1
|
The quest for probiotic effector molecules—Unraveling strain specificity at the molecular level. Pharmacol Res 2013; 69:61-74. [DOI: 10.1016/j.phrs.2012.09.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 12/25/2022]
|
2
|
Franklin MJ, Douthit SA, McClure MA. Evidence that the algI/algJ gene cassette, required for O acetylation of Pseudomonas aeruginosa alginate, evolved by lateral gene transfer. J Bacteriol 2004; 186:4759-73. [PMID: 15231808 PMCID: PMC438637 DOI: 10.1128/jb.186.14.4759-4773.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 04/19/2004] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa strains, isolated from chronically infected patients with cystic fibrosis, produce the O-acetylated extracellular polysaccharide, alginate, giving these strains a mucoid phenotype. O acetylation of alginate plays an important role in the ability of mucoid P. aeruginosa to form biofilms and to resist complement-mediated phagocytosis. The O-acetylation process is complex, requiring a protein with seven transmembrane domains (AlgI), a type II membrane protein (AlgJ), and a periplasmic protein (AlgF). The cellular localization of these proteins suggests a model wherein alginate is modified at the polymer level after the transport of O-acetyl groups to the periplasm. Here, we demonstrate that this mechanism for polysaccharide esterification may be common among bacteria, since AlgI homologs linked to type II membrane proteins are found in a variety of gram-positive and gram-negative bacteria. In some cases, genes for these homologs have been incorporated into polysaccharide biosynthetic operons other than for alginate biosynthesis. The phylogenies of AlgI do not correlate with the phylogeny of the host bacteria, based on 16S rRNA analysis. The algI homologs and the gene for their adjacent type II membrane protein present a mosaic pattern of gene arrangement, suggesting that individual components of the multigene cassette, as well as the entire cassette, evolved by lateral gene transfer. AlgJ and the other type II membrane proteins, although more diverged than AlgI, contain conserved motifs, including a motif surrounding a highly conserved histidine residue, which is required for alginate O-acetylation activity by AlgJ. The AlgI homologs also contain an ordered series of motifs that included conserved amino acid residues in the cytoplasmic domain CD-4; the transmembrane domains TM-C, TM-D, and TM-E; and the periplasmic domain PD-3. Site-directed mutagenesis studies were used to identify amino acids important for alginate O-acetylation activity, including those likely required for (i) the interaction of AlgI with the O-acetyl precursor in the cytoplasm, (ii) the export of the O-acetyl group across the cytoplasmic membrane, and (iii) the transfer of the O-acetyl group to a periplasmic protein or to alginate. These results indicate that AlgI belongs to a family of membrane proteins required for modification of polysaccharides and that a mechanism requiring an AlgI homolog and a type II membrane protein has evolved by lateral gene transfer for the esterification of many bacterial extracellular polysaccharides.
Collapse
Affiliation(s)
- Michael J Franklin
- Department of Microbiology, 109 Lewis Hall, Montana State University, Bozeman, MT 59717, USA.
| | | | | |
Collapse
|
3
|
Neuhaus FC, Baddiley J. A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev 2003; 67:686-723. [PMID: 14665680 PMCID: PMC309049 DOI: 10.1128/mmbr.67.4.686-723.2003] [Citation(s) in RCA: 735] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Teichoic acids (TAs) are major wall and membrane components of most gram-positive bacteria. With few exceptions, they are polymers of glycerol-phosphate or ribitol-phosphate to which are attached glycosyl and D-alanyl ester residues. Wall TA is attached to peptidoglycan via a linkage unit, whereas lipoteichoic acid is attached to glycolipid intercalated in the membrane. Together with peptidoglycan, these polymers make up a polyanionic matrix that functions in (i) cation homeostasis; (ii) trafficking of ions, nutrients, proteins, and antibiotics; (iii) regulation of autolysins; and (iv) presentation of envelope proteins. The esterification of TAs with D-alanyl esters provides a means of modulating the net anionic charge, determining the cationic binding capacity, and displaying cations in the wall. This review addresses the structures and functions of D-alanyl-TAs, the D-alanylation system encoded by the dlt operon, and the roles of TAs in cell growth. The importance of dlt in the physiology of many organisms is illustrated by the variety of mutant phenotypes. In addition, advances in our understanding of D-alanyl ester function in virulence and host-mediated responses have been made possible through targeted mutagenesis of dlt. Studies of the mechanism of D-alanylation have identified two potential targets of antibacterial action and provided possible screening reactions for designing novel agents targeted to D-alanyl-TA synthesis.
Collapse
Affiliation(s)
- Francis C Neuhaus
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208. USA.
| | | |
Collapse
|
4
|
Kiriukhin MY, Debabov DV, Shinabarger DL, Neuhaus FC. Biosynthesis of the glycolipid anchor in lipoteichoic acid of Staphylococcus aureus RN4220: role of YpfP, the diglucosyldiacylglycerol synthase. J Bacteriol 2001; 183:3506-14. [PMID: 11344159 PMCID: PMC99649 DOI: 10.1128/jb.183.11.3506-3514.2001] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Staphylococcus aureus RN4220, lipoteichoic acid (LTA) is anchored in the membrane by a diglucosyldiacylglycerol moiety. The gene (ypfP) which encodes diglucosyldiacylglycerol synthase was recently cloned from Bacillus subtilis and expressed in Escherichia coli (P. Jorasch, F. P. Wolter, U. Zahringer, and E. Heinz, Mol. Microbiol. 29:419-430, 1998). To define the role of ypfP in this strain of S. aureus, a fragment of ypfP truncated from both ends was cloned into the thermosensitive replicon pVE6007 and used to inactivate ypfP. Chloramphenicol-resistant (ypfP::cat) clones did not synthesize the glycolipids monoglucosyldiacylglycerol and diglucosyldiacylglycerol. Thus, YpfP would appear to be the only diglucosyldiacylglycerol synthase in S. aureus providing glycolipid for LTA assembly. In LTA from the mutant, the glycolipid anchor is replaced by diacylglycerol. Although the doubling time of the mutant was identical to that of the wild type in Luria-Bertani (LB) medium, growth of the mutant in LB medium containing 1% glycine was not observed. This inhibition was antagonized by either L- or D-alanine. Moreover, viability of the mutant at 37 degrees C in 0.05 M phosphate (pH 7.2)-saline for 12 h was reduced to <0.1%. Addition of 0.1% D-glucose to the phosphate-saline ensured viability under these conditions. The autolysis of the ypfP::cat mutant in the presence of 0.05% Triton X-100 was 1.8-fold faster than that of the parental strain. Electron microscopy of the mutant revealed not only a small increase in cell size but also the presence of pleomorphic cells. Each of these phenotypes may be correlated with either (or both) a deficiency of free glycolipid in the membrane or the replacement of the usual glycolipid anchor of LTA with diacylglycerol.
Collapse
Affiliation(s)
- M Y Kiriukhin
- Department of Biochemistry, Molecular and Cell Biology, Northwestern University, 2153 Sheridan Road, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
5
|
Boyd DA, Cvitkovitch DG, Bleiweis AS, Kiriukhin MY, Debabov DV, Neuhaus FC, Hamilton IR. Defects in D-alanyl-lipoteichoic acid synthesis in Streptococcus mutans results in acid sensitivity. J Bacteriol 2000; 182:6055-65. [PMID: 11029425 PMCID: PMC94739 DOI: 10.1128/jb.182.21.6055-6065.2000] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2000] [Accepted: 08/03/2000] [Indexed: 11/20/2022] Open
Abstract
In the cariogenic organism, Streptococcus mutans, low pH induces an acid tolerance response (ATR). To identify acid-regulated proteins comprising the ATR, transposon mutagenesis with the thermosensitive plasmid pGh9:ISS1 was used to produce clones that were able to grow at neutral pH, but not in medium at pH 5.0. Sequence analysis of one mutant (IS1A) indicated that transposition had created a 6.3-kb deletion, one end of which was in dltB of the dlt operon encoding four proteins (DltA-DltD) involved in the synthesis of D-alanyl-lipoteichoic acid. Inactivation of the dltC gene, encoding the D-alanyl carrier protein (Dcp), resulted in the generation of the acid-sensitive mutant, BH97LC. Compared to the wild-type strain, LT11, the mutant exhibited a threefold-longer doubling time and a 33% lower growth yield. In addition, it was unable to initiate growth below pH 6.5 and unadapted cells were unable to survive a 3-h exposure in medium buffered at pH 3.5, while a pH of 3.0 was required to kill the wild type in the same time period. Also, induction of the ATR in BH97LC, as measured by the number of survivors at a pH killing unadapted cells, was 3 to 4 orders of magnitude lower than that exhibited by the wild type. While the LTA of both strains contained a similar average number of glycerolphosphate residues, permeabilized cells of BH97LC did not incorporate D-[(14)C]alanine into this amphiphile. This defect was correlated with the deficiency of Dcp. Chemical analysis of the LTA purified from the mutant confirmed the absence of D-alanine-esters. Electron micrographs showed that BH97LC is characterized by unequal polar caps and is devoid of a fibrous extracellular matrix present on the surface of the wild-type cells. Proton permeability assays revealed that the mutant was more permeable to protons than the wild type. This observation suggests a mechanism for the loss of the characteristic acid tolerance response in S. mutans.
Collapse
Affiliation(s)
- D A Boyd
- Department of Oral Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | |
Collapse
|
6
|
Debabov DV, Heaton MP, Zhang Q, Stewart KD, Lambalot RH, Neuhaus FC. The D-Alanyl carrier protein in Lactobacillus casei: cloning, sequencing, and expression of dltC. J Bacteriol 1996; 178:3869-76. [PMID: 8682792 PMCID: PMC232648 DOI: 10.1128/jb.178.13.3869-3876.1996] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The incorporation of D-alanine into membrane-associated D-alanyl-lipoteichoic acid in Lactobacillus casei requires the 56-kDa D-alanine-D-alanyl carrier protein ligase (Dcl) and the 8.9-kDa D-alanyl carrier protein (Dcp). To identify and isolate the gene encoding Dcp, we have cloned and sequenced a 4.3-kb chromosomal fragment that contains dcl (dltA). In addition to this gene, the fragment contains three other genes, dltB, d1tC, and a partial dltD gene. dltC (246 nucleotides) was subcloned from this region and expressed in Escherichia coli. The product was identified as apo-Dcp lacking the N-terminal methionine (8,787.9 Da). The in vitro conversion of the recombinant apo-Dcp to holo-Dcp by recombinant E. coli holo-ACP synthase provided Dcp which accepts activated D-alanine in the reaction catalyzed by Bcl. The recombinant D-alanyl-Dcp was functionally identical to native D-alanyl-Dcp in the incorporation of D-alanine into lipoteichoic acid. L. casei Dcp is 46% identical to the putative product of dltC in the Bacillus subtilis dlt operon (M. Perego, P. Glaser, A. Minutello, M. A. Strauch, K. Leopold, and W. Fischer, J. Biol. Chem. 270:15598-15606, 1995), and therefore, this gene also encodes Dcp. Comparisons of the primary sequences and predicted secondary structures of the L. casei and B. subtilis Dcps with that of the E. coli acyl carrier protein (ACP) were undertaken together with homology modeling to identify the functional determinants of the donor and acceptor specificities of Dcp. In the region of the phospho-pantetheine attachment site, significant similarity between Dcps and ACPs was observed. This similarity may account for the relaxed acceptor specificity of the Dcps and ACPs in the ligation Of D-alanine catalyzed by Dcl. In contrast, two Dcp consensus sequences, KXXVLDXLA and DXVKXNXD, share little identity with the rest of the ACP family and, thus, may determine the donor specificity of D-alanyl-Dcp in the D-alanylation of membrane-associated D-alanyl-lipoteichoic acid.
Collapse
Affiliation(s)
- D V Debabov
- Department of Biochemistry, Molecular and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | |
Collapse
|
7
|
Heaton MP, Neuhaus FC. Role of the D-alanyl carrier protein in the biosynthesis of D-alanyl-lipoteichoic acid. J Bacteriol 1994; 176:681-90. [PMID: 8300523 PMCID: PMC205105 DOI: 10.1128/jb.176.3.681-690.1994] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
D-Alanyl-lipoteichoic acid (D-alanyl-LTA) is a widespread macroamphiphile which plays a vital role in the growth and development of gram-positive organisms. The biosynthesis of this polymer requires the enzymic activation of D-alanine for its transfer to the membrane-associated LTA (mLTA). A small, heat-stable, and acidic protein that is required for this transfer was purified to greater than 98% homogeneity from Lactobacillus casei ATCC 7469. This protein, previously named the D-alanine-membrane acceptor ligase (V. M. Reusch, Jr., and F. C. Neuhaus, J. Biol. Chem. 246:6136-6143, 1971), functions as the D-alanyl carrier protein (Dcp). The amino acid composition, beta-alanine content, and N-terminal sequence of this protein are similar to those of the acyl carrier proteins (ACPs) of fatty acid biosynthesis. The isolation of Dcp and its derivative, D-alanyl approximately Dcp, has allowed the characterization of two novel reactions in the pathway for D-alanyl-mLTA biosynthesis: (i) the ligation of Dcp with D-alanine and (ii) the transfer of D-alanine from D-alanyl approximately Dcp to a membrane acceptor. It has not been established whether the membrane acceptor is mLTA or another intermediate in the pathway for D-alanyl-mLTA biosynthesis. Since the D-alanine-activating enzyme (EC 6.1.1.13) catalyzes the ligation reaction, this enzyme functions as the D-alanine-Dcp ligase (Dcl). Dcl also ligated the ACPs from Escherichia coli, Vibrio harveyi, and Saccharopolyspora erythraea with D-alanine. In contrast to the relaxed specificity of Dcl in the ligation reaction, the transfer of D-alanine to the membrane acceptor was highly specific for Dcp and did not occur with other ACPs. This transfer was observed by using only D-[14C]alanyl approximately Dcp and purified L. casei membranes. Thus, D-alanyl approximately Dcp is an essential intermediate in the transfer of D-alanine from Dcl to the membrane acceptor. The formation of D-alanine esters of mLTA provides a mechanism for modulating the net anionic charge in the cell wall.
Collapse
Affiliation(s)
- M P Heaton
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208
| | | |
Collapse
|
8
|
|
9
|
Heaton MP, Neuhaus FC. Biosynthesis of D-alanyl-lipoteichoic acid: cloning, nucleotide sequence, and expression of the Lactobacillus casei gene for the D-alanine-activating enzyme. J Bacteriol 1992; 174:4707-17. [PMID: 1385594 PMCID: PMC206267 DOI: 10.1128/jb.174.14.4707-4717.1992] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The D-alanine-activating enzyme (Dae; EC 6.3.2.4) encoded by the dae gene from Lactobacillus casei ATCC 7469 is a cytosolic protein essential for the formation of the D-alanyl esters of membrane-bound lipoteichoic acid. The gene has been cloned, sequenced, and expressed in Escherichia coli, an organism which does not possess Dae activity. The open reading frame is 1,518 nucleotides and codes for a protein of 55.867 kDa, a value in agreement with the 56 kDa obtained by electrophoresis. A putative promoter and ribosome-binding site immediately precede the dae gene. A second open reading frame contiguous with the dae gene has also been partially sequenced. The organization of these genetic elements suggests that more than one enzyme necessary for the biosynthesis of D-alanyl-lipoteichoic acid may be present in this operon. Analysis of the amino acid sequence deduced from the dae gene identified three regions with significant homology to proteins in the following groups of ATP-utilizing enzymes: (i) the acid-thiol ligases, (ii) the activating enzymes for the biosynthesis of enterobactin, and (iii) the synthetases for tyrocidine, gramicidin S, and penicillin. From these comparisons, a common motif (GXXGXPK) has been identified that is conserved in the 19 protein domains analyzed. This motif may represent the phosphate-binding loop of an ATP-binding site for this class of enzymes. A DNA fragment (1,568 nucleotides) containing the dae gene and its putative ribosome-binding site has been subcloned and expressed in E. coli. Approximately 0.5% of the total cell protein is active Dae, whereas 21% is in the form of inclusion bodies. The isolation of this minimal fragment without a native promoter sequence provides the basis for designing a genetic system for modulating the D-alanine ester content of lipoteichoic acid.
Collapse
Affiliation(s)
- M P Heaton
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208
| | | |
Collapse
|
10
|
Leopold K, Fischer W. Heterogeneity of lipoteichoic acid detected by anion exchange chromatography. Arch Microbiol 1992; 157:446-50. [PMID: 1510570 DOI: 10.1007/bf00249103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A complex polydispersity became apparent when the poly(glycerophosphate) lipoteichoic acid of Enterococcus faecalis was chromatographed on DEAE-Sephadex. The chain length varied between 13 and 33 glycerophosphate residues per lipid anchor. In parallel, the extent of chain glycosylation increased from 0.2 to 0.4 diglucosyl residues per glycerophosphate unit. Substitution with D-alanine ester showed a reverse distribution dropping with increasing chain length from 0.53 to 0.23 mol D-alanine per mol phosphorus. Variations in the fatty acid composition were also observed. The results extent and modify the current picture of lipoteichoic acid biosynthesis. They further suggest that during infection the mammalian organism may be confronted particularly with long-chain less hydrophobic molecular species.
Collapse
Affiliation(s)
- K Leopold
- Institut für Biochemie der Medizinischen Fakultät der Universität Erlangen-Nürnberg, Federal Republic of Germany
| | | |
Collapse
|
11
|
Matson SW. DNA helicases of Escherichia coli. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1991; 40:289-326. [PMID: 1851571 DOI: 10.1016/s0079-6603(08)60845-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A great deal has been learned in the last 15 years with regard to how helicase enzymes participate in DNA metabolism and how they interact with their DNA substrates. However, many questions remain unanswered. Of critical importance is an understanding of how NTP hydrolysis and hydrogen-bond disruption are coupled. Several models exist and are being tested; none has been proven. In addition, an understanding of how a helicase disrupts the hydrogen bonds holding duplex DNA together is lacking. Recently, helicase enzymes that unwind duplex RNA and DNA.RNA hybrids have been described. In some cases, these are old enzymes with new activities. In other cases, these are new enzymes only recently discovered. The significance of these reactions in the cell remains to be clarified. However, with the availability of significant amounts of these enzymes in a highly purified state, and mutant alleles in most of the genes encoding them, the answers to these questions should be forthcoming. The variety of helicases found in E. coli, and the myriad processes these enzymes are involved in, were perhaps unexpected. It seems likely that an equally large number of helicases will be discovered in eukaryotic cells. In fact, several helicases have been identified and purified from eukaryotic sources ranging from viruses to mouse cells (4-13, 227-234). Many of these helicases have been suggested to have roles in DNA replication, although this remains to be shown conclusively. Helicases with roles in DNA repair, recombination, and other aspects of DNA metabolism are likely to be forthcoming as we learn more about these processes in eukaryotic cells.
Collapse
Affiliation(s)
- S W Matson
- Department of Biology and Curriculum in Genetics, University of North Carolina, Chapel Hill 27599
| |
Collapse
|
12
|
Schurek J, Fischer W. Distribution analyses of chain substituents of lipoteichoic acids by chemical degradation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 186:649-55. [PMID: 2514096 DOI: 10.1111/j.1432-1033.1989.tb15255.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The lipoteichoic acid from Lactococcus lactis Kiel 48337 was analyzed. It had 61% of its glycerophosphate residues substituted with alpha-D-galactopyranosyl residues. Non-substituted glycerophosphate residues were split off by two alkaline hydrolyses and an intermediate enzymatic phosphomonoester cleavage. The resulting (GalGroP)nGroGal and (GalGroP)nGlc2Gro oligomers were separated by chromatography on DEAE-Sephadex into 10 pairs of molecular species with n from 1 to 10. The relative frequencies of GalGro and these oligomers were close to the values calculated by computer simulation for a random distribution of chain substituents. A similar series of oligomers was obtained in one step by hydrolysis of the lipoteichoic acid with 98% (by vol.) acetic acid. Due to side reactions, the picture was less precise but nevertheless indicative of the same distribution pattern. The data provide indirect evidence that the alanine ester substituents of the native lipoteichoic acid (Ala/P = 0.38) occupy the free positions between the galactosylated oligomers and are therefore themselves distributed randomly.
Collapse
Affiliation(s)
- J Schurek
- Institut für Biochemie der Medizinischen Fakultät der Universität Erlangen-Nürnberg, FRG
| | | |
Collapse
|
13
|
Maurer JJ, Mattingly SJ. In vitro method to differentiate isolates of type III Streptococcus agalactiae from symptomatic and asymptomatic patients. J Clin Microbiol 1988; 26:686-91. [PMID: 3284898 PMCID: PMC266412 DOI: 10.1128/jcm.26.4.686-691.1988] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Streptococcus agalactiae (group B streptococci) isolates from infected infants have been demonstrated to have three- to fourfold or higher levels of cell-associated lipoteichoic acid than isolates from asymptomatically colonized infants, suggesting a role for this cell surface polymer in the relative virulence of these organisms. The present study indicates that symptomatic isolates of type III group B streptococci can be readily differentiated from asymptomatic strains by their response to various levels of phosphate in a chemically defined medium (FMC). Both classes of isolates had the same doubling time (TD of 30 to 35 min) in FMC containing 65 mM sodium phosphate. However, levels of phosphate greater than 125 mM distinguished the two classes of strains. Asymptomatic strains pregrown in 65 mM phosphate to the stationary phase rapidly initiated growth at elevated phosphate levels, while symptomatic strains initiated growth only after a prolonged incubation period (greater than 400 min). These results suggest that the physiological growth response of clinical isolates of group B streptococci to phosphate can serve as a diagnostic aid in screening potentially virulent strains in pregnant women and newborn infants.
Collapse
Affiliation(s)
- J J Maurer
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284
| | | |
Collapse
|
14
|
Affiliation(s)
- W Fischer
- Institut für Biochemie, Universität Erlangen-Nürnberg, FRG
| |
Collapse
|
15
|
Ntamere AS, Taron DJ, Neuhaus FC. Assembly of D-alanyl-lipoteichoic acid in Lactobacillus casei: mutants deficient in the D-alanyl ester content of this amphiphile. J Bacteriol 1987; 169:1702-11. [PMID: 3104312 PMCID: PMC212002 DOI: 10.1128/jb.169.4.1702-1711.1987] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
D-Alanyl-lipoteichoic acid (D-alanyl-LTA) from Lactobacillus casei ATCC 7469 contains a poly(glycerophosphate) moiety that is acylated with D-alanyl ester residues. The physiological function of these residues is not well understood. Five mutant strains of this organism that are deficient in the esters of this amphiphile were isolated and characterized. When compared with the parent, strains AN-1 and AN-4 incorporated less than 10% of D-[14C]alanine into LTA, whereas AN-2, AN-3, and AN-5 incorporated 50%. The synthesis of D-[14C]alanyl-lipophilic LTA was virtually absent in the first group and was approximately 30% in the second group. The mutant strains synthesized and selected the glycolipid anchor for LTA assembly. In addition, all of the strains synthesized the poly(glycerophosphate) moiety of LTA to the same extent as did the parent or to a greater extent. It was concluded that the membranes from the mutant strains AN-1 and AN-4 are defective for D-alanylation of LTA even though acceptor LTA is present. Mutant strains AN-2 and AN-3 appear to be partially deficient in the amount of the D-alanine-activating enzyme. Aberrant morphology and defective cell separation appear to result from this deficiency in D-alanyl ester content.
Collapse
|
16
|
Childs WC, Taron DJ, Neuhaus FC. Biosynthesis of D-alanyl-lipoteichoic acid by Lactobacillus casei: interchain transacylation of D-alanyl ester residues. J Bacteriol 1985; 162:1191-5. [PMID: 3922942 PMCID: PMC215903 DOI: 10.1128/jb.162.3.1191-1195.1985] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lipoteichoic acid (LTA) from Lactobacillus casei contains poly(glycerophosphate) substituted with D-alanyl ester residues. The distribution of these residues in the in vitro-synthesized polymer is uniform. Esterification of LTA with D-alanine may occur in one of two modes: (i) addition at random or (ii) addition at a defined locus in the poly(glycerophosphate) chain followed by redistribution of the ester residues. A time-dependent transacylation of these residues from D-[14C]alanyl-lipophilic LTA to hydrophilic acceptor was observed. The hydrophilic acceptor was characterized as D-alanyl-hydrophilic LTA. This transacylation requires neither ATP nor the D-alanine incorporation system, i.e., the D-alanine activating enzyme and D-alanine:membrane acceptor ligase. No evidence for an enzyme-catalyzed transacylation reaction was observed. We propose that this process of transacylation may be responsible for the redistribution of D-alanyl residues after esterification to the poly(glycerophosphate). As a result, it is difficult to distinguish between these proposed modes of addition.
Collapse
|
17
|
Levine M, Movafagh BF. D-Alanyl-substituted glycerol lipoteichoic acid in culture fluids of Streptococcus mutans strains GS-5 and BHT. Infect Immun 1984; 46:870-2. [PMID: 6500717 PMCID: PMC261631 DOI: 10.1128/iai.46.3.870-872.1984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The content and D-alanyl ester complement of lipoteichoic acid from stationary-phase culture filtrates of Streptococcus mutans (strains BHT and GS-5; serotypes b and c) were determined chemically and serologically. A third less lipoteichoic acid was obtained from strain GS-5 than from strain BHT. This lipoteichoic acid had an increased mobility on immunoelectrophoresis after exposure overnight at pH 8 and a 10-fold greater content of alanine per mole of glycerol.
Collapse
|
18
|
MacArthur AE, Archibald AR. Effect of culture pH on the D-alanine ester content of lipoteichoic acid in Staphylococcus aureus. J Bacteriol 1984; 160:792-3. [PMID: 6501221 PMCID: PMC214808 DOI: 10.1128/jb.160.2.792-793.1984] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The lipoteichoic acid in Staphylococcus aureus growing at high pH values contained very little alanine ester, showing that high overall levels of substitution were not essential for growth. The low alanine content could have resulted from a progressive loss due to base-catalyzed hydrolysis of the labile ester linkages.
Collapse
|
19
|
Abstract
Several lines of evidence suggest that Gram-positive bacterial cell surface polymers are synthesized by stepwise addition of polymer subunits to an amphipathic acceptor. In the case of membrane-bound lipopolymers such as mannan and lipoteichoic acid, the finished product may be covalently linked to a lipid anchor. In the case of polymers that are transferred into preexisting cell wall, such as teichoic acid and peptidoglycan, two alternative fates might be possible: (1) transfer into wall with concomitant or later cleavage of the lipid anchor, with recycling of the lipid anchor or secretion of the lipid anchor into the growth medium, and (2) transfer into wall without cleavage of the lipid anchor, resulting in maintenance of the covalent relationship between lipid anchor and polymer chain. In the latter case, a close relationship should be established between the cell wall and the plasma membrane. A number of Gram-positive bacteria have been shown to be resistant to plasmolysis. Therefore, a model for the assembly of the Gram-positive cell wall is proposed which takes into account a role for lipopolymeric intermediates and which views the establishment of resistance to plasmolysis as the natural consequence of such a mechanism.
Collapse
|
20
|
Taron DJ, Childs WC, Neuhaus FC. Biosynthesis of D-alanyl-lipoteichoic acid: role of diglyceride kinase in the synthesis of phosphatidylglycerol for chain elongation. J Bacteriol 1983; 154:1110-6. [PMID: 6304004 PMCID: PMC217581 DOI: 10.1128/jb.154.3.1110-1116.1983] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Lipophilic and hydrophilic D-alanyl-lipoteichoic acids are elongated in Lactobacillus casei by the transfer of sn-glycerol 1-phosphate units from phosphatidylglycerol to the poly(glycerophosphate) moiety of the polymer. These sn-glycerol 1-phosphate units are added to the end of the poly(glycerophosphate) which is distal to the glycolipid anchor; 1,2-diglyceride results from this addition. The presence of a diglyceride kinase was suggested by the ATP-dependent phosphorylation of 1,2-diglyceride to phosphatidic acid. Inorganic phosphate was used to initiate the synthesis of lipophilic lipoteichoic acid (LTA) and the elongation of both lipophilic and hydrophilic LTA. Three observations suggest that phosphate and other anions play a role in the in vitro synthesis of LTA and its precursors. First, the conversion of 1,2-diglyceride to phosphatidic acid by diglyceride kinase was stimulated. Second, the synthesis of phosphatidylglycerol was increased. Third, the elongation of lipophilic and hydrophilic LTA was enhanced. These observations indicated that one effect of phosphate might be to enhance the utilization of 1,2-diglyceride for the synthesis of phosphatidic acid. This phospholipid is a precursor of phosphatidylglycerol, the donor of sn-glycerol 1-phosphate for elongation of LTA.
Collapse
|
21
|
Nealon TJ, Mattingly SJ. Association of elevated levels of cellular lipoteichoic acids of group B streptococci with human neonatal disease. Infect Immun 1983; 39:1243-51. [PMID: 6341233 PMCID: PMC348090 DOI: 10.1128/iai.39.3.1243-1251.1983] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cell-associated lipoteichoic acids (LTAs) from late-exponential-phase cultures (serotypes Ia, Ib, Ic, II, and III) of group B streptococci isolated from infected and asymptomatically colonized infants were quantitated and characterized by growing the organisms in a chemically defined medium containing [3H]glycerol and [14C]acetate. Cell pellets were extracted with 45% aqueous phenol and chloroform-methanol and subjected to DEAE-Sephacel anion-exchange chromatography. Elution profiles resolved three major peaks, I, II, and III, with glycerol and phosphate present in a 1:1 molar ratio in each peak, and results obtained by Ouchterlony immunodiffusion analysis confirmed the presence of poly(glycerol phosphate). Saponification indicated that [14C]acetate was incorporated into fatty acids of peaks I and II only, suggesting that these were cell-associated LTAs. Peak II was of small molecular weight (less than 10,000) and probably represented another species of LTA. Peaks I and II were further demonstrated to be LTA by their ability to sensitize human type O erythrocytes. Peak III lacked fatty acids and was shown to probably be deacylated LTA. Quantitation of cell-associated teichoic acid material produced by the group B streptococcal strains indicated that the clinical isolates from infants with early- or late-onset disease possessed significantly higher levels than did the asymptomatic (clinical isolates from infants without symptoms of disease) group B streptococcal strains.
Collapse
|
22
|
Mancuso DJ, Chiu TH. Biosynthesis of glucosyl monophosphoryl undecaprenol and its role in lipoteichoic acid biosynthesis. J Bacteriol 1982; 152:616-25. [PMID: 7130126 PMCID: PMC221508 DOI: 10.1128/jb.152.2.616-625.1982] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A glucophospholipid was detected in an incubation mixture containing UDP-glucose, MgCl2, ATP, and a particulate enzyme prepared from Streptococcus sanguis. The synthesis of this lipid was inhibited strongly by UDP and moderately by UMP. The molar ratio of glucose to phosphate in the purified lipid was found to be 1:1. Glucose and glucose 1-phosphate were released by mild alkaline hydrolysis of the glucophospholipid. The lipid produced by mild acid degradation of the purified lipid yielded a thin-layer chromatographic profile similar to that of acid-treated undecaprenol. One of the minor components exhibited the same mobility as untreated undecaprenol. To characterize further the lipid moiety of the glucophospholipid, a polyisoprenol was purified from the neutral lipid of S. sanguis. The polyisoprenol was converted in the presence of ATP, UDP-glucose, and the particulate enzyme into a lipid which exhibited the same thin-layer chromatographic mobility as the glucophospholipid. The structure of the polyisoprenol was determined by nuclear magnetic resonance and mass spectrometry to be an undecaprenol with an internal cis-trans ratio of 7:2. These results indicate that the glucophospholipid is glucosyl monophosphoryl undecaprenol. The glucosyl moiety of the glucophospholipid was shown to be incorporated in the presence of the particulate enzyme into a macromolecule which was characterized as a lipoteichoic acid by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and DEAE-cellulose column chromatography. This result indicates that glucosyl monophosphoryl undecaprenol is the direct glucosyl donor in the synthesis of lipoteichoic acid.
Collapse
|
23
|
Influence of alanine ester and glycosyl substitution on the lipoteichoic acid carrier activity of lipoteichoic acids. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)34094-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Lang WK, Glassey K, Archibald AR. Influence of phosphate supply on teichoic acid and teichuronic acid content of Bacillus subtilis cell walls. J Bacteriol 1982; 151:367-75. [PMID: 6806244 PMCID: PMC220249 DOI: 10.1128/jb.151.1.367-375.1982] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Bacillus subtilis 168 was grown in chemostat culture in fully defined media containing a constant concentration of magnesium and concentrations of phosphate that varied from those giving phosphate-limited growth to those in which phosphate was present in excess and magnesium was limiting. Phosphate-limited bacteria were deficient in wall teichoic acid and contained less than half as much cellular phosphate as did bacteria grown in excess of phosphate. Approximately 70% of the additional phosphate in the latter bacteria was present as wall teichoic acid, indicating that the ability of the bacteria to discontinue teichoic acid synthesis when grown under phosphate limitation permits a substantial increase in their growth yield. Since not all of the additional phosphate is present as wall teichoic acid other cellular phosphates may also be present in reduced amounts in the phosphate-limited bacteria. The content of phosphate groups in walls of magnesium-limited bacteria was similar to the content of uronic acid groups in walls of phosphate-limited bacteria, and walls of bacteria grown in media of intermediate composition contained intermediate proportions of the two anionic polymers. Phage SP50, used as a marker for the presence of teichoic acid, bound densely to nearly all of the bacteria in samples containing down to 22% of the maximum content of teichoic acid. Apparently, therefore, nearly all of these bacteria contain teichoic acid, and the population does not consist of a mixture of individuals having exclusively one kind of anionic polymer. Bacteria containing less than 22% of the maximum content of teichoic bound in a nonuniform manner, and possible explanations for this are discussed.
Collapse
|
25
|
Fischer W. D-alanine ester-containing glycerophosphoglycolipids in the membrane of gram-positive bacteria. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 711:372-5. [PMID: 6807353 DOI: 10.1016/0005-2760(82)90048-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Levine M. Naturally occurring human serum precipitins specific for D-alanyl esters of glycerol teichoic acid. Mol Immunol 1982; 19:133-42. [PMID: 7078554 DOI: 10.1016/0161-5890(82)90255-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
|
28
|
|