrR- strains but not the wild-type parental strain produce necrotizing lesions in a mouse model of subcutaneous infection. A double mutant with deletions in both csrR and the capsular synthesis genes caused fewer and smaller necrotic skin lesions than the csrR mutants. However, this nonmucoid csrR strain was more likely than the wild type to yield necrotic lesions, suggesting that mucoidy contributes to virulence in this model of infection but that there are other csrR-regulated factors involved in the production of necrotic lesions.
Collapse
Affiliation(s)
- A Heath
- Departments of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
34
|
Günther E, Ozegowski JH, Köhler W. Occurrence of extracellular hyaluronic acid and hyaluronatlyase in streptococci of groups A, B, C, and G. ZENTRALBLATT FUR BAKTERIOLOGIE : INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY 1996; 285:64-73. [PMID: 8946697 DOI: 10.1016/s0934-8840(96)80023-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Streptococci of serological groups A (GAS), B (GBS), C (GCS) and G (GGS) were examined in vitro using an optimized medium in respect of their ability to produce hyaluronic acid (HA) and hyaluronatlyase (HY). In this study, 614 GAS (including 123 streptococcal toxic shock syndrome strains, STSS), 247 GBS, 225 GCS and 143 GGS were investigated in qualitative and quantitative tests. Only 4% of GAS and 2.7% of GCS were able to express HA. In contrast to GAS, isolates of GCS showed a highly specific HA formation (to 1 g HA/g dry biomass). In all strains of GBS and GGS, not even a single isolate was positive for HA. HY expression was detectable in all four serological groups. In GAS, only 12.5% of strains were positive; the most common types being 22 and 4, whereas in GBS, GCS and GGS, 72.1%, 84% and 85.3% of isolates, respectively, could be reported as positive. The data suggest that the HA capsule only plays a secondary role in infections caused by GAS strains pathogenic for humans.
Collapse
Affiliation(s)
- E Günther
- University of Jena, Institute of Experimental Microbiology, Germany
| | | | | |
Collapse
|
35
|
Gibson CM, Caparon MG. Insertional inactivation of Streptococcus pyogenes sod suggests that prtF is regulated in response to a superoxide signal. J Bacteriol 1996; 178:4688-95. [PMID: 8755901 PMCID: PMC178240 DOI: 10.1128/jb.178.15.4688-4695.1996] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In establishing an infection, Streptococcus pyogenes has the capacity to bind to the host extracellular matrix protein fibronectin via its protein F adhesin. Previous studies have suggested that the expression of protein F is stimulated during aerobic growth or upon addition of superoxide-generating agents to the culture under O2-limited conditions. To further explore the role of superoxide, we have examined the transcription of the gene which encodes protein F (prtF), as well as the expression of superoxide dismutase (SOD) under conditions which promote or repress protein F expression. These studies show that prtF transcription is regulated in response to superoxide concentration and that SOD is regulated in different environments in a manner which directly parallels the expression of protein F. A mutant deficient in SOD activity was constructed by insertional mutation into the gene which encodes SOD (sod). The resulting mutant was sensitive to superoxide and aerobic conditions, showed hypersensitive induction of prtF in response to superoxide, and expressed prtF under normally unfavorable O2-limited conditions. These findings suggest that a streptococcal signal transduction system which senses superoxide may coordinately control expression of prtF and sod.
Collapse
Affiliation(s)
- C M Gibson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093, USA
| | | |
Collapse
|
36
|
Müller PJ, Ozegowski JH, Reichardt W, Köhler W. Kinetics of growth and product formation in cultures from streptococci of groups A and C. ZENTRALBLATT FUR BAKTERIOLOGIE : INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY 1994; 281:158-73. [PMID: 7858343 DOI: 10.1016/s0934-8840(11)80566-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During growth of streptococci of Lancefield groups A and C in a culture medium containing glucose, yeast extract and peptone, two main growth phases occur: growth phase I and growth phase II (diauxic growth). They are separated by a short stationary phase (1st stationary phase). The diauxic growth is caused by transient limitations as well as the availability of new sources of the amino acids L-serine and L-arginine. Growth phase I consists of an exponential and a nearly linear part. These growth kinetics are reflected by the kinetics of gas metabolism as well as by product formation. Hyaluronic acid is formed during the nearly linear phase whereas the enzyme alkaline phosphatase, is exclusively excreted in the 1st stationary phase. Also carbon dioxide and L-lactate are mainly produced in a growth phase-dependent mode. In the late stationary phase (2nd stationary phase) more oxygen is consumed whereas the demand for oxygen in the 1st stationary phase is nearly zero.
Collapse
Affiliation(s)
- P J Müller
- Institut für Experimentelle Mikrobiologie der Friedrich-Schiller- Universität Jena
| | | | | | | |
Collapse
|
37
|
Mausolf A, Jungmann J, Robenek H, Prehm P. Shedding of hyaluronate synthase from streptococci. Biochem J 1990; 267:191-6. [PMID: 2109602 PMCID: PMC1131263 DOI: 10.1042/bj2670191] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hyaluronate synthase was shed into the culture medium from growing streptococci (group C) together with nascent hyaluronate. The mechanism of solubilization was analysed using isolated protoplast membranes. Solubilization increased when membranes were suspended in larger volumes, but it was temperature-independent and was not inhibited by protease inhibitors. Increased hyaluronate chain length enhanced solubilization. The soluble synthase could re-integrate into Streptococcal membranes in a saturable manner. The soluble synthase behaved like an integral membrane protein, although it was not integrated into phospholipid vesicles. In sucrose velocity centrifugation the synthase had a higher sedimentation rate in detergent-free solution, indicating that it existed in an aggregated state.
Collapse
Affiliation(s)
- A Mausolf
- Max Planck Institut für Biochemie, Martinsried, Federal Republic of Germany
| | | | | | | |
Collapse
|
38
|
Lion LW, Shuler ML, Hsieh KM, Ghiorse WC, Corpe WA. Trace metal interactions with microbial biofilms in natural and engineered systems. ACTA ACUST UNITED AC 1988. [DOI: 10.1080/10643388809388338] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Beveridge TJ. Ultrastructure, chemistry, and function of the bacterial wall. INTERNATIONAL REVIEW OF CYTOLOGY 1981; 72:229-317. [PMID: 6166584 DOI: 10.1016/s0074-7696(08)61198-5] [Citation(s) in RCA: 327] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|