1
|
Kotova VY, Abilev SK, Zavilgelsky GB. The Ratio between Lethal and Mutagenic Damages in the DNA of Plasmids and Bacteriophages Induced by 8-Methoxypsoralen Plus UV (λ ≥ 320 nm) Treatment. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421070097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Quinet A, Lerner LK, Martins DJ, Menck CFM. Filling gaps in translesion DNA synthesis in human cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:127-142. [PMID: 30442338 DOI: 10.1016/j.mrgentox.2018.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/21/2018] [Indexed: 01/06/2023]
Abstract
During DNA replication, forks may encounter unrepaired lesions that hamper DNA synthesis. Cells have universal strategies to promote damage bypass allowing cells to survive. DNA damage tolerance can be performed upon template switch or by specialized DNA polymerases, known as translesion (TLS) polymerases. Human cells count on more than eleven TLS polymerases and this work reviews the functions of some of these enzymes: Rev1, Pol η, Pol ι, Pol κ, Pol θ and Pol ζ. The mechanisms of damage bypass vary according to the lesion, as well as to the TLS polymerases available, and may occur directly at the fork during replication. Alternatively, the lesion may be skipped, leaving a single-stranded DNA gap that will be replicated later. Details of the participation of these enzymes are revised for the replication of damaged template. TLS polymerases also have functions in other cellular processes. These include involvement in somatic hypermutation in immunoglobulin genes, direct participation in recombination and repair processes, and contributing to replicating noncanonical DNA structures. The importance of DNA damage replication to cell survival is supported by recent discoveries that certain genes encoding TLS polymerases are induced in response to DNA damaging agents, protecting cells from a subsequent challenge to DNA replication. We retrace the findings on these genotoxic (adaptive) responses of human cells and show the common aspects with the SOS responses in bacteria. Paradoxically, although TLS of DNA damage is normally an error prone mechanism, in general it protects from carcinogenesis, as evidenced by increased tumorigenesis in xeroderma pigmentosum variant patients, who are deficient in Pol η. As these TLS polymerases also promote cell survival, they constitute an important mechanism by which cancer cells acquire resistance to genotoxic chemotherapy. Therefore, the TLS polymerases are new potential targets for improving therapy against tumors.
Collapse
Affiliation(s)
- Annabel Quinet
- Saint Louis University School of Medicine, St. Louis, MO, United States.
| | - Leticia K Lerner
- MRC Laboratory of Molecular Biology,Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Davi J Martins
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos F M Menck
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Zavil’gel’skii GB, Kotova VY. SOS repair of 8-methoxypsoralene monoadducts in DNA of lambda bacteriophage and plasmids is mediated by MucA 2 ′ B, but not UmuD 2 ′ C (PolV) polymerase. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413120144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
|
5
|
Liu X, Liu J. The mechanism of base excision repair in Chlamydiophila pneumoniae. DNA Repair (Amst) 2005; 4:1295-305. [PMID: 16085468 DOI: 10.1016/j.dnarep.2005.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 06/16/2005] [Accepted: 06/24/2005] [Indexed: 01/11/2023]
Abstract
Repair of damaged DNA is of great importance in maintaining genome integrity, and there are several pathways for repair of damaged DNA in almost all organisms. Base excision repair (BER) is a main process for repairing DNA carrying slightly damaged bases. Several proteins are required for BER; these include DNA glycosylases, AP endonuclease, DNA polymerase, and DNA ligase. In some bacteria the single-stranded specific exonuclease, RecJ, is also involved in BER. In this research, six Chlamydiophila pneumoniae (C. pneumoniae) genes, encoding uracil DNA glycosylase (CpUDG), endonuclease IV (CpEndoIV), DNA polymerase I (CpDNApolI), endonuclease III (CpEndoIII), single-stranded specific exonuclease RecJ (CpRecJ), and DNA ligase (CpDNALig), were inserted into the expression vector pET28a. All proteins, except for CpDNALig, were successfully expressed in E. coli, and purified proteins were characterized in vitro. C. pneumoniae BER was reconstituted in vitro with CpUDG, CpEndoIV, CpDNApolI and E. coli DNA ligase (EcDNALig). After uracil removal by CpUDG, the AP site could be repaired by two BER pathways that involved in the replacement of either one (short patch BER) or multiple nucleotides (long patch BER) at the lesion site. CpEndoIII promoted short patch BER via its 5'-deoxyribophosphodiesterase (5'-dRPase) activity, while CpRecJ had little effect on short patch BER. The flap structure generated during DNA extension could be removed by the 5'-exonuclease activity of CpDNApolI. Based on these observations, we propose a probable mechanism for BER in C. pneumoniae.
Collapse
Affiliation(s)
- Xipeng Liu
- College of Life Sciences and Technology, Shanghai Jiaotong University, No. 1954 Hua-Shan Road, Shanghai 200030, China
| | | |
Collapse
|
6
|
Kadyrov FA, Drake JW. UvsX recombinase and Dda helicase rescue stalled bacteriophage T4 DNA replication forks in vitro. J Biol Chem 2004; 279:35735-40. [PMID: 15194689 DOI: 10.1074/jbc.m403942200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rescue of stalled replication forks via a series of steps that include fork regression, template switching, and fork restoration often has been proposed as a major mechanism for accurately bypassing non-coding DNA lesions. Bacteriophage T4 encodes almost all of the proteins required for its own DNA replication, recombination, and repair. Both recombination and recombination repair in T4 rely on UvsX, a RecA-like recombinase. We show here that UvsX plus the T4-encoded helicase Dda suffice to rescue stalled T4 replication forks in vitro. This rescue is based on two sequential template-switching reactions that allow DNA replication to bypass a non-coding DNA lesion in a non-mutagenic manner.
Collapse
Affiliation(s)
- Farid A Kadyrov
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA
| | | |
Collapse
|
7
|
|
8
|
Sedliakova M. A non-excision uvr-dependent DNA repair pathway of Escherichia coli (involvement of stress proteins). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1998; 45:75-81. [PMID: 9868797 DOI: 10.1016/s1011-1344(98)00159-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In UV-irradiated excision-proficient (uvr+) Escherichia coli, pre-induced by simultaneous pre-starvation for thymine (T) and amino acids (AAs), and/or a low UV pre-dose applied after prestarvation for AAs, pyrimidine dimer excision (PDE) is reduced without an adequate increase of UV sensitivity and UV mutagenesis. The unexcised lesions are tolerated by a putative repair pathway that is uvr dependent but does not involve excision. The process consists of PDE inhibition, which requires outer membrane protease OmpT, and subsequent pyrimidine dimer (PD) toleration, which may be mediated by interaction with a sister duplex using a number of SOS and stress-inducible proteins.
Collapse
Affiliation(s)
- M Sedliakova
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
9
|
Slezarikova V, Masek F, Pirsel M, Sedliakova M. The pre-UV nutritional stresses increase UV resistance, decrease UV mutagenesis and inhibit excision repair. Mutat Res 1997; 385:213-22. [PMID: 9506890 DOI: 10.1016/s0921-8777(97)00044-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nutritional stresses applied to E. coli prior to UV irradiation increase UV resistance and decrease UV mutagenesis. This effect is uvrA-dependent and might reflect a more efficient excision of pyrimidine dimers [1]. The data presented here, however, indicate that after prestarvation for glucose or amino acids pyrimidine dimer excision (PDE) was partly inhibited. It appears that the stress conditions stimulate a mode of uvr-dependent tolerance of lesions, efficient and precise. Possible modes of PDE inhibition and lesion tolerance are discussed.
Collapse
Affiliation(s)
- V Slezarikova
- Department of Molecular Genetics, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | |
Collapse
|
10
|
Abstract
Wiegle reactivation is a manifestation of a umuCD-mediated enhancement in the replication of damaged phage DNA (Caillet-Fauquet et al., 1977; Defais et al., 1989; Rajagopalan et al., 1992). I have obtained Wiegle reactivation of lambda by irradiating the uvrA cells in rich growth medium. This Wiegle reactivation was lost upon transduction of the umuC mutation into the strain. There was also a drastic reduction of Wiegle reactivation in an isogenic strain carrying the uvrA mutation and deletion of the uvrD gene. (uvrD codes for E. coli DNA helicase II). The effect of the uvrD deletion on Wiegle reactivation can indicate a specific requirement of DNA helicase II for the unwinding of damaged phage DNA during its replication or (and) an inefficient induction of the SOS response in delta uvrD uvrA cells.
Collapse
Affiliation(s)
- M L Altshuler
- Mechnikov Institute for Vaccines and Sera, Pereulok Mechnikova, Moscow, Russian Federation
| |
Collapse
|
11
|
Abstract
Following exposure to UV light DNA replication stops and then resumes. The SOS response is required for the restoration of replication. Replication recovery occurs in lexA(Ind) cells carrying a high constitutive level of RecA protein. Replication is also affected by UmuCD proteins, photoreactivation, and excision repair. In addition, there is a constitutive and recA independent way to replicate over UV photoproducts associated with the production of gaps in daughter DNA strands. There are two ways to account for the replication in UV-irradiated cells. A stalled replication fork can be reactivated. Alternatively, a replication fork could be destroyed irreparably, with no available way to complete the round of replication. In that case, postirradiation replication could be due exclusively to replication forks assembled de novo at the origin(s). Changes in replication initiation are observed following UV irradiation. Initiations are first inhibited and then stimulated. They become independent of de novo protein synthesis and sometimes do not stop in dnaA(ts) mutants shifted to 42 degrees C. Although the inducible functions are involved in the recovery of replication at different levels of UV damage, some modifications of the replication initiation mechanism appear to be specific to severely damaged cells. Such modifications seem to include the dnaA(ts) independence for initiations and the transient initiation inhibition. RecA protein can be directly involved both in the modification of initiation and in reactivation of the stalled replication forks. Although the restoration of replication depends on the SOS response a synthesis of some protein(s) that do not belong to the LexA regulon seems to be required as well. These proteins can be under RecA control and one of their functions may be to inhibit the rnhA gene. Certain recA mutations may selectively affect different mechanisms of the replication recovery (namely, recA430, recA727, recA718, recA1730). Overproduction of the photoreactivating enzyme in the dark could influence UmuCD activity in replication. The UmuCD function appears to be blocked in strains carrying the dnaE1026 mutation or overproducing the dnaQ protein. For some unknown reason the UmuCD-associated replication mechanism is the only one available for phage with damaged DNA.
Collapse
|
12
|
Livneh Z, Cohen-Fix O, Skaliter R, Elizur T. Replication of damaged DNA and the molecular mechanism of ultraviolet light mutagenesis. Crit Rev Biochem Mol Biol 1993; 28:465-513. [PMID: 8299359 DOI: 10.3109/10409239309085136] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
On UV irradiation of Escherichia coli cells, DNA replication is transiently arrested to allow removal of DNA damage by DNA repair mechanisms. This is followed by a resumption of DNA replication, a major recovery function whose mechanism is poorly understood. During the post-UV irradiation period the SOS stress response is induced, giving rise to a multiplicity of phenomena, including UV mutagenesis. The prevailing model is that UV mutagenesis occurs by the filling in of single-stranded DNA gaps present opposite UV lesions in the irradiated chromosome. These gaps can be formed by the activity of DNA replication or repair on the damaged DNA. The gap filling involves polymerization through UV lesions (also termed bypass synthesis or error-prone repair) by DNA polymerase III. The primary source of mutations is the incorporation of incorrect nucleotides opposite lesions. UV mutagenesis is a genetically regulated process, and it requires the SOS-inducible proteins RecA, UmuD, and UmuC. It may represent a minor repair pathway or a genetic program to accelerate evolution of cells under environmental stress conditions.
Collapse
Affiliation(s)
- Z Livneh
- Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
13
|
Wegrzyn G, Pawlowicz A, Taylor K. Stability of coliphage lambda DNA replication initiator, the lambda O protein. J Mol Biol 1992; 226:675-80. [PMID: 1387170 DOI: 10.1016/0022-2836(92)90624-s] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The initiator of coliphage lambda DNA replication, lambda O protein, may be detected among other 35S-labeled phage and bacterial proteins by a method based on immunoprecipitation. This method makes it possible to study lambda O proteolytic degradation in lambda plasmid-harboring or lambda phage-infected cells; it avoids ultraviolet (u.v.)-irradiation of bacteria, used for depression of host protein synthesis, prior to lambda phage infection. We confirm the rapid decay of lambda O protein (half-time of 80 s), but we demonstrate the existence of a stable lambda O fraction. In the standard five minute pulse-chase experiments, 20% of synthesized lambda O is stable. The extension of the [35S]methionine pulse, possible in lambda plasmid-harboring cells, leads to a linear increase of this fraction, as if a part of the synthesized lambda O was constantly made resistant to proteolysis. Less than 5% of lambda O protein synthesized during one minute is transformed into a stable form. We presume that the stable lambda O is identical with lambda O present in the normal replication complex and thus protected from proteases. We cannot find any stable lambda O in Escherichia coli recA+ cells that were irradiated with u.v. light prior to lambda phage infection, but their recA- counterparts behave normally, suggesting that recA function interferes in the assembly of a normal replication complex in u.v.-irradiated bacteria. The stable lambda O found in lambda plasmid-harboring, amino acid-starved relA cells is responsible for the lambda O-dependent lambda plasmid replication that occurs in this system in the absence of lambda O synthesis. The existence of stable lambda O raises doubt concerning its role as the limiting initiator protein in the control of replication. Another significance of lambda O rapid degradation is proposed.
Collapse
Affiliation(s)
- G Wegrzyn
- Department of Molecular Biology, University of Gdańsk, Poland
| | | | | |
Collapse
|
14
|
Tessman I. SOS repair can be about as effective for single-stranded DNA as for double-stranded DNA and even more so. J Bacteriol 1990; 172:5503-5. [PMID: 2144278 PMCID: PMC213222 DOI: 10.1128/jb.172.9.5503-5505.1990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
As ordinarily measured, the SOS repair of damaged DNA by Weigle reactivation appears to be more effective for double-stranded (ds) than for single-stranded (ss) DNA bacteriophages. A complicating feature, which is usually not considered, is the possibility of DNA-protein cross-linking of ssDNA to the viral capsid, which would conceivably be an extraneous source of nonreactivable lesions. This idea is supported in studies of phage S13 by the observation that photoreactivation more than doubles when naked ssDNA is substituted for encapsidated ssDNA as the UV target. The same effect was observed for Weigle reactivation; there was little, if any, difference in the reactivation of ssDNA and dsDNA when naked DNA was irradiated. Moreover, in a uvrA mutant, ssDNA actually had the advantage; Weigle reactivation was then more than twice as effective for ssDNA as for dsDNA. It is also shown that when a suitable measure of Weigle mutagenesis is used, there is no convincing evidence that dsDNA is mutagenized more effectively than ssDNA.
Collapse
Affiliation(s)
- I Tessman
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|