1
|
Rostøl JT, Quiles-Puchalt N, Iturbe-Sanz P, Lasa Í, Penadés JR. Bacteriophages avoid autoimmunity from cognate immune systems as an intrinsic part of their life cycles. Nat Microbiol 2024; 9:1312-1324. [PMID: 38565896 PMCID: PMC11087260 DOI: 10.1038/s41564-024-01661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Dormant prophages protect lysogenic cells by expressing diverse immune systems, which must avoid targeting their cognate prophages upon activation. Here we report that multiple Staphylococcus aureus prophages encode Tha (tail-activated, HEPN (higher eukaryotes and prokaryotes nucleotide-binding) domain-containing anti-phage system), a defence system activated by structural tail proteins of incoming phages. We demonstrate the function of two Tha systems, Tha-1 and Tha-2, activated by distinct tail proteins. Interestingly, Tha systems can also block reproduction of the induced tha-positive prophages. To prevent autoimmunity after prophage induction, these systems are inhibited by the product of a small overlapping antisense gene previously believed to encode an excisionase. This genetic organization, conserved in S. aureus prophages, allows Tha systems to protect prophages and their bacterial hosts against phage predation and to be turned off during prophage induction, balancing immunity and autoimmunity. Our results show that the fine regulation of these processes is essential for the correct development of prophages' life cycle.
Collapse
Affiliation(s)
- Jakob T Rostøl
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
| | - Nuria Quiles-Puchalt
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
- School of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Alfara del Patriarca, Spain
| | - Pablo Iturbe-Sanz
- Laboratory of Microbial Pathogenesis. Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Íñigo Lasa
- Laboratory of Microbial Pathogenesis. Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - José R Penadés
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
| |
Collapse
|
2
|
Hattangady DS, Singh AK, Muthaiyan A, Jayaswal RK, Gustafson JE, Ulanov AV, Li Z, Wilkinson BJ, Pfeltz RF. Genomic, Transcriptomic and Metabolomic Studies of Two Well-Characterized, Laboratory-Derived Vancomycin-Intermediate Staphylococcus aureus Strains Derived from the Same Parent Strain. Antibiotics (Basel) 2015; 4:76-112. [PMID: 27025616 PMCID: PMC4790321 DOI: 10.3390/antibiotics4010076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/20/2014] [Accepted: 12/10/2014] [Indexed: 11/16/2022] Open
Abstract
Complete genome comparisons, transcriptomic and metabolomic studies were performed on two laboratory-selected, well-characterized vancomycin-intermediate Staphylococcus aureus (VISA) derived from the same parent MRSA that have changes in cell wall composition and decreased autolysis. A variety of mutations were found in the VISA, with more in strain 13136p(-)m⁺V20 (vancomycin MIC = 16 µg/mL) than strain 13136p(-)m⁺V5 (MIC = 8 µg/mL). Most of the mutations have not previously been associated with the VISA phenotype; some were associated with cell wall metabolism and many with stress responses, notably relating to DNA damage. The genomes and transcriptomes of the two VISA support the importance of gene expression regulation to the VISA phenotype. Similarities in overall transcriptomic and metabolomic data indicated that the VISA physiologic state includes elements of the stringent response, such as downregulation of protein and nucleotide synthesis, the pentose phosphate pathway and nutrient transport systems. Gene expression for secreted virulence determinants was generally downregulated, but was more variable for surface-associated virulence determinants, although capsule formation was clearly inhibited. The importance of activated stress response elements could be seen across all three analyses, as in the accumulation of osmoprotectant metabolites such as proline and glutamate. Concentrations of potential cell wall precursor amino acids and glucosamine were increased in the VISA strains. Polyamines were decreased in the VISA, which may facilitate the accrual of mutations. Overall, the studies confirm the wide variability in mutations and gene expression patterns that can lead to the VISA phenotype.
Collapse
Affiliation(s)
- Dipti S Hattangady
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | - Atul K Singh
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | - Arun Muthaiyan
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | | | - John E Gustafson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Alexander V Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61807, USA.
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61807, USA.
| | - Brian J Wilkinson
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | - Richard F Pfeltz
- BD Diagnostic Systems, Microbiology Research and Development, Sparks, MD 21152, USA.
| |
Collapse
|
3
|
Handke LD, Hawkins JC, Miller AA, Jansen KU, Anderson AS. Regulation of Staphylococcus aureus MntC expression and its role in response to oxidative stress. PLoS One 2013; 8:e77874. [PMID: 24205007 PMCID: PMC3810276 DOI: 10.1371/journal.pone.0077874] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/13/2013] [Indexed: 01/15/2023] Open
Abstract
Staphylococcus aureus is a successful human pathogen that has developed several approaches to evade the immune system, including resistance strategies to prevent oxidative killing by immune cells. One mechanism by which this evasion occurs is by production of superoxide dismutase enzymes, which require manganese as a cofactor. Manganese is acquired by the manganese transporter MntABC. One component of this operon, MntC, has been proposed as a potential vaccine candidate due to its early in vivo expression and its ability to provide protection in preclinical models of staphylococcal infection. In the current study, we interrogate the role of this protein in protecting S. aureus from oxidative stress. We demonstrate that mutation of mntC in a number of invasive S. aureus clinical isolates results in increased sensitivity to oxidative stress. In addition, we show that while downregulation of mntC transcription is triggered upon exposure to physiological concentrations of manganese, MntC protein is still present on the bacterial surface at these same concentrations. Taken together, these results provide insight into the role of this antigen for the pathogen.
Collapse
Affiliation(s)
- Luke D. Handke
- Pfizer Vaccine Research, Pearl River, New York, United States of America
| | - Julio C. Hawkins
- Pfizer Vaccine Research, Pearl River, New York, United States of America
| | - Alita A. Miller
- Pfizer Vaccine Research, Pearl River, New York, United States of America
| | - Kathrin U. Jansen
- Pfizer Vaccine Research, Pearl River, New York, United States of America
| | | |
Collapse
|
4
|
A single copy integration vector that integrates at an engineered site on the Staphylococcus aureus chromosome. BMC Res Notes 2012; 5:5. [PMID: 22221385 PMCID: PMC3274448 DOI: 10.1186/1756-0500-5-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/05/2012] [Indexed: 01/03/2023] Open
Abstract
Background Single-copy integration vectors based upon the site-specific recombination systems of bacteriophage are invaluable tools in the study of bacterial pathogenesis. The utility of such vectors is often limited, however, by the fact that integration often results in the inactivation of bacterial genes or has undesirable effects on gene transcription. The aim of this study is to develop an integration vector that does not have a detectable effect on gene transcription upon integration. Findings We have developed a single-copy integration system that enables the cloning vector to integrate at a specific engineered site, within an untranscribed intergenic region, in the chromosome of Staphylococcus aureus. This system is based on the lysogenic phage L54a site-specific recombination system in which the L54a phage (attP) and chromosome (attB) attachment sites, which share an 18-bp identical core sequence, were modified with identical mutations. The integration vector, pLL102, was constructed to contain the modified L54a attP site (attP2) that was altered at 5 nucleotide positions within the core sequence. In the recipient strain, the similarly modified attB site (attB2) was inserted in an intergenic region devoid of detectable transcription read-through. Integration of the vector, which is unable to replicate in S. aureus extrachromosomally, was achieved by providing the L54a integrase gene in a plasmid in the recipient. We showed that pLL102 integrated specifically at the engineered site rather than at the native L54a attB site and that integration did not have a significant effect on transcription of genes immediately upstream or downstream of the integration site. Conclusions In this work, we describe an E. coli-S. aureus shuttle vector that can be used to introduce any cloned gene into the S. aureus chromosome at a select site without affecting gene expression. The vector should be useful for genetic manipulation of S. aureus and for marking strains for in vivo studies.
Collapse
|
5
|
Christie GE, Matthews AM, King DG, Lane KD, Olivarez NP, Tallent SM, Gill SR, Novick RP. The complete genomes of Staphylococcus aureus bacteriophages 80 and 80α--implications for the specificity of SaPI mobilization. Virology 2010; 407:381-90. [PMID: 20869739 DOI: 10.1016/j.virol.2010.08.036] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/22/2010] [Accepted: 08/31/2010] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus pathogenicity islands (SaPIs) are mobile elements that are induced by a helper bacteriophage to excise and replicate and to be encapsidated in phage-like particles smaller than those of the helper, leading to high-frequency transfer. SaPI mobilization is helper phage specific; only certain SaPIs can be mobilized by a particular helper phage. Staphylococcal phage 80α can mobilize every SaPI tested thus far, including SaPI1, SaPI2 and SaPIbov1. Phage 80, on the other hand, cannot mobilize SaPI1, and ϕ11 mobilizes only SaPIbov1. In order to better understand the relationship between SaPIs and their helper phages, the genomes of phages 80 and 80α were sequenced, compared with other staphylococcal phage genomes, and analyzed for unique features that may be involved in SaPI mobilization.
Collapse
Affiliation(s)
- G E Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 1101 E Marshall Street; PO Box 980678, Richmond, VA 23298-0678, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
NorB, an efflux pump in Staphylococcus aureus strain MW2, contributes to bacterial fitness in abscesses. J Bacteriol 2008; 190:7123-9. [PMID: 18723624 DOI: 10.1128/jb.00655-08] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While remaining a major problem in hospitals, Staphylococcus aureus is now spreading in communities. Strain MW2 (USA400 lineage) and other community methicillin-resistant S. aureus strains most commonly cause skin infections with abscess formation. Multidrug resistance (MDR) efflux pumps contribute to antimicrobial resistance but may also contribute to bacterial survival by removal of environmental toxins. In S. aureus, NorA, NorB, NorC, and Tet38 are chromosomally encoded efflux pumps whose overexpression can confer MDR to quinolones and other compounds (Nor pumps) or tetracyclines alone (Tet38), but the natural substrates of these pumps are not known. To determine the role of these efflux pumps in a natural environment in the absence of antibiotics, we used strain MW2 in a mouse subcutaneous abscess model and compared pump gene expression as determined by reverse transcription-PCR in the abscesses and in vitro. norB and tet38 were selectively upregulated in vivo more than 171- and 24-fold, respectively, whereas norA and norC were downregulated. These changes were associated with an increase in expression of mgrA, which encodes a transcriptional regulator known to affect pump gene expression. In competition experiments using equal inocula of a norB or tet38 mutant and parent strain MW2, each mutant exhibited growth defects of about two- to threefold in vivo. In complementation experiments, a single-copy insertion of norB (but not a single-copy insertion of tet38) in the attB site within geh restored the growth fitness of the norB mutant in vivo. Our findings indicate that some MDR pumps, like NorB, can facilitate bacterial survival when they are overexpressed in a staphylococcal abscess and may contribute to the relative resistance of abscesses to antimicrobial therapy, thus linking bacterial fitness and resistance in vivo.
Collapse
|
7
|
Rashel M, Uchiyama J, Ujihara T, Takemura I, Hoshiba H, Matsuzaki S. A novel site-specific recombination system derived from bacteriophage ϕMR11. Biochem Biophys Res Commun 2008; 368:192-8. [DOI: 10.1016/j.bbrc.2008.01.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 01/09/2008] [Indexed: 11/27/2022]
|
8
|
Holden MTG, Feil EJ, Lindsay JA, Peacock SJ, Day NPJ, Enright MC, Foster TJ, Moore CE, Hurst L, Atkin R, Barron A, Bason N, Bentley SD, Chillingworth C, Chillingworth T, Churcher C, Clark L, Corton C, Cronin A, Doggett J, Dowd L, Feltwell T, Hance Z, Harris B, Hauser H, Holroyd S, Jagels K, James KD, Lennard N, Line A, Mayes R, Moule S, Mungall K, Ormond D, Quail MA, Rabbinowitsch E, Rutherford K, Sanders M, Sharp S, Simmonds M, Stevens K, Whitehead S, Barrell BG, Spratt BG, Parkhill J. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci U S A 2004; 101:9786-91. [PMID: 15213324 PMCID: PMC470752 DOI: 10.1073/pnas.0402521101] [Citation(s) in RCA: 677] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus is an important nosocomial and community-acquired pathogen. Its genetic plasticity has facilitated the evolution of many virulent and drug-resistant strains, presenting a major and constantly changing clinical challenge. We sequenced the approximately 2.8-Mbp genomes of two disease-causing S. aureus strains isolated from distinct clinical settings: a recent hospital-acquired representative of the epidemic methicillin-resistant S. aureus EMRSA-16 clone (MRSA252), a clinically important and globally prevalent lineage; and a representative of an invasive community-acquired methicillin-susceptible S. aureus clone (MSSA476). A comparative-genomics approach was used to explore the mechanisms of evolution of clinically important S. aureus genomes and to identify regions affecting virulence and drug resistance. The genome sequences of MRSA252 and MSSA476 have a well conserved core region but differ markedly in their accessory genetic elements. MRSA252 is the most genetically diverse S. aureus strain sequenced to date: approximately 6% of the genome is novel compared with other published genomes, and it contains several unique genetic elements. MSSA476 is methicillin-susceptible, but it contains a novel Staphylococcal chromosomal cassette (SCC) mec-like element (designated SCC(476)), which is integrated at the same site on the chromosome as SCCmec elements in MRSA strains but encodes a putative fusidic acid resistance protein. The crucial role that accessory elements play in the rapid evolution of S. aureus is clearly illustrated by comparing the MSSA476 genome with that of an extremely closely related MRSA community-acquired strain; the differential distribution of large mobile elements carrying virulence and drug-resistance determinants may be responsible for the clinically important phenotypic differences in these strains.
Collapse
Affiliation(s)
- Matthew T G Holden
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H. Prophage genomics. Microbiol Mol Biol Rev 2003; 67:238-76, table of contents. [PMID: 12794192 PMCID: PMC156470 DOI: 10.1128/mmbr.67.2.238-276.2003] [Citation(s) in RCA: 488] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The majority of the bacterial genome sequences deposited in the National Center for Biotechnology Information database contain prophage sequences. Analysis of the prophages suggested that after being integrated into bacterial genomes, they undergo a complex decay process consisting of inactivating point mutations, genome rearrangements, modular exchanges, invasion by further mobile DNA elements, and massive DNA deletion. We review the technical difficulties in defining such altered prophage sequences in bacterial genomes and discuss theoretical frameworks for the phage-bacterium interaction at the genomic level. The published genome sequences from three groups of eubacteria (low- and high-G+C gram-positive bacteria and gamma-proteobacteria) were screened for prophage sequences. The prophages from Streptococcus pyogenes served as test case for theoretical predictions of the role of prophages in the evolution of pathogenic bacteria. The genomes from further human, animal, and plant pathogens, as well as commensal and free-living bacteria, were included in the analysis to see whether the same principles of prophage genomics apply for bacteria living in different ecological niches and coming from distinct phylogenetical affinities. The effect of selection pressure on the host bacterium is apparently an important force shaping the prophage genomes in low-G+C gram-positive bacteria and gamma-proteobacteria.
Collapse
Affiliation(s)
- Carlos Canchaya
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | | | | | | | | |
Collapse
|
10
|
Yarwood JM, McCormick JK, Paustian ML, Orwin PM, Kapur V, Schlievert PM. Characterization and expression analysis of Staphylococcus aureus pathogenicity island 3. Implications for the evolution of staphylococcal pathogenicity islands. J Biol Chem 2002; 277:13138-47. [PMID: 11821418 DOI: 10.1074/jbc.m111661200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We describe the complete sequence of the 15.9-kb staphylococcal pathogenicity island 3 encoding staphylococcal enterotoxin serotypes B, K, and Q. The island, which meets the generally accepted definition of pathogenicity islands, contains 24 open reading frames potentially encoding proteins of more than 50 amino acids, including an apparently functional integrase. The element is bordered by two 17-bp direct repeats identical to those found flanking staphylococcal pathogenicity island 1. The island has extensive regions of homology to previously described pathogenicity islands, particularly staphylococcal pathogenicity islands 1 and bov. The expression of 22 of the 24 open reading frames contained on staphylococcal pathogenicity island 3 was detected either in vitro during growth in a laboratory medium or serum or in vivo in a rabbit model of toxic shock syndrome using DNA microarrays. The effect of oxygen tension on staphylococcal pathogenicity island 3 gene expression was also examined. By comparison with the known staphylococcal pathogenicity islands in the context of gene expression described here, we propose a model of pathogenicity island origin and evolution involving specialized transduction events and addition, deletion, or recombination of pathogenicity island "modules."
Collapse
Affiliation(s)
- Jeremy M Yarwood
- Department of Microbiology, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Variable genetic elements including plasmids, transposons and prophages are involved in pathogenesis and antibiotic resistance, and are an important component of the staphylococcal genome. This review covers a set of newly described variable chromosomal elements, pathogenicity and resistance islands, carrying superantigen and resistance genes, especially toxic shock and methicillin resistance, respectively.
Collapse
Affiliation(s)
- R P Novick
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University Medical Center, New York, NY 10016, USA.
| | | | | |
Collapse
|
12
|
Lewis JA, Hatfull GF. Control of directionality in integrase-mediated recombination: examination of recombination directionality factors (RDFs) including Xis and Cox proteins. Nucleic Acids Res 2001; 29:2205-16. [PMID: 11376138 PMCID: PMC55702 DOI: 10.1093/nar/29.11.2205] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2001] [Revised: 03/28/2001] [Accepted: 04/11/2001] [Indexed: 11/12/2022] Open
Abstract
Similarity between the DNA substrates and products of integrase-mediated site-specific recombination reactions results in a single recombinase enzyme being able to catalyze both the integration and excision reactions. The control of directionality in these reactions is achieved through a class of small accessory factors that favor one reaction while interfering with the other. These proteins, which we will refer to collectively as recombination directionality factors (RDFs), play architectural roles in reactions catalyzed by their cognate recombinases and have been identified in conjunction with both tyrosine and serine integrases. Previously identified RDFs are typically small, basic and have diverse amino acid sequences. A subset of RDFs, the cox genes, also function as transcriptional regulators. We present here a compilation of all the known RDF proteins as well as those identified through database mining that we predict to be involved in conferring recombination directionality. Analysis of this group of proteins shows that they can be grouped into distinct sub-groups based on their sequence similarities and that they are likely to have arisen from several independent evolutionary lineages. This compilation will prove useful in recognizing new proteins that confer directionality upon site-specific recombination reactions encoded by plasmids, transposons, phages and prophages.
Collapse
Affiliation(s)
- J A Lewis
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
13
|
Gindreau E, López R, García P. MM1, a temperate bacteriophage of the type 23F Spanish/USA multiresistant epidemic clone of Streptococcus pneumoniae: structural analysis of the site-specific integration system. J Virol 2000; 74:7803-13. [PMID: 10933687 PMCID: PMC112310 DOI: 10.1128/jvi.74.17.7803-7813.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized a temperate phage (MM1) from a clinical isolate of the multiply antibiotic-resistant Spanish/American 23F Streptococcus pneumoniae clone (Spain(23F)-1 strain). The 40-kb double-stranded genome of MM1 has been isolated as a DNA-protein complex. The use of MM1 DNA as a probe revealed that the phage genome is integrated in the host chromosome. The host and phage attachment sites, attB and attP, respectively, have been determined. Nucleotide sequencing of the attachment sites identified a 15-bp core site (5'-TTATAATTCATCCGC-3') that has not been found in any bacterial genome described so far. Sequence information revealed the presence of an integrase gene (int), which represents the first identification of an integrase in the pneumococcal system. A 1.5-kb DNA fragment embracing attP and the int gene contained all of the genetic information needed for stable integration of a nonreplicative plasmid into the attB site of a pneumococcal strain. This vector will facilitate the introduction of foreign genes into the pneumococcal chromosome. Interestingly, DNAs highly similar to that of MM1 have been detected in several clinical pneumococcal isolates of different capsular types, suggesting a widespread distribution of these phages in relevant pathogenic strains.
Collapse
Affiliation(s)
- E Gindreau
- Centro de Investigaciones Biológicas, CSIC, Velázquez 144, 28006 Madrid, Spain
| | | | | |
Collapse
|
14
|
Petersen A, Josephsen J, Johnsen MG. TPW22, a lactococcal temperate phage with a site-specific integrase closely related to Streptococcus thermophilus phage integrases. J Bacteriol 1999; 181:7034-42. [PMID: 10559170 PMCID: PMC94179 DOI: 10.1128/jb.181.22.7034-7042.1999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The temperate phage TPW22, induced from Lactococcus lactis subsp. cremoris W22, and the evolutionarily interesting integrase of this phage were characterized. Phage TPW22 was propagated lytically on L. lactis subsp. cremoris 3107, which could also be lysogenized by site-specific integration. The attachment site (attP), 5'-TAAGGCGACGGTCG-3', of phage TPW22 was present on a 7.5-kb EcoRI fragment, a 3.4-kb EcoRI-HindIII fragment of which was sequenced. Sequence information revealed the presence of an integrase gene (int). The deduced amino acid sequence showed 42 and 28% identity with integrases of streptococcal and lactococcal phages, respectively. The identities with these integrase-encoding genes were 52 and 45%, respectively, at the nucleotide level. This could indicate horizontal gene transfer. A stable integration vector containing attP and int was constructed, and integration in L. lactis subsp. cremoris MG1363 was obtained. The existence of an exchangeable lactococcal phage integration module was suggested. The proposed module covers the phage attachment site, the integrase gene, and surrounding factor-independent terminator structures. The phages phiLC3, TP901-1, and TPW22 all have different versions of this module. Phylogenetically, the TPW22 Int links the phiLC3 lactococcal integrase with known Streptococcus thermophilus integrases.
Collapse
Affiliation(s)
- A Petersen
- Department of Dairy, The Royal Veterinary and Agricultural University, DK-1958 Frederiksberg C, Denmark
| | | | | |
Collapse
|
15
|
Semsey S, Papp I, Buzas Z, Patthy A, Orosz L, Papp PP. Identification of site-specific recombination genes int and xis of the Rhizobium temperate phage 16-3. J Bacteriol 1999; 181:4185-92. [PMID: 10400574 PMCID: PMC93918 DOI: 10.1128/jb.181.14.4185-4192.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/1998] [Accepted: 05/04/1999] [Indexed: 11/20/2022] Open
Abstract
Phage 16-3 is a temperate phage of Rhizobium meliloti 41 which integrates its genome with high efficiency into the host chromosome by site-specific recombination through DNA sequences of attB and attP. Here we report the identification of two phage-encoded genes required for recombinations at these sites: int (phage integration) and xis (prophage excision). We concluded that Int protein of phage 16-3 belongs to the integrase family of tyrosine recombinases. Despite similarities to the cognate systems of the lambdoid phages, the 16-3 int xis att system is not active in Escherichia coli, probably due to requirements for host factors that differ in Rhizobium meliloti and E. coli. The application of the 16-3 site-specific recombination system in biotechnology is discussed.
Collapse
Affiliation(s)
- S Semsey
- Institute for Molecular Genetics, Agricultural Biotechnology Center, Gödöllo, H-2100 Hungary
| | | | | | | | | | | |
Collapse
|
16
|
Kaneko J, Kimura T, Narita S, Tomita T, Kamio Y. Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage phiPVL carrying Panton-Valentine leukocidin genes. Gene X 1998; 215:57-67. [PMID: 9666077 DOI: 10.1016/s0378-1119(98)00278-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The staphylococcal Panton-Valentine leukocidin (PVL) genes, [lukS-PV-lukF-PV], exist on the genome of a temperate bacteriophage phiPVL isolated from mitomycin C-induced Staphylococcus aureus V8 (ATCC 49775) (Kaneko, J., Kimura, T., Kawakami, Y., Tomita, T., Kamio, Y., 1997b. Panton-Valentine leukocidin genes in phage-like particle isolated from mitomycin C-treated Staphylococcus aureus V8 (ATCC 49775). Biosci. Biotechnol. Biochem. 61, 1960-1962). In this study, the complete nucleotide sequence of the phiPVL genome was analyzed, and the att sites (attL, attR, and attB) required for site-specific integration of phiPVL into the host chromosome were also determined. The linear double-stranded phiPVL genome comprised 41401bp with 3' staggered cohesive ends (cos) of nine bases and contained 63 ORFs, among which the regulatory proteins involved in DNA replication, structural proteins, a holin, a lysin, an integrase, and dUTPase, were tentatively identified by the comparison of the deduced amino acid sequences and by the analysis of the proteins isolated from phiPVL particles. The [lukS-PV-lukF-PV], attP, and int (integrase gene) of phiPVL were all located very close to one another within a 4.0-kb segment on the genome in the order given, and this segment was located at the center from the left and the right cos sites. In addition, the attP region contained five direct repeat sequences that showed a high degree of homology with the recombinase-binding sites of some other S. aureus bacteriophages. The phiPVL genome was found to integrate into an ORF encoding an unknown protein comprising 725 amino acid residues with two leucine zipper-like motifs.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Toxins
- Base Sequence
- Binding Sites/genetics
- Chromosomes, Bacterial/genetics
- Cloning, Molecular
- DNA, Single-Stranded/genetics
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Exotoxins/genetics
- Genes, Viral/genetics
- Genome, Viral
- Leukocidins/genetics
- Molecular Sequence Data
- Open Reading Frames/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Staphylococcus Phages/chemistry
- Staphylococcus Phages/genetics
- Staphylococcus aureus/chemistry
- Staphylococcus aureus/genetics
- Staphylococcus aureus/virology
- Viral Proteins/chemistry
- Viral Structural Proteins/genetics
- Virus Integration/genetics
Collapse
Affiliation(s)
- J Kaneko
- Department of Applied Biological Chemistry, Faculty of Agriculture, Tohoku University, Sendai 981-8555, Japan
| | | | | | | | | |
Collapse
|
17
|
Lindsay JA, Ruzin A, Ross HF, Kurepina N, Novick RP. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol Microbiol 1998; 29:527-43. [PMID: 9720870 DOI: 10.1046/j.1365-2958.1998.00947.x] [Citation(s) in RCA: 275] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tst, the gene for toxic shock syndrome toxin-1 (TSST-1), is part of a 15.2 kb genetic element in Staphylococcus aureus that is absent in TSST-1-negative strains. The prototype, in RN4282, is flanked by a 17 nucleotide direct repeat and contains genes for a second possible superantigen toxin, a Dichelobacter nodosus VapE homologue and a putative integrase. It is readily transferred to a recA recipient, and it always inserts into a unique chromosomal copy of the 17 nucleotide sequence in the same orientation. It is excised and circularized by staphylococcal phages phi13 and 80alpha and replicates during the growth of the latter, which transduces it at very high frequency. Because of its site and orientation specificity and because it lacks other identifiable phage-like genes, we consider it to be a pathogenicity island (PI) rather than a transposon or a defective phage. The tst element in RN4282, near tyrB, is designated SaPI1. That in RN3984 in the trp region is only partially homologous to SaPI1 and is excised by phage 80 but not by 80alpha. It is designated SaPI2. These PIs are the first in any gram-positive species and the first for which mobility has been demonstrated. Their mobility may be responsible for the spread of TSST-1 production among S. aureus strains.
Collapse
Affiliation(s)
- J A Lindsay
- Skirball Institute of Biomolecular Medicine, New York University Medical Centre, New York 10016, USA
| | | | | | | | | |
Collapse
|
18
|
Młynarczyk A, Młynarczyk G, Jeljaszewicz J. The genome of Staphylococcus aureus: a review. ZENTRALBLATT FUR BAKTERIOLOGIE : INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY 1998; 287:277-314. [PMID: 9638861 DOI: 10.1016/s0934-8840(98)80165-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The genome of Staphylococcus aureus consists of a single circular chromosome (2.7-2.8 mbp) plus an assortment of extrachromosomal accessory genetic elements: conjugative and nonconjugative plasmids, mobile elements (IS, Tn, Hi), prophages and other variable elements. Plasmids (1-60 kbp) are classified into 4 classes and there are 15 known incompatibility groups. Mobile elements of the genome (0.8-18 kbp) appear in the chromosome or in plasmids of classes II and III. Prophages (45-60 kbp) are integrated in the bacterial chromosome, and they are UV- or mitomycin-inducible. Temperate bacteriophages of S. aureus are members of the Siphoviridae and the serological groups A, B and F occur most frequently. In the paper presented, the characteristics of chromosome, plasmids, transposons and other genetic elements of S. aureus genome are given and an alphabetical list of known genes of this species is included.
Collapse
|
19
|
Uchiumi T, Abe M, Higashi S. Integration of the temperate phage phiU into the putative tRNA gene on the chromosome of its host Rhizobium leguminosarum biovar trifolii. J GEN APPL MICROBIOL 1998; 44:93-99. [PMID: 12501298 DOI: 10.2323/jgam.44.93] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The plasmid pCI6, carrying the attP site of the temperate phage phiU, integrates into the attB site on the chromosome of Rhizobium leguminosarum biovar trifolii strain 4S. The 4 kb EcoRI-HindIII region of pCI6 involved in site-specific integration was subcloned as the attP fragment of phage phiU and sequenced. The attL fragment, one of the new DNA junctions generated from the insertion of pCI6 into the chromosome of the host Rhizobium, was used as a hybridization probe for isolation of the attB fragment of strain 4S. The nucleotide sequence of the 2 kb PstI fragment of strain 4S, which hybridized with the attL fragment, was decided and compared with that of the attP fragment. A 53 bp common sequence was expected to be the core sequence of site-specific integration between phage phiU and strain 4S. One of the ORFs on the attP fragment, which was located adjacent to the core sequence, had structural homology to the integrase family. However, the attB fragment showed high homology with the tRNA genes of Agrobacterium tumefaciens and E. coli. A 47 bp sequence of the 53 bp core sequence overlapped with this tRNA-like sequence. This indicates that the target site of phage phiU integration is the putative tRNA gene on the chromosome of the Rhizobium host.
Collapse
Affiliation(s)
- Toshiki Uchiumi
- Department of Chemistry and BioScience, Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan
| | | | | |
Collapse
|
20
|
Nunes-Düby SE, Kwon HJ, Tirumalai RS, Ellenberger T, Landy A. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res 1998; 26:391-406. [PMID: 9421491 PMCID: PMC147275 DOI: 10.1093/nar/26.2.391] [Citation(s) in RCA: 348] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Alignments of 105 site-specific recombinases belonging to the Int family of proteins identified extended areas of similarity and three types of structural differences. In addition to the previously recognized conservation of the tetrad R-H-R-Y, located in boxes I and II, several newly identified sequence patches include charged amino acids that are highly conserved and a specific pattern of buried residues contributing to the overall protein fold. With some notable exceptions, unconserved regions correspond to loops in the crystal structures of the catalytic domains of lambda Int (Int c170) and HP1 Int (HPC) and of the recombinases XerD and Cre. Two structured regions also harbor some pronounced differences. The first comprises beta-sheets 4 and 5, alpha-helix D and the adjacent loop connecting it to alpha-helix E: two Ints of phages infecting thermophilic bacteria are missing this region altogether; the crystal structures of HPC, XerD and Cre reveal a lack of beta-sheets 4 and 5; Cre displays two additional beta-sheets following alpha-helix D; five recombinases carry large insertions. The second involves the catalytic tyrosine and is seen in a comparison of the four crystal structures. The yeast recombinases can theoretically be fitted to the Int fold, but the overall differences, involving changes in spacing as well as in motif structure, are more substantial than seen in most other proteins. The phenotypes of mutations compiled from several proteins are correlated with the available structural information and structure-function relationships are discussed. In addition, a few prokaryotic and eukaryotic enzymes with partial homology with the Int family of recombinases may be distantly related, either through divergent or convergent evolution. These include a restriction enzyme and a subgroup of eukaryotic RNA helicases (D-E-A-D proteins).
Collapse
Affiliation(s)
- S E Nunes-Düby
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Le Marrec C, Moreau S, Loury S, Blanco C, Trautwetter A. Genetic characterization of site-specific integration functions of phi AAU2 infecting "Arthrobacter aureus" C70. J Bacteriol 1996; 178:1996-2004. [PMID: 8606175 PMCID: PMC177896 DOI: 10.1128/jb.178.7.1996-2004.1996] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
All the essential genetic determinants for site-specific integration of corynephage phi AAU2 are contained within a 1,756-bp DNA fragment, carried on the integrative plasmid p5510, and are shown to be functional in Escherichia coli. One open reading frame, ORF4, encoding a protein of 266 amino acids was shown to represent the phi AAU2 integrase. The nucleotide sequence of the phi AAU2 attachment site, attP, and the attB, attL, and attR sequences in the host "Arthrobacter aureus" C70 were determined. Identical nucleotide sequences were shown to be responsible for the integration of p5510 in the chromosomes of Corynebacterium glutamicum, Brevibacterium divaricatum, and B. lactofermentum, and a sequence almost identical to attB was found to be present in these three strains. In contrast to other phage site-specific recombination systems, a plasmid encompassing only int-attP failed to integrate into the host chromosome. This led to the identification of an 800-bp noncoding region, immediately upstream of int, absolutely required for site-specific integration of p5510.
Collapse
|
23
|
Carroll D, Kehoe MA, Cavanagh D, Coleman DC. Novel organization of the site-specific integration and excision recombination functions of the Staphylococcus aureus serotype F virulence-converting phages phi 13 and phi 42. Mol Microbiol 1995; 16:877-93. [PMID: 7476186 DOI: 10.1111/j.1365-2958.1995.tb02315.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Functions required for site-specific integration and excision of the Staphylococcus aureus serotype F virulence-converting phages phi 13 and phi 42 were localized and characterized. Like other temperate phages, integration of phi 13 and phi 42 sequences was found to require the product of an int gene located close to the phage attP site. Both int genes are almost identical, express proteins possessing characteristic features of the Int (integrase) family of recombinases, but share very little homology with previously described int genes, including those of the serotype B S. aureus phages L54a and phi 11. Nevertheless, all four S. aureus phages share an almost identical short sequence located immediately 5' to these distinct int genes, suggesting a common mechanism of int gene regulation. Upstream from these common sequences, the sequences of phi 13 and phi 42 are quite distinct from each other, and from the corresponding regions of phi 11 and L54a which encode the Xis proteins that are required with Int to mediate site-specific excision of the latter phages. Surprisingly, phi 13 and phi 42 sequences encompassing the attP sites and int genes, but lacking either an adjacent or more distant phage excision protein gene, were sufficient to mediate site-specific excision of integrated phage DNA sequences.
Collapse
Affiliation(s)
- D Carroll
- University of Dublin, Moyne Institute, Department of Microbiology, Trinity College, Republic of Ireland
| | | | | | | |
Collapse
|
24
|
Dupont L, Boizet-Bonhoure B, Coddeville M, Auvray F, Ritzenthaler P. Characterization of genetic elements required for site-specific integration of Lactobacillus delbrueckii subsp. bulgaricus bacteriophage mv4 and construction of an integration-proficient vector for Lactobacillus plantarum. J Bacteriol 1995; 177:586-95. [PMID: 7836291 PMCID: PMC176632 DOI: 10.1128/jb.177.3.586-595.1995] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Temperate phage mv4 integrates its DNA into the chromosome of Lactobacillus delbrueckii subsp. bulgaricus strains via site-specific recombination. Nucleotide sequencing of a 2.2-kb attP-containing phage fragment revealed the presence of four open reading frames. The larger open reading frame, close to the attP site, encoded a 427-amino-acid polypeptide with similarity in its C-terminal domain to site-specific recombinases of the integrase family. Comparison of the sequences of attP, bacterial attachment site attB, and host-phage junctions attL and attR identified a 17-bp common core sequence, where strand exchange occurs during recombination. Analysis of the attB sequence indicated that the core region overlaps the 3' end of a tRNA(Ser) gene. Phage mv4 DNA integration into the tRNA(Ser) gene preserved an intact tRNA(Ser) gene at the attL site. An integration vector based on the mv4 attP site and int gene was constructed. This vector transforms a heterologous host, L. plantarum, through site-specific integration into the tRNA(Ser) gene of the genome and will be useful for development of an efficient integration system for a number of additional bacterial species in which an identical tRNA gene is present.
Collapse
Affiliation(s)
- L Dupont
- Laboratoire de Microbiologie et Génétique Moléculaire du Centre National de la Recherche Scientifique, Toulouse, France
| | | | | | | | | |
Collapse
|
25
|
Gabriel K, Schmid H, Schmidt U, Rausch H. The actinophage RP3 DNA integrates site-specifically into the putative tRNA(Arg)(AGG) gene of Streptomyces rimosus. Nucleic Acids Res 1995; 23:58-63. [PMID: 7870591 PMCID: PMC306630 DOI: 10.1093/nar/23.1.58] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The temperate actinophage RP3 integrates site-specifically into the chromosome of Streptomyces rimosus R6-554. The phage attachment site attP and the hybrid attachment sites of the integrated prophage--attL and attR--were cloned and sequenced. The 54nt core sequence, common to all RP3 related attachment sites, comprises the 3' terminal end of a putative tRNA(Arg)(AGG) gene. AttB bears the complete tRNA gene which is restored in attL after integration. A 7.5kb HindIII fragment, bearing attP, was used to construct an integrative plasmid to simulate the integration process in vivo and to localize the phage genes necessary for site specific integration. The int and xis genes were sequenced and compared to other recombination genes.
Collapse
Affiliation(s)
- K Gabriel
- Institut für Genetik und Mikrobiologie, Universität München, Germany
| | | | | | | |
Collapse
|
26
|
Kiliç AO, Vijayakumar MN, al-Khaldi SF. Identification and nucleotide sequence analysis of a transfer-related region in the streptococcal conjugative transposon Tn5252. J Bacteriol 1994; 176:5145-50. [PMID: 8051031 PMCID: PMC196358 DOI: 10.1128/jb.176.16.5145-5150.1994] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To obtain a functional map of Tn5252, a 47.5-kb streptococcal conjugative transposon, a series of defined deletion and insertion mutations were introduced within the transposon. Interruptions at several regions were found to affect the conjugal transposition functions of the element in filter-mating experiments. The nucleotide sequence of the left terminus of Tn5252 showed two open reading frames, ORF1 and ORF2, adjoining the att site. The organization of this region and the structure of the predicted integrase encoded by ORF1 were found to be similar to those of other site-specific recombination systems.
Collapse
Affiliation(s)
- A O Kiliç
- Oklahoma State University, Stillwater 74078
| | | | | |
Collapse
|
27
|
van de Guchte M, Daly C, Fitzgerald GF, Arendt EK. Identification of int and attP on the genome of lactococcal bacteriophage Tuc2009 and their use for site-specific plasmid integration in the chromosome of Tuc2009-resistant Lactococcus lactis MG1363. Appl Environ Microbiol 1994; 60:2324-9. [PMID: 8074513 PMCID: PMC201650 DOI: 10.1128/aem.60.7.2324-2329.1994] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The DNA sequence of the int-attP region of the small-isometric-headed lactococcal bacteriophage Tuc2009 is presented. In this region, an open reading frame, int, which potentially encodes a protein of 374 amino acids, representing the Tuc2009 integrase, was identified. The nucleotide sequence of the bacteriophage attachment site, attP, and the sequences of attB, attL, and attR in the lysogenic host Lactococcus lactis subsp. cremoris UC509 were determined. A sequence almost identical to the UC509 attB sequence was found to be present in the plasmid-free Tuc2009-resistant L. lactis subsp. cremoris MG1363. This site could be used for the site-specific integration of a plasmid carrying the Tuc2009 int-attP region in the chromosome of MG1363, thereby demonstrating that the application of chromosomal insertion vectors based on bacteriophage integration functions is not limited to the prophage-cured original host strain of the phage.
Collapse
Affiliation(s)
- M van de Guchte
- National Food Biotechnology Centre, University College, Cork, Ireland
| | | | | | | |
Collapse
|
28
|
Rauch PJ, de Vos WM. Identification and characterization of genes involved in excision of the Lactococcus lactis conjugative transposon Tn5276. J Bacteriol 1994; 176:2165-71. [PMID: 8157585 PMCID: PMC205335 DOI: 10.1128/jb.176.8.2165-2171.1994] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The 70-kb transposon Tn5276, originally detected in Lactococcus lactis NIZO R5 and carrying the genes for nisin production and sucrose fermentation, can be conjugally transferred to other L. lactis strains. Sequence analysis and complementation studies showed that the right end of Tn5276 contains two genes, designated xis and int, which are involved in excision. The 379-amino-acid int gene product shows high (up to 50%) similarity with various integrases, including that of the Tn916-related conjugative transposons. The xis gene product, like almost all known excisionase (Xis) proteins, is a small (68-residue), basic protein. Expression of both the Tn5276 int and xis genes is required for efficient excision of the ends of Tn5276 in Escherichia coli that appeared to be circularized in the excision process. Mutational analysis of the xis and int genes showed that excision efficiency is dependent on the integrity of the int gene but that an intact xis gene is also required for efficient excision.
Collapse
Affiliation(s)
- P J Rauch
- Department of Biophysical Chemistry, Netherlands Institute for Dairy Research, Ede
| | | |
Collapse
|
29
|
Fremaux C, De Antoni GL, Raya RR, Klaenhammer TR. Genetic organization and sequence of the region encoding integrative functions from Lactobacillus gasseri temperate bacteriophage phi adh. Gene 1993; 126:61-6. [PMID: 8472961 DOI: 10.1016/0378-1119(93)90590-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A 2.0-kb fragment from the Lactobacillus gasseri temperate bacteriophage phi adh contained the essential genetic determinants for site-specific integration. The nucleotide sequence of this fragment was determined. An open reading frame (intG), which adjoined the phage attachment site (attP), encoded a deduced protein related to the integrase family. The organization of this region was comparable to other phage site-specific recombination systems.
Collapse
Affiliation(s)
- C Fremaux
- Department of Food Science, North Carolina State University, Raleigh 27695-7624
| | | | | | | |
Collapse
|
30
|
Lillehaug D, Birkeland NK. Characterization of genetic elements required for site-specific integration of the temperate lactococcal bacteriophage phi LC3 and construction of integration-negative phi LC3 mutants. J Bacteriol 1993; 175:1745-55. [PMID: 8449882 PMCID: PMC203969 DOI: 10.1128/jb.175.6.1745-1755.1993] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The genetic elements required for the integration of the temperate lactococcal bacteriophage phi LC3 into the chromosome of its bacterial host, Lactococcus lactis subsp. cremoris, were identified and characterized. The phi LC3 phage attachment site, attP, was mapped and sequenced. DNA sequence analysis of attP and of the bacterial attachment site, attB, as well as the two phage-host junctions, attR and attL, in the chromosome of a phi LC3 lysogen, identified a 9-bp common core region, 5'-TTCTTCATG'-3, within which the strand exchange reaction takes place during integration. The attB core sequence is located within the C-terminal part of an open reading frame of unknown function. The phi LC3 integrase gene (int), encoding the phi LC3 site-specific recombinase, was identified and is located adjacent to attP. The phi LC3 Int protein, as deduced from the nucleotide sequence, is a basic protein of 374 amino acids that shares significant sequence similarity with other site-specific recombinases of the integrase family. Phage phi LC3 int- and int-attP-defective mutants, conferring an abortive lysogenic phenotype, were constructed.
Collapse
Affiliation(s)
- D Lillehaug
- Laboratory of Microbial Gene Technology, Norwegian Research Council, As
| | | |
Collapse
|
31
|
Ye ZH, Lee CY. Cloning, sequencing, and genetic characterization of regulatory genes, rinA and rinB, required for the activation of staphylococcal phage phi 11 int expression. J Bacteriol 1993; 175:1095-102. [PMID: 8432703 PMCID: PMC193025 DOI: 10.1128/jb.175.4.1095-1102.1993] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The int gene of staphylococcal bacteriophage phi 11 is the only viral gene responsible for the integrative recombination of phi 11. To study the regulation of int gene expression, we determined the 5' end of the transcript by S1 mapping. The presumed promoter is located just 22 nucleotides upstream of the int open reading frame in a region which is conserved between phi 11 and a closely related staphylococcal phage, L54a. To clone the possible regulatory gene, a vector which contained the reporter gene, xylE, of Pseudomonas putida under the control of the phi 11 int promoter was constructed. Subsequently, a 2-kb DNA fragment from the phi 11 genome, which mapped distal to the int gene, was shown to increase the XylE activity from the int promoter. Sequencing and subsequent deletion analysis of the 2-kb fragment revealed that two phi 11 regulatory genes, rinA and rinB, were both required to activate expression of the int gene. Northern (RNA) analysis suggested that the activation was, at least partly, at the transcriptional level. In addition, one of these regulatory genes, rinA, was capable of activating L54a int gene transcription.
Collapse
Affiliation(s)
- Z H Ye
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City 66103
| | | |
Collapse
|
32
|
Abstract
Single-copy integration vectors suitable for cloning in Staphylococcus aureus have been constructed. Their construction was based on the site-specific recombination system of staphylococcal phage, L54a. The vectors are capable of autonomous replication in Escherichia coli, but they are not endowed with a replication function in S. aureus. As a consequence, establishment of these vectors in S. aureus can only be achieved by the integration system of the phage. Once integrated into the chromosome, the vectors, or their derivatives, were stably inherited even without selective pressure. Because such a vector exists in an integrated form in S. aureus, the gene dosage of the DNA cloned in the vector matches that of the chromosome.
Collapse
Affiliation(s)
- C Y Lee
- Department of Microbiology, University of Kansas Medical Center, Kansas City 66103
| | | | | |
Collapse
|
33
|
Lee MH, Pascopella L, Jacobs WR, Hatfull GF. Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guérin. Proc Natl Acad Sci U S A 1991; 88:3111-5. [PMID: 1901654 PMCID: PMC51395 DOI: 10.1073/pnas.88.8.3111] [Citation(s) in RCA: 324] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mycobacteriophage L5, a temperate phage of mycobacteria, integrates site-specifically into the Mycobacterium smegmatis chromosome. We have identified the int gene and attP site of L5, characterized the chromosomal attachment site (attB), and constructed plasmid vectors that efficiently transform M. smegmatis through stable site-specific integration of the plasmid into the bacterial genome. These integration-proficient plasmids also efficiently transform slow-growing mycobacteria such as the pathogen Mycobacterium tuberculosis and the vaccine strain bacille Calmette-Guérin (BCG). The ability to easily generate stable recombinants in these slow-growing mycobacteria without the requirement for continual selection is of particular importance for the construction of recombinant BCG vaccines and for the isolation and characterization of mycobacterial pathogenic determinants in animal model systems. Integration vectors of this type should be of general use in a number of additional bacterial systems where temperate phages have been identified.
Collapse
Affiliation(s)
- M H Lee
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | | | | | | |
Collapse
|
34
|
Ye ZH, Buranen SL, Lee CY. Sequence analysis and comparison of int and xis genes from staphylococcal bacteriophages L54a and phi 11. J Bacteriol 1990; 172:2568-75. [PMID: 2139648 PMCID: PMC208899 DOI: 10.1128/jb.172.5.2568-2575.1990] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The DNA fragment encoding the integrase and excisionase genes involved in site-specific recombination of staphylococcal bacteriophage phi 11 was cloned and sequenced. The int and xis genes and the recombination site, attP, were highly clustered in a 1.7-kilobase DNA fragment with the gene order attP-int-xis. The int and xis genes were transcribed divergently, with the int gene transcribed toward the attp site and the xis gene transcribed away from the attP site. The deduced Int is a basic protein of 348 residues with an estimated molecular weight of 41,357. In contrast, the deduced Xis is an acidic protein containing 66 amino acids with an estimated molecular weight of 7,621. The site-specific recombination system of phi 11 was compared with that of a closely related bacteriophage, L54a.
Collapse
Affiliation(s)
- Z H Ye
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City 66103
| | | | | |
Collapse
|