1
|
Al-Trad EI, Chew CH, Che Hamzah AM, Suhaili Z, Rahman NIA, Ismail S, Puah SM, Chua KH, Kwong SM, Yeo CC. The Plasmidomic Landscape of Clinical Methicillin-Resistant Staphylococcus aureus Isolates from Malaysia. Antibiotics (Basel) 2023; 12:antibiotics12040733. [PMID: 37107095 PMCID: PMC10135026 DOI: 10.3390/antibiotics12040733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a priority nosocomial pathogen with plasmids playing a crucial role in its genetic adaptability, particularly in the acquisition and spread of antimicrobial resistance. In this study, the genome sequences of 79 MSRA clinical isolates from Terengganu, Malaysia, (obtained between 2016 and 2020) along with an additional 15 Malaysian MRSA genomes from GenBank were analyzed for their plasmid content. The majority (90%, 85/94) of the Malaysian MRSA isolates harbored 1-4 plasmids each. In total, 189 plasmid sequences were identified ranging in size from 2.3 kb to ca. 58 kb, spanning all seven distinctive plasmid replication initiator (replicase) types. Resistance genes (either to antimicrobials, heavy metals, and/or biocides) were found in 74% (140/189) of these plasmids. Small plasmids (<5 kb) were predominant (63.5%, 120/189) with a RepL replicase plasmid harboring the ermC gene that confers resistance to macrolides, lincosamides, and streptogramin B (MLSB) identified in 63 MRSA isolates. A low carriage of conjugative plasmids was observed (n = 2), but the majority (64.5%, 122/189) of the non-conjugative plasmids have mobilizable potential. The results obtained enabled us to gain a rare view of the plasmidomic landscape of Malaysian MRSA isolates and reinforces their importance in the evolution of this pathogen.
Collapse
Affiliation(s)
- Esra'a I Al-Trad
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Ching Hoong Chew
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia
| | | | - Zarizal Suhaili
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut 22200, Malaysia
| | - Nor Iza A Rahman
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Salwani Ismail
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Stephen M Kwong
- Infectious Diseases & Microbiology, School of Medicine, Western Sydney University, Campbelltown 2560, Australia
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| |
Collapse
|
2
|
Szaja A, Montusiewicz A, Lebiocka M. Variability of Micro- and Macro-Elements in Anaerobic Co-Digestion of Municipal Sewage Sludge and Food Industrial By-Products. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5405. [PMID: 37048020 PMCID: PMC10094009 DOI: 10.3390/ijerph20075405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
The main aim of this study was to evaluate the effect of the addition of selected industrial food wastes on the fate of micro- and macro-elements within an anaerobic digestion process (AD), as well as define the relationship between their content and AD efficiency. Orange peels, (OP), orange pulp (PL) and brewery spent grain (BSG) were used as co-substrates, while municipal sewage sludge (SS) was applied as the main component. The introduction of co-substrates resulted in improvements in feedstock composition in terms of macro-elements, with a simultaneous decrease in the content of HMs (heavy metals). Such beneficial effects led to enhanced methane production, and improved process performance at the highest doses of PL and BSG. In turn, reduced biogas and methane production was found in the three-component digestion mixtures in the presence of OP and BSG; therein, the highest accumulation of most HMs within the process was also revealed. Considering the agricultural application of all digestates, exceedances for Cu, Zn and Hg were recorded, thereby excluding their further use for that purpose.
Collapse
|
3
|
Dissanayake DMDC, Kumari WMNH, Chandrasekharan NV, Wijayarathna CD. Isolation of heavy metal-resistant Staphylococcus epidermidis strain TWSL_22 and evaluation of heavy metal bioremediation potential of recombinant E. coli cloned with isolated cadD. FEMS Microbiol Lett 2023; 370:fnad092. [PMID: 37708035 DOI: 10.1093/femsle/fnad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/23/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
A heavy metal-resistant bacterial strain, TWSL_22 was isolated from an industrial effluent sample and tested for heavy metal tolerance and resistance. The strain was molecularly characterized as Staphylococcus epidermidis based on 16S rDNA gene analysis and the sequence was deposited in the NCBI repository (accession number KT184893.1). Metal removal activity (P < .001) of TWSL_22 was 99.99 ± 0.001%, 74.43 ± 2.51%, and 51.16 ± 4.17% for Cd, Pb, and Cu, respectively. Highest MIC was observed for Cd. Antibiotic susceptibility assays revealed the strain TWSL_22 to be resistant to several antibiotics. The strain was screened for possible heavy metal-resistant genes and presence of cadA, copA, and cadD was confirmed by PCR. A DNA fragment containing complete sequence of cadD (618 bp) was isolated and cloned into pET 21a(+), transformed into E. coli BL21 and designated as E. coli/cadDET. E. coli/cadDET showed high metal tolerance capacity and could remove over 82% of heavy metals (Zn2+, Cd2+, Cu2+, and Cr3+) in the industrial effluent.
Collapse
Affiliation(s)
- D M D C Dissanayake
- Biotechnology Laboratory, Department of Chemistry, Faculty of Science, University of Colombo, PO Box 1490, Cumarathunga Munidasa Mawatha, Colombo 00300, Sri Lanka
| | - W M N H Kumari
- Department of Molecular Biology, Durdans Hospitals, No 3 Alfred Road, Colombo 03, Sri Lanka
| | - N V Chandrasekharan
- Sri Lanka Institute of Biotechnology, Thalagala road, Pitipana, Homagama, Sri Lanka
| | - C D Wijayarathna
- Biotechnology Laboratory, Department of Chemistry, Faculty of Science, University of Colombo, PO Box 1490, Cumarathunga Munidasa Mawatha, Colombo 00300, Sri Lanka
| |
Collapse
|
4
|
Rehan M, Alhusays A, Serag AM, Boubakri H, Pujic P, Normand P. The cadCA and cadB/DX operons are possibly induced in cadmium resistance mechanism by Frankia alni ACN14a. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
5
|
Somayaji A, Dhanjal CR, Lingamsetty R, Vinayagam R, Selvaraj R, Varadavenkatesan T, Govarthanan M. An insight into the mechanisms of homeostasis in extremophiles. Microbiol Res 2022; 263:127115. [PMID: 35868258 DOI: 10.1016/j.micres.2022.127115] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 01/10/2023]
Abstract
The homeostasis of extremophiles is one that is a diamond hidden in the rough. The way extremophiles adapt to their extreme environments gives a clue into the true extent of what is possible when it comes to life. The discovery of new extremophiles is ever-expanding and an explosion of knowledge surrounding their successful existence in extreme environments is obviously perceived in scientific literature. The present review paper aims to provide a comprehensive view on the different mechanisms governing the extreme adaptations of extremophiles, along with insights and discussions on what the limits of life can possibly be. The membrane adaptations that are vital for survival are discussed in detail. It was found that there are many alterations in the genetic makeup of such extremophiles when compared to their mesophilic counterparts. Apart from the several proteins involved, the significance of chaperones, efflux systems, DNA repair proteins and a host of other enzymes that adapt to maintain functionality, are enlisted, and explained. A deeper understanding of the underlying mechanisms could have a plethora of applications in the industry. There are cases when certain microbes can withstand extreme doses of antibiotics. Such microbes accumulate numerous genetic elements (or plasmids) that possess genes for multiple drug resistance (MDR). A deeper understanding of such mechanisms helps in the development of potential approaches and therapeutic schemes for treating pathogen-mediated outbreaks. An in-depth analysis of the parameters - radiation, pressure, temperature, pH value and metal resistance - are discussed in this review, and the key to survival in these precarious niches is described.
Collapse
Affiliation(s)
- Adithi Somayaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Manipal Biomachines, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Chetan Roger Dhanjal
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Manipal Biomachines, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Rathnamegha Lingamsetty
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Manipal Biomachines, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India.
| |
Collapse
|
6
|
Göbbels L, Poehlein A, Dumnitch A, Egelkamp R, Kröger C, Haerdter J, Hackl T, Feld A, Weller H, Daniel R, Streit WR, Schoelmerich MC. Cysteine: an overlooked energy and carbon source. Sci Rep 2021; 11:2139. [PMID: 33495538 PMCID: PMC7835215 DOI: 10.1038/s41598-021-81103-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/31/2020] [Indexed: 11/09/2022] Open
Abstract
Biohybrids composed of microorganisms and nanoparticles have emerged as potential systems for bioenergy and high-value compound production from CO2 and light energy, yet the cellular and metabolic processes within the biological component of this system are still elusive. Here we dissect the biohybrid composed of the anaerobic acetogenic bacterium Moorella thermoacetica and cadmium sulphide nanoparticles (CdS) in terms of physiology, metabolism, enzymatics and transcriptomic profiling. Our analyses show that while the organism does not grow on l-cysteine, it is metabolized to acetate in the biohybrid system and this metabolism is independent of CdS or light. CdS cells have higher metabolic activity, despite an inhibitory effect of Cd2+ on key enzymes, because of an intracellular storage compound linked to arginine metabolism. We identify different routes how cysteine and its oxidized form can be innately metabolized by the model acetogen and what intracellular mechanisms are triggered by cysteine, cadmium or blue light.
Collapse
Affiliation(s)
- Luise Göbbels
- Microbiology and Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Albert Dumnitch
- Microbiology and Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| | - Richard Egelkamp
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Cathrin Kröger
- Microbiology and Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| | - Johanna Haerdter
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Thomas Hackl
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Artur Feld
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Horst Weller
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Wolfgang R Streit
- Microbiology and Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| | - Marie Charlotte Schoelmerich
- Microbiology and Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, 22609, Hamburg, Germany.
| |
Collapse
|
7
|
Al-Tameemi H, Beavers WN, Norambuena J, Skaar EP, Boyd JM. Staphylococcus aureus lacking a functional MntABC manganese import system has increased resistance to copper. Mol Microbiol 2020; 115:554-573. [PMID: 33034093 DOI: 10.1111/mmi.14623] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
S. aureus USA300 isolates utilize the copBL and copAZ gene products to prevent Cu intoxication. We created and examined a ΔcopAZ ΔcopBL mutant strain (cop-). The cop- strain was sensitive to Cu and accumulated intracellular Cu. We screened a transposon (Tn) mutant library in the cop- background and isolated strains with Tn insertions in the mntABC operon that permitted growth in the presence of Cu. The mutations were in mntA and they were recessive. Under the growth conditions utilized, MntABC functioned in manganese (Mn) import. When cultured with Cu, strains containing a mntA::Tn accumulated less Cu than the parent strain. Mn(II) supplementation improved growth when cop- was cultured with Cu and this phenotype was dependent upon the presence of MntR, which is a repressor of mntABC transcription. A ΔmntR strain had an increased Cu load and decreased growth in the presence of Cu, which was abrogated by the introduction of mntA::Tn. Over-expression of mntABC increased cellular Cu load and sensitivity to Cu. The presence of a mntA::Tn mutation protected iron-sulfur (FeS) enzymes from inactivation by Cu. The data presented are consistent with a model wherein defective MntABC results in decreased cellular Cu accumulation and protection to FeS enzymes from Cu poisoning.
Collapse
Affiliation(s)
- Hassan Al-Tameemi
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - William N Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
8
|
Argudín MA, Hoefer A, Butaye P. Heavy metal resistance in bacteria from animals. Res Vet Sci 2018; 122:132-147. [PMID: 30502728 DOI: 10.1016/j.rvsc.2018.11.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 01/19/2023]
Abstract
Resistance to metals and antimicrobials is a natural phenomenon that existed long before humans started to use these products for veterinary and human medicine. Bacteria carry diverse metal resistance genes, often harboured alongside antimicrobial resistance genes on plasmids or other mobile genetic elements. In this review we summarize the current knowledge about metal resistance genes in bacteria and we discuss their current use in the animal husbandry.
Collapse
Affiliation(s)
- M A Argudín
- National Reference Centre - Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - A Hoefer
- Department of Biomedical Sciences, University, School of Veterinary Medicine, Basseterre, PO Box 334, Saint Kitts and Nevis
| | - P Butaye
- Department of Biomedical Sciences, University, School of Veterinary Medicine, Basseterre, PO Box 334, Saint Kitts and Nevis; Department of Pathology, Bacteriology, and Avian Diseases, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium..
| |
Collapse
|
9
|
Cai Y, Zheng Z, Zhao Y, Zhang Y, Guo S, Cui Z, Wang X. Effects of molybdenum, selenium and manganese supplementation on the performance of anaerobic digestion and the characteristics of bacterial community in acidogenic stage. BIORESOURCE TECHNOLOGY 2018; 266:166-175. [PMID: 29966926 DOI: 10.1016/j.biortech.2018.06.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/16/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
The addition of trace elements to aid anaerobic digestion has already been widely studied. However, the effects of rare trace elements on anaerobic digestion remain unclear. In this study, the effects of Mo, Se and Mn on anaerobic digestion of rice straw were explored. The results showed the methane yield increased by 59.3%, 47.1% and 48.9% in the first 10 days following addition of Mo (0.01 mg/L), Se (0.1 mg/L) and Mn (1.0 mg/L), respectively. Toxic effects and the accumulation of volatile fatty acids (VFAs) were observed when the Se, Mo and Mn concentrations were greater than 100, 1000 and 1000 mg/L, respectively. The half-maximal inhibitory concentrations (IC50) for Se, Mn and Mo were 79.9 mg/L, 773.9 mg/L and 792.3 mg/L, respectively. The addition of trace elements has changed the bacterial structure of the bacteria, which in turn has affected the digestion performance.
Collapse
Affiliation(s)
- Yafan Cai
- College of Agronomy and Biotechnology, Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Zehui Zheng
- College of Agronomy and Biotechnology, Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Yubin Zhao
- College of Agronomy and Biotechnology, Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Yue Zhang
- College of Agronomy and Biotechnology, Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Shiyu Guo
- College of Agronomy and Biotechnology, Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Zongjun Cui
- College of Agronomy and Biotechnology, Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Xiaofen Wang
- College of Agronomy and Biotechnology, Biomass Engineering Center, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Hendriks A, van Lier J, de Kreuk M. Growth media in anaerobic fermentative processes: The underestimated potential of thermophilic fermentation and anaerobic digestion. Biotechnol Adv 2018; 36:1-13. [DOI: 10.1016/j.biotechadv.2017.08.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/08/2017] [Accepted: 08/30/2017] [Indexed: 11/24/2022]
|
11
|
Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Appl Microbiol Biotechnol 2016; 100:2967-84. [PMID: 26860944 DOI: 10.1007/s00253-016-7364-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
Abstract
Metal pollution is one of the most persistent and complex environmental issues, causing threat to the ecosystem and human health. On exposure to several toxic metals such as arsenic, cadmium, chromium, copper, lead, and mercury, several bacteria has evolved with many metal-resistant genes as a means of their adaptation. These genes can be further exploited for bioremediation of the metal-contaminated environments. Many operon-clustered metal-resistant genes such as cadB, chrA, copAB, pbrA, merA, and NiCoT have been reported in bacterial systems for cadmium, chromium, copper, lead, mercury, and nickel resistance and detoxification, respectively. The field of environmental bioremediation has been ameliorated by exploiting diverse bacterial detoxification genes. Genetic engineering integrated with bioremediation assists in manipulation of bacterial genome which can enhance toxic metal detoxification that is not usually performed by normal bacteria. These techniques include genetic engineering with single genes or operons, pathway construction, and alternations of the sequences of existing genes. However, numerous facets of bacterial novel metal-resistant genes are yet to be explored for application in microbial bioremediation practices. This review describes the role of bacteria and their adaptive mechanisms for toxic metal detoxification and restoration of contaminated sites.
Collapse
|
12
|
Hoogewerf AJ, Dyk LAV, Buit TS, Roukema D, Resseguie E, Plaisier C, Le N, Heeringa L, Griend DAV. Functional characterization of a cadmium resistance operon inStaphylococcus aureusATCC12600: CadC does not function as a repressor. J Basic Microbiol 2014; 55:148-59. [DOI: 10.1002/jobm.201400498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/30/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Arlene J. Hoogewerf
- Calvin College Departments of Biology; Knollcrest Circle SE; Grand Rapids MI USA
| | - Lisa A. Van Dyk
- Calvin College Departments of Biology; Knollcrest Circle SE; Grand Rapids MI USA
| | - Tyler S. Buit
- Calvin College Departments of Biology; Knollcrest Circle SE; Grand Rapids MI USA
| | - David Roukema
- Calvin College Departments of Biology; Knollcrest Circle SE; Grand Rapids MI USA
| | - Emily Resseguie
- Calvin College Departments of Biology; Knollcrest Circle SE; Grand Rapids MI USA
| | | | - Nga Le
- Chemistry & Biochemistry; Knollcrest Circle SE; Grand Rapids MI USA
| | - Lee Heeringa
- Chemistry & Biochemistry; Knollcrest Circle SE; Grand Rapids MI USA
| | | |
Collapse
|
13
|
Tamilvendan D, Rajeswari S, Ilavenil S, Chakkaravarthy K, Venkatesa Prabhu G. Syntheses, spectral, crystallographic, antimicrobial, and antioxidant studies of few Mannich bases. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9944-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Andreoni V, Finoli C, Manfrin P, Pelosi M, Vecchio A. Studies on the accumulation of cadmium by a strain of Proteus mirabilis. FEMS Microbiol Ecol 2011. [DOI: 10.1111/j.1574-6941.1991.tb01723.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Masson S, Couillard Y, Campbell PGC, Olsen C, Pinel-Alloul B, Perceval O. Responses of two sentinel species (Hexagenia limbata—mayfly; Pyganodon grandis—bivalve) along spatial cadmium gradients in lakes and rivers in northwestern Québec. ACTA ACUST UNITED AC 2010; 12:143-58. [DOI: 10.1039/b912185d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Comparative genomic hybridization analysis of two predominant Nordic group I (proteolytic) Clostridium botulinum type B clusters. Appl Environ Microbiol 2009; 75:2643-51. [PMID: 19270141 DOI: 10.1128/aem.02557-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparative genomic hybridization analysis of 32 Nordic group I Clostridium botulinum type B strains isolated from various sources revealed two homogeneous clusters, clusters BI and BII. The type B strains differed from reference strain ATCC 3502 by 413 coding sequence (CDS) probes, sharing 88% of all the ATCC 3502 genes represented on the microarray. The two Nordic type B clusters differed from each other by their response to 145 CDS probes related mainly to transport and binding, adaptive mechanisms, fatty acid biosynthesis, the cell membranes, bacteriophages, and transposon-related elements. The most prominent differences between the two clusters were related to resistance to toxic compounds frequently found in the environment, such as arsenic and cadmium, reflecting different adaptive responses in the evolution of the two clusters. Other relatively variable CDS groups were related to surface structures and the gram-positive cell wall, suggesting that the two clusters possess different antigenic properties. All the type B strains carried CDSs putatively related to capsule formation, which may play a role in adaptation to different environmental and clinical niches. Sequencing showed that representative strains of the two type B clusters both carried subtype B2 neurotoxin genes. As many of the type B strains studied have been isolated from foods or associated with botulism, it is expected that the two group I C. botulinum type B clusters present a public health hazard in Nordic countries. Knowing the genetic and physiological markers of these clusters will assist in targeting control measures against these pathogens.
Collapse
|
17
|
Gauthier M, Flatau G, Breittmayer J, Mathieu A, Clement R. Influence de bacteries aerobies ou anaerobies sur la fixation du cadmium et du vanadium par un sediment artificiel en eau de mer. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/09593338409384297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Poirier I, Jean N, Guary JC, Bertrand M. Responses of the marine bacterium Pseudomonas fluorescens to an excess of heavy metals: physiological and biochemical aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 406:76-87. [PMID: 18793794 DOI: 10.1016/j.scitotenv.2008.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 06/24/2008] [Accepted: 07/10/2008] [Indexed: 05/26/2023]
Abstract
A Pseudomonas fluorescens strain was isolated from oxic marine sediments obtained from the strand zone of the St Anne Bay (a moderately metal-contaminated site to the west of Cherbourg harbour). The strain, which exhibited a high tolerance to metal contamination when cultivated (minimal inhibitory concentration=950 microM [62 mg L(-1)] for Zn, 660 microM [42 mg L(-1)] for Cu, and 505 microM [57 mg L(-1)] for Cd), was further characterized by its physiological and biochemical responses to metal additions to the culture medium. Bacterial growth was significantly disturbed by 380 microM Zn (25 mg L(-1)), 315 microM Cu (20 mg L(-1)) and 90 microM Cd (10 mg L(-1)). The Zn-containing alkaline phosphatase was studied as an intoxication biomarker. Its activity was stimulated (+9%) by an excess of Zn, but inhibited by Cd (-55%) and Cu (-10%), these two elements could displace the native Zn or/and disturb the enzyme 3D-structure. Bacterial O(2) consumption was recorded as a global physiological response to metal stress. This parameter dropped with increasing Cd and Cu contamination (-49% and -45%, respectively, at 20 mg L(-1)). By contrast, Zn increased O2 consumption (approximately +40% for the different tested concentrations). The proteomes of bacteria grown in the presence or absence of 20 mg metal L(-1) were characterized by 2D-gel electrophoresis. The number of spots exhibiting a difference in intensity between the contaminated sample and the control was 65, 68, and 103, for Zn, Cu and Cd, respectively. Among them, 45, 61 and 82 spots respectively appeared de novo or increased in intensity, indicative of metal-stimulated synthesis, particularly for Cu and Cd. In summary, whereas Cd and Cu treatments both stressed cells and slowed down primary metabolism to differing extents, Zn has a stimulating action on several physiological and biochemical parameters.
Collapse
Affiliation(s)
- I Poirier
- Equipe Microorganismes-Métaux-Toxicité, Laboratoire d'Etudes et de Recherches Marines, Institut National des Sciences et Techniques de la Mer, Conservatoire National des Arts et Métiers, BP 324, F-50103 Cherbourg Cedex, France.
| | | | | | | |
Collapse
|
19
|
From clinical microbiology to infection pathogenesis: how daring to be different works for Staphylococcus lugdunensis. Clin Microbiol Rev 2008; 21:111-33. [PMID: 18202439 DOI: 10.1128/cmr.00036-07] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus lugdunensis has gained recognition as an atypically virulent pathogen with a unique microbiological and clinical profile. S. lugdunensis is coagulase negative due to the lack of production of secreted coagulase, but a membrane-bound form of the enzyme present in some isolates can result in misidentification of the organism as Staphylococcus aureus in the clinical microbiology laboratory. S. lugdunensis is a skin commensal and an infrequent pathogen compared to S. aureus and S. epidermidis, but clinically, infections caused by this organism resemble those caused by S. aureus rather than those caused by other coagulase-negative staphylococci. S. lugdunensis can cause acute and highly destructive cases of native valve endocarditis that often require surgical treatment in addition to antimicrobial therapy. Other types of S. lugdunensis infections include abscess and wound infection, urinary tract infection, and infection of intravascular catheters and other implanted medical devices. S. lugdunensis is generally susceptible to antimicrobial agents and shares CLSI antimicrobial susceptibility breakpoints with S. aureus. Virulence factors contributing to this organism's heightened pathogenicity remain largely unknown. Those characterized to date suggest that the organism has the ability to bind to and interact with host cells and to form biofilms on host tissues or prosthetic surfaces.
Collapse
|
20
|
Abstract
A CadDX system that confers resistance to Cd(2+) and Zn(2+) was identified in Streptococcus salivarius 57.I. Unlike with other CadDX systems, the expression of the cad promoter was negatively regulated by CadX, and the repression was inducible by Cd(2+) and Zn(2+), similar to what was found for CadCA systems. The lower G+C content of the S. salivarius cadDX genes suggests acquisition by horizontal gene transfer.
Collapse
|
21
|
Naz N, Young HK, Ahmed N, Gadd GM. Cadmium accumulation and DNA homology with metal resistance genes in sulfate-reducing bacteria. Appl Environ Microbiol 2005; 71:4610-8. [PMID: 16085855 PMCID: PMC1183370 DOI: 10.1128/aem.71.8.4610-4618.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Accepted: 02/28/2005] [Indexed: 11/20/2022] Open
Abstract
Cadmium resistance (0.1 to 1.0 mM) was studied in four pure and one mixed culture of sulfate-reducing bacteria (SRB). The growth of the bacteria was monitored with respect to carbon source (lactate) oxidation and sulfate reduction in the presence of various concentrations of cadmium chloride. Two strains Desulfovibrio desulfuricans DSM 1926 and Desulfococcus multivorans DSM 2059 showed the highest resistance to cadmium (0.5 mM). Transmission electron microscopy of the two strains showed intracellular and periplasmic accumulation of cadmium. Dot blot DNA hybridization using the probes for the smtAB, cadAC, and cadD genes indicated the presence of similar genetic determinants of heavy metal resistance in the SRB tested. DNA sequencing of the amplified DNA showed strong nucleotide homology in all the SRB strains with the known smtAB genes encoding synechococcal metallothioneins. Protein homology with the known heavy metal-translocating ATPases was also detected in the cloned amplified DNA of Desulfomicrobium norvegicum I1 and Desulfovibrio desulfuricans DSM 1926, suggesting the presence of multiple genetic mechanisms of metal resistance in the two strains.
Collapse
Affiliation(s)
- Naghma Naz
- Division of Environmental and Applied Biology, Biological Sciences Institute, School of Life Sciences, University of Dundee, Dundee DD1 4HN, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
22
|
Kamashwaran SR, Crawford DL. Mechanisms of cadmium resistance in anaerobic bacterial enrichments degrading pentachlorophenol. Can J Microbiol 2004; 49:418-24. [PMID: 14569282 DOI: 10.1139/w03-053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms of heavy-metal resistance used by adapted sulfidogenic and methanogenic enrichments degrading pentachlorophenol in the presence of cadmium (Cd) were studied. The enrichment cultures adapted to and readily tolerated bioavailable Cd concentrations up to 50 ppm while degrading an equal concentration of pentachlorophenol. Both cultures removed >95% of the Cd from solution. Transmission electron micrographs revealed (i). the presence of electron-dense particles surrounding the cells in the sulfidogenic enrichments and (ii). the unusual clumping of cells and the presence of an exopolymer in the methanogenic enrichments. Energy dispersive X-ray analysis showed that the sulfidogenic enrichments removed Cd by extracellular precipitation of cadmium sulfide, while the methanogenic enrichment culture removed Cd by extracellular sequestration of Cd into the exopolymer.
Collapse
Affiliation(s)
- S R Kamashwaran
- Department of Microbiology, University of Idaho, Moscow, ID 83844-3052, USA
| | | |
Collapse
|
23
|
Rensing C, Maier RM. Issues underlying use of biosensors to measure metal bioavailability. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2003; 56:140-147. [PMID: 12915147 DOI: 10.1016/s0147-6513(03)00057-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Heavy metal-mediated toxicity in the environment is dependent on bioavailable metal concentrations both internal and external to microbial cells. Both internal and external metal bioavailability are influenced by multiple factors in the soil environment. External factors include pH, redox potential, ionic strength, organic matter and clay content. The internal bioavailable metal concentration is dependent on both the aforementioned external factors, as well as metal uptake and efflux activities that are specific for each microorganism. The metal-specific biosensors discussed in this article can be used to measure internal metal bioavailability.
Collapse
Affiliation(s)
- Christopher Rensing
- Department of Soil, Water, and Environmental Science, University of Arizona, Room 429, Shantz Boulevard # 38, Tucson, AZ 85721, USA.
| | | |
Collapse
|
24
|
Keren N, Kidd MJ, Penner-Hahn JE, Pakrasi HB. A light-dependent mechanism for massive accumulation of manganese in the photosynthetic bacterium Synechocystis sp. PCC 6803. Biochemistry 2002; 41:15085-92. [PMID: 12475258 DOI: 10.1021/bi026892s] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Manganese is an essential micronutrient for many organisms. Because of its unique role in the water oxidizing activity of photosystem II, manganese is required for photosynthetic growth in plants and cyanobacteria. Here we report on the mechanism of manganese uptake in the cyanobacterium Synechocystis sp. PCC 6803. Cells grown in 9 microM manganese-containing medium accumulate up to 1 x 10(8) manganese atoms/cell, bound to the outer membrane (pool A). This pool could be released by EDTA treatment. Accumulation of manganese in pool A was energized by photosynthetic electron flow. Moreover, collapsing the membrane potential resulted in the immediate release of this manganese pool. The manganese in this pool is mainly Mn(II) in a six-coordinate distorted environment. A distinctly different pool of manganese, pool B ( approximately 1.5 x 10(6) atoms/cell), could not be extracted by EDTA. Transport into pool B was light-independent and could be detected only under limiting manganese concentrations (1 nM). Evidently, manganese uptake in Synechocystis 6803 cells occurs in two steps. First, manganese accumulates in the outer membrane (pool A) in a membrane potential-dependent process. Next, manganese is transported through the inner membrane into pool B. We propose that pool A serves as a store that allows the cells to overcome transient limitations in manganese in the environment.
Collapse
Affiliation(s)
- Nir Keren
- Department of Biology, Washington University, St. Louis, Missouri 63130-4899, USA.
| | | | | | | |
Collapse
|
25
|
Horsburgh MJ, Wharton SJ, Cox AG, Ingham E, Peacock S, Foster SJ. MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Mol Microbiol 2002; 44:1269-86. [PMID: 12028379 DOI: 10.1046/j.1365-2958.2002.02944.x] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Staphylococcus aureus DtxR-like protein, MntR, controls expression of the mntABC and mntH genes, which encode putative manganese transporters. Mutation of mntABC produced a growth defect in metal-depleted medium and increased sensitivity to intracellularly generated superoxide radicals. These phenotypes resulted from diminished uptake of manganese and were rescued by the addition of excess Mn(II). Resistance to superoxide was incompletely rescued by Mn(II) for STE035 (mntA mntH), and the strain had reduced virulence in a murine abscess model of infection. Expression of mntABC was repressed by Mn(II) in an MntR-dependent manner, which contrasts with the expression of mntH that was not repressed in elevated Mn(II) and was decreased in an mntR mutant. This demonstrates that MntR acts as a negative and positive regulator of these loci respectively. PerR, the peroxide resistance regulon repressor, acts with MntR to control the expression of mntABC and manganese uptake. The expression of the PerR-regulated genes, katA (catalase), ftn (ferritin) and fur (ferric uptake regulator), was diminished in STE031 (mntR) when grown in excess Mn(II). Therefore, the control of Mn(II)-regulated members of the PerR regulon and the Fur protein is modulated by MntR through its control of Mn(II) uptake. The co-ordinated regulation of metal ion homeostasis and oxidative stress resistance via the regulators MntR, PerR and Fur of S. aureus is discussed.
Collapse
Affiliation(s)
- Malcolm J Horsburgh
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | | | |
Collapse
|
26
|
Himeno S, Yanagiya T, Enomoto S, Kondo Y, Imura N. Cellular cadmium uptake mediated by the transport system for manganese. TOHOKU J EXP MED 2002; 196:43-50. [PMID: 12498325 DOI: 10.1620/tjem.196.43] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mechanism of cellular cadmium (Cd) uptake has been poorly understood. Recently, we developed Cd-resistant cell lines from metallothionein null mouse cells and showed that the Cd resistance of these cells was conferred primarily by a reduced Cd accumulation. Surprisingly, the uptake rate of manganese (Mn) was also markedly reduced in Cd-resistant cells. Subsequent studies on the kinetics of Cd and Mn uptake by Cd-resistant and parental cells revealed that the Mn transport system with high affinity for Mn is used for cellular Cd uptake, and that this pathway is suppressed in Cd-resistant metallothionein null cells. This is the first indication that the transport system for Mn is used for Cd uptake in mammalian cells. Divalent metal transporter 1 (DMT1) is the only known mammalian transporter involved in the uptake of both Cd and Mn. However, the high-affinity Mn/Cd transport system we found seems to be distinct from DMT1 because of the difference in optimal pH and substrate specificity. On the other hand, various types of Mn transporters have been shown to play an important role in cellular Cd uptake in non-mammalian species such as yeast, plants and bacteria, suggesting the existence of Mn transporters other than DMT1 in mammals.
Collapse
Affiliation(s)
- Seiichiro Himeno
- Kitasato University, School of Pharmaceutical Sciences, Department of Public Health and Molecular Toxicology, Tokyo 108-8641, Japan.
| | | | | | | | | |
Collapse
|
27
|
Lee SW, Glickmann E, Cooksey DA. Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl Environ Microbiol 2001; 67:1437-44. [PMID: 11282588 PMCID: PMC92752 DOI: 10.1128/aem.67.4.1437-1444.2001] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2000] [Accepted: 01/09/2001] [Indexed: 11/20/2022] Open
Abstract
Pseudomonads from environmental sources vary widely in their sensitivity to cadmium, but the basis for this resistance is largely uncharacterized. A chromosomal fragment encoding cadmium resistance was cloned from Pseudomonas putida 06909, a rhizosphere bacterium, and sequence analysis revealed two divergently transcribed genes, cadA and cadR. CadA was similar to cadmium-transporting ATPases known mostly from gram-positive bacteria, and to ZntA, a lead-, zinc-, and cadmium-transporting ATPase from Escherichia coli. CadR was related to the MerR family of response regulators that normally control mercury detoxification in other bacterial systems. A related gene, zntR, regulates zntA in E. coli, but it is not contiguous with zntA in the E. coli genome as cadA and cadR were in P. putida. In addition, unlike ZntA and other CadA homologs, but similar to the predicted product of gene PA3690 in the P. aeruginosa genome, the P. putida CadA sequence had a histidine-rich N-terminal extension. CadR and the product of PA3689 of P. aeruginosa also had histidine-rich C-terminal extensions not found in other MerR family response regulators. Mutational analysis indicated that cadA and cadR are fully responsible for cadmium resistance and partially for zinc resistance. However, unlike zntA, they did not confer significant levels of lead resistance. The cadA promoter was responsive to Cd(II), Pb(II), and Zn(II), while the cadR promoter was only induced by Cd(II). CadR apparently represses its own expression at the transcriptional level. However, CadR apparently does not repress cadA. Homologs of the cadmium-transporting ATPase were detected in many other Pseudomonas species.
Collapse
Affiliation(s)
- S W Lee
- Department of Plant Pathology, University of California, Riverside, CA 92521-0122, USA
| | | | | |
Collapse
|
28
|
Kehres DG, Zaharik ML, Finlay BB, Maguire ME. The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. Mol Microbiol 2000; 36:1085-100. [PMID: 10844693 DOI: 10.1046/j.1365-2958.2000.01922.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
NRAMPs (natural resistance-associated macrophage proteins) have been characterized in mammals as divalent transition metal transporters involved in iron metabolism and host resistance to certain pathogens. The mechanism of pathogen resistance is proposed to involve sequestration of Fe2+ and Mn2+, cofactors of both prokaryotic and eukaryotic catalases and superoxide dismutases, not only to protect the macrophage against its own generation of reactive oxygen species, but to deny the cations to the pathogen for synthesis of its protective enzymes. NRAMP homologues are also present in bacteria. We report the cloning and characterization of the single NRAMP genes in Escherichia coli and Salmonella enterica ssp. typhimurium, and the cloning of two distinct NRAMP genes from Pseudomonas aeruginosa and an internal fragment of an NRAMP gene in Burkholderia cepacia. The genes are designated mntH because the two enterobacterial NRAMPs encode H+-stimulated, highly selective manganese(II) transport systems, accounting for all Mn2+ uptake in each species under the conditions tested. For S. typhimurium MntH, the Km for 54Mn2+ ( approximately 0.1 microM) was pH independent, but maximal uptake increased as pH decreased. Monovalent cations, osmotic strength, Mg2+ and Ca2+ did not inhibit 54Mn2+ uptake. Ni2+, Cu2+ and Zn2+ inhibited uptake with Kis greater than 100 microM, Co2+ with a Ki of 20 microM and Fe2+ with a Ki that decreased from 100 microM at pH 7. 6 to 10 microM at pH 5.5. Fe3+ and Pb2+ inhibited weakly, exhibiting Kis of 50 microM, while Cd2+ was a potent inhibitor with a Ki of about 1 microM. E. coli MntH had a similar inhibition profile, except that Kis were three- to 10-fold higher. Both S. typhimurium and E. coli MntH also transport 55Fe2+ however, the Kms are equivalent to the Kis for Fe2+ inhibition of Mn2+ uptake, and are thus too high to be physiologically relevant. In both S. typhimurium and E. coli, mntH:lacZ constructs were strongly induced by hydrogen peroxide, weakly induced by EDTA and unresponsive to paraquat, consistent with the presence of Fur and OxyR binding sites in the promoters. Strains overexpressing mntH were more susceptible to growth inhibition by Mn2+ and Cd2+ than wild type, and strains lacking a functional mntH gene were more susceptible to killing by hydrogen peroxide. In S. typhimurium strain SL1344, mntH mutants showed no defect in invasion of or survival in cultured HeLa or RAW264.7 macrophage cells; however, expression of mntH:lacZ was induced severalfold by 3 h after invasion of the macrophages. S. typhimurium mntH mutants showed only a slight attenuation of virulence in BALB/c mice. Thus, the NRAMP Mn2+ transporter MntH and Mn2+ play a role in bacterial response to reactive oxygen species and possibly have a role in pathogenesis.
Collapse
Affiliation(s)
- D G Kehres
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4965, USA.
| | | | | | | |
Collapse
|
29
|
Youngs HL, Sundaramoorthy M, Gold MH. Effects of cadmium on manganese peroxidase competitive inhibition of MnII oxidation and thermal stabilization of the enzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1761-9. [PMID: 10712608 DOI: 10.1046/j.1432-1327.2000.01173.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inhibition of manganese peroxidase by cadmium was studied under steady-state and transient-state kinetic conditions. CdII is a reversible competitive inhibitor of MnII in the steady state with Ki approximately 10 microM. CdII also inhibits enzyme-generated MnIII-chelate-mediated oxidation of 2,6-dimethoxyphenol with Ki approximately 4 microM. CdII does not inhibit direct oxidation of phenols such as 2,6-dimethoxyphenol or guaiacol (2-methoxyphenol) in the absence of MnII. CdII alters the heme Soret on binding manganese peroxidase and exhibits a Kd approximately 8 microM, similar to Mn (Kd approximately 10 microM). Under transient-state conditions, CdII inhibits reduction of compound I and compound II by MnII at pH 4.5. However, CdII does not inhibit formation of compound I nor does it inhibit reduction of the enzyme intermediates by phenols in the absence of MnII. Kinetic analysis suggests that CdII binds at the MnII-binding site, preventing oxidation of MnII, but does not impair oxidation of substrates, such as phenols, which do not bind at the MnII-binding site. Finally, at pH 4.5 and 55 degrees C, MnII and CdII both protect manganese peroxidase from thermal denaturation more efficiently than CaII, extending the half-life of the enzyme by more than twofold. Furthermore, the combination of half MnII and half CdII nearly quadruples the enzyme half-life over either metal alone or either metal in combination with CaII.
Collapse
Affiliation(s)
- H L Youngs
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton, Oregon 97006-8921, USA
| | | | | |
Collapse
|
30
|
Hao Z, Reiske HR, Wilson DB. Characterization of cadmium uptake in Lactobacillus plantarum and isolation of cadmium and manganese uptake mutants. Appl Environ Microbiol 1999; 65:4741-5. [PMID: 10543780 PMCID: PMC91638 DOI: 10.1128/aem.65.11.4741-4745.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two different Cd(2+) uptake systems were identified in Lactobacillus plantarum. One is a high-affinity, high-velocity Mn(2+) uptake system which also takes up Cd(2+) and is induced by Mn(2+) starvation. The calculated K(m) and V(max) are 0.26 microM and 3.6 micromol g of dry cell(-1) min(-1), respectively. Unlike Mn(2+) uptake, which is facilitated by citrate and related tricarboxylic acids, Cd(2+) uptake is weakly inhibited by citrate. Cd(2+) and Mn(2+) are competitive inhibitors of each other, and the affinity of the system for Cd(2+) is higher than that for Mn(2+). The other Cd(2+) uptake system is expressed in Mn(2+)-sufficient cells, and no K(m) can be calculated for it because uptake is nonsaturable. Mn(2+) does not compete for transport through this system, nor does any other tested cation, i.e., Zn(2+), Cu(2+), Co(2+), Mg(2+), Ca(2+), Fe(2+), or Ni(2+). Both systems require energy, since uncouplers completely inhibit their activities. Two Mn(2+)-dependent L. plantarum mutants were isolated by chemical mutagenesis and ampicillin enrichment. They required more than 5,000 times as much Mn(2+) for growth as the parental strain. Mn(2+) starvation-induced Cd(2+) uptake in both mutants was less than 5% the wild-type rate. The low level of long-term Mn(2+) or Cd(2+) accumulation by the mutant strains also shows that the mutations eliminate the high-affinity Mn(2+) and Cd(2+) uptake system.
Collapse
Affiliation(s)
- Z Hao
- Institute for Comparative and Environmental Toxicology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
31
|
Crupper SS, Worrell V, Stewart GC, Iandolo JJ. Cloning and expression of cadD, a new cadmium resistance gene of Staphylococcus aureus. J Bacteriol 1999; 181:4071-5. [PMID: 10383976 PMCID: PMC93898 DOI: 10.1128/jb.181.13.4071-4075.1999] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cadmium resistance gene, designated cadD, has been identified in and cloned from the Staphylococcus aureus plasmid pRW001. The gene is part of a two-component operon which contains the resistance gene cadD and an inactive regulatory gene, cadX*. A high degree of sequence similarity was observed between cadD and the cadB-like gene from S. lugdunensis, but no significant similarity was found with either cadA or cadB from the S. aureus plasmids pI258 and pII147. The positive regulatory gene cadX* is identical to cadX from pLUG10 over a stretch of 78 codons beginning at the N terminus, but it is truncated at this point and inactive. Sequence analysis showed that the cadmium resistance operon resides on a 3,972-bp element that is flanked by direct repeats of IS257. The expression of cadD in S. aureus and Bacillus subtilis resulted in low-level resistance to cadmium; in contrast, cadA and cadB from S. aureus induced higher level resistance. However, when the truncated version of cadX contained in pRW001 is complemented in trans with cadX from plasmid pLUG10, resistance increased approximately 10-fold suggesting that the cadmium resistance operons from pRW001 and pLUG10 are evolutionarily related. Moreover, the truncated version of cadX contained in pRW001 is nonfunctional and may have been generated by deletion during recombination to acquire the cadmium resistance element.
Collapse
Affiliation(s)
- S S Crupper
- Division of Biological Sciences, Emporia State University, Emporia, Kansas 66801, USA
| | | | | | | |
Collapse
|
32
|
Liu CQ, Khunajakr N, Chia LG, Deng YM, Charoenchai P, Dunn NW. Genetic analysis of regions involved in replication and cadmium resistance of the plasmid pND302 from Lactococcus lactis. Plasmid 1997; 38:79-90. [PMID: 9339465 DOI: 10.1006/plas.1997.1301] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The 8.8-kb Lactococcus lactis plasmid pND302 encodes resistance to cadmium (CdR). Regions of pND302 involved in replication and CdR were subcloned and sequenced. The replication region is localized on a 1.5-kb region and consists of an open reading frame (repB) preceded by a noncoding AT-rich sequence (ori) which is highly homologous to lactococcal theta-type replicons. The CdR determinant is localized on a 2.9-kb region and encodes putative proteins similar to the Cd(2+)-specific P-type efflux ATPase (CadA) and the transcriptional regulatory repressor (CadC) identified in Staphylococcus aureus, Bacillus firmus, and Listeria monocytogenes. Similar CdR determinants were also detected by PCR in other CdR plasmids isolated from different L. lactis strains.
Collapse
Affiliation(s)
- C Q Liu
- Department of Biotechnology, University of New South Wales, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
33
|
Copper Homeostasis by Cpx-Type ATPases. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1569-2558(08)60155-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
Nies DH, Silver S. Ion efflux systems involved in bacterial metal resistances. JOURNAL OF INDUSTRIAL MICROBIOLOGY 1995; 14:186-99. [PMID: 7766211 DOI: 10.1007/bf01569902] [Citation(s) in RCA: 252] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Studying metal ion resistance gives us important insights into environmental processes and provides an understanding of basic living processes. This review concentrates on bacterial efflux systems for inorganic metal cations and anions, which have generally been found as resistance systems from bacteria isolated from metal-polluted environments. The protein products of the genes involved are sometimes prototypes of new families of proteins or of important new branches of known families. Sometimes, a group of related proteins (and presumedly the underlying physiological function) has still to be defined. For example, the efflux of the inorganic metal anion arsenite is mediated by a membrane protein which functions alone in Gram-positive bacteria, but which requires an additional ATPase subunit in some Gram-negative bacteria. Resistance to Cd2+ and Zn2+ in Gram-positive bacteria is the result of a P-type efflux ATPase which is related to the copper transport P-type ATPases of bacteria and humans (defective in the human hereditary diseases Menkes' syndrome and Wilson's disease). In contrast, resistance to Zn2+, Ni2+, Co2+ and Cd2+ in Gram-negative bacteria is based on the action of proton-cation antiporters, members of a newly-recognized protein family that has been implicated in diverse functions such as metal resistance/nodulation of legumes/cell division (therefore, the family is called RND). Another new protein family, named CDF for 'cation diffusion facilitator' has as prototype the protein CzcD, which is a regulatory component of a cobalt-zinc-cadmium resistance determinant in the Gram-negative bacterium Alcaligenes eutrophus. A family for the ChrA chromate resistance system in Gram-negative bacteria has still to be defined.
Collapse
Affiliation(s)
- D H Nies
- Institut für Mikrobiologie, Martin-Luther-Universität, Halle, Germany
| | | |
Collapse
|
35
|
|
36
|
Lebrun M, Audurier A, Cossart P. Plasmid-borne cadmium resistance genes in Listeria monocytogenes are similar to cadA and cadC of Staphylococcus aureus and are induced by cadmium. J Bacteriol 1994; 176:3040-8. [PMID: 8188605 PMCID: PMC205462 DOI: 10.1128/jb.176.10.3040-3048.1994] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
pLm74 is the smallest known plasmid in Listeria monocytogenes. It confers resistance to the toxic divalent cation cadmium. It contains a 3.1-kb EcoRI fragment which hybridizes with the cadAC genes of plasmid pI258 of Staphylococcus aureus. When introduced into cadmium-sensitive L. monocytogenes or Bacillus subtilis strains, this fragment conferred cadmium resistance. The DNA sequence of the 3.1-kb EcoRI fragment contains two open reading frames, cadA and cadC. The deduced amino acid sequences are similar to those of the cad operon of plasmid pI258 of S. aureus, known to prevent accumulation of Cd2+ in the bacteria by an ATPase efflux mechanism. The cadmium resistance determinant of L. monocytogenes does not confer zinc resistance, in contrast to the cadAC determinant of S. aureus, suggesting that the two resistance mechanisms are slightly different. Slot blot DNA-RNA hybridization analysis showed cadmium-inducible synthesis of L. monocytogenes cadAC RNA.
Collapse
Affiliation(s)
- M Lebrun
- Laboratoire de Génétique Moléculaire des Listeria, Institut Pasteur Paris, France
| | | | | |
Collapse
|
37
|
Itoh M, Suzuki T, Kimata Y, Kawai K, Horitsu H, Takamizawa K. Cadmium resistance acquirement by IS1 transposition into Escherichia coli C600. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0922-338x(94)90048-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Bauer PD, Trapp C, Drake D, Taylor KG, Doyle RJ. Acquisition of manganous ions by mutans group streptococci. J Bacteriol 1993; 175:819-25. [PMID: 8380803 PMCID: PMC196222 DOI: 10.1128/jb.175.3.819-825.1993] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The cariogenic bacteria Streptococcus sobrinus and S. cricetus were shown to have an absolute requirement for manganous ion in order to bind glucans or to adhere to glass in the presence of sucrose. The bacteria possessed a reasonably high affinity transport system for 54Mn2+, yielding a Km of about 12 microM. The Vmax for uptake of 54Mn2+ in S. sobrinus was increased when the bacteria were grown in Mn-depleted medium, but the Km remained the same. There was no evidence for two Mn2+ uptake systems, commonly observed for many bacteria. Ions such as Ca2+, Co2+, Co3+, Cu2+, Fe2+, Fe3+, Hg2+, Mg2+, Ni2+, and Zn2+ did not inhibit the uptake of 54Mn2+ by the bacteria, although Cd2+ was a potent inhibitor. Fractionation experiments showed that manganese was distributed in protoplasts (67%) and in the cell wall (33%). Approximately 80% of the 54Mn2+ in S. sobrinus was rapidly exchangeable with nonradioactive Mn2+. Electron spin resonance experiments showed that all of the manganese was bound or restricted in mobility. Proton motive force-dissipating agents increased the acquisition of 54Mn2+ by the streptococci, probably because the wall became more negatively charged when the cell could no longer produce protons.
Collapse
Affiliation(s)
- P D Bauer
- Department of Microbiology and Immunology, University of Louisville, Kentucky 40292
| | | | | | | | | |
Collapse
|
39
|
Abstract
Cadmium at an initial concentration of 1 mM was completely precipitated by cultures of Clostridium thermoaceticum in complex medium. The precipitation was energy dependent and required cysteine, although cysteine alone did not act as a growth substrate. Electron microscopic analysis revealed localized areas of precipitation at the surfaces of nonstarved cells as well as precipitate in the surrounding medium. The addition of cadmium had no apparent effect on growth or acetogenesis. However, nickel and cadmium were synergistically toxic at a concentration (1 mM) at which neither alone was toxic. The amount of protein extracted from cadmium-treated cultures was twofold higher than that in control extracts, and the amount of total sulfide was fourfold higher in cultures containing cadmium than in control cultures. Comparable levels of cysteine desulfhydrase activity were observed in extracts of both cadmium-treated and control cultures, but the enzyme activity was expressed maximally about 24 h earlier in the cadmium-treated cultures than in the untreated controls.
Collapse
Affiliation(s)
- D P Cunningham
- Department of Biology, New Mexico State University, Las Cruces 88001
| | | |
Collapse
|
40
|
Poitevin-Later F, Vandenesch F, Dyke K, Fleurette J, Etienne J. Cadmium-resistance plasmid inStaphylococcus lugdunensis. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05542.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
41
|
Boularbah A, Morel JL, Bitton G, Guckert A. Cadmium biosorption and toxicity to six cadmium-resistant gram-positive bacteria isolated from contaminated soil. ACTA ACUST UNITED AC 1992. [DOI: 10.1002/tox.2530070304] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Silver S, Walderhaug M. Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol Rev 1992; 56:195-228. [PMID: 1579110 PMCID: PMC372861 DOI: 10.1128/mr.56.1.195-228.1992] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Regulation of chromosomally determined nutrient cation and anion uptake systems shows important similarities to regulation of plasmid-determined toxic ion resistance systems that mediate the outward transport of deleterious ions. Chromosomally determined transport systems result in accumulation of K+, Mg2+, Fe3+, Mn2+, PO4(3-), SO4(2-), and additional trace nutrients, while bacterial plasmids harbor highly specific resistance systems for AsO2-, AsO4(3-), CrO4(2-), Cd2+, Co2+, Cu2+, Hg2+, Ni2+, SbO2-, TeO3(2-), Zn2+, and other toxic ions. To study the regulation of these systems, we need to define both the trans-acting regulatory proteins and the cis-acting target operator DNA regions for the proteins. The regulation of gene expression for K+ and PO4(3-) transport systems involves two-component sensor-effector pairs of proteins. The first protein responds to an extracellular ionic (or related) signal and then transmits the signal to an intracellular DNA-binding protein. Regulation of Fe3+ transport utilizes the single iron-binding and DNA-binding protein Fur. The MerR regulatory protein for mercury resistance both represses and activates transcription. The ArsR regulatory protein functions as a repressor for the arsenic and antimony(III) efflux system. Although the predicted cadR regulatory gene has not been identified, cadmium, lead, bismuth, zinc, and cobalt induce this system in a carefully regulated manner from a single mRNA start site. The cadA Cd2+ resistance determinant encodes an E1(1)-1E2-class efflux ATPase (consisting of two polypeptides, rather than the one earlier identified). Cadmium resistance is also conferred by the czc system (which confers resistances to zinc and cobalt in Alcaligenes species) via a complex efflux pump consisting of four polypeptides. These two cadmium efflux systems are not otherwise related. For chromate resistance, reduced cellular accumulation is again the resistance mechanism, but the regulatory components are not identified. For other toxic heavy metals (with few exceptions), there exist specific plasmid resistances that remain relatively terra incognita for future exploration of bioinorganic molecular genetics and gene regulation.
Collapse
Affiliation(s)
- S Silver
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago 60680
| | | |
Collapse
|
43
|
Kawai K, Horitsu H, Hamada K, Itoh M, Suzuki T, Takamizawa K. Expression of a plasmid-encoded gene for cadmium resistance of Pseudomonas putida GAM-1 in Escherichia coli. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/0922-338x(92)90190-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
|
45
|
Abstract
The ability of some bacteria to grow in the presence of high concentrations of tellurium compounds has been recognized for almost 100 years. Since then, interest in this phenomenon has generated a slow but steady trickle of literature. In the past few years, the use of modern techniques in molecular biology has led to a dramatic increase in our understanding of the genetics of several bacterial determinants for resistance to tellurium compounds. These determinants are frequently found to be encoded by plasmids which carry multiple antibiotic resistance determinants. Our understanding of the biochemistry of these systems remains limited. In this article, the history of the study of bacterial resistance to tellurium compounds is briefly reviewed. This is followed by an analysis of the recent developments in the study of plasmid-mediated resistance determinants. Finally, preliminary investigations on the possible mechanisms of bacterial resistance to tellurium compounds are presented.
Collapse
Affiliation(s)
- E G Walter
- Department of Medical Microbiology and Infectious Diseases, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
46
|
Tsai KJ, Yoon KP, Lynn AR. ATP-dependent cadmium transport by the cadA cadmium resistance determinant in everted membrane vesicles of Bacillus subtilis. J Bacteriol 1992; 174:116-21. [PMID: 1530844 PMCID: PMC205684 DOI: 10.1128/jb.174.1.116-121.1992] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Resistance to cadmium conferred by the staphylococcal plasmid pI258 occurs by means of energy-dependent efflux, resulting in decreased intracellular accumulation of cadmium. Recent sequence information suggested that efflux is mediated by a P-type ATPase. The cadA gene was previously expressed in Bacillus subtilis, conferring resistance to cadmium. Everted membrane vesicles were prepared from B. subtilis cells harboring either a plasmid containing the cadA system or the vector plasmid alone. 109Cd2+ transport into the everted membranes was measured in the presence of various energy sources. Cadmium transport was detected only in the presence of ATP as an energy source. The production of an electrochemical proton gradient (delta mu H+) by using NADH or phenazine methosulfate plus ascorbate was not able to drive transport. Reagents which dissipate delta pH abolished calcium transport due to the Ca2+/H+ antiporter but only partially inhibited cadmium transport. Inhibition of transport by the antibiotic bafilomycin A1 occurred at concentrations comparable to those which inhibit P-type ATPases. A band corresponding to the cadA gene product was identified on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and antibodies to the protein were prepared.
Collapse
Affiliation(s)
- K J Tsai
- Department of Biochemistry, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | | | |
Collapse
|
47
|
Abstract
The divalent cations of cobalt, zinc, and nickel are essential nutrients for bacteria, required as trace elements at nanomolar concentrations. However, at micro- or millimolar concentrations, Co2+, Zn2+, and Ni2+ (and "bad ions" without nutritional roles such as Cd2+) are toxic. These cations are transported into the cell by constitutively expressed divalent cation uptake systems of broad specificity, i.e., basically Mg2+ transport systems. Therefore, in case of a heavy metal stress, uptake of the toxic ions cannot be reduced by a simple down-regulation of the transport activity. As a response to the resulting metal toxicity, metal resistance determinants evolved which are mostly plasmid-encoded in bacteria. In contrast to that of the cation Hg2+, chemical reduction of Co2+, Zn2+, Ni2+, and Cd2+ by the cell is not possible or sensible. Therefore, other than mutations limiting the ion range of the uptake system, only two basic mechanisms of resistance to these ions are possible (and were developed by evolution): intracellular complexation of the toxic metal ion is mainly used in eucaryotes; the cadmium-binding components are phytochelatins in plant and yeast cells and metallothioneins in animals, plants, and yeasts. In contrast, reduced accumulation based on an active efflux of the cation is the primary mechanism developed in procaryotes and perhaps in Saccharomyces cerevisiae. All bacterial cation efflux systems characterized to date are plasmid-encoded and inducible but differ in energy-coupling and in the number and types of proteins involved in metal transport and in regulation. In the gram-positive multiple-metal-resistant bacterium Staphylococcus aureus, Cd2+ (and probably Zn2+) efflux is catalyzed by the membrane-bound CadA protein, a P-type ATPase. However, a second protein (CadC) is required for full resistance and a third one (CadR) is hypothesized for regulation of the resistance determinant. The czc determinant from the gram-negative multiple-metal-resistant bacterium Alcaligenes eutrophus encodes proteins required for Co2+, Zn2+, and Cd2+ efflux (CzcA, CzcB, and CzcC) and regulation of the czc determinant (CzcD). In the current working model CzcA works as a cation-proton antiporter, CzcB as a cation-binding subunit, and CzcC as a modifier protein required to change the substrate specificity of the system from Zn2+ only to Co2+, Zn2+, and Cd2+.
Collapse
Affiliation(s)
- D H Nies
- Institut für Pflanzenphysiologie und Mikrobiologie, Freie Universität Berlin, Germany
| |
Collapse
|
48
|
Yoon KP, Misra TK, Silver S. Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pI258. J Bacteriol 1991; 173:7643-9. [PMID: 1938960 PMCID: PMC212533 DOI: 10.1128/jb.173.23.7643-7649.1991] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Regulation of the cadA cadmium and zinc resistance determinant of Staphylococcus aureus plasmid pI258 was demonstrated by using gene fusions and direct measurements of transcription. In growth experiments, cells harboring the intact cadA operon were induced with different cations and challenged by an inhibitory concentration of ZnCl2, a substrate of the CadA resistance system. Uninduced cells did not grow for 8 h after Zn2+ addition, whereas induced cells grew in the presence Zn2+. Cd2+ was a strong inducer, and Bi3+ and Pb2+ also induced well; Co2+ and Zn2+ were weak inducers. A translational beta-lactamase fusion to the cadA gene showed the same induction specificity as that seen with growth experiments with the intact cadA operon. A short beta-lactamase transcriptional fusion to the cadC gene also showed the same pattern of induction, establishing that the cadC gene was not involved in regulation. In Northern (RNA) blot hybridization experiments, a cadmium-inducible, 2.6-kb, operon-length transcript was detected. Primer extension experiments determined that Cd(2+)-inducible transcription of the cadA operon begins at nucleotides 676 and 677 of the published sequence (G. Nucifora, L. Chu, T. K. Misra, and S. Silver, Proc. Natl. Acad. Sci. USA 86: 3544-3548, 1989).
Collapse
Affiliation(s)
- K P Yoon
- Department of Microbiology and Immunology, University of Illinois, College of Medicine, Chicago 60680
| | | | | |
Collapse
|
49
|
Andreoni V, Finoli C, Manfrin P, Pelosi M, Vecchio A. Studies on the accumulation of cadmium by a strain ofProteus mirabilis. FEMS Microbiol Lett 1991. [DOI: 10.1111/j.1574-6968.1991.tb04724.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
50
|
al-Masaudi SB, Day MJ, Russell AD. Antimicrobial resistance and gene transfer in Staphylococcus aureus. THE JOURNAL OF APPLIED BACTERIOLOGY 1991; 70:279-90. [PMID: 2055789 DOI: 10.1111/j.1365-2672.1991.tb02937.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- S B al-Masaudi
- School of Pure and Applied Biology, University of Wales College of Cardiff, UK
| | | | | |
Collapse
|