1
|
Genetic diversity of Brazilian Bacillus thuringiensis isolates with toxicity against Aedes aegypti (Diptera: Culicidae). Sci Rep 2022; 12:14408. [PMID: 36002607 PMCID: PMC9402949 DOI: 10.1038/s41598-022-18559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
Bacillus thuringiensis (Bt) isolates native to Maranhão (BtMA) that are highly toxic to Aedes aegypti larvae and seven standard subspecies of Bt were analyzed for genetic diversity using the rep-PRC technique with BOX, ERIC, REP, MB1, and GTG5 markers. The rep-PCR technique is considered an extremely reliable, reproducible, fast and highly discriminatory technique that may be used even among populations of the same species. These five markers revealed a total of 38 polymorphic DNA fragments for 30 BtMA isolates. Eight groups were obtained with the dendrogram generated through Pearson's correlation analysis, with four groups formed only with BtMA isolates and four comprised of isolates of BtMA and the standard subspecies toxic to dipterans and lepidopterans. Despite the high genetic diversity of BtMA, a low correlation between the collection site, gene content and mortality against A. aegypti larvae was evidenced. The clustering of the standard subspecies of Bt that were toxic against dipterans with BtMA isolates confirm the mosquitocidal action of the native isolates from Maranhão, and they can be used as an alternative for A. aegypti control and other insects of medical importance and for the control of agricultural pests.
Collapse
|
2
|
Potential for Bacillus thuringiensis and Other Bacterial Toxins as Biological Control Agents to Combat Dipteran Pests of Medical and Agronomic Importance. Toxins (Basel) 2020; 12:toxins12120773. [PMID: 33291447 PMCID: PMC7762171 DOI: 10.3390/toxins12120773] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
The control of dipteran pests is highly relevant to humans due to their involvement in the transmission of serious diseases including malaria, dengue fever, Chikungunya, yellow fever, zika, and filariasis; as well as their agronomic impact on numerous crops. Many bacteria are able to produce proteins that are active against insect species. These bacteria include Bacillus thuringiensis, the most widely-studied pesticidal bacterium, which synthesizes proteins that accumulate in crystals with insecticidal properties and which has been widely used in the biological control of insects from different orders, including Lepidoptera, Coleoptera, and Diptera. In this review, we summarize all the bacterial proteins, from B. thuringiensis and other entomopathogenic bacteria, which have described insecticidal activity against dipteran pests, including species of medical and agronomic importance.
Collapse
|
3
|
Evidence of two mechanisms involved in Bacillus thuringiensis israelensis decreased toxicity against mosquito larvae: Genome dynamic and toxins stability. Microbiol Res 2015; 176:48-54. [DOI: 10.1016/j.micres.2015.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/07/2015] [Accepted: 04/17/2015] [Indexed: 11/23/2022]
|
4
|
Delécluse A, Poncet S, Klier A, Rapoport G. Expression of cryIVA and cryIVB Genes, Independently or in Combination, in a Crystal-Negative Strain of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 2010; 59:3922-7. [PMID: 16349095 PMCID: PMC182550 DOI: 10.1128/aem.59.11.3922-3927.1993] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cryIVA and cryIVB genes, encoding the 125- and 135-kDa proteins, respectively, of Bacillus thuringiensis subsp. israelensis, were cloned either alone or together into a shuttle vector and expressed in a nontoxic strain of B. thuringiensis subsp. israelensis. The CryIVB protein was produced at a high level during sporulation and accumulated as inclusions; in contrast, the CryIVA polypeptide did not form such structures unless it was cloned on a higher-copy-number plasmid. Transcriptional fusions between the cryIVA or cryIVB gene promoter and the lacZ gene were constructed. The poor synthesis of CryIVA was not due to a poor efficiency of transcription from the cryIVA gene promoter. Mosquitocidal assays performed with purified inclusions showed that CryIVA was toxic for larvae of the species Aedes aegypti, Anopheles stephensi, and Culex pipiens, whereas CryIVB displayed activity only toward Aedes aegypti and Anopheles stephensi. The activity of inclusions containing both polypeptides was higher than that of single-peptide inclusions but was not as high as that of the native crystals, which contain at least four polypeptides.
Collapse
Affiliation(s)
- A Delécluse
- Unité de Biochimie Microbienne, Institut Pasteur, URA 1300 du Centre National de la Recherche Scientifique, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
5
|
Ohgushi A, Saitoh H, Wasano N, Ohba M. A new insertion variant, IS231I, isolated from a mosquito-specific strain of Bacillus thuringiensis. Curr Microbiol 2005; 51:95-9. [PMID: 15991054 DOI: 10.1007/s00284-005-4523-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 02/11/2005] [Indexed: 10/25/2022]
Abstract
A new insertion variant belonging to the family IS231, designated IS231I, was isolated from a mosquito larvicidal strain of the Bacillus thuringiensis serovar sotto (H4ab). IS231I was 1653 bp long and delimited by two 20 bp inverted repeats with one mismatch, flanked by two perfect 11 bp direct repeats. The element contained a single open reading frame (ORF) encoding 478 amino acids and five conserved domains: N1, N2, N3, C1, and C2. The 5' noncoding region upstream of the ORF, presumed to form a stable stem-and-loop structure, was highly conserved in IS231I. The secondary structure conformation had a deduced free energy (DeltaG=25 degrees C) of -17.2 kcal/mol. Comparison of the IS231I amino acid sequence with those of the 10 existing IS variants revealed that the new variant shares 89% identity with IS231A and IS231B, 65-66% with IS231M and IS231N, and 38% with IS231W.
Collapse
Affiliation(s)
- Akira Ohgushi
- Graduate School of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|
6
|
Kamauchi S, Yamagiwa M, Esaki M, Otake K, Sakai H. Binding properties of Bacillus thuringiensis Cry1C delta-endotoxin to the midgut epithelial membranes of Culex pipiens. Biosci Biotechnol Biochem 2003; 67:94-9. [PMID: 12619679 DOI: 10.1271/bbb.67.94] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Cry1C delta-endotoxin from Bacillus thuringiensis is toxic to both lepidopteran and dipteran insect larvae. To analyze the dipteran-specific insecticidal mechanisms, we investigated the properties of Cry1C binding to the epithelial cell membrane of the larval midgut from the mosquito Culex pipiens in comparison with dipteran-specific Cry4A. Immunohistochemical staining of the larval midgut sections from Culex pipiens showed that Cry1C and Cry4A bound to the microvilli of the epithelial cells. The Cry1C binding to brush border membrane vesicles from the mosquito larvae was specific and irreversible, and did not compete with Cry4A. By ligand blotting analyses, we detected several Cry1C-binding proteins, the Cry1C binding to which did compete with excess unlabeled Cry4A. These results suggested that Cry1C and Cry4A recognized the same binding site(s) on the epithelial cell surface but that their interaction with the target membrane differed.
Collapse
Affiliation(s)
- Shinya Kamauchi
- Department of Bioscience and Biotechnology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
7
|
Khasdan V, Ben-Dov E, Manasherob R, Boussiba S, Zaritsky A. Toxicity and synergism in transgenic Escherichia coli expressing four genes from Bacillus thuringiensis subsp. israelensis. Environ Microbiol 2001; 3:798-806. [PMID: 11846773 DOI: 10.1046/j.1462-2920.2001.00253.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genes cyt1Aa and p20, encoding, respectively, cytolytic and accessory proteins of Bacillus thuringiensis subsp. israelensis, were introduced into previously constructed clones expressing cry4Aa and cry11Aa in Escherichia coli (Ben-Dov et al., 1995). Fifteen clones with all possible combinations of the four genes were obtained and found to express the genes included. Two new combinations, pVE4-ADRC and pVE4-ARC, expressing cyt1Aa, p20 and cry4Aa, with or without cry11Aa, respectively, were more toxic than their counterparts without cyt1Aa. They displayed the highest toxicity against Aedes aegypti larvae ever reached in transgenic bacteria. Five out of the six clones (except pVE4-DC) containing cry4Aa or cry11Aa (with or without p20) displayed varying levels of synergism with cyt1Aa: they are 1.5-to 34-fold more toxic than the respective clones without cyt1Aa against exposed larvae. Their lethal times also decreased (they kill larvae quicker), more so at higher cell concentrations. These clones are anticipated to dramatically reduce the likelihood of resistant development in the target organisms (Wirth et al., 1997).
Collapse
Affiliation(s)
- V Khasdan
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
8
|
Ben-Dov E, Nissan G, Pelleg N, Manasherob R, Boussiba S, Zaritsky A. Refined, circular restriction map of the Bacillus thuringiensis subsp. israelensis plasmid carrying the mosquito larvicidal genes. Plasmid 1999; 42:186-91. [PMID: 10545261 DOI: 10.1006/plas.1999.1415] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
All the genetic elements responsible for the mosquito larval toxicity of Bacillus thuringiensis subsp. israelensis are located on one of its largest plasmids, nicknamed pBtoxis. Two linkage groups (with sizes of about 75 and 55 kb) have previously been mapped partially with respect to SacI and BamHI restriction sites (Ben-Dov et al., 1996), but linking them to a single circular plasmid unambiguously was impossible with the available data. To finalize the plasmid map, another rare cutting restriction endonuclease, AlwNI, was used in addition. The two linkage groups and the fragments generated by AlwNI were aligned on the circular plasmid, and known insertion sequences were localized on the refined map. Pulsed-field electrophoresis revealed that the total size of pBtoxis (137 kb) was larger than thought before.
Collapse
Affiliation(s)
- E Ben-Dov
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, 84105, Israel
| | | | | | | | | | | |
Collapse
|
9
|
Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 1998; 62:775-806. [PMID: 9729609 PMCID: PMC98934 DOI: 10.1128/mmbr.62.3.775-806.1998] [Citation(s) in RCA: 1697] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the past decade the pesticidal bacterium Bacillus thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the complex relationships between the structure, mechanism of action, and genetics of the organism's pesticidal crystal proteins, and a coherent picture of these relationships is beginning to emerge. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins, their performance in agricultural and other natural settings, and the evolution of resistance mechanisms in target pests. Armed with this knowledge base and with the tools of modern biotechnology, researchers are now reporting promising results in engineering more-useful toxins and formulations, in creating transgenic plants that express pesticidal activity, and in constructing integrated management strategies to insure that these products are utilized with maximum efficiency and benefit.
Collapse
Affiliation(s)
- E Schnepf
- Mycogen Corp., San Diego, California 92121, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Rosso ML, Delécluse A. Contribution of the 65-kilodalton protein encoded by the cloned gene cry19A to the mosquitocidal activity of Bacillus thuringiensis subsp. jegathesan. Appl Environ Microbiol 1997; 63:4449-55. [PMID: 9361431 PMCID: PMC168764 DOI: 10.1128/aem.63.11.4449-4455.1997] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Two new crystal protein genes, cry19A and orf2, isolated from Bacillus thuringiensis subsp. jegathesan were cloned and characterized. The cry19A gene encodes a 74.7-kDa protein, and the orf2 gene encodes a 60-kDa protein. Cry19A contains the five conserved blocks present in most B. thuringiensis delta-endotoxins. The ORF2 amino acid sequence is similar to that of the carboxy terminus of Cry4 proteins. The cry 19A gene was expressed independently or in combination with orf2 in a crystal-negative B. thuringiensis host. The proteins accumulated as inclusions. Purified inclusions containing either Cry19A alone or Cry19A and ORF2 together were toxic to Anopheles stephensi and Culex pipiens mosquito larvae. They were more toxic to C. pipiens than to A. stephensi. However, inclusions containing Cry19A and ORF2 together were more toxic than inclusions of Cry19A alone but less toxic than the wild-type inclusions of B. thuringiensis subsp. jegathesan.
Collapse
Affiliation(s)
- M L Rosso
- Unité des Bactéries Entomopathogènes, Institut Pasteur, Paris, France
| | | |
Collapse
|
11
|
Ben-Dov E, Einav M, Peleg N, Boussiba S, Zaritsky A. Restriction map of the 125-kilobase plasmid of Bacillus thuringiensis subsp. israelensis carrying the genes that encode delta-endotoxins active against mosquito larvae. Appl Environ Microbiol 1996; 62:3140-5. [PMID: 8795201 PMCID: PMC168107 DOI: 10.1128/aem.62.9.3140-3145.1996] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A large plasmid containing all delta-endotoxin genes was isolated from Bacillus thuringiensis subsp. israelensis; restricted by BamHI, EcoRI, HindIII, KpnI, PstI, SacI, and SalI; and cloned as appropriate libraries in Escherichia coli. The libraries were screened for inserts containing recognition sites for BamHI, SacI, and SalI. Each was labeled with 32P and hybridized to Southern blots of gels with fragments generated by cleaving the plasmid with several restriction endonucleases, to align at least two fragments of the relevant enzymes. All nine BamHI fragments and all eight SacI fragments were mapped in two overlapping linkage groups (with total sizes of about 76 and 56 kb, respectively). The homology observed between some fragments is apparently a consequence of the presence of transposons and repeated insertion sequences. Four delta-endotoxin genes (cryIVB-D and cytA) and two genes for regulatory polypeptides (of 19 and 20 kDa) were localized on a 21-kb stretch of the plasmid; without cytA, they are placed on a single BamHI fragment. This convergence enables subcloning of delta-endotoxin genes (excluding cryIVA, localized on the other linkage group) as an intact natural fragment.
Collapse
Affiliation(s)
- E Ben-Dov
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | | | | | | | | |
Collapse
|
12
|
Delécluse A, Barloy F, Rosso ML. Les bactéries pathogènes des larves de diptères: structure et spécificité des toxines. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0924-4204(97)86391-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Delécluse A, Rosso ML, Ragni A. Cloning and expression of a novel toxin gene from Bacillus thuringiensis subsp. jegathesan encoding a highly mosquitocidal protein. Appl Environ Microbiol 1995; 61:4230-5. [PMID: 8534090 PMCID: PMC167734 DOI: 10.1128/aem.61.12.4230-4235.1995] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A gene, designated cry11B, encoding a 81,293-Da crystal protein of Bacillus thuringiensis subsp. jegathesan was cloned by using a gene-specific oligonucleotide probe. The sequence of the Cry11B protein, as deduced from the sequence of the cry11B gene, contains large regions of similarity with the Cry11A toxin (previously CryIVD) from B. thuringiensis subsp. israelensis. The Cry11B protein was immunologically related to both Cry11A and Cry4A proteins. The cry11B gene was expressed in a nontoxic strain of B. thuringiensis, in which Cry11B was produced in large amounts during sporulation and accumulated as inclusions. Purified Cry11B inclusions were highly toxic for mosquito larvae of the species Aedes aegypti, Culex pipiens, and Anopheles stephensi. The activity of Cry11B toxin was higher than that of Cry11A and similar to that of the native crystals from B. thuringiensis subsp. jegathesan, which contain at least seven polypeptides.
Collapse
Affiliation(s)
- A Delécluse
- Unité des Bactéries Entomopathogènes, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
14
|
Ben-Dov E, Boussiba S, Zaritsky A. Mosquito larvicidal activity of Escherichia coli with combinations of genes from Bacillus thuringiensis subsp. israelensis. J Bacteriol 1995; 177:2851-7. [PMID: 7751296 PMCID: PMC176958 DOI: 10.1128/jb.177.10.2851-2857.1995] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The genes cryIVA and cryIVD, encoding 134- and 72-kDa proteins, respectively, and the gene for a regulatory 20-kDa polypeptide of Bacillus thuringiensis subsp. israelensis (serovar H14) were cloned in all seven possible combinations by the Escherichia coli expression vectors pT7 and pUHE. The four combinations containing cryIVA (cryIVA alone, with cryIVD, with the 20-kDa-protein gene, and with both) displayed high levels of mosquito larvicidal activity in pUHE. The toxicity of the combination of cryIVA and cryIVD, with or without the 20-kDa-protein gene, was higher than has ever been achieved with delta-endotoxin genes in recombinant E. coli. Fifty percent lethal concentrations against third-instar Aedes aegypti larvae for these clones decreased (i.e., toxicity increased) continuously to about 3 x 10(5) cells ml-1 after 4 h of induction. Larvicidal activities, obtained after 30 min of induction, were lower for clones in pT7 and decreased for an additional 3.5 h. Induction of either cryIVD or the 20-kDa-protein gene alone resulted in no larvicidal activity in either pT7 or pUHE20. Cloned together, these genes were slightly toxic in pT7 but not in pUHE20. Five minutes of induction of this combination (cryIVD with the 20-kDa-protein gene) in pT7 yielded a maximal mortality of about 40%, which decreased rapidly and disappeared completely after 50 min. CryIVD is thus apparently degraded in E. coli and partially stabilized by the 20-kDa regulatory protein. Larvicidal activity of the combination of cryIVA and cryIVD was sevenfold higher than that of cryIVA alone, probably because of the cross-stabilization of the polypeptides or the synergism between their activities.
Collapse
Affiliation(s)
- E Ben-Dov
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | | | | |
Collapse
|
15
|
Ravoahangimalala O, Charles JF. In vitro binding of Bacillus thuringiensis var. israelensis individual toxins to midgut cells of Anopheles gambiae larvae (Diptera: Culicidae). FEBS Lett 1995; 362:111-5. [PMID: 7720855 DOI: 10.1016/0014-5793(95)00220-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Midguts from Anopheles gambiae fourth instars were dissected and processed for immuno-light microscopy. Cloned insecticidal crystal proteins (ICPs) from Bacillus thuringiensis var. israelensis (Bti) were individually expressed in crystal-negative strains of Bacillus thuringiensis. Tissue sections of A. gambiae were incubated in vitro with each solubilized and trypsin-activated ICP. Immunodetection of CryIVA, CryIVB, CryIVD and CytA toxins on sections was performed using purified rabbit IgG directed against Bti ICPs, in combination with an anti-rabbit IgG/peroxidase. CryIVA, CryIVB, CryIVD and CytA toxins were detected on the apical brush border of midgut cells, in the gastric caecae and posterior stomach. CytA was also detected, to a lesser extent, on microvilli of anterior stomach cells.
Collapse
|
16
|
Abstract
A new class II (Tn3-like) transposable element, designated Tn5401, was recovered from a sporulation-deficient variant of Bacillus thuringiensis subsp. morrisoni EG2158 following its insertion into a recombinant plasmid. Sequence analysis of the insert revealed a 4,837-bp transposon with two large open reading frames, in the same orientation, encoding proteins of 36 kDa (306 residues) and 116 kDa (1,005 residues) and 53-bp terminal inverted repeats. The deduced amino acid sequence for the 36-kDa protein shows 24% sequence identity with the TnpI recombinase of the B. thuringiensis transposon Tn4430, a member of the phage integrase family of site-specific recombinases. The deduced amino acid sequence for the 116-kDa protein shows 42% sequence identity with the transposase of Tn3 but only 28% identity with the TnpA transposase of Tn4430. Two small open reading frames of unknown function, designated orf1 (85 residues) and orf2 (74 residues), were also identified. Southern blot analysis indicated that Tn5401, in contrast to Tn4430, is not commonly found among different subspecies of B. thuringiensis and is not typically associated with known insecticidal crystal protein genes. Transposition was studied with B. thuringiensis by using plasmid pEG922, a temperature-sensitive shuttle vector containing Tn5401. Tn5401 transposed to both chromosomal and plasmid target sites but displayed an apparent preference for plasmid sites. Transposition was replicative and resulted in the generation of a 5-bp duplication at the target site. Transcriptional start sites within Tn5401 were mapped by primer extension analysis. Two promoters, designated PL and PR, direct the transcription of orf1-orf2 and tnpI-tnpA, respectively, and are negatively regulated by TnpI. Sequence comparison of the promoter regions of Tn5401 and Tn4430 suggests that the conserved sequence element ATGTCCRCTAAY mediates TnpI binding and cointegrate resolution. The same element is contained within the 53-bp terminal inverted repeats, thus accounting for their unusual lengths and suggesting an additional role for TnpI in regulating Tn5401 transposition.
Collapse
Affiliation(s)
- J A Baum
- Ecogen Inc., Langhorne, Pennsylvania 19047-1810
| |
Collapse
|
17
|
Mahillon J, Rezsöhazy R, Hallet B, Delcour J. IS231 and other Bacillus thuringiensis transposable elements: a review. Genetica 1994; 93:13-26. [PMID: 7813910 DOI: 10.1007/bf01435236] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacillus thuringiensis is an entomopathogenic bacterium whose toxicity is due to the presence in the sporangia of delta-endotoxin crystals active against agricultural pests and vectors of human and animal diseases. Most of the genes coding for these toxin proteins are plasmid-borne and are generally structurally associated with insertion sequences (IS231, IS232, IS240, ISBT1 and ISBT2) and transposons (Tn4430 and Tn5401). Several of these mobile elements have been shown to be active and are believed to participate in the crystal gene mobility, thereby contributing to the variation of bacterial toxicity. Structural analysis of the iso-IS231 elements indicates that they are related to IS1151 from Clostridium perfringens and distantly related to IS4 and IS186 from Escherichia coli. Like the other IS4 family members, they contain a conserved transposase-integrase motif found in other IS families and retroviruses. Moreover, functional data gathered from IS231A in Escherichia coli indicate a non-replicative mode of transposition, with a marked preference for specific targets. Similar results were also obtained in Bacillus subtilis and B. thuringiensis, and a working model for DNA-protein interactions at the target site is proposed.
Collapse
Affiliation(s)
- J Mahillon
- Unité de Génétique, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | | | | | | |
Collapse
|
18
|
Porter AG, Davidson EW, Liu JW. Mosquitocidal toxins of bacilli and their genetic manipulation for effective biological control of mosquitoes. Microbiol Rev 1993; 57:838-61. [PMID: 7905597 PMCID: PMC372941 DOI: 10.1128/mr.57.4.838-861.1993] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The identification, cloning, and characterization of protein toxins from various species of bacilli have demonstrated the existence of mosquitocidal toxins with different structures, mechanisms of action, and host ranges. A start has been made in understanding the polypeptide determinants of toxicity and insecticidal activity, and the purification of toxins from recombinant organisms may lead to the elucidation of their X-ray crystal structures and the cloning of brush border membrane receptors. The results of cloning mosquitocidal toxins in heterologous microorganisms show the potential of expanding the range of susceptible mosquito species by combining several toxins of different host specificity in one cell. Toxins have been expressed in new microorganisms with the potential for increasing potency by persisting at the larval feeding zone. The powerful tools of bacterial genetics are being applied to engineer genetically stable, persistent toxin expression and expand the insecticidal host ranges of Bacillus sphaericus and Bacillus thuringiensis strains. These techniques, together with modern formulation technology, should eventually lead to the construction of mosquitocidal microorganisms which are effective enough to have a real impact on mosquito-borne diseases.
Collapse
Affiliation(s)
- A G Porter
- Institute of Molecular and Cell Biology, National University of Singapore
| | | | | |
Collapse
|
19
|
Ravoahangimalala O, Charles JF, Schoeller-Raccaud J. Immunological localization of Bacillus thuringiensis serovar israelensis toxins in midgut cells of intoxicated Anopheles gambiae larvae (Diptera: Culicidae). Res Microbiol 1993; 144:271-8. [PMID: 8248622 DOI: 10.1016/0923-2508(93)90011-p] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fourth instar larvae of Anopheles gambiae were intoxicated with doses of purified crystals from Bacillus thuringiensis serovar israelensis (Bti) corresponding to 50-fold the LC50 after 24 h. Midguts were dissected after various contact times, then processed for immuno-light and -electron microscopy. Immunodetection on thin sections was performed using affinity-purified rabbit IgG against Bti crystal CryIVD or CytA polypeptides, in combination with anti-rabbit IgG/peroxidase. Both polypeptides were detected by optical and electron microscopy after 15 min of contact with Bti crystals on the apical brush border of midgut cells, but only in the gastric caeca and posterior stomach. No specific signal was detected in the other parts of the midgut, i.e. the cardia cells and the anterior stomach. These results confirm that mosquito midgut cells are the primary target for the toxins and that binding to specific receptors on the apical microvilli membrane is the initial step of delta-endotoxin action.
Collapse
|
20
|
Angsuthanasombat C, Crickmore N, Ellar DJ. Comparison ofBacillus thuringiensissubsp.israelensisCryIVA and CryIVB cloned toxins reveals synergism in vivo. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05290.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
21
|
Chang C, Dai SM, Frutos R, Federici BA, Gill SS. Properties of a 72-kilodalton mosquitocidal protein from Bacillus thuringiensis subsp. morrisoni PG-14 expressed in B. thuringiensis subsp. kurstaki by using the shuttle vector pHT3101. Appl Environ Microbiol 1992; 58:507-12. [PMID: 1610175 PMCID: PMC195276 DOI: 10.1128/aem.58.2.507-512.1992] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mosquitocidal properties of Bacillus thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni PG-14 are attributable to protein inclusions grouped together within a parasporal body. In both of these strains, the mosquitocidal activity resides in proteins with molecular masses of 27, 72, 128, and 135 kDa. In an attempt to determine the toxicity of each protein, the shuttle vector pHT3101 was used to express the cryIVD gene (encoding the 72-kDa CryIVD protein) from B. thuringiensis subsp. morrisoni in an acrystalliferous mutant of B. thuringiensis subsp. kurstaki. With this system, parasporal inclusions of the 72-kDa protein were obtained that were comparable in size, shape, and toxicity to those produced by parental B. thuringiensis subsp. morrisoni. The inclusions were bar shaped, measured 500 by 300 by 150 nm, and were easily visible with phase-contrast microscopy by 16 h of cell growth. A 50% lethal concentration of 64 ng/ml for these inclusions was determined in bioassays against fourth instars of Culex quinquefasciatus, which was similar to the 50% lethal concentration of 55 ng/ml obtained for the 72-kDa inclusion from B. thuringiensis subsp. israelensis. In contrast, expression of the cryIVD gene in Escherichia coli was very low and only detectable by immunoblot analysis. These results demonstrate that the pHT3101-B. thuringiensis expression system can be used to express the CryIVD protein in quantities and with properties comparable to that obtained with the natural host. This system may prove useful for the expression of other B. thuringiensis proteins and, in particular, for reconstitution experiments with inclusions produced by the mosquitocidal subspecies of B. thuringiensis.
Collapse
Affiliation(s)
- C Chang
- Department of Entomology, University of California, Riverside 92521
| | | | | | | | | |
Collapse
|
22
|
Delécluse A, Charles JF, Klier A, Rapoport G. Deletion by in vivo recombination shows that the 28-kilodalton cytolytic polypeptide from Bacillus thuringiensis subsp. israelensis is not essential for mosquitocidal activity. J Bacteriol 1991; 173:3374-81. [PMID: 1675212 PMCID: PMC207948 DOI: 10.1128/jb.173.11.3374-3381.1991] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The cytA gene encoding the 28-kDa polypeptide of Bacillus thuringiensis subsp. israelensis crystals was disrupted in the 72-MDa resident plasmid by in vivo recombination, thus indicating that homologous recombination occurs in B. thuringiensis. The absence of the 28-kDa protein in B. thuringiensis did not affect the crystallization of the other toxic components of the parasporal body (68-, 125-, and 135-kDa polypeptides). The absence of the 28-kDa protein abolished the hemolytic activity of B. thuringiensis subsp. israelensis crystals. However, the mosquitocidal activity of the 28-kDa protein-free crystals did not differ significantly from that of the wild-type crystals when tested on Aedes aegypti and Culex pipiens larvae. The 28-kDa protein contributed slightly to the toxicity to Anopheles stephensi larvae. This indicates that the 28-kDa protein is not essential for mosquitocidal activity, at least against the three species tested.
Collapse
Affiliation(s)
- A Delécluse
- Unité de Biochimie Microbienne, URA 1300 CNRS, Paris, France
| | | | | | | |
Collapse
|
23
|
Waalwijk C, Dullemans A, Maat C. Construction of a bioinsecticidal rhizosphere isolate ofPseudomonas fluorescens. FEMS Microbiol Lett 1991. [DOI: 10.1111/j.1574-6968.1991.tb04358.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
24
|
Menou G, Mahillon J, Lecadet MM, Lereclus D. Structural and genetic organization of IS232, a new insertion sequence of Bacillus thuringiensis. J Bacteriol 1990; 172:6689-96. [PMID: 2174857 PMCID: PMC210781 DOI: 10.1128/jb.172.12.6689-6696.1990] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the Bacillus thuringiensis strains toxic for the lepidopteran larvae, the delta-endotoxin genes cryIA are frequently found within a composite transposonlike structure flanked by two inverted repeat sequences. We report that these elements are true insertion sequences and designate them IS232. IS232 is a 2,184-bp element and is delimited by two imperfect inverted repeats (28 of 37 bp are identical). Two adjacent open reading frames, overlapping for three codons, span almost the entire sequence of IS232. The potential encoded polypeptides of 50 and 30-kDa are homologous to the IstA and IstB proteins of the gram-negative insertion sequence IS21. The N-terminal part of the 50-kDa polypeptide contains a helix-turn-helix DNA-binding motif. The junctions at the insertion sites of three IS232 elements were analyzed. Each case was different, with 0, 4, or 6 bp of the target DNA being duplicated. Transposition of IS232 in Escherichia coli was demonstrated by using a genetic marker inserted upstream of the two open reading frames.
Collapse
Affiliation(s)
- G Menou
- Département des Biotechnologies, URA 1300 Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
25
|
Bourgouin C, Delécluse A, de la Torre F, Szulmajster J. Transfer of the toxin protein genes of Bacillus sphaericus into Bacillus thuringiensis subsp. israelensis and their expression. Appl Environ Microbiol 1990; 56:340-4. [PMID: 2306087 PMCID: PMC183341 DOI: 10.1128/aem.56.2.340-344.1990] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The genes encoding the toxic determinants of Bacillus sphaericus have been expressed in a nontoxic and a toxic strain of Bacillus thuringiensis subsp. israelensis. In both cases, the B. sphaericus toxin proteins were produced at a high level during sporulation of B. thuringiensis and accumulated as crystalline structures. B. thuringiensis transformants expressing B. sphaericus and B. thuringiensis subsp. israelensis toxins did not show a significant enhancement of toxicity against Aedes aegypti, Anopheles stephensi, and Culex pipiens larvae.
Collapse
Affiliation(s)
- C Bourgouin
- Unité de Biochimie Microbienne, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
26
|
Lereclus D, Arantès O, Chaufaux J, Lecadet MM. Transformation and expression of a cloned δ-endotoxin gene inbacillus thuringiensis. FEMS Microbiol Lett 1989. [DOI: 10.1111/j.1574-6968.1989.tb03448.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
27
|
Ramos J, Cirillo VP. Role of cyclic-AMP-dependent protein kinase in catabolite inactivation of the glucose and galactose transporters in Saccharomyces cerevisiae. J Bacteriol 1989; 171:3545-8. [PMID: 2542229 PMCID: PMC210083 DOI: 10.1128/jb.171.6.3545-3548.1989] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The derepressed high-affinity glucose transport system and the induced galactose transport system are catabolite inactivated when cells with these transport systems are incubated with glucose. The role of the cyclic AMP cascade in the catabolite inactivation of these transport systems was shown by using mutants affected in the activity of cyclic-AMP-dependent protein kinase (cAPK). In tpk1(w) mutants with reduced cAPK activity, the sugar transport systems were expressed but were not catabolite inactivated. In bcy1 mutants with unbridled cAPK activity resulting from a defective regulatory subunit, the transport systems were absent or present at low levels.
Collapse
Affiliation(s)
- J Ramos
- Department of Biochemistry, State University of New York, Stony Brook 11794
| | | |
Collapse
|
28
|
Abstract
A classification for crystal protein genes of Bacillus thuringiensis is presented. Criteria used are the insecticidal spectra and the amino acid sequences of the encoded proteins. Fourteen genes are distinguished, encoding proteins active against either Lepidoptera (cryI), Lepidoptera and Diptera (cryII), Coleoptera (cryIII), or Diptera (cryIV). One gene, cytA, encodes a general cytolytic protein and shows no structural similarities with the other genes. Toxicity studies with single purified proteins demonstrated that every described crystal protein is characterized by a highly specific, and sometimes very restricted, insect host spectrum. Comparison of the deduced amino acid sequences reveals sequence elements which are conserved for Cry proteins. The expression of crystal protein genes is affected by a number of factors. Recently, two distinct sigma subunits regulating transcription during different stages of sporulation have been identified, as well as a protein regulating the expression of a crystal protein at a posttranslational level. Studies on the biochemical mechanisms of toxicity suggest that B. thuringiensis crystal proteins induce the formation of pores in membranes of susceptible cells. In vitro binding studies with radiolabeled toxins demonstrated a strong correlation between the specificity of B. thuringiensis toxins and the interaction with specific binding sites on the insect midgut epithelium. The expression of B. thuringiensis crystal proteins in plant-associated microorganisms and in transgenic plants has been reported. These approaches are potentially powerful strategies for the protection of agriculturally important crops against insect damage.
Collapse
|
29
|
Delecluse A, Bourgouin C, Klier A, Rapoport G. Nucleotide sequence and characterization of a new insertion element, IS240, from Bacillus thuringiensis israelensis. Plasmid 1989; 21:71-8. [PMID: 2543009 DOI: 10.1016/0147-619x(89)90088-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nucleotide sequence of two repeated sequences (RS) in opposite orientations flanking the 125-kDa toxin gene of Bacillus thuringiensis israelensis (C. Bourgouin et al., J. Bacteriol. 170, 3575-3583, 1988) is reported in this paper. The analysis of these sequences indicates that these two RS display characteristic features of bacterial insertion sequences (IS) and are therefore referred to as IS240. IS240 B is 865 bp long and has two perfect terminal-inverted repeats of 16 bp; IS240 A is 99% identical to IS240 B. A long open reading frame encoding a polypeptide of 235 amino acids spans almost the entire sequence of both IS240 elements. Both the sequence of the inverted repeats and the putative transposases are homologous to IS26 of Proteus vulgaris, IS15-delta of Salmonella panama, IS431 of Staphylococcus aureus, and ISS1 of Streptococcus lactis.
Collapse
Affiliation(s)
- A Delecluse
- Unité de Biochimie Microbienne, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
30
|
Adams LF, Visick JE, Whiteley HR. A 20-kilodalton protein is required for efficient production of the Bacillus thuringiensis subsp. israelensis 27-kilodalton crystal protein in Escherichia coli. J Bacteriol 1989; 171:521-30. [PMID: 2644205 PMCID: PMC209617 DOI: 10.1128/jb.171.1.521-530.1989] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The 27-kilodalton (kDa) mosquitocidal protein gene from Bacillus thuringiensis subsp. israelensis has been cloned as a 10-kilobase (kb) HindIII fragment from plasmid DNA; efficient expression in Escherichia coli KM1 depends on a region of DNA located approximately 4 kb upstream (K. McLean and H. R. Whiteley, J. Bacteriol. 169:1017-1023, 1987). We have cloned the upstream DNA region and show that it contains a complete open reading frame (ORF) encoding a protein with a molecular mass of 19,584 Da. Sequencing of adjacent stretches of DNA revealed two partial ORFs: one has 55.2% identity in an overlap of 319 amino acids to the putative transposase of IS231 of B. thuringiensis subsp. thuringiensis, and the other, a 78-codon partial ORF, may be the carboxyl terminus of the 67-kDa protein previously observed in maxicells of strain KM1. A 0.8-kb fragment containing only the 20-kDa protein gene greatly enhanced the expression of the 27-kDa protein in E. coli. The introduction of nonsense codons into the 20-kDa protein gene ORF abolished this effect, indicating that the gene product, not the mRNA or DNA, is required for the enhancement. The effect of the 20-kDa protein gene on various fusions of lacZ to the 27-kDa protein gene suggests that the 20-kDa protein acts after the initiation of translation of the 27-kDa protein gene.
Collapse
Affiliation(s)
- L F Adams
- Department of Microbiology, University of Washington, Seattle 98195
| | | | | |
Collapse
|