1
|
Mattay J. Noncanonical metabolite RNA caps: Classification, quantification, (de)capping, and function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1730. [PMID: 35675554 DOI: 10.1002/wrna.1730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The 5' cap of eukaryotic mRNA is a hallmark for cellular functions from mRNA stability to translation. However, the discovery of novel 5'-terminal RNA caps derived from cellular metabolites has challenged this long-standing singularity in both eukaryotes and prokaryotes. Reminiscent of the 7-methylguanosine (m7G) cap structure, these noncanonical caps originate from abundant coenzymes such as NAD, FAD, or CoA and from metabolites like dinucleoside polyphosphates (NpnN). As of now, the significance of noncanonical RNA caps is elusive: they differ for individual transcripts, occur in distinct types of RNA, and change in response to environmental stimuli. A thorough comparison of their prevalence, quantity, and characteristics is indispensable to define the distinct classes of metabolite-capped RNAs. This is achieved by a structured analysis of all present studies covering functional, quantitative, and sequencing data which help to uncover their biological impact. The biosynthetic strategies of noncanonical RNA capping and the elaborate decapping machinery reveal the regulation and turnover of metabolite-capped RNAs. With noncanonical capping being a universal and ancient phenomenon, organisms have developed diverging strategies to adapt metabolite-derived caps to their metabolic needs, but ultimately to establish noncanonical RNA caps as another intriguing layer of RNA regulation. This article is categorized under: RNA Processing > Capping and 5' End Modifications RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Johanna Mattay
- Institute of Biochemistry, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Sharma A, Kontodimas K, Bosmann M. The MAVS Immune Recognition Pathway in Viral Infection and Sepsis. Antioxid Redox Signal 2021; 35:1376-1392. [PMID: 34348482 PMCID: PMC8817698 DOI: 10.1089/ars.2021.0167] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 02/03/2023]
Abstract
Significance: It is estimated that close to 50 million cases of sepsis result in over 11 million annual fatalities worldwide. The pathognomonic feature of sepsis is a dysregulated inflammatory response arising from viral, bacterial, or fungal infections. Immune recognition of pathogen-associated molecular patterns is a hallmark of the host immune defense to combat microbes and to prevent the progression to sepsis. Mitochondrial antiviral signaling protein (MAVS) is a ubiquitous adaptor protein located at the outer mitochondrial membrane, which is activated by the cytosolic pattern recognition receptors, retinoic acid-inducible gene I (RIG-I) and melanoma differentiation associated gene 5 (MDA5), following binding of viral RNA agonists. Recent Advances: Substantial progress has been made in deciphering the activation of the MAVS pathway with its interacting proteins, downstream signaling events (interferon [IFN] regulatory factors, nuclear factor kappa B), and context-dependent type I/III IFN response. Critical Issues: In the evolutionary race between pathogens and the host, viruses have developed immune evasion strategies for cleavage, degradation, or blockade of proteins in the MAVS pathway. For example, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) M protein and ORF9b protein antagonize MAVS signaling and a protective type I IFN response. Future Directions: The role of MAVS as a sensor for nonviral pathogens, host cell injury, and metabolic perturbations awaits better characterization in the future. New technical advances in multidimensional single-cell analysis and single-molecule methods will accelerate the rate of new discoveries. The ultimate goal is to manipulate MAVS activities in the form of immune-modulatory therapies to combat infections and sepsis. Antioxid. Redox Signal. 35, 1376-1392.
Collapse
Affiliation(s)
- Arjun Sharma
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Konstantinos Kontodimas
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
3
|
Mironov KS, Shumskaya M, Los DA. Construction of prokaryotic strand-specific primary-transcripts saturated RNASeq library by controlled heat magnesium-dependent mRNA degradation. Biochimie 2020; 177:63-67. [PMID: 32805305 DOI: 10.1016/j.biochi.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/26/2020] [Accepted: 08/02/2020] [Indexed: 02/01/2023]
Abstract
The main limiting factors for RNA-Seq analysis are quality and quantity of the isolated mRNA. In prokaryotes, the proportion of messenger RNA to total RNA is rather low. Therefore, the main strategy of library preparation for sequencing is mRNA enrichment. Ribosomal and transfer RNAs, both monophosphorylated at the 5'-ends, are the major fractions of total RNA, while the bulk of primary transcripts is triphosphorylated at the 5'-teminus. Due to its low molecular weight, transfer RNA could be easily removed by a quick precipitation in LiCl solution. Ribosomal RNA may be degraded enzymatically by 5'-end terminal exonuclease XRN-1. These steps allow enriching samples in mRNA during the first stages of RNA-Seq library preparation. The desired level of fragmentation of enriched mRNA necessary for the 2nd generation sequencing can be controlled by the duration of incubation at elevated temperatures in the presence of Mg2+-ions. Here, we describe a simple protocol for construction of the primary prokaryotic mRNA-saturated library without long depletion procedures.
Collapse
Affiliation(s)
- Kirill S Mironov
- Department of Molecular Biosystems, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276, Moscow, Russia.
| | - Maria Shumskaya
- Department of Biology, School of Natural Sciences, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Dmitry A Los
- Department of Molecular Biosystems, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276, Moscow, Russia
| |
Collapse
|
4
|
Molecular requirements for sensing of intracellular microbial nucleic acids by the innate immune system. Cytokine 2017; 98:4-14. [DOI: 10.1016/j.cyto.2016.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 12/24/2022]
|
5
|
Luciano DJ, Vasilyev N, Richards J, Serganov A, Belasco JG. A Novel RNA Phosphorylation State Enables 5' End-Dependent Degradation in Escherichia coli. Mol Cell 2017; 67:44-54.e6. [PMID: 28673541 DOI: 10.1016/j.molcel.2017.05.035] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/10/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023]
Abstract
RNA modifications that once escaped detection are now thought to be pivotal for governing RNA lifetimes in both prokaryotes and eukaryotes. For example, converting the 5'-terminal triphosphate of bacterial transcripts to a monophosphate triggers 5' end-dependent degradation by RNase E. However, the existence of diphosphorylated RNA in bacteria has never been reported, and no biological role for such a modification has ever been proposed. By using a novel assay, we show here for representative Escherichia coli mRNAs that ~35%-50% of each transcript is diphosphorylated. The remainder is primarily monophosphorylated, with surprisingly little triphosphorylated RNA evident. Furthermore, diphosphorylated RNA is the preferred substrate of the RNA pyrophosphohydrolase RppH, whose biological function was previously assumed to be pyrophosphate removal from triphosphorylated transcripts. We conclude that triphosphate-to-monophosphate conversion to induce 5' end-dependent RNA degradation is a two-step process in E. coli involving γ-phosphate removal by an unidentified enzyme to enable subsequent β-phosphate removal by RppH.
Collapse
Affiliation(s)
- Daniel J Luciano
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA; Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jamie Richards
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA; Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Joel G Belasco
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA; Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
6
|
Abstract
During viral and bacterial infections, pathogen-derived cytosolic nucleic acids are recognized by the intracellular RNA sensors retinoic acid-inducible gene I and melanoma-differentiated gene 5 and intracellular DNA sensors, including cyclic-di-GMP-AMP synthase, absent in melanoma 2, interferon (IFN)-gamma inducible protein 16, polymerase III, and so on. Binding of intracellular nucleic acids to these sensors activates downstream signaling cascades, resulting in the production of type I IFNs and pro-inflammatory cytokines to induce appropriate systematic immune responses. While these sensors also recognize endogenous nucleic acids and activate immune responses, they can discriminate between self- and non-self-nucleic acids. However, dysfunction of these sensors or failure of regulatory mechanisms causes aberrant activation of immune response and autoimmune disorders. In this review, we focus on how intracellular immune sensors recognize exogenous nucleic acids and activate the innate immune system, and furthermore, how autoimmune diseases result from dysfunction of these sensors.
Collapse
Affiliation(s)
- Daisuke Ori
- a Laboratory of Molecular Immunobiology , Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Takayama-cho , Ikoma , Nara , Japan
| | - Motoya Murase
- a Laboratory of Molecular Immunobiology , Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Takayama-cho , Ikoma , Nara , Japan
| | - Taro Kawai
- a Laboratory of Molecular Immunobiology , Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Takayama-cho , Ikoma , Nara , Japan
| |
Collapse
|
7
|
Pillich H, Chakraborty T, Mraheil MA. Cell-autonomous responses in Listeria monocytogenes infection. Future Microbiol 2015; 10:583-97. [DOI: 10.2217/fmb.15.4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT Listeria monocytogenes is a facultative intracellular bacterium causing listeriosis, a food-borne infection with a high mortality rate. The mechanisms and the role of cells and tissular components in generating protective adaptive immune responses are well studied, and cell biological studies provide a detailed understanding of the processes targeted by the bacterial products. Much less is known of the cellular responses activated to limit infection in individual cells when confronted with stress or infection. Eukaryotic cellular responses depend on multitiered homeostatic systems that ensure maintenance of proteostatis, organellar integrity, function and turnover, and overall cellular viability (‘the cell-autonomous response’). Here, we review the cell-autonomous responses induced during extracellular and intracellular L. monocytogenes growth and discuss their contribution to limiting infection.
Collapse
Affiliation(s)
- Helena Pillich
- Institute of Medical Microbiology, German Center for Infection Giessen-Marburg-Langen Site, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, German Center for Infection Giessen-Marburg-Langen Site, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Mobarak Abu Mraheil
- Institute of Medical Microbiology, German Center for Infection Giessen-Marburg-Langen Site, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
8
|
Schlee M. Master sensors of pathogenic RNA - RIG-I like receptors. Immunobiology 2013; 218:1322-35. [PMID: 23896194 PMCID: PMC7114584 DOI: 10.1016/j.imbio.2013.06.007] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/27/2013] [Accepted: 06/05/2013] [Indexed: 12/25/2022]
Abstract
Initiating the immune response to invading pathogens, the innate immune system is constituted of immune receptors (pattern recognition receptors, PRR) that sense microbe-associated molecular patterns (MAMPs). Detection of pathogens triggers intracellular defense mechanisms, such as the secretion of cytokines or chemokines to alarm neighboring cells and attract or activate immune cells. The innate immune response to viruses is mostly based on PRRs that detect the unusual structure, modification or location of viral nucleic acids. Most of the highly pathogenic and emerging viruses are RNA genome-based viruses, which can give rise to zoonotic and epidemic diseases or cause viral hemorrhagic fever. As viral RNA is located in the same compartment as host RNA, PRRs in the cytosol have to discriminate between viral and endogenous RNA by virtue of their structure or modification. This challenging task is taken on by the homologous cytosolic DExD/H-box family helicases RIG-I and MDA5, which control the innate immune response to most RNA viruses. This review focuses on the molecular basis for RIG-I like receptor (RLR) activation by synthetic and natural ligands and will discuss controversial ligand definitions.
Collapse
Affiliation(s)
- Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53105 Bonn, Germany.
| |
Collapse
|
9
|
Hagmann CA, Herzner AM, Abdullah Z, Zillinger T, Jakobs C, Schuberth C, Coch C, Higgins PG, Wisplinghoff H, Barchet W, Hornung V, Hartmann G, Schlee M. RIG-I detects triphosphorylated RNA of Listeria monocytogenes during infection in non-immune cells. PLoS One 2013; 8:e62872. [PMID: 23653683 PMCID: PMC3639904 DOI: 10.1371/journal.pone.0062872] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 03/29/2013] [Indexed: 12/25/2022] Open
Abstract
The innate immune system senses pathogens by pattern recognition receptors in different cell compartments. In the endosome, bacteria are generally recognized by TLRs; facultative intracellular bacteria such as Listeria, however, can escape the endosome. Once in the cytosol, they become accessible to cytosolic pattern recognition receptors, which recognize components of the bacterial cell wall, metabolites or bacterial nucleic acids and initiate an immune response in the host cell. Current knowledge has been focused on the type I IFN response to Listeria DNA or Listeria-derived second messenger c-di-AMP via the signaling adaptor STING. Our study focused on the recognition of Listeria RNA in the cytosol. With the aid of a novel labeling technique, we have been able to visualize immediate cytosolic delivery of Listeria RNA upon infection. Infection with Listeria as well as transfection of bacterial RNA induced a type-I-IFN response in human monocytes, epithelial cells or hepatocytes. However, in contrast to monocytes, the type-I-IFN response of epithelial cells and hepatocytes was not triggered by bacterial DNA, indicating a STING-independent Listeria recognition pathway. RIG-I and MAVS knock-down resulted in abolishment of the IFN response in epithelial cells, but the IFN response in monocytic cells remained unaffected. By contrast, knockdown of STING in monocytic cells reduced cytosolic Listeria-mediated type-I-IFN induction. Our results show that detection of Listeria RNA by RIG-I represents a non-redundant cytosolic immunorecognition pathway in non-immune cells lacking a functional STING dependent signaling pathway.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Cells, Cultured
- Cytosol/metabolism
- Cytosol/microbiology
- Epithelial Cells/cytology
- Epithelial Cells/metabolism
- Epithelial Cells/microbiology
- Gene Expression Regulation
- Gene Knockdown Techniques
- Hepatocytes/cytology
- Hepatocytes/metabolism
- Hepatocytes/microbiology
- Host-Pathogen Interactions
- Humans
- Interferon Type I/biosynthesis
- Interferon Type I/metabolism
- Listeria monocytogenes/metabolism
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Monocytes/cytology
- Monocytes/metabolism
- Monocytes/microbiology
- Phosphorylation
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Retinoic Acid/antagonists & inhibitors
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Cristina Amparo Hagmann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Anna Maria Herzner
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Zeinab Abdullah
- Institutes of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany
| | - Thomas Zillinger
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Christopher Jakobs
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Christine Schuberth
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Christoph Coch
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Paul G. Higgins
- Institute of Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Hilmar Wisplinghoff
- Institute of Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Winfried Barchet
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Veit Hornung
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
- German Center for Infection Research, Cologne-Bonn, Germany
| | - Gunther Hartmann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
- German Center for Infection Research, Cologne-Bonn, Germany
| | - Martin Schlee
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
10
|
Chaudhary AK, Park JW, Yoon YJ, Kim BG, Sohng JK. Re-engineering of genetic circuit for 2-deoxystreptamine (2-DOS) biosynthesis in Escherichia coli BL21 (DE3). Biotechnol Lett 2012; 35:285-93. [DOI: 10.1007/s10529-012-1077-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/16/2012] [Indexed: 01/14/2023]
|
11
|
Toroney R, Hull CM, Sokoloski JE, Bevilacqua PC. Mechanistic characterization of the 5'-triphosphate-dependent activation of PKR: lack of 5'-end nucleobase specificity, evidence for a distinct triphosphate binding site, and a critical role for the dsRBD. RNA (NEW YORK, N.Y.) 2012; 18:1862-74. [PMID: 22912486 PMCID: PMC3446709 DOI: 10.1261/rna.034520.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/13/2012] [Indexed: 05/22/2023]
Abstract
The protein kinase PKR is activated by RNA to phosphorylate eIF-2α, inhibiting translation initiation. Long dsRNA activates PKR via interactions with the dsRNA-binding domain (dsRBD). Weakly structured RNA also activates PKR and does so in a 5'-triphosphate (ppp)-dependent fashion, however relatively little is known about this pathway. We used a mutant T7 RNA polymerase to incorporate all four triphosphate-containing nucleotides into the first position of a largely single-stranded RNA and found absence of selectivity, in that all four transcripts activate PKR. Recognition of 5'-triphosphate, but not the nucleobase at the 5'-most position, makes this RNA-mediated innate immune response sensitive to a broad array of viruses. PKR was neither activated in the presence of γ-GTP nor recognized NTPs other than ATP in activation competition and ITC binding assays. This indicates that the binding site for ATP is selective, which contrasts with the site for the 5' end of ppp-ssRNA. Activation experiments reveal that short dsRNAs compete with 5'-triphosphate RNAs and heparin for activation, and likewise gel-shift assays reveal that activating 5'-triphosphate RNAs and heparin compete with short dsRNAs for binding to PKR's dsRBD. The dsRBD thus plays a critical role in the activation of PKR by ppp-ssRNA and even heparin. At the same time, cross-linking experiments indicate that ppp-ssRNA interacts with PKR outside of the dsRBD as well. Overall, 5'-triphosphate-containing, weakly structured RNAs activate PKR via interactions with both the dsRBD and a distinct triphosphate binding site that lacks 5'-nucleobase specificity, allowing the innate immune response to provide broad-spectrum protection from pathogens.
Collapse
Affiliation(s)
- Rebecca Toroney
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Corresponding authorsE-mail E-mail
| | - Chelsea M. Hull
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Joshua E. Sokoloski
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C. Bevilacqua
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Corresponding authorsE-mail E-mail
| |
Collapse
|
12
|
Bleiblo F, Michael P, Brabant D, Ramana CV, Tai T, Saleh M, Parrillo JE, Kumar A, Kumar A. Bacterial RNA induces myocyte cellular dysfunction through the activation of PKR. J Thorac Dis 2012; 4:114-25. [PMID: 22833816 DOI: 10.3978/j.issn.2072-1439.2012.01.07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/19/2012] [Indexed: 12/25/2022]
Abstract
Severe sepsis and the ensuing septic shock are serious life threatening conditions. These diseases are triggered by the host's over exuberant systemic response to the infecting pathogen. Several surveillance mechanisms have evolved to discriminate self from foreign RNA and accordingly trigger effective cellular responses to target the pathogenic threats. The RNA-dependent protein kinase (PKR) is a key component of the cytoplasmic RNA sensors involved in the recognition of viral double-stranded RNA (dsRNA). Here, we identify bacterial RNA as a distinct pathogenic pattern recognized by PKR. Our results indicate that natural RNA derived from bacteria directly binds to and activates PKR. We further show that bacterial RNA induces human cardiac myocyte apoptosis and identify the requirement for PKR in mediating this response. In addition to bacterial immunity, the results presented here may also have implications in cardiac pathophysiology.
Collapse
|
13
|
Eigenbrod T, Franchi L, Muñoz-Planillo R, Kirschning CJ, Freudenberg MA, Núñez G, Dalpke A. Bacterial RNA mediates activation of caspase-1 and IL-1β release independently of TLRs 3, 7, 9 and TRIF but is dependent on UNC93B. THE JOURNAL OF IMMUNOLOGY 2012; 189:328-36. [PMID: 22634614 DOI: 10.4049/jimmunol.1103258] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recognition of foreign nucleic acids is important for the induction of an innate immune response against invading pathogens. Although the pathways involved in sensing bacterial DNA and viral RNA are now well established, only limited knowledge is available on mechanisms underlying recognition of bacterial RNA. It has been reported that intracellular delivery of Escherichia coli RNA activates the Nlrp3 inflammasome, but whether this is a general property of bacterial RNA remains unclear as are the pathways involved in pro-IL-1β induction and caspase-1 activation by bacterial RNA. In this study, we report that bacterial RNA from both Gram-positive and Gram-negative bacteria induces activation of caspase-1 and secretion of IL-1β by murine dendritic cells and bone-marrow derived macrophages. Stimulation was independent of the presence of 5'-triphosphate termini and occurred with whole RNA preparations from bacteria but not from eukaryotes. Induction of pro-IL-1β as well as the priming for caspase-1 activation by bacterial RNA was dependent on UNC93B, an endoplasmic reticulum protein essential for delivery of TLRs to the endosome, whereas the established nucleic acid sensing endosomal TLRs 3, 7, and 9 were dispensable. Additionally, caspase-1 activation and IL-1β production by transfected bacterial RNA were absent in MyD88-deficient cells but independent of TRIF. Thus, our data indicate the presence of a yet unidentified intracellular nucleic acid receptor involved in bacterial RNA-induced inflammasome activation and release of IL-1β.
Collapse
Affiliation(s)
- Tatjana Eigenbrod
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Bleiblo F, Michael P, Brabant D, Ramana CV, Tai TC, Saleh M, Parrillo JE, Kumar A, Kumar A. The role of immunostimulatory nucleic acids in septic shock. Int J Clin Exp Med 2012; 5:1-23. [PMID: 22328944 PMCID: PMC3272682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/08/2012] [Indexed: 05/31/2023]
Abstract
Sepsis and its associated syndromes represent the systemic host response to severe infection and is manifested by varying degrees of hypotension, coagulopathy, and multiorgan dysfunction. Despite great efforts being made to understand this condition and designing therapies to treat sepsis, mortality rates are still high in septic patients. Characterization of the complex molecular signaling networks between the various components of host-pathogen interactions, highlights the difficulty in identifying a single driving force responsible for sepsis. Although triggering the inflammatory response is generally considered as protective against pathogenic threats, the interplay between the signaling pathways that are induced or suppressed during sepsis may harm the host. Numerous surveillance mechanisms have evolved to discriminate self from foreign agents and accordingly provoke an effective cellular response to target the pathogens. Nucleic acids are not only an essential genetic component, but sensing their molecular signature is also an important quality control mechanism which has evolved to maintain the integrity of the human genome. Evidence that has accumulated recently indicated that distinct pattern recognition receptors sense nucleic acids released from infectious organisms or from damaged host cells, resulting in the modulation of intracellular signalling cascades. Immunoreceptor-mediated detection of these nucleic acids induces antigen-specific immunity, secretion of proinflammatory cytokines and reactive oxygen/nitrogen species and thus are implicated in a range of diseases including septic shock.
Collapse
Affiliation(s)
- Farag Bleiblo
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Programme, Laurentian UniversitySudbury, ON, Canada, P3E 2C6
| | - Paul Michael
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Programme, Laurentian UniversitySudbury, ON, Canada, P3E 2C6
| | - Danielle Brabant
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Programme, Laurentian UniversitySudbury, ON, Canada, P3E 2C6
| | | | - TC Tai
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Programme, Laurentian UniversitySudbury, ON, Canada, P3E 2C6
| | - Mazen Saleh
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Programme, Laurentian UniversitySudbury, ON, Canada, P3E 2C6
| | - Joseph E Parrillo
- Division of Cardiovascular Disease and Critical Care Medicine, Cooper University Hospital, Robert Wood Johnson Medical SchoolCamden, New Jersey, USA, 08103
| | - Anand Kumar
- Section of Critical Care Medicine, University of ManitobaWinnipeg, MB, Canada, R3A 1R9
| | - Aseem Kumar
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Programme, Laurentian UniversitySudbury, ON, Canada, P3E 2C6
| |
Collapse
|
15
|
Mitochondrial antiviral signaling protein (MAVS) monitors commensal bacteria and induces an immune response that prevents experimental colitis. Proc Natl Acad Sci U S A 2011; 108:17390-5. [PMID: 21960441 DOI: 10.1073/pnas.1107114108] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RIG-I-like receptors (RLRs) activate host innate immune responses against virus infection through recruiting the mitochondrial adaptor protein MAVS (also known as IPS1, VISA, or CARDIF). Here we show that MAVS also plays a pivotal role in maintaining intestinal homeostasis. We found that MAVS knockout mice developed more severe mortality and morbidity than WT animals in an experimental model of colitis. Bone marrow transplantation experiments revealed that MAVS in cells of nonhematopoietic origin plays a dominant role in the protection against colitis. Importantly, RNA species derived from intestinal commensal bacteria activate the RIG-I-MAVS pathway to induce the production of multiple cytokines and antimicrobial peptides, including IFN-β and RegIIIγ. These results unveil a previously unexplored role of MAVS in monitoring intestinal commensal bacteria and maintaining tissue homeostasis.
Collapse
|
16
|
de Almeida LA, Carvalho NB, Oliveira FS, Lacerda TLS, Vasconcelos AC, Nogueira L, Bafica A, Silva AM, Oliveira SC. MyD88 and STING signaling pathways are required for IRF3-mediated IFN-β induction in response to Brucella abortus infection. PLoS One 2011; 6:e23135. [PMID: 21829705 PMCID: PMC3149075 DOI: 10.1371/journal.pone.0023135] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 07/07/2011] [Indexed: 12/25/2022] Open
Abstract
Type I interferons (IFNs) are cytokines that orchestrate diverse immune responses to viral and bacterial infections. Although typically considered to be most important molecules in response to viruses, type I IFNs are also induced by most, if not all, bacterial pathogens. In this study, we addressed the role of type I IFN signaling during Brucella abortus infection, a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. Herein, we have shown that B. abortus induced IFN-β in macrophages and splenocytes. Further, IFN-β induction by Brucella was mediated by IRF3 signaling pathway and activates IFN-stimulated genes via STAT1 phosphorylation. In addition, IFN-β expression induced by Brucella is independent of TLRs and TRIF signaling but MyD88-dependent, a pathway not yet described for Gram-negative bacteria. Furthermore, we have identified Brucella DNA as the major bacterial component to induce IFN-β and our study revealed that this molecule operates through a mechanism dependent on RNA polymerase III to be sensed probably by an unknown receptor via the adaptor molecule STING. Finally, we have demonstrated that IFN-αβR KO mice are more resistant to infection suggesting that type I IFN signaling is detrimental to host control of Brucella. This resistance phenotype is accompanied by increased IFN-γ and NO production by IFN-αβR KO spleen cells and reduced apoptosis.
Collapse
Affiliation(s)
- Leonardo A. de Almeida
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Natalia B. Carvalho
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Fernanda S. Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Thais L. S. Lacerda
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Anilton C. Vasconcelos
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Lucas Nogueira
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis-Santa Catarina, Brazil
| | - Andre Bafica
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis-Santa Catarina, Brazil
| | - Aristóbolo M. Silva
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Sergio C. Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
17
|
Oliveira SC, de Almeida LA, Carvalho NB, Oliveira FS, Lacerda TLS. Update on the role of innate immune receptors during Brucella abortus infection. Vet Immunol Immunopathol 2011; 148:129-35. [PMID: 21700343 DOI: 10.1016/j.vetimm.2011.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 03/24/2011] [Accepted: 05/31/2011] [Indexed: 02/06/2023]
Abstract
The innate immune system constitutes an efficient defense mechanism against invading microbial pathogens. Recent studies have revealed the intracellular signaling cascades involved in the TLR-initiated immune response to Brucella spp. infection. However, there is a piece of the puzzle missing that is the role of non-TLR receptors in innate immunity. The involvement of TLR receptors in brucellosis has been investigated by different research groups. It was demonstrated that TLR2 clearly does not play any role in controlling Brucella abortus infection in vivo, whereas TLR9 has been shown to be required for clearance of this bacterium in infected mice. The participation of adaptor molecules, such as MyD88 and TRIF has also been discussed. Recently, we and others have reported the critical role of MyD88- and not TRIF-mediated signaling in dendritic cell maturation and in vivo resistance during B. abortus infection. However, the relationship between specific Brucella molecules and non-TLR receptors and signal transduction pathways needs to be better understood. It is now clear that the interaction between TLRs and recently identified cytosolic innate immune sensors is crucial for mounting effective immune responses. Finally, this review discusses the mechanisms used by Brucella to escape detection by the host innate immune system.
Collapse
Affiliation(s)
- Sérgio C Oliveira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Av. Antonio Carlos 6627, Pampulha, Belo Horizonte, MG, Brazil.
| | | | | | | | | |
Collapse
|
18
|
Abstract
Type I interferons (IFNs) are secreted cytokines that orchestrate diverse immune responses to infection. Although typically considered to be most important in the response to viruses, type I IFNs are also induced by most, if not all, bacterial pathogens. Although diverse mechanisms have been described, bacterial induction of type I IFNs occurs upon stimulation of two main pathways: (i) Toll-like receptor (TLR) recognition of bacterial molecules such as lipopolysaccharide (LPS); (ii) TLR-independent recognition of molecules delivered to the host cell cytosol. Cytosolic responses can be activated by two general mechanisms. First, viable bacteria can secrete stimulatory ligands into the cytosol via specialized bacterial secretion systems. Second, ligands can be released from bacteria that lyse or are degraded. The bacterial ligands that induce the cytosolic pathways remain uncertain in many cases, but appear to include various nucleic acids. In this review, we discuss recent advances in our understanding of how bacteria induce type I interferons and the roles type I IFNs play in host immunity.
Collapse
Affiliation(s)
- Kathryn M Monroe
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
19
|
Rad R, Ballhorn W, Voland P, Eisenächer K, Mages J, Rad L, Ferstl R, Lang R, Wagner H, Schmid RM, Bauer S, Prinz C, Kirschning CJ, Krug A. Extracellular and intracellular pattern recognition receptors cooperate in the recognition of Helicobacter pylori. Gastroenterology 2009; 136:2247-57. [PMID: 19272387 DOI: 10.1053/j.gastro.2009.02.066] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 01/27/2009] [Accepted: 02/25/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Helicobacter pylori infects half of the world's population, thereby causing significant human morbidity and mortality. The mechanisms by which professional antigen-presenting cells recognize the microbe are poorly understood. METHODS Using dendritic cells (DCs) from TRIF, MyD88, TLR 2/4/7/9(-/-), and multiple double/triple/quadruple mutant mice, we characterized receptors and pathways mediating innate immune recognition of H pylori. RESULTS We identified a MyD88-dependent component of the DC activation program, which was induced by surface TLRs, with TLR2 and to a minor extent also TLR4 being the exclusive surface receptors recognizing H pylori. A second MyD88-dependent component could be blocked in TLR2/4(-/-) DCs by inhibitors of endosomal acidification and depended on intracellular TLRs. We identified TLR9-mediated recognition of H pylori DNA as a principal H pylori-induced intracellular TLR pathway and further showed that H pylori RNA induces proinflammatory cytokines in a TLR-dependent manner. Microarray analysis showed complementary, redundant, and synergistic interactions between TLRs and additionally revealed gene expression patterns specific for individual TLRs, including a TLR2-dependent anti-inflammatory signature. A third component of the DC activation program was primarily composed of type I interferon-stimulated genes. This response was MyD88 and TRIF independent but was inducible by RIG-I-dependent recognition of H pylori RNA. CONCLUSIONS These results provide novel comprehensive insights into the mechanisms of H pylori recognition by DCs. Understanding these processes provides a basis for the rational design of new vaccination strategies.
Collapse
Affiliation(s)
- Roland Rad
- II Medical Department, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nallagatla SR, Hwang J, Toroney R, Zheng X, Cameron CE, Bevilacqua PC. 5'-triphosphate-dependent activation of PKR by RNAs with short stem-loops. Science 2007; 318:1455-8. [PMID: 18048689 DOI: 10.1126/science.1147347] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular patterns in pathogenic RNAs can be recognized by the innate immune system, and a component of this response is the interferon-induced enzyme RNA-activated protein kinase (PKR). The major activators of PKR have been proposed to be long double-stranded RNAs. We report that RNAs with very limited secondary structures activate PKR in a 5'-triphosphate-dependent fashion in vitro and in vivo. Activation of PKR by 5'-triphosphate RNA is independent of RIG-I and is enhanced by treatment with type 1 interferon (IFN-alpha). Surveillance of molecular features at the 5' end of transcripts by PKR presents a means of allowing pathogenic RNA to be distinguished from self-RNA. The evidence presented here suggests that this form of RNA-based discrimination may be a critical step in mounting an early immune response.
Collapse
Affiliation(s)
- Subba Rao Nallagatla
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
21
|
Nierlich DP, Murakawa GJ. The decay of bacterial messenger RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 52:153-216. [PMID: 8821261 DOI: 10.1016/s0079-6603(08)60967-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- D P Nierlich
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024, USA
| | | |
Collapse
|