1
|
Si X, Liu Z, Cheng S, Xi J, Zeng B, Li M, Zhu L, Yan S, Zhang N. Genomic analysis of Marinobacter sp. M5B reveals its role in alginate biosynthesis. Mar Genomics 2025; 79:101163. [PMID: 39855815 DOI: 10.1016/j.margen.2024.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 01/27/2025]
Abstract
Alginate is a natural marine polysaccharide and an important marine organic carbon source, which is mainly produced by marine brown algae. Marinobacter sp. M5B, a Gram-negative and aerobic bacterium, was isolated from the surface seawater samples collected from the Mariana Trench. Here, we report the complete genome sequence of strain M5B and its genomic characteristics to synthesize alginate. The genome of strain M5B contains one circular chromosome (4,415,647 bp) with the GC content of 57.14 %. Genomic analysis showed that strain M5B contained a set of genes involved in alginate synthesis, indicating that it possesses the potential ability to synthesis alginate. This study provides novel insights into alginate synthesis by marine microorganisms.
Collapse
Affiliation(s)
- Xiaoyu Si
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhenhai Liu
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shuxin Cheng
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jingyao Xi
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Bingrui Zeng
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Meihui Li
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Liping Zhu
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shigan Yan
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Nan Zhang
- School of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| |
Collapse
|
2
|
Hulen C. The GDP-Mannose Dehydrogenase of Pseudomonas aeruginosa: An Old and New Target to Fight against Antibiotics Resistance of Mucoid Strains. Antibiotics (Basel) 2023; 12:1649. [PMID: 38136683 PMCID: PMC10740432 DOI: 10.3390/antibiotics12121649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/24/2023] Open
Abstract
Alginates play an important role in the resistance of mucoid strains of Pseudomonas aeruginosa to antibiotics, as well as their persistence by escaping the immune defense system. GDP-mannose dehydrogenase (GMD) is the key enzyme in alginate biosynthesis by catalyzing the irreversible double oxidation of GDP-mannose to GDP-mannuronate. GDP-mannose dehydrogenase purified from mucoid strains exhibits strong negative cooperativity for its substrate, the GDP-mannose, with a KM of 13 µM for the site of strong affinity and 3 mM for this weak of a binding. The presence of a nucleotide strongly associated with the enzyme was detected, confirming the fact that the substrate oxidation reaction takes place in two distinct steps, with the substrate blocked on the enzyme in a half-oxidation state in the form of a hemiacetal. As the GMD polypeptide has only one site for substrate binding, our results tend to confirm the fact that the enzyme functions in a dimer form. The GDP-mannose dehydrogenase inhibition strategy that we developed a few years ago, based on the synthesis of substrate analogs, has shown its effectiveness. The addition of an alkynyl radical on carbon 6 of the mannose grafted to an amino-sulfonyl-guanosine allows, at a concentration of 0.5 mM, to inhibit GMD by 90%. As we had previously shown the effectiveness of these analogs on the sensitivity of mucoid strains of Pseudomonas aeruginosa to aminoglycosides, this revives the interest in the synthesis of new inhibitors of GDP-mannose dehydrogenase.
Collapse
Affiliation(s)
- Christian Hulen
- Bacterial Communication and Antimicrobial Strategies Research Unit, University of Rouen Normandy, 55 Rue Saint Germain, 27000 Evreux, France
| |
Collapse
|
3
|
Gheorghita AA, Wozniak DJ, Parsek MR, Howell PL. Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation. FEMS Microbiol Rev 2023; 47:fuad060. [PMID: 37884397 PMCID: PMC10644985 DOI: 10.1093/femsre/fuad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/04/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023] Open
Abstract
The biofilm matrix is a fortress; sheltering bacteria in a protective and nourishing barrier that allows for growth and adaptation to various surroundings. A variety of different components are found within the matrix including water, lipids, proteins, extracellular DNA, RNA, membrane vesicles, phages, and exopolysaccharides. As part of its biofilm matrix, Pseudomonas aeruginosa is genetically capable of producing three chemically distinct exopolysaccharides - alginate, Pel, and Psl - each of which has a distinct role in biofilm formation and immune evasion during infection. The polymers are produced by highly conserved mechanisms of secretion, involving many proteins that span both the inner and outer bacterial membranes. Experimentally determined structures, predictive modelling of proteins whose structures are yet to be solved, and structural homology comparisons give us insight into the molecular mechanisms of these secretion systems, from polymer synthesis to modification and export. Here, we review recent advances that enhance our understanding of P. aeruginosa multiprotein exopolysaccharide biosynthetic complexes, and how the glycoside hydrolases/lyases within these systems have been commandeered for antimicrobial applications.
Collapse
Affiliation(s)
- Andreea A Gheorghita
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Science Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, 776 Biomedical Research Tower, 460 W 12th Ave, Columbus, OH 43210, United States
- Department of Microbiology, The Ohio State University College, Biological Sciences Bldg, 105, 484 W 12th Ave, Columbus, OH 43210, United States
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Health Sciences Bldg, 1705 NE Pacific St, Seattle, WA 98195-7735, United States
| | - P Lynne Howell
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Science Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
4
|
Dolan JP, Ahmadipour S, Wahart AJC, Cheallaigh AN, Sari S, Eurtivong C, Lima MA, Skidmore MA, Volcho KP, Reynisson J, Field RA, Miller GJ. Virtual screening, identification and in vitro validation of small molecule GDP-mannose dehydrogenase inhibitors. RSC Chem Biol 2023; 4:865-870. [PMID: 37920392 PMCID: PMC10619135 DOI: 10.1039/d3cb00126a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/26/2023] [Indexed: 11/04/2023] Open
Abstract
Upon undergoing mucoid conversion within the lungs of cystic fibrosis patients, the pathogenic bacterium Pseudomonas aeruginosa synthesises copious quantities of the virulence factor and exopolysaccharide alginate. The enzyme guanosine diphosphate mannose dehydrogenase (GMD) catalyses the rate-limiting step and irreversible formation of the alginate sugar nucleotide building block, guanosine diphosphate mannuronic acid. Since there is no corresponding enzyme in humans, strategies that could prevent its mechanism of action could open a pathway for new and selective inhibitors to disrupt bacterial alginate production. Using virtual screening, a library of 1447 compounds within the Known Drug Space parameters were evaluated against the GMD active site using the Glide, FRED and GOLD algorithms. Compound hit evaluation with recombinant GMD refined the panel of 40 potential hits to 6 compounds which reduced NADH production in a time-dependent manner; of which, an usnic acid derivative demonstrated inhibition six-fold stronger than a previously established sugar nucleotide inhibitor, with an IC50 value of 17 μM. Further analysis by covalent docking and mass spectrometry confirm a single site of GMD alkylation.
Collapse
Affiliation(s)
- Jonathan P Dolan
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University Keele Staffordshire ST5 5BG UK
- Centre for Glycoscience, Keele University Keele Staffordshire ST5 5BG UK
| | - Sanaz Ahmadipour
- Department of Chemistry & Manchester Institute of Biotechnology, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Alice J C Wahart
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University Keele Staffordshire ST5 5BG UK
- Centre for Glycoscience, Keele University Keele Staffordshire ST5 5BG UK
| | - Aisling Ní Cheallaigh
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University Keele Staffordshire ST5 5BG UK
- Centre for Glycoscience, Keele University Keele Staffordshire ST5 5BG UK
| | - Suat Sari
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry 06100 Ankara Turkey
| | - Chatchakorn Eurtivong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University 447 Si Ayutthaya Road Ratchathewi Bangkok 10400 Thailand
| | - Marcelo A Lima
- Centre for Glycoscience, Keele University Keele Staffordshire ST5 5BG UK
- School of Life Sciences, Keele University Keele Staffordshire ST5 5BG UK
| | - Mark A Skidmore
- Centre for Glycoscience, Keele University Keele Staffordshire ST5 5BG UK
- School of Life Sciences, Keele University Keele Staffordshire ST5 5BG UK
| | - Konstantin P Volcho
- N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences 630090 Novosibirsk Russia
| | - Jóhannes Reynisson
- Centre for Glycoscience, Keele University Keele Staffordshire ST5 5BG UK
- Hornbeam Building, School of Pharmacy & Bioengineering, Keele University Keele Staffordshire ST5 5BG UK
| | - Robert A Field
- Department of Chemistry & Manchester Institute of Biotechnology, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University Keele Staffordshire ST5 5BG UK
- Centre for Glycoscience, Keele University Keele Staffordshire ST5 5BG UK
| |
Collapse
|
5
|
Hurtado A, Aljabali AAA, Mishra V, Tambuwala MM, Serrano-Aroca Á. Alginate: Enhancement Strategies for Advanced Applications. Int J Mol Sci 2022; 23:4486. [PMID: 35562876 PMCID: PMC9102972 DOI: 10.3390/ijms23094486] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 02/06/2023] Open
Abstract
Alginate is an excellent biodegradable and renewable material that is already used for a broad range of industrial applications, including advanced fields, such as biomedicine and bioengineering, due to its excellent biodegradable and biocompatible properties. This biopolymer can be produced from brown algae or a microorganism culture. This review presents the principles, chemical structures, gelation properties, chemical interactions, production, sterilization, purification, types, and alginate-based hydrogels developed so far. We present all of the advanced strategies used to remarkably enhance this biopolymer's physicochemical and biological characteristics in various forms, such as injectable gels, fibers, films, hydrogels, and scaffolds. Thus, we present here all of the material engineering enhancement approaches achieved so far in this biopolymer in terms of mechanical reinforcement, thermal and electrical performance, wettability, water sorption and diffusion, antimicrobial activity, in vivo and in vitro biological behavior, including toxicity, cell adhesion, proliferation, and differentiation, immunological response, biodegradation, porosity, and its use as scaffolds for tissue engineering applications. These improvements to overcome the drawbacks of the alginate biopolymer could exponentially increase the significant number of alginate applications that go from the paper industry to the bioprinting of organs.
Collapse
Affiliation(s)
- Alejandro Hurtado
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| |
Collapse
|
6
|
Schofield MC, Rodriguez DQ, Kidman AA, Cassin EK, Michaels LA, Campbell EA, Jorth PA, Tseng BS. The anti-sigma factor MucA is required for viability in Pseudomonas aeruginosa. Mol Microbiol 2021; 116:550-563. [PMID: 33905139 PMCID: PMC10069406 DOI: 10.1111/mmi.14732] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022]
Abstract
During decades-long infections in the cystic fibrosis (CF) airway, Pseudomonas aeruginosa undergoes selection. One bacterial genetic adaptation often observed in CF isolates is mucA mutations. MucA inhibits the sigma factor AlgU. Mutations in mucA lead to AlgU misregulation, resulting in a mucoid phenotype that is associated with poor CF disease outcomes. Due to its ability to be mutated, mucA is assumed to be dispensable for bacterial viability. Here we show that, paradoxically, a portion of mucA is essential in P. aeruginosa. We demonstrate that mucA is no longer required in a strain lacking algU, that mucA alleles encoding for proteins that do not bind to AlgU are insufficient for viability, and that mucA is no longer essential in mutant strains containing AlgU variants with reduced sigma factor activity. Furthermore, we found that overexpression of algU prevents cell growth in the absence of MucA, and that this phenotype can be rescued by the overproduction of RpoD, the housekeeping sigma factor. Together, these results suggest that in the absence of MucA, the inability to regulate AlgU activity results in the loss of bacterial viability. Finally, we speculate that the essentiality of anti-sigma factors that regulate envelope function may be a widespread phenomenon in bacteria.
Collapse
Affiliation(s)
| | | | - Amanda A Kidman
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Erin K Cassin
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Lia A Michaels
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Peter A Jorth
- Departments of Pathology and Laboratory Medicine, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Boo Shan Tseng
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| |
Collapse
|
7
|
Overproduction of the AlgT Sigma Factor Is Lethal to Mucoid Pseudomonas aeruginosa. J Bacteriol 2020; 202:JB.00445-20. [PMID: 32747430 DOI: 10.1128/jb.00445-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa isolates from chronic lung infections often overproduce alginate, giving rise to the mucoid phenotype. Isolation of mucoid strains from chronic lung infections correlates with a poor patient outcome. The most common mutation that causes the mucoid phenotype is called mucA22 and results in a truncated form of the anti-sigma factor MucA that is continuously subjected to proteolysis. When a functional MucA is absent, the cognate sigma factor, AlgT, is no longer sequestered and continuously transcribes the alginate biosynthesis operon, leading to alginate overproduction. In this work, we report that in the absence of wild-type MucA, providing exogenous AlgT is toxic. This is intriguing, since mucoid strains endogenously possess high levels of AlgT. Furthermore, we show that suppressors of toxic AlgT production have mutations in mucP, a protease involved in MucA degradation, and provide the first atomistic model of MucP. Based on our findings, we speculate that mutations in mucP stabilize the truncated form of MucA22, rendering it functional and therefore able to reduce toxicity by properly sequestering AlgT.IMPORTANCE Pseudomonas aeruginosa is an opportunistic bacterial pathogen capable of causing chronic lung infections. Phenotypes important for the long-term persistence and adaption to this unique lung ecosystem are largely regulated by the AlgT sigma factor. Chronic infection isolates often contain mutations in the anti-sigma factor mucA, resulting in uncontrolled AlgT and continuous production of alginate in addition to the expression of ∼300 additional genes. Here, we report that in the absence of wild-type MucA, AlgT overproduction is lethal and that suppressors of toxic AlgT production have mutations in the MucA protease, MucP. Since AlgT contributes to the establishment of chronic infections, understanding how AlgT is regulated will provide vital information on how P. aeruginosa is capable of causing long-term infections.
Collapse
|
8
|
Cross AR, Csatary EE, Raghuram V, Diggle FL, Whiteley M, Wuest WM, Goldberg JB. The histone-like protein AlgP regulon is distinct in mucoid and nonmucoid Pseudomonas aeruginosa and does not include alginate biosynthesis genes. MICROBIOLOGY-SGM 2020; 166:861-866. [PMID: 32634088 DOI: 10.1099/mic.0.000923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The opportunistic bacterial pathogen Pseudomonas aeruginosa causes acute and chronic infections that are notoriously difficult to treat. In people with cystic fibrosis, P. aeruginosa can cause lifelong lung infections, and isolation of mucoid P. aeruginosa, resulting from the overproduction of alginate, is associated with chronic infection. The histone-like protein AlgP has previously been implicated in the control of alginate gene expression in mucoid strains, but this regulation is unclear. To explore AlgP in further detail, we deleted algP in mucoid strains and demonstrated that the deletion of algP did not result in a nonmucoid phenotype or a decrease in alginate production. We showed that the algP promoter is expressed by both the nonmucoid strain PAO1 and the isogenic mucoid strain PDO300, suggesting that there may be genes that are differentially regulated between these strains. In support of this, using RNA sequencing, we identified a small AlgP regulon that has no significant overlap between PAO1 and PDO300 and established that alginate genes were not differentially regulated by the deletion of algP. Of note, we found that deleting algP in PAO1 increased expression of the nitric oxide operon norCBD and the nitrous oxide reductase genes nosRZ and subsequently promoted growth of PAO1 under anaerobic conditions. Altogether, we have defined a narrow regulon of genes controlled by AlgP and provided evidence that alginate production is not greatly affected by AlgP, countering the long-standing premise in the field.
Collapse
Affiliation(s)
- Ashley R Cross
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Erika E Csatary
- Department of Chemistry, Emory University, Atlanta GA, USA
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
| | - Vishnu Raghuram
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Frances L Diggle
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta GA, USA
| | - Marvin Whiteley
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta GA, USA
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta GA, USA
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
| | - Joanna B Goldberg
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
9
|
Riquelme SA, Wong Fok Lung T, Prince A. Pulmonary Pathogens Adapt to Immune Signaling Metabolites in the Airway. Front Immunol 2020; 11:385. [PMID: 32231665 PMCID: PMC7082326 DOI: 10.3389/fimmu.2020.00385] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
A limited number of pulmonary pathogens are able to evade normal mucosal defenses to establish acute infection and then adapt to cause chronic pneumonias. Pathogens, such as Pseudomonas aeruginosa or Staphylococcus aureus, are typically associated with infection in patients with underlying pulmonary disease or damage, such as cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). To establish infection, bacteria express a well-defined set of so-called virulence factors that facilitate colonization and activate an immune response, gene products that have been identified in murine models. Less well-understood are the adaptive changes that occur over time in vivo, enabling the organisms to evade innate and adaptive immune clearance mechanisms. These colonizers proliferate, generating a population sufficient to provide selection for mutants, such as small colony variants and mucoid variants, that are optimized for long term infection. Such host-adapted strains have evolved in response to selective pressure such as antibiotics and the recruitment of phagocytes at sites of infection and their release of signaling metabolites (e.g., succinate). These metabolites can potentially function as substrates for bacterial growth and but also generate oxidant stress. Whole genome sequencing and quantified expression of selected genes have helped to explain how P. aeruginosa and S. aureus adapt to the presence of these metabolites over the course of in vivo infection. The serial isolation of clonally related strains from patients with cystic fibrosis has provided the opportunity to identify bacterial metabolic pathways that are altered under this immune pressure, such as the anti-oxidant glyoxylate and pentose phosphate pathways, routes contributing to the generation of biofilms. These metabolic pathways and biofilm itself enable the organisms to dissipate oxidant stress, while providing protection from phagocytosis. Stimulation of host immune signaling metabolites by these pathogens drives bacterial adaptation and promotes their persistence in the airways. The inherent metabolic flexibility of P. aeruginosa and S. aureus is a major factor in their success as pulmonary pathogens.
Collapse
Affiliation(s)
- Sebastián A Riquelme
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| | - Tania Wong Fok Lung
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| | - Alice Prince
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
10
|
Quantitative Visualization of Gene Expression in Mucoid and Nonmucoid Pseudomonas aeruginosa Aggregates Reveals Localized Peak Expression of Alginate in the Hypoxic Zone. mBio 2019; 10:mBio.02622-19. [PMID: 31848278 PMCID: PMC6918079 DOI: 10.1128/mbio.02622-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is well appreciated that oxygen- and other nutrient-limiting gradients characterize microenvironments within chronic infections that foster bacterial tolerance to treatment and the immune response. However, determining how bacteria respond to these microenvironments has been limited by a lack of tools to study bacterial functions at the relevant spatial scales in situ Here, we report the application of the hybridization chain reaction (HCR) v3.0 to provide analog mRNA relative quantitation of Pseudomonas aeruginosa single cells as a step toward this end. To assess the potential for this method to be applied to bacterial populations, we visualized the expression of genes needed for the production of alginate (algD) and the dissimilatory nitrate reductase (narG) at single-cell resolution within laboratory-grown aggregates. After validating new HCR probes, we quantified algD and narG expression across microenvironmental gradients within both single aggregates and aggregate populations using the agar block biofilm assay (ABBA). For mucoid and nonmucoid ABBA populations, narG was expressed in hypoxic and anoxic regions, while alginate expression was restricted to the hypoxic zone (∼40 to 200 μM O2). Within individual aggregates, surface-adjacent cells expressed alginate genes at higher levels than interior cells, revealing that alginate expression is not constitutive in mucoid P. aeruginosa but instead varies with oxygen availability. These results establish HCR v3.0 as a versatile and robust tool to resolve subtle differences in gene expression at spatial scales relevant to microbial assemblages. This advance has the potential to enable quantitative studies of microbial gene expression in diverse contexts, including pathogen activities during infections.IMPORTANCE A goal for microbial ecophysiological research is to reveal microbial activities in natural environments, including sediments, soils, or infected human tissues. Here, we report the application of the hybridization chain reaction (HCR) v3.0 to quantitatively measure microbial gene expression in situ at single-cell resolution in bacterial aggregates. Using quantitative image analysis of thousands of Pseudomonas aeruginosa cells, we validated new P. aeruginosa HCR probes. Within in vitro P. aeruginosa aggregates, we found that bacteria just below the aggregate surface are the primary cells expressing genes that protect the population against antibiotics and the immune system. This observation suggests that therapies targeting bacteria growing with small amounts of oxygen may be most effective against these hard-to-treat infections. More generally, this proof-of-concept study demonstrates that HCR v3.0 has the potential to identify microbial activities in situ at small spatial scales in diverse contexts.
Collapse
|
11
|
Marshall DC, Arruda BE, Silby MW. Alginate genes are required for optimal soil colonization and persistence by Pseudomonas fluorescens Pf0-1. Access Microbiol 2019; 1:e000021. [PMID: 32974516 PMCID: PMC7471777 DOI: 10.1099/acmi.0.000021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas fluorescens strains are important candidates for use as biological control agents to reduce fungal diseases on crop plants. To understand the ecological success of these bacteria and for successful and stable biological control, determination of how these bacteria colonize and persist in soil environments is critical. Here we show that P. fluorescens Pf0-1 is negatively impacted by reduced water availability in soil, but adapts and persists. A pilot transcriptomic study of Pf0-1 colonizing moist and dehydrated soil was used to identify candidate genetic loci, which could play a role in the adaptation to dehydration. Genes predicted to specify alginate production were identified and chosen for functional evaluation. Using deletion mutants, predicted alginate biosynthesis genes were shown to be important for optimal colonization of moist soil, and necessary for adaptation to reduced water availability in dried soil. Our findings extend in vitro studies of water stress into a more natural system and suggest alginate may be an essential extracellular product for the lifestyle of P. fluorescens when growing in soil.
Collapse
Affiliation(s)
- Douglas C Marshall
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
| | - Brianna E Arruda
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
| | - Mark W Silby
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
| |
Collapse
|
12
|
Pseudomonas savastanoi Two-Component System RhpRS Switches between Virulence and Metabolism by Tuning Phosphorylation State and Sensing Nutritional Conditions. mBio 2019; 10:mBio.02838-18. [PMID: 30890603 PMCID: PMC6426608 DOI: 10.1128/mbio.02838-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas savastanoi uses a type III secretion system (T3SS) to invade host plants. Our previous studies have demonstrated that a two-component system (TCS), RhpRS, enables P. savastanoi to coordinate the T3SS gene expression, which depends on the phosphorylation state of RhpR under different environmental conditions. Orthologues of RhpRS are distributed in a wide range of bacterial species, indicating a general regulatory mechanism. How RhpRS uses external signals and the phosphorylation state to exercise its regulatory functions remains unknown. We performed chromatin immunoprecipitation sequencing (ChIP-seq) assays to identify the specific binding sites of RhpR and RhpRD70A in either King's B medium (KB [a T3SS-inhibiting medium]) or minimal medium (MM [a T3SS-inducing medium]). We identified 125 KB-dependent binding sites and 188 phosphorylation-dependent binding sites of RhpR. In KB, RhpR directly and positively regulated cytochrome c 550 production (via ccmA) and alcohol dehydrogenase activity (via adhB) but negatively regulated anthranilate synthase activity (via trpG) and protease activity (via hemB). In addition, phosphorylated RhpR (RhpR-P) directly and negatively regulated the T3SS (via hrpR and hopR1), swimming motility (via flhA), c-di-GMP levels (via PSPPH_2590), and biofilm formation (via algD). It positively regulated twitching motility (via fimA) and lipopolysaccharide production (via PSPPH_2653). Our transcriptome sequencing (RNA-seq) analyses identified 474 and 840 new genes that were regulated by RhpR in KB and MM, respectively. We showed nutrient-rich conditions allowed RhpR to directly regulate multiple metabolic pathways of P. savastanoi and phosphorylation enabled RhpR to specifically control virulence and the cell envelope. The action of RhpRS switched between virulence and regulation of multiple metabolic pathways by tuning its phosphorylation and sensing environmental signals in KB, respectively.IMPORTANCE The plant pathogen Pseudomonas savastanoi invades host plants through a type III secretion system, which is strictly regulated by a two-component system called RhpRS. The orthologues of RhpRS are widely distributed in the bacterial kingdom. The master regulator RhpR specifically depends on the phosphorylation state to regulate the majority of the virulence-related genes. Under nutrient-rich conditions, it modulates many important metabolic pathways, which consist of one-fifth of the genome. We propose that RhpRS uses phosphorylation- and nutrition-dependent mechanisms to switch between regulating virulence and metabolism, and this functionality is widely conserved among bacterial species.
Collapse
|
13
|
Polymorphonuclear Leukocytes or Hydrogen Peroxide Enhance Biofilm Development of Mucoid Pseudomonas aeruginosa. Mediators Inflamm 2018; 2018:8151362. [PMID: 30116152 PMCID: PMC6079396 DOI: 10.1155/2018/8151362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/13/2018] [Accepted: 04/16/2018] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogenic bacterium involved in many human infections, including pneumonia, diabetic foot ulcers, and ventilator-associated pneumonia. P. aeruginosa cells usually undergo mucoid conversion during chronic lung infection in patients with cystic fibrosis (CF) and resist destruction by polymorphonuclear leukocytes (PMNs), which release free oxygen radicals (ROS), such as H2O2. PMNs are the main leucocytes in the CF sputum of patients who are infected with P. aeruginosa, which usually forms biofilms. Here, we report that PMNs or H2O2 can promote biofilm formation by mucoid P. aeruginosa FRD1 with the use of the hanging-peg method. The mucoid strain infecting CF patients overproduces alginate. In this study, PMNs and H2O2 promoted alginate production, and biofilms treated with PMNs or H2O2 exhibited higher expression of alginate genes. Additionally, PMNs increased the activity of GDP-mannose dehydrogenase, which is the key enzyme in alginate biosynthesis. Our results demonstrate that PMNs or H2O2 can enhance mucoid P. aeruginosa biofilms.
Collapse
|
14
|
Anupama R, Mukherjee A, Babu S. Gene-centric metegenome analysis reveals diversity of Pseudomonas aeruginosa biofilm gene orthologs in fresh water ecosystem. Genomics 2018; 110:89-97. [DOI: 10.1016/j.ygeno.2017.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/14/2017] [Accepted: 08/30/2017] [Indexed: 01/22/2023]
|
15
|
Comparison of biofilm formation and antibiotic resistance pattern of Pseudomonas aeruginosa in human and environmental isolates. Microb Pathog 2017; 109:94-98. [DOI: 10.1016/j.micpath.2017.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 11/24/2022]
|
16
|
Zhang P, Shao Z, Jin W, Duan D. Comparative characterization of two GDP-mannose dehydrogenase genes from Saccharina japonica (Laminariales, Phaeophyceae). BMC PLANT BIOLOGY 2016; 16:62. [PMID: 26956020 PMCID: PMC4782291 DOI: 10.1186/s12870-016-0750-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/27/2016] [Indexed: 05/26/2023]
Abstract
BACKGROUND Saccharina japonica is an important commercial brown seaweed, its main product is alginate, which is used in food, textile and by the cosmetic and pharmaceutical industries. GDP-mannose dehydrogenase (GMD) is the key enzyme involved in the synthesis of alginate. However, little is known about GMD in S. japonica. Here we report comparative biochemical analysis of two GMD genes in S. japonica. RESULTS Two GMD genes from S. japonica (Sjgmd1, Sjgmd2) were cloned. The open reading frame lengths of Sjgmd1, Sjgmd2 are 963 bp and 948 bp, respectively. Alignment analysis showed that the two SjGMD sequences shared 79.38 % identity. Both proteins possess the GGxCLPKDV and GxGxVG sequence motifs characteristic of the short-chain dehydrogenase/reductase superfamily. The optimum temperatures for SjGMDs were 30 °C (SjGMD1) and 20 °C (SjGMD2), and the optimum pH values were 8.0 (SjGMD1) and 8.25 (SjGMD2). Kinetic analysis demonstrated the Km values for the substrate GDP-mannose were 289 μM (SjGMD1) and 177 μM (SjGMD2), and the Km values for the cofactor NAD(+) were 139 μM (SjGMD1) and 195 μM (SjGMD2). The metal iron Zn(2+) is a potent inhibitor of SjGMD1 and SjGMD2. Real-time PCR analysis showed that heat and desiccation treatments resulted in a significant increase in Sjgmd1 and Sjgmd2 transcript abundance, suggesting that the SjGMDs are directly involved in the acclimitisation of S. japonica to abiotic stresses. CONCLUSION Our work identified two novel genes encoding GMD in S. japonica, comparatively characterized their structural characteristics and enzyme kinetics, and revealed the function of GMD in the stress adaptability of S. japonica. The knowledge obtained here enriched our understanding of the alginate synthesis mechanism in S. japonica, and may promote further research on functional differences between GMD genes.
Collapse
Affiliation(s)
- Pengyan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhanru Shao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Weihua Jin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Delin Duan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
- State Key Laboratory of Seaweed Bioactive Substances, Qingdao, 266400, China.
| |
Collapse
|
17
|
Barthe C, Nandakumar S, Derlich L, Macey J, Bui S, Fayon M, Crouzet M, Garbay B, Vilain S, Costaglioli P. Exploring the expression of Pseudomonas aeruginosa genes directly from sputa of cystic fibrosis patients. Lett Appl Microbiol 2015; 61:423-8. [PMID: 26174137 DOI: 10.1111/lam.12465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/19/2015] [Accepted: 07/01/2015] [Indexed: 12/23/2022]
Abstract
UNLABELLED Acquisition of Pseudomonas aeruginosa is known as a negative prognostic factor in patients with cystic fibrosis. We started a pilot study to evaluate Ps. aeruginosa gene expression directly from the sputum of infected patients. Total RNA was purified from 15 sputum samples collected from 10 patients, and the expression levels of five genes from Ps. aeruginosa were measured by RT-qPCR. Expression of algD, algR, antB, lasB and pqsA genes was determined in sputa that contained Ps. aeruginosa cells. The resultant data provided an overview of the expression of these genes in CF patients. Except for the correlation between algD expression and the mucoid phenotype, the gene expression profile could not be associated with the clinical status of patients. However, beyond the heterogeneity of the Ps. aeruginosa phenotype in sputum, we observed a correlation between the expression of antB and pqsA and a low level of lasB transcripts. SIGNIFICANCE AND IMPACT OF THE STUDY Pseudomonas aeruginosa infection leads to high morbidity and mortality in cystic fibrosis patients. The identification of Ps. aeruginosa-assigned factors is important to eradicate the colonization. We started a pilot study to evaluate the gene expression of Ps. aeruginosa directly from the sputum of infected patients. Preliminary results suggest that beyond the heterogeneity of the Ps. aeruginosa phenotype in sputum, we observe a correlation between the expression of antB and pqsA and a low level of lasB transcripts. This approach could shed some light on the behaviour of Ps. aeruginosa during pulmonary infection and may reveal some important elements for optimizing therapy.
Collapse
Affiliation(s)
- C Barthe
- Biotechnologie des Protéines Recombinantes à Visée Santé, Université de Bordeaux, Bordeaux, France
| | - S Nandakumar
- Biotechnologie des Protéines Recombinantes à Visée Santé, Université de Bordeaux, Bordeaux, France.,Biotechnologie des Protéines Recombinantes à Visée Santé, Bordeaux INP, Bordeaux, France
| | - L Derlich
- Service de pneumologie (CRCM Adulte), CHU de Bordeaux, Pessac, France
| | - J Macey
- Service de pneumologie (CRCM Adulte), CHU de Bordeaux, Pessac, France
| | - S Bui
- Département de Pédiatrie (CRCM pédiatrique), Centre d'Investigation Clinique (CIC 0005), CHU de Bordeaux, Bordeaux, France
| | - M Fayon
- Département de Pédiatrie (CRCM pédiatrique), Centre d'Investigation Clinique (CIC 0005), CHU de Bordeaux, Bordeaux, France
| | - M Crouzet
- Biotechnologie des Protéines Recombinantes à Visée Santé, Université de Bordeaux, Bordeaux, France
| | - B Garbay
- Biotechnologie des Protéines Recombinantes à Visée Santé, Université de Bordeaux, Bordeaux, France.,Biotechnologie des Protéines Recombinantes à Visée Santé, Bordeaux INP, Bordeaux, France
| | - S Vilain
- Biotechnologie des Protéines Recombinantes à Visée Santé, Université de Bordeaux, Bordeaux, France.,Biotechnologie des Protéines Recombinantes à Visée Santé, Bordeaux INP, Bordeaux, France
| | - P Costaglioli
- Biotechnologie des Protéines Recombinantes à Visée Santé, Université de Bordeaux, Bordeaux, France.,Biotechnologie des Protéines Recombinantes à Visée Santé, Bordeaux INP, Bordeaux, France
| |
Collapse
|
18
|
Inactivation of specific Pseudomonas aeruginosa biofilm factors does not alter virulence in infected cholesteatomas. Otol Neurotol 2015; 35:1585-91. [PMID: 25118585 DOI: 10.1097/mao.0000000000000558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS When experimental cholesteatomas are infected with Pseudomonas aeruginosa (PA) mutants lacking factors associated with the formation of biofilms, host defenses are more effective against these strains when compared with wild-type strains (PAO1 and OPPA8) in preventing tissue destruction. BACKGROUND Previous studies have identified biofilms within chronically infected aural cholesteatomas. These infected cholesteatomas are associated with increased tissue destruction. Because biofilms are highly resistant to host defenses leading to prolonged infection, we propose that the biofilm phenotype of P. aeruginosa may be a virulence factor leading to persistence of infection and increased tissue destruction. METHODS Aural cholesteatomas were induced in Mongolian gerbils. At the time of induction, the ear canals were inoculated with wild-type (PAO1 and OPPA8) and biofilm-deficient (PAO1 ΔpilA, PAO1 algD::aacC1 and PAO1 galU::aacC1) strains of P. aeruginosa. After 8 weeks, the size of the cholesteatomas and levels of bone destruction and deposition were measured using microCT scanning and double fluorochrome bone labeling. RESULT Infected cholesteatomas resulted in increased growth, bone destruction, and bone deposition when compared with vehicle-only controls. We observed no differences between the wild-type (biofilm forming) and the biofilm-deficient strains of P. aeruginosa. CONCLUSION Our hypothesis that biofilm formation is a virulence factor in cholesteatomas infected with P. aeruginosa was not supported. A number of interpretations of these data are reasonable. It is possible that biofilms are not critical in infected cholesteatomas. Alternatively, the mutants that are deficient in generating biofilms in vitro may be able to form effective biofilms in vivo using alternative pathways.
Collapse
|
19
|
Kong W, Zhao J, Kang H, Zhu M, Zhou T, Deng X, Liang H. ChIP-seq reveals the global regulator AlgR mediating cyclic di-GMP synthesis in Pseudomonas aeruginosa. Nucleic Acids Res 2015. [PMID: 26206672 PMCID: PMC4787818 DOI: 10.1093/nar/gkv747] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AlgR is a key transcriptional regulator required for the expression of multiple virulence factors, including type IV pili and alginate in Pseudomonas aeruginosa. However, the regulon and molecular regulatory mechanism of AlgR have yet to be fully elucidated. Here, among 157 loci that were identified by a ChIP-seq assay, we characterized a gene, mucR, which encodes an enzyme that synthesizes the intracellular second messenger cyclic diguanylate (c-di-GMP). A ΔalgR strain produced lesser biofilm than did the wild-type strain, which is consistent with a phenotype controlled by c-di-GMP. AlgR positively regulates mucR via direct binding to its promoter. A ΔalgRΔmucR double mutant produced lesser biofilm than did the single ΔalgR mutant, demonstrating that c-di-GMP is a positive regulator of biofilm formation. AlgR controls the levels of c-di-GMP synthesis via direct regulation of mucR. In addition, the cognate sensor of AlgR, FimS/AlgZ, also plays an important role in P. aeruginosa virulence. Taken together, this study provides new insights into the AlgR regulon and reveals the involvement of c-di-GMP in the mechanism underlying AlgR regulation.
Collapse
Affiliation(s)
- Weina Kong
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, ShaanXi 710069, China
| | - Jingru Zhao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, ShaanXi 710069, China
| | - Huaping Kang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, ShaanXi 710069, China
| | - Miao Zhu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, ShaanXi 710069, China
| | - Tianhong Zhou
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China
| | - Xin Deng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, ShaanXi 710069, China
| |
Collapse
|
20
|
Okkotsu Y, Little AS, Schurr MJ. The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes. Front Cell Infect Microbiol 2014; 4:82. [PMID: 24999454 PMCID: PMC4064291 DOI: 10.3389/fcimb.2014.00082] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/02/2014] [Indexed: 01/28/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes a multitude of infections. These infections can occur at almost any site in the body and are usually associated with a breach of the innate immune system. One of the prominent sites where P. aeruginosa causes chronic infections is within the lungs of cystic fibrosis patients. P. aeruginosa uses two-component systems that sense environmental changes to differentially express virulence factors that cause both acute and chronic infections. The P. aeruginosa AlgZR two component system is one of its global regulatory systems that affects the organism's fitness in a broad manner. This two-component system is absolutely required for two P. aeruginosa phenotypes: twitching motility and alginate production, indicating its importance in both chronic and acute infections. Additionally, global transcriptome analyses indicate that it regulates the expression of many different genes, including those associated with quorum sensing, type IV pili, type III secretion system, anaerobic metabolism, cyanide and rhamnolipid production. This review examines the complex AlgZR regulatory network, what is known about the structure and function of each protein, and how it relates to the organism's ability to cause infections.
Collapse
Affiliation(s)
- Yuta Okkotsu
- Department of Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| | - Alexander S Little
- Department of Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| | - Michael J Schurr
- Department of Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| |
Collapse
|
21
|
Withers TR, Yin Y, Yu HD. Identification of novel genes associated with alginate production in Pseudomonas aeruginosa using mini-himar1 mariner transposon-mediated mutagenesis. J Vis Exp 2014. [PMID: 24637508 DOI: 10.3791/51346] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative, environmental bacterium with versatile metabolic capabilities. P. aeruginosa is an opportunistic bacterial pathogen which establishes chronic pulmonary infections in patients with cystic fibrosis (CF). The overproduction of a capsular polysaccharide called alginate, also known as mucoidy, promotes the formation of mucoid biofilms which are more resistant than planktonic cells to antibiotic chemotherapy and host defenses. Additionally, the conversion from the nonmucoid to mucoid phenotype is a clinical marker for the onset of chronic infection in CF. Alginate overproduction by P. aeruginosa is an endergonic process which heavily taxes cellular energy. Therefore, alginate production is highly regulated in P. aeruginosa. To better understand alginate regulation, we describe a protocol using the mini-himar1 transposon mutagenesis for the identification of novel alginate regulators in a prototypic strain PAO1. The procedure consists of two basic steps. First, we transferred the mini-himar1 transposon (pFAC) from host E. coli SM10/λpir into recipient P. aeruginosa PAO1 via biparental conjugation to create a high-density insertion mutant library, which were selected on Pseudomonas isolation agar plates supplemented with gentamycin. Secondly, we screened and isolated the mucoid colonies to map the insertion site through inverse PCR using DNA primers pointing outward from the gentamycin cassette and DNA sequencing. Using this protocol, we have identified two novel alginate regulators, mucE (PA4033) and kinB (PA5484), in strain PAO1 with a wild-type mucA encoding the anti-sigma factor MucA for the master alginate regulator AlgU (AlgT, σ(22)). This high-throughput mutagenesis protocol can be modified for the identification of other virulence-related genes causing change in colony morphology.
Collapse
Affiliation(s)
- T Ryan Withers
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University
| | - Yeshi Yin
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University
| | - Hongwei D Yu
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University;
| |
Collapse
|
22
|
Tan K, Chhor G, Binkowski TA, Jedrzejczak RP, Makowska-Grzyska M, Joachimiak A. Sensor domain of histidine kinase KinB of Pseudomonas: a helix-swapped dimer. J Biol Chem 2014; 289:12232-44. [PMID: 24573685 DOI: 10.1074/jbc.m113.514836] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The overproduction of polysaccharide alginate is responsible for the formation of mucus in the lungs of cystic fibrosis patients. Histidine kinase KinB of the KinB-AlgB two-component system in Pseudomonas aeruginosa acts as a negative regulator of alginate biosynthesis. The modular architecture of KinB is similar to other histidine kinases. However, its periplasmic signal sensor domain is unique and is found only in the Pseudomonas genus. Here, we present the first crystal structures of the KinB sensor domain. The domain is a dimer in solution, and in the crystal it shows an atypical dimer of a helix-swapped four-helix bundle. A positively charged cavity is formed on the dimer interface and involves several strictly conserved residues, including Arg-60. A phosphate anion is bound asymmetrically in one of the structures. In silico docking identified several monophosphorylated sugars, including β-D-fructose 6-phosphate and β-D-mannose 6-phosphate, a precursor and an intermediate of alginate synthesis, respectively, as potential KinB ligands. Ligand binding was confirmed experimentally. Conformational transition from a symmetric to an asymmetric structure and decreasing dimer stability caused by ligand binding may be a part of the signal transduction mechanism of the KinB-AlgB two-component system.
Collapse
Affiliation(s)
- Kemin Tan
- From the Midwest Center for Structural Genomics and
| | | | | | | | | | | |
Collapse
|
23
|
Iron-regulated expression of alginate production, mucoid phenotype, and biofilm formation by Pseudomonas aeruginosa. mBio 2014; 5:e01010-13. [PMID: 24496793 PMCID: PMC3950519 DOI: 10.1128/mbio.01010-13] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Pseudomonas aeruginosa strains of non-cystic fibrosis (non-CF) origin do not produce significant amounts of extracellular alginate and are nonmucoid. In CF, such isolates can become mucoid through mutation of one of the genes (mucA, mucB, mucC, or mucD) that produce regulatory factors that sequester AlgU, required for increased expression of alginate genes. Mutation of the muc genes in the nonmucoid PAO1, PA14, PAKS-1, and Ps388 strains led to increased levels of extracellular alginate and an obvious mucoid phenotype, but only under iron-limiting growth conditions (≤5 µM), not under iron-replete conditions (≥10 µM). In contrast, >50% of P. aeruginosa isolates from chronic CF pulmonary infections expressed increased levels of alginate and mucoidy both under iron-limiting and iron-replete conditions (i.e., iron-constitutive phenotype). No single iron regulatory factor (e.g., Fur, PvdS) was associated with this loss of iron-regulated alginate expression and mucoidy in these CF isolates. However, the loss of only pyoverdine production, or its uptake, abrogated the ability of P. aeruginosa to produce a robust biofilm that represents the Psl-type of biofilm. In contrast, we show that mutation of the pyoverdine and pyochelin biosynthesis genes and the pyoverdine receptor (FpvA) lead to iron-constitutive expression of the key alginate biosynthesis gene, algD, and an explicitly mucoid phenotype in both iron-limiting and iron-replete conditions. These data indicate that alginate production and mucoidy, in contrast to other types of biofilms produced by P. aeruginosa, are substantially enhanced under iron limitation. These results also have compelling implications in relation to the use of iron chelators in the treatment of P. aeruginosa CF infections. IMPORTANCE Pseudomonas aeruginosa is a leading model for the investigation of biofilms. While data have been generated about the role of iron in alginate-independent (Psl/Pel) biofilm development, there is a paucity of data regarding the role of iron in alginate production and its associated mucoid phenotype. We demonstrate that biologically relevant levels of iron that exist in the airway mucus of cystic fibrosis (CF) patients have a substantial influence on production of alginate and the overt mucoid phenotype, pathognomonic of P. aeruginosa infections in CF. Mucoid mutants of non-CF P. aeruginosa isolates are mucoid only under iron limitation and do not express increased levels of alginate under iron-replete growth conditions. However, a significant number of long-term CF isolates lost their iron-regulated expression of increased alginate production and mucoidy and became iron constitutive for these properties. In contrast to the formation of Psl-type biofilms, increasing iron limitation ultimately leads to an iron-constitutive expression of alginate and mucoidy.
Collapse
|
24
|
Withers TR, Yin Y, Yu HD. Identification and characterization of a novel inhibitor of alginate overproduction in Pseudomonas aeruginosa. Pathog Dis 2013; 70:185-8. [PMID: 24115673 DOI: 10.1111/2049-632x.12102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/30/2013] [Accepted: 09/17/2013] [Indexed: 11/28/2022] Open
Abstract
In this study, we performed whole-genome complementation using a PAO1-derived cosmid library, coupled with in vitro transposon mutagenesis, to identify gene locus PA1494 as a novel inhibitor of alginate overproduction in P. aeruginosa strains possessing a wild-type mucA.
Collapse
Affiliation(s)
- T Ryan Withers
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | | | | |
Collapse
|
25
|
Pouring salt on a wound: Pseudomonas aeruginosa virulence factors alter Na+ and Cl- flux in the lung. J Bacteriol 2013; 195:4013-9. [PMID: 23836869 DOI: 10.1128/jb.00339-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen with multiple niches in the human body, including the lung. P. aeruginosa infections are particularly damaging or fatal for patients with ventilator-associated pneumonia, chronic obstructive pulmonary disease, and cystic fibrosis (CF). To establish an infection, P. aeruginosa relies on a suite of virulence factors, including lipopolysaccharide, phospholipases, exoproteases, phenazines, outer membrane vesicles, type III secreted effectors, flagella, and pili. These factors not only damage the epithelial cell lining but also induce changes in cell physiology and function such as cell shape, membrane permeability, and protein synthesis. While such virulence factors are important in initial infection, many become dysregulated or nonfunctional during the course of chronic infection. Recent work on the virulence factors alkaline protease (AprA) and CF transmembrane conductance regulator inhibitory factor (Cif) show that P. aeruginosa also perturbs epithelial ion transport and osmosis, which may be important for the long-term survival of this microbe in the lung. Here we discuss the literature regarding host physiology-altering virulence factors with a focus on Cif and AprA and their potential roles in chronic infection and immune evasion.
Collapse
|
26
|
Balasubramanian D, Schneper L, Kumari H, Mathee K. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 2012; 41:1-20. [PMID: 23143271 PMCID: PMC3592444 DOI: 10.1093/nar/gks1039] [Citation(s) in RCA: 324] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a metabolically versatile bacterium that is found in a wide range of biotic and abiotic habitats. It is a major human opportunistic pathogen causing numerous acute and chronic infections. The critical traits contributing to the pathogenic potential of P. aeruginosa are the production of a myriad of virulence factors, formation of biofilms and antibiotic resistance. Expression of these traits is under stringent regulation, and it responds to largely unidentified environmental signals. This review is focused on providing a global picture of virulence gene regulation in P. aeruginosa. In addition to key regulatory pathways that control the transition from acute to chronic infection phenotypes, some regulators have been identified that modulate multiple virulence mechanisms. Despite of a propensity for chaotic behaviour, no chaotic motifs were readily observed in the P. aeruginosa virulence regulatory network. Having a ‘birds-eye’ view of the regulatory cascades provides the forum opportunities to pose questions, formulate hypotheses and evaluate theories in elucidating P. aeruginosa pathogenesis. Understanding the mechanisms involved in making P. aeruginosa a successful pathogen is essential in helping devise control strategies.
Collapse
Affiliation(s)
- Deepak Balasubramanian
- Department of Biological Sciences, College of Arts and Science, Florida International University, Miami, FL 33199, USA
| | | | | | | |
Collapse
|
27
|
Franklin MJ, Nivens DE, Weadge JT, Howell PL. Biosynthesis of the Pseudomonas aeruginosa Extracellular Polysaccharides, Alginate, Pel, and Psl. Front Microbiol 2011; 2:167. [PMID: 21991261 PMCID: PMC3159412 DOI: 10.3389/fmicb.2011.00167] [Citation(s) in RCA: 352] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/19/2011] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental conditions and host defenses cause differing stresses on the bacteria, and to survive in vastly different environments, P. aeruginosa must be able to adapt to its surroundings. One strategy for bacterial adaptation is to self-encapsulate with matrix material, primarily composed of secreted extracellular polysaccharides. P. aeruginosa has the genetic capacity to produce at least three secreted polysaccharides; alginate, Psl, and Pel. These polysaccharides differ in chemical structure and in their biosynthetic mechanisms. Since alginate is often associated with chronic pulmonary infections, its biosynthetic pathway is the best characterized. However, alginate is only produced by a subset of P. aeruginosa strains. Most environmental and other clinical isolates secrete either Pel or Psl. Little information is available on the biosynthesis of these polysaccharides. Here, we review the literature on the alginate biosynthetic pathway, with emphasis on recent findings describing the structure of alginate biosynthetic proteins. This information combined with the characterization of the domain architecture of proteins encoded on the Psl and Pel operons allowed us to make predictive models for the biosynthesis of these two polysaccharides. The results indicate that alginate and Pel share certain features, including some biosynthetic proteins with structurally or functionally similar properties. In contrast, Psl biosynthesis resembles the EPS/CPS capsular biosynthesis pathway of Escherichia coli, where the Psl pentameric subunits are assembled in association with an isoprenoid lipid carrier. These models and the environmental cues that cause the cells to produce predominantly one polysaccharide over the others are subjects of current investigation.
Collapse
|
28
|
Tenhaken R, Voglas E, Cock JM, Neu V, Huber CG. Characterization of GDP-mannose dehydrogenase from the brown alga Ectocarpus siliculosus providing the precursor for the alginate polymer. J Biol Chem 2011; 286:16707-15. [PMID: 21454608 PMCID: PMC3089512 DOI: 10.1074/jbc.m111.230979] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/22/2011] [Indexed: 11/06/2022] Open
Abstract
Alginate is a major cell wall polymer of brown algae. The precursor for the polymer is GDP-mannuronic acid, which is believed to be derived from a four-electron oxidation of GDP-mannose through the enzyme GDP-mannose dehydrogenase (GMD). So far no eukaryotic GMD has been biochemically characterized. We have identified a candidate gene in the Ectocarpus siliculosus genome and expressed it as a recombinant protein in Escherichia coli. The GMD from Ectocarpus differs strongly from related enzymes in bacteria and is as distant to the bacterial proteins as it is to the group of UDP-glucose dehydrogenases. It lacks the C-terminal ∼120 amino acid domain present in bacterial GMDs, which is believed to be involved in catalysis. The GMD from brown algae is highly active at alkaline pH and contains a catalytic Cys residue, sensitive to heavy metals. The product GDP-mannuronic acid was analyzed by HPLC and mass spectroscopy. The K(m) for GDP-mannose was 95 μM, and 86 μM for NAD(+). No substrate other than GDP-mannose was oxidized by the enzyme. In gel filtration experiments the enzyme behaved as a dimer. The Ectocarpus GMD is stimulated by salts even at low molar concentrations as a possible adaptation to marine life. It is rapidly inactivated at temperatures above 30 °C.
Collapse
Affiliation(s)
- Raimund Tenhaken
- Department of Cell Biology, Division of Plant Physiology, University of Salzburg, 5020 Salzburg, Austria.
| | | | | | | | | |
Collapse
|
29
|
Activation of the Pseudomonas aeruginosa AlgU regulon through mucA mutation inhibits cyclic AMP/Vfr signaling. J Bacteriol 2010; 192:5709-17. [PMID: 20817772 DOI: 10.1128/jb.00526-10] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes acute, invasive infections in immunocompromised individuals and chronic, persistent respiratory infections in individuals with cystic fibrosis (CF). The differential progression of acute or chronic infections involves the production of distinct sets of virulence factors. P. aeruginosa strains isolated from patients with acute respiratory infection are generally nonencapsulated and express a variety of invasive virulence factors, including flagella, the type III secretion system (T3SS), type IV pili (TFP), and multiple secreted toxins and degradative enzymes. Strains isolated from chronically infected CF patients, however, typically lack expression of invasive virulence factors and have a mucoid phenotype due to the production of an alginate capsule. The mucoid phenotype results from loss-of-function mutations in mucA, which encodes an anti-sigma factor that normally prevents alginate synthesis. Here, we report that the cyclic AMP/Vfr-dependent signaling (CVS) pathway is defective in mucA mutants and that the defect occurs at the level of vfr expression. The CVS pathway regulates the expression of multiple invasive virulence factors, including T3SS, exotoxin A, protease IV, and TFP. We further demonstrate that mucA-dependent CVS inhibition involves the alternative sigma factor AlgU (AlgT) and the response regulator AlgR but does not depend on alginate production. Our findings show that a single naturally occurring mutation leads to inverse regulation of virulence factors involved in acute and persistent infections. These results suggest that mucoid conversion and inhibition of invasive virulence determinants may both confer a selective advantage to mucA mutant strains of P. aeruginosa in the CF lung.
Collapse
|
30
|
King JD, Poon KKH, Webb NA, Anderson EM, McNally DJ, Brisson JR, Messner P, Garavito RM, Lam JS. The structural basis for catalytic function of GMD and RMD, two closely related enzymes from the GDP-D-rhamnose biosynthesis pathway. FEBS J 2009; 276:2686-2700. [PMID: 19459932 DOI: 10.1111/j.1742-4658.2009.06993.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The rare 6-deoxysugar D-rhamnose is a component of bacterial cell surface glycans, including the D-rhamnose homopolymer produced by Pseudomonas aeruginosa, called A-band O polysaccharide. GDP-D-rhamnose synthesis from GDP-D-mannose is catalyzed by two enzymes. The first is a GDP-D-mannose-4,6-dehydratase (GMD). The second enzyme, RMD, reduces the GMD product (GDP-6-deoxy-D-lyxo-hexos-4-ulose) to GDP-d-rhamnose. Genes encoding GMD and RMD are present in P. aeruginosa, and genetic evidence indicates they act in A-band O-polysaccharide biosynthesis. Details of their enzyme functions have not, however, been previously elucidated. We aimed to characterize these enzymes biochemically, and to determine the structure of RMD to better understand what determines substrate specificity and catalytic activity in these enzymes. We used capillary electrophoresis and NMR analysis of reaction products to precisely define P. aeruginosa GMD and RMD functions. P. aeruginosa GMD is bifunctional, and can catalyze both GDP-d-mannose 4,6-dehydration and the subsequent reduction reaction to produce GDP-D-rhamnose. RMD catalyzes the stereospecific reduction of GDP-6-deoxy-D-lyxo-hexos-4-ulose, as predicted. Reconstitution of GDP-D-rhamnose biosynthesis in vitro revealed that the P. aeruginosa pathway may be regulated by feedback inhibition in the cell. We determined the structure of RMD from Aneurinibacillus thermoaerophilus at 1.8 A resolution. The structure of A. thermoaerophilus RMD is remarkably similar to that of P. aeruginosa GMD, which explains why P. aeruginosa GMD is also able to catalyze the RMD reaction. Comparison of the active sites and amino acid sequences suggests that a conserved amino acid side chain (Arg185 in P. aeruginosa GMD) may be crucial for orienting substrate and cofactor in GMD enzymes.
Collapse
Affiliation(s)
- Jerry D King
- Department of Molecular and Cellular Biology, University of Guelph, Canada
| | - Karen K H Poon
- Department of Molecular and Cellular Biology, University of Guelph, Canada
| | - Nicole A Webb
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Erin M Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Canada
| | - David J McNally
- Institute for Biological Sciences, National Research Council, Ottawa, Canada
| | - Jean-Robert Brisson
- Institute for Biological Sciences, National Research Council, Ottawa, Canada
| | - Paul Messner
- Zentrum für NanoBiotechnologie, Universität für Bodenkultur Wien, Austria
| | - R M Garavito
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Joseph S Lam
- Department of Molecular and Cellular Biology, University of Guelph, Canada
| |
Collapse
|
31
|
Damron FH, Napper J, Teter MA, Yu HD. Lipotoxin F of Pseudomonas aeruginosa is an AlgU-dependent and alginate-independent outer membrane protein involved in resistance to oxidative stress and adhesion to A549 human lung epithelia. MICROBIOLOGY-SGM 2009; 155:1028-1038. [PMID: 19332805 DOI: 10.1099/mic.0.025833-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chronic lung infection with P. aeruginosa and excessive neutrophil-associated inflammation are major causes of morbidity and mortality in patients with cystic fibrosis (CF). Overproduction of an exopolysaccharide known as alginate leads to the formation of mucoid biofilms that are resistant to antibiotics and host defences. Alginate overproduction or mucoidy is controlled by a stress-related ECF sigma factor AlgU/T. Mutation in the anti-sigma factor MucA is a known mechanism for conversion to mucoidy. Recently, we showed that inactivation of a kinase (KinB) in nonmucoid strain PAO1 results in overproduction of alginate. Here, we report the initial characterization of lipotoxin F (LptF, PA3692), an OmpA-like outer membrane protein that exhibited increased expression in the mucoid PAO1kinB mutant. The lipotoxin family of proteins has been previously shown to induce inflammation in lung epithelia, which may play a role in CF disease progression. Expression of LptF was observed to be AlgU-dependent and upregulated in CF isolates. Deletion of lptF from the kinB mutant had no effect on alginate production. Deletion of lptF from PAO1 caused a differential susceptibility to oxidants that can be generated by phagocytes. The lptF and algU mutants were more sensitive to hypochlorite than PAO1. However, the lptF mutant displayed increased resistance to hydrogen peroxide. LptF also contributed to adhesion to A549 human lung epithelial cells. Our data suggest that LptF is an outer membrane protein that may be important for P. aeruginosa survival in harsh environments, including lung colonization in CF.
Collapse
Affiliation(s)
- F Heath Damron
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755-9320, USA
| | - Jennifer Napper
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755-9320, USA
| | - M Allison Teter
- Department of Biology and Environmental Science, West Virginia Wesleyan College, Buckhannon, WV 26201, USA
| | - Hongwei D Yu
- Progenesis Technologies, LLC, Bldg 740, Rm 4136, Dow Technology Park, 3200 Kanawha Turnpike, South Charleston, WV 25303, USA.,Department of Pediatrics, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25701-3655, USA.,Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755-9320, USA
| |
Collapse
|
32
|
The Pseudomonas aeruginosa sensor kinase KinB negatively controls alginate production through AlgW-dependent MucA proteolysis. J Bacteriol 2009; 191:2285-95. [PMID: 19168621 DOI: 10.1128/jb.01490-08] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mucoidy, or overproduction of the exopolysaccharide known as alginate, in Pseudomonas aeruginosa is a poor prognosticator for lung infections in cystic fibrosis. Mutation of the anti-sigma factor MucA is a well-accepted mechanism for mucoid conversion. However, certain clinical mucoid strains of P. aeruginosa have a wild-type (wt) mucA. Here, we describe a loss-of-function mutation in kinB that causes overproduction of alginate in the wt mucA strain PAO1. KinB is the cognate histidine kinase for the transcriptional activator AlgB. Increased alginate production due to inactivation of kinB was correlated with high expression at the alginate-related promoters P(algU) and P(algD). Deletion of alternative sigma factor RpoN (sigma(54)) or the response regulator AlgB in kinB mutants decreased alginate production to wt nonmucoid levels. Mucoidy was restored in the kinB algB double mutant by expression of wt AlgB or phosphorylation-defective AlgB.D59N, indicating that phosphorylation of AlgB was not required for alginate overproduction when kinB was inactivated. The inactivation of the DegS-like protease AlgW in the kinB mutant caused loss of alginate production and an accumulation of the hemagglutinin (HA)-tagged MucA. Furthermore, we observed that the kinB mutation increased the rate of HA-MucA degradation. Our results also indicate that AlgW-mediated MucA degradation required algB and rpoN in the kinB mutant. Collectively, these studies indicate that KinB is a negative regulator of alginate production in wt mucA strain PAO1.
Collapse
|
33
|
|
34
|
|
35
|
The NtrC family regulator AlgB, which controls alginate biosynthesis in mucoid Pseudomonas aeruginosa, binds directly to the algD promoter. J Bacteriol 2007; 190:581-9. [PMID: 17981963 DOI: 10.1128/jb.01307-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alginate production in mucoid (MucA-defective) Pseudomonas aeruginosa is dependent upon several transcriptional regulators, including AlgB, a two-component response regulator belonging to the NtrC family. This role of AlgB was apparently independent of its sensor kinase, KinB, and even the N-terminal phosphorylation domain of AlgB was dispensable for alginate biosynthetic gene (i.e., algD operon) activation. However, it remained unclear whether AlgB stimulated algD transcription directly or indirectly. In this study, microarray analyses were used to examine a set of potential AlgB-dependent, KinB-independent genes in a PAO1 mucA background that overlapped with genes induced by d-cycloserine, which is known to activate algD expression. This set contained only the algD operon plus one other gene that was shown to be uninvolved in alginate production. This suggested that AlgB promotes alginate production by directly binding to the algD promoter (PalgD). Chromosome immunoprecipitation revealed that AlgB bound in vivo to PalgD but did not bind when AlgB had an R442E substitution that disrupted the DNA binding domain. AlgB also showed binding to PalgD fragments in an electrophoretic mobility shift assay at pH 4.5 but not at pH 8.0. A direct systematic evolution of ligands by exponential enrichment approach showed AlgB binding to a 50-bp fragment located at bp -224 to -274 relative to the start of PalgD transcription. Thus, AlgB belongs to a subclass of NtrC family proteins that can activate promoters which utilize a sigma factor other than sigma(54), in this case to stimulate transcription from the sigma(22)-dependent PalgD promoter.
Collapse
|
36
|
Wood SR, Firoved AM, Ornatowski W, Mai T, Deretic V, Timmins GS. Nitrosative stress inhibits production of the virulence factor alginate in mucoid Pseudomonas aeruginosa. Free Radic Res 2007; 41:208-15. [PMID: 17364947 DOI: 10.1080/10715760601052610] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Alginate is a critical virulence factor contributing to the poor clinical prognosis associated with the conversion of Pseudomonas aeruginosa to mucoid phenotypes in cystic fibrosis (CF). An important mechanism of action is its ability to scavenge host innate-immune reactive species. We have previously analyzed the bacterial response to nitrosative stress by S-nitrosoglutathione (GSNO), a physiological NO radical donor with diminished levels in the CF lung. GSNO substantially increased bacterial nitrosative and oxidative defenses and so we hypothesized a similar increase in alginate production would occur. However, in mucoid P. aeruginosa, there was decreased expression of the majority of alginate synthetic genes. This microarray data was confirmed both by RT-PCR and at the functional level by direct measurements of alginate production. Our data suggest that the lowered levels of innate-immune nitrosative mediators (such as GSNO) in the CF lung exacerbate the effects of mucoid P. aeruginosa, by failing to suppress alginate biosynthesis.
Collapse
Affiliation(s)
- Simon R Wood
- College of Pharmacy, Toxicology Program, Health Sciences Center, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
37
|
Muhammadi, Ahmed N. Genetics of bacterial alginate: alginate genes distribution, organization and biosynthesis in bacteria. Curr Genomics 2007; 8:191-202. [PMID: 18645604 PMCID: PMC2435354 DOI: 10.2174/138920207780833810] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 02/26/2007] [Accepted: 03/21/2007] [Indexed: 11/22/2022] Open
Abstract
Bacterial alginate genes are chromosomal and fairly widespread among rRNA homology group I Pseudomonads and Azotobacter. In both genera, the genetic pathway of alginate biosynthesis is mostly similar and the identified genes are identically organized into biosynthetic, regulatory and genetic switching clusters. In spite of these similarities,still there are transcriptional and functional variations between P. aeruginosa and A. vinelandii. In P. aeruginosa all biosynthetic genes except algC transcribe in polycistronic manner under the control of algD promoter while in A. vinelandii, these are organized into many transcriptional units. Of these, algA and algC are transcribed each from two different and algD from three different promoters. Unlike P. aeruginosa, the promoters of these transcriptional units except one of algC and algD are algT-independent. Both bacterial species carry homologous algG gene for Ca(2+)-independent epimerization. But besides algG, A. vinelandii also has algE1-7 genes which encode C-5-epimerases involved in the complex steps of Ca(2+)-dependent epimerization. A hierarchy of alginate genes expression under sigma(22)(algT) control exists in P. aeruginosa where algT is required for transcription of the response regulators algB and algR, which in turn are necessary for expression of algD and its downstream biosynthetic genes. Although algTmucABCD genes cluster play similar regulatory roles in both P. aeruginosa and A. vinelandii but unlike, transcription of A. vinelandii, algR is independent of sigma(22). These differences could be due to the fact that in A. vinelandii alginate plays a role as an integrated part in desiccation-resistant cyst which is not found in P. aeruginosa.
Collapse
Affiliation(s)
| | - Nuzhat Ahmed
- Centre for Molecular Genetics, University of Karachi, Karachi-75270,
Pakistan
| |
Collapse
|
38
|
Baynham PJ, Ramsey DM, Gvozdyev BV, Cordonnier EM, Wozniak DJ. The Pseudomonas aeruginosa ribbon-helix-helix DNA-binding protein AlgZ (AmrZ) controls twitching motility and biogenesis of type IV pili. J Bacteriol 2006; 188:132-40. [PMID: 16352829 PMCID: PMC1317580 DOI: 10.1128/jb.188.1.132-140.2006] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is commonly found in water and soil. In order to colonize surfaces with low water content, P. aeruginosa utilizes a flagellum-independent form of locomotion called twitching motility, which is dependent upon the extension and retraction of type IV pili. This study demonstrates that AlgZ, previously identified as a DNA-binding protein absolutely required for transcription of the alginate biosynthetic operon, is required for twitching motility. AlgZ may be required for the biogenesis or function of type IV pili in twitching motility. Transmission electron microscopy analysis of an algZ deletion in nonmucoid PAO1 failed to detect surface pili. To examine expression and localization of PilA (the major pilin subunit), whole-cell extracts and cell surface pilin preparations were analyzed by Western blotting. While the PilA levels present in whole-cell extracts were similar for wild-type P. aeruginosa and P. aeruginosa with the algZ deletion, the amount of PilA on the surface of the cells was drastically reduced in the algZ mutant. Analysis of algZ and algD mutants indicates that the DNA-binding activity of AlgZ is essential for the regulation of twitching motility and that this is independent of the role of AlgZ in alginate expression. These data show that AlgZ DNA-binding activity is required for twitching motility independently of its role in alginate production and that this involves the surface localization of type IV pili. Given this new role in twitching motility, we propose that algZ (PA3385) be designated amrZ (alginate and motility regulator Z).
Collapse
Affiliation(s)
- Patricia J Baynham
- Department of Biology, St. Edward's University, 3001 South Congress Avenue, Austin, TX 78704, USA.
| | | | | | | | | |
Collapse
|
39
|
Bieber Urbauer RJ, Gilmore JM, Rosasco SE, Hattle JM, Cowley AB, Urbauer JL. Cloning, high yield overexpression, purification, and characterization of AlgH, a regulator of alginate biosynthesis in Pseudomonas aeruginosa. Protein Expr Purif 2005; 43:57-64. [PMID: 16084397 DOI: 10.1016/j.pep.2005.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 02/20/2005] [Accepted: 02/24/2005] [Indexed: 10/25/2022]
Abstract
The most common cause of mortality among cystic fibrosis sufferers is infection by antibiotic resistant strains of Pseudomonas aeruginosa. Means to control these strains continue to be an important goal. An integral component of the ability of many of these strains to defy antibiotic therapies is the protection afforded by the mucoexopolysaccharide alginate. Production of alginate by P. aeruginosa is tightly regulated at the transcriptional level. AlgH, a putative transcriptional regulator, is involved in regulating alginate biosynthesis as well as nucleoside diphosphate kinase activity and succinyl coenzyme A synthetase activity in P. aeruginosa. Sequence homologues are found in many bacterial species. Here, we describe a method for high level overexpression and high yield/high purity production of AlgH for biophysical and functional studies. The algH gene was cloned and AlgH was overexpressed in Escherichia coli using a commercially available vector with an inducible T7 promoter. We purified the recombinantly produced protein using a rapid classical purification scheme. The yield of purified protein, either isotopically labeled for NMR studies or unlabeled, is excellent (30-37 mg of purified protein per liter of minimal media culture), as is the purity (>95% pure). Analysis of the secondary structure using circular dichroism and NMR indicates that the protein is comprised of both beta-sheet and alpha-helical secondary structural elements. Heteronuclear NMR spectra indicate that AlgH is a monodisperse, folded globular protein. This rapid, high yield, and high purity method for AlgH production will permit further biophysical characterization of this protein including high resolution structural studies.
Collapse
Affiliation(s)
- Ramona J Bieber Urbauer
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-7229, USA
| | | | | | | | | | | |
Collapse
|
40
|
Carterson AJ, Morici LA, Jackson DW, Frisk A, Lizewski SE, Jupiter R, Simpson K, Kunz DA, Davis SH, Schurr JR, Hassett DJ, Schurr MJ. The transcriptional regulator AlgR controls cyanide production in Pseudomonas aeruginosa. J Bacteriol 2004; 186:6837-44. [PMID: 15466037 PMCID: PMC522194 DOI: 10.1128/jb.186.20.6837-6844.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic lung infections in cystic fibrosis (CF) patients. One characteristic of P. aeruginosa CF isolates is the overproduction of the exopolysaccharide alginate, controlled by AlgR. Transcriptional profiling analyses comparing mucoid P. aeruginosa strains to their isogenic algR deletion strains showed that the transcription of cyanide-synthesizing genes (hcnAB) was approximately 3-fold lower in the algR mutants. S1 nuclease protection assays corroborated these findings, indicating that AlgR activates hcnA transcription in mucoid P. aeruginosa. Quantification of hydrogen cyanide (HCN) production from laboratory isolates revealed that mucoid laboratory strains made sevenfold more HCN than their nonmucoid parental strains. In addition, comparison of laboratory and clinically derived nonmucoid strains revealed that HCN was fivefold higher in the nonmucoid CF isolates. Moreover, the average amount of cyanide produced by mucoid clinical isolates was 4.7 +/- 0.85 micromol of HCN/mg of protein versus 2.4 +/- 0.40 micromol of HCN/mg of protein for nonmucoid strains from a survey conducted with 41 P. aeruginosa CF isolates from 24 patients. Our data indicate that (i) mucoid P. aeruginosa regardless of their origin (laboratory or clinically derived) produce more cyanide than their nonmucoid counterparts, (ii) AlgR regulates HCN production in P. aeruginosa, and (iii) P. aeruginosa CF isolates are more hypercyanogenic than nonmucoid laboratory strains. Taken together, cyanide production may be a relevant virulence factor in CF lung disease, the production of which is regulated, in part, by AlgR.
Collapse
Affiliation(s)
- Alexander J Carterson
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112-2699, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Soler CP, Gidenne S, Saint-Blancard P, Kerleguer A, Gerome P. [Recovery method of serotypable character in non serotypable pseudomonas aeruginosa strains]. ACTA ACUST UNITED AC 2004; 52:33-8. [PMID: 14761711 DOI: 10.1016/j.patbio.2003.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2002] [Accepted: 09/03/2003] [Indexed: 11/26/2022]
Abstract
Serotyping is one of the most used techniques for typing Pseudomonas aeruginosa strains. During chronic infections, and especially in cystic fibrosis, the decrease of lipopolysaccharide production is responsible for difficulties in determining O antigens. The possibility of serotyping can be simply restored by using a primary culture broth containing amikacin (1/6 of the strain MIC for this antibiotic); this is due to the ability of this antibiotic to inhibit alginate production. This technique allowed us to determine the serotype of 108 non-serotypable strains of P. aeruginosa isolated in 14 different hospitals. Among these isolates, serotype O:1 and O:13, had a high prevalence; the origin is a deficiency in D-glucose and L-rhamnose, required for the synthesis of lipopolysaccharide. In contrast, these sugars are not present in lipopolysaccharide of O:12, and these strains are always serotypable. The main protein is Alg C; this bifunctional enzyme is required in the exopolysaccharide and lipopolysaccharide production, according stress conditions in the bacterial-cells' environment. Determination of the serotype, as Antibiogram, is essential for genotypic inquiries.
Collapse
Affiliation(s)
- C P Soler
- Service de biologie, hôpital Bégin, 69, avenue de Paris, 94160 Saint-Mandé, France.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Pseudomonas aeruginosa is the dominant pathogen causing chronic respiratory infections in cystic fibrosis (CF). After an initial phase characterized by intermittent infections, a chronic colonization is established in CF upon the conversion of P. aeruginosa to the mucoid, exopolysaccharide alginate-overproducing phenotype. The emergence of mucoid P. aeruginosa in CF is associated with respiratory decline and poor prognosis. The switch to mucoidy in most CF isolates is caused by mutations in the mucA gene encoding an anti-sigma factor. The mutations in mucA result in the activation of the alternative sigma factor AlgU, the P. aeruginosa ortholog of Escherichia coli extreme stress sigma factor sigma(E). Because of the global nature of the regulators of mucoidy, we have hypothesized that other genes, in addition to those specific for alginate production, must be induced upon conversion to mucoidy, and their production may contribute to the pathogenesis in CF. Here we applied microarray analysis to identify on the whole-genome scale those genes that are coinduced with the AlgU sigmulon upon conversion to mucoidy. Gene expression profiles of AlgU-dependent conversion to mucoidy revealed coinduction of a specific subset of known virulence determinants (the major protease elastase gene, alkaline metalloproteinase gene aprA, and the protease secretion factor genes aprE and aprF) or toxic factors (cyanide synthase) that may have implications for disease in CF. Analysis of promoter regions of the most highly induced genes (>40-fold, P < or = 10(-4)) revealed a previously unrecognized, putative AlgU promoter upstream of the osmotically inducible gene osmE. This newly identified AlgU-dependent promoter of osmE was confirmed by mapping the mRNA 5' end by primer extension. The recognition of genes induced in mucoid P. aeruginosa, other than those associated with alginate biosynthesis, reported here revealed the identity of previously unappreciated factors potentially contributing to the morbidity and mortality caused by mucoid P. aeruginosa in CF.
Collapse
Affiliation(s)
- Aaron M Firoved
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | | |
Collapse
|
43
|
Franklin MJ, Ohman DE. Mutant analysis and cellular localization of the AlgI, AlgJ, and AlgF proteins required for O acetylation of alginate in Pseudomonas aeruginosa. J Bacteriol 2002; 184:3000-7. [PMID: 12003941 PMCID: PMC135050 DOI: 10.1128/jb.184.11.3000-3007.2002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2001] [Accepted: 02/27/2002] [Indexed: 11/20/2022] Open
Abstract
Alginate is an extracellular polysaccharide produced by mucoid strains of Pseudomonas aeruginosa that are typically isolated from the pulmonary tracts of chronically infected cystic fibrosis patients. Alginate is a linear polymer of D-mannuronate and L-guluronate with O-acetyl ester linkages on the O-2 and/or O-3 position of the mannuronate residues. The presence of O-acetyl groups plays an important role in the ability of the polymer to act as a virulence factor, and the algF, algJ, and algI genes are known to be essential for the addition of O-acetyl groups to alginate. To better understand the mechanism of O acetylation of alginate, the cellular locations of the AlgI, AlgJ, and AlgF proteins were determined. For these studies, defined nonpolar algI, algJ, and algF deletion mutants of P. aeruginosa strain FRD1 were constructed, and each mutant produced alginate lacking O-acetyl groups. Expression of algI, algJ, or algF in trans in the corresponding mutant complemented each O acetylation defect. Random phoA (alkaline phosphatase [AP] gene) fusions to algF, algJ, and algI were constructed. All in-frame fusions to algF and algJ had AP activity, indicating that both AlgF and AlgJ were exported to the periplasm. Immunoblot analysis of spheroplasts and periplasmic fractions showed that AlgF was released with the periplasmic contents but that AlgJ remained with the spheroplast fraction. An N-terminal sequence analysis of AlgJ showed that its putative AlgJ signal peptide was not cleaved, suggesting that AlgJ is anchored to the cytoplasmic membrane by its uncleaved signal peptide. AP gene fusions were also used to map the membrane topology of AlgI, and the results suggest that it is an integral membrane protein with seven transmembrane domains. These results suggest that AlgI-AlgJ-AlgF may form a complex in the membrane that is the reaction center for O acetylation of alginate.
Collapse
Affiliation(s)
- Michael J Franklin
- Department of Microbiology and Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
| | | |
Collapse
|
44
|
Shigematsu T, Fukushima J, Oyama M, Tsuda M, Kawamoto S, Okuda K. Iron-Mediated regulation of alkaline proteinase production in Pseudomonas aeruginosa. Microbiol Immunol 2002; 45:579-90. [PMID: 11592632 DOI: 10.1111/j.1348-0421.2001.tb01289.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We analyzed the regulation by iron of alkaline proteinase (AP) production in Pseudomonas aeruginosa. Extracellular AP production was detected from the mid-logarithmic to the stationary phase by an antibody-based assay system, and was strongly repressed by iron in the medium. This repression was shown by Northern hybridization and primer extension to occur at the level of transcription. The primer extension analysis revealed that the start point of transcription of AP gene was the nucleotide position -84 from the start point of translation. Furthermore, we investigated whether this transcriptional repression involved PvdS protein. Using the mutant strain of pvdS, the alternative sigma factor gene revealed that the PvdS protein is required for the full expression of AP, and a previous study showed that expression of pvdS is also repressed by iron. Therefore, we thought that one mechanism of repression of AP production operated through reduction of the PvdS protein level. Purified AP decomposed the transferrin, and released iron from it. Purified AP added to the medium containing transferrin as the only iron source enhanced the growth of P. aeruginosa. Moreover, mutation in the AP gene decreased the growth rate in the medium containing the transferrin as the only iron source. These results clearly indicated that AP expression should occur in a free-iron-deficient environment and emphasized the importance of AP to iron acquisition in the infection site.
Collapse
Affiliation(s)
- T Shigematsu
- Department of Bacteriology Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Edwards KJ, Saunders NA. Real-time PCR used to measure stress-induced changes in the expression of the genes of the alginate pathway of Pseudomonas aeruginosa. J Appl Microbiol 2001; 91:29-37. [PMID: 11442711 DOI: 10.1046/j.1365-2672.2001.01339.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To measure the concentration of mRNAs transcribed from four genes involved in alginate production using real-time PCR. METHODS AND RESULTS The mRNA concentrations in cells grown in normal and stress conditions were compared. A difference in the expression of algD, the key gene leading to overproduction of alginate, was detected between alginate-producing and non-alginate-producing strains grown under normal conditions. After growth on 3% ethanol (known to stimulate alginate production), but not after heat-shock, an increase in algD mRNA levels and a corresponding decrease in mucB (a regulatory gene) mRNA levels were detected in all strains. CONCLUSION The quantitative results suggest that the mucB gene may have a role in recognition of stress conditions, and that having a disrupted mucA gene does not always result in a mucoid phenotype. SIGNIFICANCE AND IMPACT OF THE STUDY Real-time PCR can be used to quantify mRNA and is a convenient method of analysing bacterial gene expression.
Collapse
Affiliation(s)
- K J Edwards
- Molecular Biology Unit, Virus Reference Division, Central Public Health Laboratory, 61 Colindale Avenue, London NW9 5HT, UK
| | | |
Collapse
|
46
|
Branny P, Pearson JP, Pesci EC, Köhler T, Iglewski BH, Van Delden C. Inhibition of quorum sensing by a Pseudomonas aeruginosa dksA homologue. J Bacteriol 2001; 183:1531-9. [PMID: 11160083 PMCID: PMC95037 DOI: 10.1128/jb.183.5.1531-1539.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Pseudomonas aeruginosa las (lasR-lasI) and rhl (rhlR-rhlI) quorum-sensing systems regulate the expression of several virulence factors, including elastase and rhamnolipid. P. aeruginosa strain PR1-E4 is a lasR deletion mutant that contains a second, undefined mutation which allows production of elastase and rhamnolipid despite a nonfunctional las system. We have previously shown that this strain accomplishes this by increasing the expression of the autoinducer synthase gene rhlI. In this report, we show that the elastolytic phenotype of mutant PR1-E4 can be complemented with a P. aeruginosa homologue of the Escherichia coli dnaK mutation suppressor gene dksA. When supplied in trans on a multicopy plasmid, this gene completely suppressed elastase production by mutant PR1-E4. Cloning and Northern blot analysis revealed that dksA was neither mutated nor less transcribed in mutant PR1-E4. When overexpressed, dksA also reduced rhamnolipid production by both mutant PR1-E4 and the wild type, PAO1. Using Northern blot analysis and lacZ reporter fusions, we show that dksA inhibits rhlI, rhlAB, and lasB transcription. Exogenous N-butyryl-L-homoserine lactone overcame the reduced expression of rhlI and restored rhlAB and lasB expression, as well as elastase production. Our results suggest that the overproduction of the P. aeruginosa DksA homologue inhibits quorum-sensing-dependent virulence factor production by downregulating the transcription of the autoinducer synthase gene rhlI.
Collapse
Affiliation(s)
- P Branny
- Department of Genetics and Microbiology, Centre Médical Universitaire, CH 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
47
|
Nivens DE, Ohman DE, Williams J, Franklin MJ. Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 2001; 183:1047-57. [PMID: 11208804 PMCID: PMC94973 DOI: 10.1128/jb.183.3.1047-1057.2001] [Citation(s) in RCA: 278] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2000] [Accepted: 10/26/2000] [Indexed: 11/20/2022] Open
Abstract
Attenuated total reflection/Fourier transform-infrared spectrometry (ATR/FT-IR) and scanning confocal laser microscopy (SCLM) were used to study the role of alginate and alginate structure in the attachment and growth of Pseudomonas aeruginosa on surfaces. Developing biofilms of the mucoid (alginate-producing) cystic fibrosis pulmonary isolate FRD1, as well as mucoid and nonmucoid mutant strains, were monitored by ATR/FT-IR for 44 and 88 h as IR absorbance bands in the region of 2,000 to 1,000 cm(-1). All strains produced biofilms that absorbed IR radiation near 1,650 cm(-1) (amide I), 1,550 cm(-1) (amide II), 1,240 cm(-1) (P==O stretching, C---O---C stretching, and/or amide III vibrations), 1,100 to 1,000 cm(-1) (C---OH and P---O stretching) 1,450 cm(-1), and 1,400 cm(-1). The FRD1 biofilms produced spectra with an increase in relative absorbance at 1,060 cm(-1) (C---OH stretching of alginate) and 1,250 cm(-1) (C---O stretching of the O-acetyl group in alginate), as compared to biofilms of nonmucoid mutant strains. Dehydration of an 88-h FRD1 biofilm revealed other IR bands that were also found in the spectrum of purified FRD1 alginate. These results provide evidence that alginate was present within the FRD1 biofilms and at greater relative concentrations at depths exceeding 1 micrometer, the analysis range for the ATR/FT-IR technique. After 88 h, biofilms of the nonmucoid strains produced amide II absorbances that were six to eight times as intense as those of the mucoid FRD1 parent strain. However, the cell densities in biofilms were similar, suggesting that FRD1 formed biofilms with most cells at depths that exceeded the analysis range of the ATR/FT-IR technique. SCLM analysis confirmed this result, demonstrating that nonmucoid strains formed densely packed biofilms that were generally less than 6 micrometer in depth. In contrast, FRD1 produced microcolonies that were approximately 40 micrometer in depth. An algJ mutant strain that produced alginate lacking O-acetyl groups gave an amide II signal approximately fivefold weaker than that of FRD1 and produced small microcolonies. After 44 h, the algJ mutant switched to the nonmucoid phenotype and formed uniform biofilms, similar to biofilms produced by the nonmucoid strains. These results demonstrate that alginate, although not required for P. aeruginosa biofilm development, plays a role in the biofilm structure and may act as intercellular material, required for formation of thicker three-dimensional biofilms. The results also demonstrate the importance of alginate O acetylation in P. aeruginosa biofilm architecture.
Collapse
Affiliation(s)
- D E Nivens
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Selenium is both an essential and a toxic trace element, and the range of concentrations between the two is extremely narrow. Although tellurium is not essential and is only rarely found in the environment, it is considered to be extremely toxic. Several hypotheses have been proposed to account for the toxic effects of selenite and tellurite. However, these potential mechanisms have yet to be fully substantiated. Through screening of an Escherichia coli luxAB transcriptional gene fusion library, we identified a clone whose luminescence increased in the presence of increasing concentrations of sodium selenite or sodium tellurite. Cloning and sequencing of the luxAB junction revealed that the fusion had occurred in a previously uncharacterized open reading frame, termed o393 or yhfC, which we have now designated gutS, for gene up-regulated by tellurite and selenite. Transcription from gutS in the presence of selenite or tellurite was confirmed by RNA dot blot analysis. In vivo expression of the GutS polypeptide, using the pET expression system, revealed a polypeptide of approximately 43 kDa, in good agreement with its predicted molecular mass. Although the function of GutS remains to be elucidated, homology searches as well as protein motif and secondary-structure analyses have provided clues which may implicate GutS in transport in response to selenite and tellurite.
Collapse
Affiliation(s)
- J Guzzo
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | |
Collapse
|
49
|
Richau JA, Leitão JH, Sá-Correia I. Enzymes leading to the nucleotide sugar precursors for exopolysaccharide synthesis in Burkholderia cepacia. Biochem Biophys Res Commun 2000; 276:71-6. [PMID: 11006084 DOI: 10.1006/bbrc.2000.3438] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Based on the chemical composition of the exopolysaccharide produced by the cystic fibrosis bacterial isolate Burkholderia cepacia IST408, we postulated and confirmed, based on the specificity of enzymes detected in crude cell-free extracts, the pathway leading to the presumptive activated sugar precursors: UDP-D-glucose, UDP-D-galactose, UDP-D-glucuronic acid, GDP-D-mannose, and GDP-D-rhamnose. Results also suggest that regulation of the expression of the mucoid phenotype in B. cepacia does not occur at the level of synthesis of any of these enzymes.
Collapse
Affiliation(s)
- J A Richau
- Centro de Engenharia Biológica e Quimica, Instituto Superior Técnico, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| | | | | |
Collapse
|
50
|
Salmon KA, Freedman O, Ritchings BW, DuBow MS. Characterization of the lysogenic repressor (c) gene of the Pseudomonas aeruginosa transposable bacteriophage D3112. Virology 2000; 272:85-97. [PMID: 10873751 DOI: 10.1006/viro.2000.0341] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage D3112 is a Mu-like temperate transposable phage of Pseudomonas aeruginosa. Genetic mapping and DNA sequence analysis have identified the left end of the phage genome as encoding the transposase enzyme (A) and the lysogenic (c) repressor. The c open reading frame (ORF), located at the leftmost end of the phage genome and transcribed from right to left, has four possible GTG initiation codons. Using site-directed mutagenesis, each of the four GTG codons was modified to GTA, which cannot serve as an initiation codon. Plasmids were constructed expressing either the wild-type repressor ORF or the ORFs containing the mutated GTA codons. When introduced into Pseudomonas aeruginosa, no immunity to superinfection by D3112 was observed when the second GTG had been mutated. Northern blotting analysis demonstrated that the D3112 c repressor is transcribed as a 900-nt mRNA. The promoter region was defined by transcriptional lacZ fusions and primer extension analyses to bp 972-940 from the left end of the phage genome. When the D3112 c repressor was overexpressed and purified as a fusion protein with a C-terminal six-histidine extension (cts15-His6), it showed high affinity for a 261-bp PvuII fragment localized directly upstream of the c repressor ORF. Our results indicate that although D3112 c shows higher amino acid similarity to the lambda family of repressors than it does to those of Mu and D108, it appears that its structure and function more accurately reflect an evolutionary ancestry with those from transposable coliphages Mu and D108.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- Codon, Initiator/genetics
- DNA Transposable Elements/genetics
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/metabolism
- Genes, Reporter/genetics
- Genes, Viral/genetics
- Lysogeny/genetics
- Lysogeny/immunology
- Molecular Sequence Data
- Mutation/genetics
- Open Reading Frames/genetics
- Operator Regions, Genetic/genetics
- Promoter Regions, Genetic/genetics
- Pseudomonas Phages/genetics
- Pseudomonas Phages/physiology
- Pseudomonas aeruginosa/virology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Viral/analysis
- RNA, Viral/genetics
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/isolation & purification
- Recombinant Fusion Proteins/metabolism
- Repressor Proteins/chemistry
- Repressor Proteins/genetics
- Repressor Proteins/isolation & purification
- Repressor Proteins/metabolism
- Sequence Alignment
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/isolation & purification
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- K A Salmon
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | | | | | |
Collapse
|