1
|
Wightman T, Muszyński A, Kelly SJ, Sullivan JT, Smart CJ, Stougaard J, Ferguson S, Azadi P, Ronson CW. Rhizobial Secretion of Truncated Exopolysaccharides Severely Impairs the Mesorhizobium-Lotus Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:662-675. [PMID: 38904752 DOI: 10.1094/mpmi-03-24-0024-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The symbiosis between Mesorhizobium japonicum R7A and Lotus japonicus Gifu is an important model system for investigating the role of bacterial exopolysaccharides (EPS) in plant-microbe interactions. Previously, we showed that R7A exoB mutants that are affected at an early stage of EPS synthesis and in lipopolysaccharide (LPS) synthesis induce effective nodules on L. japonicus Gifu after a delay, whereas exoU mutants affected in the biosynthesis of the EPS side chain induce small uninfected nodule primordia and are impaired in infection. The presence of a halo around the exoU mutant when grown on Calcofluor-containing media suggested the mutant secreted a truncated version of R7A EPS. A nonpolar ΔexoA mutant defective in the addition of the first glucose residue to the EPS backbone was also severely impaired symbiotically. Here, we used a suppressor screen to show that the severe symbiotic phenotype of the exoU mutant was due to the secretion of an acetylated pentasaccharide, as both monomers and oligomers, by the same Wzx/Wzy system that transports wild-type exopolysaccharide. We also present evidence that the ΔexoA mutant secretes an oligosaccharide by the same transport system, contributing to its symbiotic phenotype. In contrast, ΔexoYF and polar exoA and exoL mutants have a similar phenotype to exoB mutants, forming effective nodules after a delay. These studies provide substantial evidence that secreted incompatible EPS is perceived by the plant, leading to abrogation of the infection process. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Todd Wightman
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, U.S.A
| | - Simon J Kelly
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - John T Sullivan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Caitlan J Smart
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Shaun Ferguson
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, U.S.A
| | - Clive W Ronson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Castellani LG, Luchetti A, Nilsson JF, Pérez-Giménez J, Wegener C, Schlüter A, Pühler A, Lagares A, Brom S, Pistorio M, Niehaus K, Torres Tejerizo GA. Exopolysaccharide Characterization of Rhizobium favelukesii LPU83 and Its Role in the Symbiosis With Alfalfa. FRONTIERS IN PLANT SCIENCE 2021; 12:642576. [PMID: 33643369 PMCID: PMC7902896 DOI: 10.3389/fpls.2021.642576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/20/2021] [Indexed: 05/03/2023]
Abstract
One of the greatest inputs of available nitrogen into the biosphere occurs through the biological N2-fixation to ammonium as result of the symbiosis between rhizobia and leguminous plants. These interactions allow increased crop yields on nitrogen-poor soils. Exopolysaccharides (EPS) are key components for the establishment of an effective symbiosis between alfalfa and Ensifer meliloti, as bacteria that lack EPS are unable to infect the host plants. Rhizobium favelukesii LPU83 is an acid-tolerant rhizobia strain capable of nodulating alfalfa but inefficient to fix nitrogen. Aiming to identify the molecular determinants that allow R. favelukesii to infect plants, we studied its EPS biosynthesis. LPU83 produces an EPS I identical to the one present in E. meliloti, but the organization of the genes involved in its synthesis is different. The main gene cluster needed for the synthesis of EPS I in E. meliloti, is split into three different sections in R. favelukesii, which probably arose by a recent event of horizontal gene transfer. A R. favelukesii strain devoided of all the genes needed for the synthesis of EPS I is still able to infect and nodulate alfalfa, suggesting that attention should be directed to other molecules involved in the development of the symbiosis.
Collapse
Affiliation(s)
- Lucas G. Castellani
- Instituto de Biotecnología y Biología Molecular (IBBM), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Abril Luchetti
- Instituto de Biotecnología y Biología Molecular (IBBM), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juliet F. Nilsson
- Instituto de Biotecnología y Biología Molecular (IBBM), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julieta Pérez-Giménez
- Instituto de Biotecnología y Biología Molecular (IBBM), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | | - Antonio Lagares
- Instituto de Biotecnología y Biología Molecular (IBBM), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Susana Brom
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mariano Pistorio
- Instituto de Biotecnología y Biología Molecular (IBBM), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | - Gonzalo A. Torres Tejerizo
- Instituto de Biotecnología y Biología Molecular (IBBM), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
3
|
Nilsson JF, Castellani LG, Draghi WO, Mogro EG, Wibberg D, Winkler A, Hansen LH, Schlüter A, Pühler A, Kalinowski J, Torres Tejerizo GA, Pistorio M. Global transcriptome analysis of Rhizobium favelukesii LPU83 in response to acid stress. FEMS Microbiol Ecol 2020; 97:5998221. [PMID: 33220679 DOI: 10.1093/femsec/fiaa235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Acidic environments naturally occur worldwide and inappropriate agricultural management may also cause acidification of soils. Low soil pH values are an important barrier in the plant-rhizobia interaction. Acidic conditions disturb the establishment of the efficient rhizobia usually used as biofertilizer. This negative effect on the rhizobia-legume symbiosis is mainly due to the low acid tolerance of the bacteria. Here, we describe the identification of relevant factors in the acid tolerance of Rhizobium favelukesii using transcriptome sequencing. A total of 1924 genes were differentially expressed under acidic conditions, with ∼60% underexpressed. Rhizobium favelukesii acid response mainly includes changes in the energy metabolism and protein turnover, as well as a combination of mechanisms that may contribute to this phenotype, including GABA and histidine metabolism, cell envelope modifications and reverse proton efflux. We confirmed the acid-sensitive phenotype of a mutant in the braD gene, which showed higher expression under acid stress. Remarkably, 60% of the coding sequences encoded in the symbiotic plasmid were underexpressed and we evidenced that a strain cured for this plasmid featured an improved performance under acidic conditions. Hence, this work provides relevant information in the characterization of genes associated with tolerance or adaptation to acidic stress of R. favelukesii.
Collapse
Affiliation(s)
- Juliet F Nilsson
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| | - Lucas G Castellani
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| | - Walter O Draghi
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| | - Ezequiel G Mogro
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| | - Daniel Wibberg
- CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | - Anika Winkler
- CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | - L H Hansen
- Section of Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | | | - Alfred Pühler
- CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | | | - Gonzalo A Torres Tejerizo
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| | - Mariano Pistorio
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| |
Collapse
|
4
|
Ou L, Ang L, Chujun Z, Jingyu H, Yongli M, Shenjing Y, Junhua H, Xu G, Yulong Y, Rui Y, Jinpan H, Bin D, Xiufang H. Identification and characterization of six glycosyltransferases involved in the biosynthesis of a new bacterial exopolysaccharide in Paenibacillus elgii. Appl Microbiol Biotechnol 2017; 102:1357-1366. [PMID: 29199353 DOI: 10.1007/s00253-017-8673-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 02/06/2023]
Abstract
Paenibacillus elgii B69 produces a new xylose-containing exopolysaccharide (EPS) that effectively removes the pollutants from wastewater through flocculation. However, information about the biosynthesis of this EPS is limited. In this study, sequence analysis showed six putative glycosyltransferases (GTs) genes in polysaccharide gene clusters involved in glycosidic linkages of repeating units. Each gene was deleted and phenotypes were examined to understand the functions of these genes. Two of the genes were deleted successfully to encode a priming glucose GT and a side-chain xylose GT, but other genes were unsuccessfully deleted because of the accumulation of toxic intermediate products. The six genes were cloned and expressed in Escherichia coli, and the corresponding enzymes were purified. The activity of GTs was analyzed through mass spectrometry by using the purified membrane fraction as a lipid carrier receptor after a hexasaccharide repeated unit was reconstructed in vitro. The specificities of six different GTs and the building order of the hexasaccharide were characterized. This study provided a basis for future research on the biosynthetic pathway of EPS in Paenibacillus or other genera.
Collapse
Affiliation(s)
- Li Ou
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China. .,The department of development technology of marine resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Li Ang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhang Chujun
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Huang Jingyu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Meng Yongli
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuan Shenjing
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Huang Junhua
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Gao Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yao Yulong
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yin Rui
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hu Jinpan
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ding Bin
- Zhejiang Chinese Medical University, Hangzhou, 310018, China
| | - Hu Xiufang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
5
|
Hawkins JP, Geddes BA, Oresnik IJ. Succinoglycan Production Contributes to Acidic pH Tolerance in Sinorhizobium meliloti Rm1021. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:1009-1019. [PMID: 28871850 DOI: 10.1094/mpmi-07-17-0176-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, the hypothesis that exopolysaccharide plays a role in the survival of Sinorhizobium meliloti at low pH levels is addressed. When S. meliloti was grown at pH 5.75, synthesis of succinoglycan increased, whereas synthesis of galactoglucan decreased. Succinoglycan that was isolated from cultures grown at low pH had a lower degree of polymerization relative to that which was isolated from cultures grown at neutral pH, suggesting that low-molecular weight (LMW) succinoglycan might play a role in adaptation to low pH. Mutants unable to produce succinoglycan or only able to produce high-molecular weight polysaccharide were found to be sensitive to low pH. However, strains unable to produce LMW polysaccharide were 10-fold more sensitive. In response to low pH, transcription of genes encoding proteins for succinoglycan, glycogen, and cyclic β(1-2) glucans biosynthesis increased, while those encoding proteins necessary for the biosynthesis of galactoglucan decreased. While changes in pH did not affect the production of glycogen or cyclic β(1-2) glucan, it was found that the inability to produce cyclic β(1-2) glucan did contribute to pH tolerance in the absence of succinoglycan. Finally, in addition to being sensitive to low pH, a strain carrying mutations in exoK and exsH, which encode the glycanases responsible for the cleavage of succinoglycan to LMW succinoglycan, exhibited a delay in nodulation and was uncompetitive for nodule occupancy. Taken together, the data suggest that the role for LMW succinoglycan in nodule development may be to enhance survival in the colonized curled root hair.
Collapse
Affiliation(s)
- Justin P Hawkins
- Dept. of Microbiology, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Barney A Geddes
- Dept. of Microbiology, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Ivan J Oresnik
- Dept. of Microbiology, University of Manitoba, Winnipeg, R3T 2N2, Canada
| |
Collapse
|
6
|
The Sinorhizobium meliloti SyrM regulon: effects on global gene expression are mediated by syrA and nodD3. J Bacteriol 2015; 197:1792-806. [PMID: 25777671 DOI: 10.1128/jb.02626-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/06/2015] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED In Sinorhizobium meliloti, three NodD transcriptional regulators activate bacterial nodulation (nod) gene expression. NodD1 and NodD2 require plant compounds to activate nod genes. The NodD3 protein does not require exogenous compounds to activate nod gene expression; instead, another transcriptional regulator, SyrM, activates nodD3 expression. In addition, NodD3 can activate syrM expression. SyrM also activates expression of another gene, syrA, which when overexpressed causes a dramatic increase in exopolysaccharide production. In a previous study, we identified more than 200 genes with altered expression in a strain overexpressing nodD3. In this work, we define the transcriptomes of strains overexpressing syrM or syrA. The syrM, nodD3, and syrA overexpression transcriptomes share similar gene expression changes; analyses imply that nodD3 and syrA are the only targets directly activated by SyrM. We propose that most of the gene expression changes observed when nodD3 is overexpressed are due to NodD3 activation of syrM expression, which in turn stimulates SyrM activation of syrA expression. The subsequent increase in SyrA abundance results in broad changes in gene expression, most likely mediated by the ChvI-ExoS-ExoR regulatory circuit. IMPORTANCE Symbioses with bacteria are prevalent across the animal and plant kingdoms. Our system of study, the rhizobium-legume symbiosis (Sinorhizobium meliloti and Medicago spp.), involves specific host-microbe signaling, differentiation in both partners, and metabolic exchange of bacterial fixed nitrogen for host photosynthate. During this complex developmental process, both bacteria and plants undergo profound changes in gene expression. The S. meliloti SyrM-NodD3-SyrA and ChvI-ExoS-ExoR regulatory circuits affect gene expression and are important for optimal symbiosis. In this study, we defined the transcriptomes of S. meliloti overexpressing SyrM or SyrA. In addition to identifying new targets of the SyrM-NodD3-SyrA regulatory circuit, our work further suggests how it is linked to the ChvI-ExoS-ExoR regulatory circuit.
Collapse
|
7
|
|
8
|
Are essential genes really essential? Trends Microbiol 2009; 17:433-8. [DOI: 10.1016/j.tim.2009.08.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 08/03/2009] [Accepted: 08/11/2009] [Indexed: 11/18/2022]
|
9
|
Griffitts JS, Long SR. A symbiotic mutant of Sinorhizobium meliloti reveals a novel genetic pathway involving succinoglycan biosynthetic functions. Mol Microbiol 2008; 67:1292-306. [PMID: 18284576 DOI: 10.1111/j.1365-2958.2008.06123.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A large-scale screen for symbiotic mutants was carried out using the model root nodulating bacterium Sinorhizobium meliloti. Several mutations in the previously uncharacterized gene msbA2 were isolated. msbA2 encodes a member of the ATP-binding cassette exporter family. This protein family is known to export a wide variety of compounds from bacterial cells. S. meliloti MsbA2 is required for the invasion of nodule tissue, with msbA2 mutant cells stimulating nodule primordium morphogenesis, but failing to invade plant tissue beyond the epidermal cell layer. msbA2 mutants do not exhibit any of the free-living traits often found to correlate with symbiotic defects, suggesting that MsbA2 may take part in a specifically symbiotic function. In strains that overproduce the symbiotic signalling polysaccharide succinoglycan, loss of MsbA2 function is extremely deleterious. This synthetic lethal phenotype can be suppressed by disrupting the succinoglycan biosynthetic genes exoY or exoA. It can also be suppressed by disrupting putative glycosyltransferase-encoding genes found upstream of msbA2. Finally, the symbiotic phenotype of a msbA2 null mutant is suppressed by secondary mutations in these upstream transferase genes, indicating that the msbA2 mutant phenotype may be caused by an inhibitory accumulation of a novel polysaccharide that is synthesized from succinoglycan precursors.
Collapse
Affiliation(s)
- Joel S Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA.
| | | |
Collapse
|
10
|
Wells DH, Chen EJ, Fisher RF, Long SR. ExoR is genetically coupled to the ExoS-ChvI two-component system and located in the periplasm of Sinorhizobium meliloti. Mol Microbiol 2007; 64:647-64. [PMID: 17462014 DOI: 10.1111/j.1365-2958.2007.05680.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sinorhizobium meliloti enters into a symbiotic relationship with legume host plants, providing fixed nitrogen in exchange for carbon and amino acids. In S. meliloti, exoR and the exoS-chvI two-component system regulate the biosynthesis of succinoglycan, an exopolysaccharide important for host invasion. It was previously reported that a loss-of-function mutation in exoR and a gain-of-function mutation in exoS cause overproduction of succinoglycan and loss of motility, indicating that ExoR negatively regulates and ExoS-ChvI positively regulates downstream genes. However, a relationship between exoR and exoS-chvI has never been clearly established. By identification and detailed characterization of suppressor strains, we provide genetic evidence that exoR and exoS-chvI control many similar phenotypes. These include succinoglycan production, symbiosis, motility, and previously uncharacterized prototrophy and biofilm formation, all of which are co-ordinately restored by suppressors. We further demonstrate that ExoR is located in the periplasm, suggesting that it functions to regulate downstream genes in a novel manner. In pathogenic bacteria closely related to S. meliloti, exoS-chvI homologues are required for virulence and the regulation of cell envelope composition. Our data suggest that periplasmically localized ExoR and ExoS-ChvI function together in a unique and critical regulatory system associated with both free-living and symbiotic states of S. meliloti.
Collapse
Affiliation(s)
- Derek H Wells
- Department of Medicine, Division of Infectious Diseases, University of California, 513 Parnassus Avenue, San Francisco, CA 94143-0654, USA
| | | | | | | |
Collapse
|
11
|
Keating DH. The Sinorhizobium meliloti ExoR protein is required for the downregulation of lpsS transcription and succinoglycan biosynthesis in response to divalent cations. FEMS Microbiol Lett 2007; 267:23-9. [PMID: 17233674 DOI: 10.1111/j.1574-6968.2006.00498.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Sinorhizobium meliloti lpsS gene encodes a sulfotransferase that modifies lipopolysaccharide. Mutants lacking lpsS display no defect in lipopolysaccharide sulfation when assayed under laboratory conditions, but exhibit an abnormal symbiosis with alfalfa. These results suggest that lpsS is transcriptionally repressed under laboratory conditions, but upregulated during symbiosis. Here, it is shown that lpsS, as well as exo genes required for the biosynthesis of succinoglycan, are transcriptionally repressed in laboratory media containing divalent cations. Furthermore, the divalent cation-dependent transcriptional downregulation of lpsS is dependent on the exoR gene, which encodes a global regulator of transcription.
Collapse
Affiliation(s)
- David H Keating
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
12
|
Zhang XS, Cheng HP. Identification of Sinorhizobium meliloti early symbiotic genes by use of a positive functional screen. Appl Environ Microbiol 2006; 72:2738-48. [PMID: 16597978 PMCID: PMC1449070 DOI: 10.1128/aem.72.4.2738-2748.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The soil bacterium Sinorhizobium meliloti establishes nitrogen-fixing symbiosis with its leguminous host plant, alfalfa, following a series of continuous signal exchanges. The complexity of the changes of alfalfa root structures during symbiosis and the amount of S. meliloti genes with unknown functions raised the possibility that more S. meliloti genes may be required for early stages of the symbiosis. A positive functional screen of the entire S. meliloti genome for symbiotic genes was carried out using a modified in vivo expression technology. A group of genes and putative genes were found to be expressed in early stages of the symbiosis, and 23 of them were alfalfa root exudate inducible. These 23 genes were further separated into two groups based on their responses to apigenin, a known nodulation (nod) gene inducer. The group of six genes not inducible by apigenin included the lsrA gene, which is essential for the symbiosis, and the dgkA gene, which is involved in the synthesis of cyclic beta-1,2-glucan required for the S. meliloti-alfalfa symbiosis. In the group of 17 apigenin-inducible genes, most have not been previously characterized in S. meliloti, and none of them belongs to the nod gene family. The identification of this large group of alfalfa root exudate-inducible S. meliloti genes suggests that the interactions in the early stages of the S. meliloti and alfalfa symbiosis could be complex and that further characterization of these genes will lead to a better understanding of the symbiosis.
Collapse
Affiliation(s)
- Xue-Song Zhang
- Biological Sciences Department, Lehman College, The City University of New York, 250 Bedford Park Boulevard, West Bronx, NY 10468
| | | |
Collapse
|
13
|
Skorupska A, Janczarek M, Marczak M, Mazur A, Król J. Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 2006; 5:7. [PMID: 16483356 PMCID: PMC1403797 DOI: 10.1186/1475-2859-5-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 02/16/2006] [Indexed: 11/10/2022] Open
Abstract
Specific complex interactions between soil bacteria belonging to Rhizobium, Sinorhizobium, Mesorhizobium, Phylorhizobium, Bradyrhizobium and Azorhizobium commonly known as rhizobia, and their host leguminous plants result in development of root nodules. Nodules are new organs that consist mainly of plant cells infected with bacteroids that provide the host plant with fixed nitrogen. Proper nodule development requires the synthesis and perception of signal molecules such as lipochitooligosaccharides, called Nod factors that are important for induction of nodule development. Bacterial surface polysaccharides are also crucial for establishment of successful symbiosis with legumes. Sugar polymers of rhizobia are composed of a number of different polysaccharides, such as lipopolysaccharides (LPS), capsular polysaccharides (CPS or K-antigens), neutral β-1, 2-glucans and acidic extracellular polysaccharides (EPS). Despite extensive research, the molecular function of the surface polysaccharides in symbiosis remains unclear. This review focuses on exopolysaccharides that are especially important for the invasion that leads to formation of indetermined (with persistent meristem) type of nodules on legumes such as clover, vetch, peas or alfalfa. The significance of EPS synthesis in symbiotic interactions of Rhizobium leguminosarum with clover is especially noticed. Accumulating data suggest that exopolysaccharides may be involved in invasion and nodule development, bacterial release from infection threads, bacteroid development, suppression of plant defense response and protection against plant antimicrobial compounds. Rhizobial exopolysaccharides are species-specific heteropolysaccharide polymers composed of common sugars that are substituted with non-carbohydrate residues. Synthesis of repeating units of exopolysaccharide, their modification, polymerization and export to the cell surface is controlled by clusters of genes, named exo/exs, exp or pss that are localized on rhizobial megaplasmids or chromosome. The function of these genes was identified by isolation and characterization of several mutants disabled in exopolysaccharide synthesis. The effect of exopolysaccharide deficiency on nodule development has been extensively studied. Production of exopolysaccharides is influenced by a complex network of environmental factors such as phosphate, nitrogen or sulphur. There is a strong suggestion that production of a variety of symbiotically active polysaccharides may allow rhizobial strains to adapt to changing environmental conditions and interact efficiently with legumes.
Collapse
Affiliation(s)
- Anna Skorupska
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Monika Janczarek
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Małgorzata Marczak
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Andrzej Mazur
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Jarosław Król
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| |
Collapse
|
14
|
Skorpil P, Broughton WJ. Molecular interactions between Rhizobium and legumes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 41:143-64. [PMID: 16623393 DOI: 10.1007/3-540-28221-1_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Peter Skorpil
- Laboratoire de Biologie Moléculaire des Plantes Supérieures (LBMPS), Sciences III, Université de Genève, 1212 Genève 4, Switzerland
| | | |
Collapse
|
15
|
Mazur A, Marczak M, Król JE, Skorupska A. Topological and transcriptional analysis of pssL gene product: a putative Wzx-like exopolysaccharide translocase in Rhizobium leguminosarum bv. trifolii TA1. Arch Microbiol 2005; 184:1-10. [PMID: 16044265 DOI: 10.1007/s00203-005-0018-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 03/29/2005] [Accepted: 04/04/2005] [Indexed: 11/30/2022]
Abstract
An identified pssL gene is yet another one, besides the pssT, pssN and pssP genes, encoding for a protein engaged in polysaccharide polymerization and export in Rhizobium leguminosarum bv. trifolii strain TA1 (RtTA1). Amino acid sequence similarity and hypothetical protein secondary structure placed the PssL protein within Wzx (RfbX) translocases with putative flippase function that belong to the polysaccharide specific transport (PST) family. The predicted secondary structure of the PssL membrane protein was examined with a series of PssL-PhoA and PssL-LacZ translational fusions. The results support the hypothesis of PssL being a member of PST protein family comprising transporters with 12 membrane spanning segments and amino and carboxyl termini located in the cytoplasm. Results of semi-quantitative RT-PCR showed that the initial abundance of mRNA encoding PssL protein was relatively lower when compared to the quantity of the previously identified PssT membrane protein. PssL might be a good candidate for Wzx-like protein that together with PssT (Wzy protein) could be responsible for Wzx/Wzy-like-dependent EPS polymerization and translocation in RtTA1.
Collapse
Affiliation(s)
- Andrzej Mazur
- Department of General Microbiology, Institute of Microbiology and Biotechnology, University of M. Curie-Skłodowska, 19 Akademicka St., 20-033, Lublin, Poland.
| | | | | | | |
Collapse
|
16
|
Quester I, Becker A. Four promoters subject to regulation by ExoR and PhoB direct transcription of the Sinorhizobium melilotiexoYFQ operon involved in the biosynthesis of succinoglycan. J Mol Microbiol Biotechnol 2004; 7:115-32. [PMID: 15263816 DOI: 10.1159/000078655] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Succinoglycan (EPS I), the main acidic exopolysaccharide of Sinorhizobium meliloti, is required for the initiation and elongation of infection threads during nodulation of the host plant alfalfa. The gene products of the exoYFQ operon are involved in the first step of succinoglycan biosynthesis as well as in the polymerisation of subunits to the high-molecular-mass form of this exopolysaccharide. One promoter region that directs transcription of exoX and two promoter regions that drive transcription of exoY were mapped in the exoX-exoY intergenic region. The distal exoY promoter region containing three putative -10 promoter elements was active under standard growth conditions and was subject to ExoR-dependent regulation. Although this promoter region was stimulated in a phoB mutant, no PHO box-like sequences were found, suggesting an indirect regulatory effect of PhoB. The proximal promoter contains a PHO box-like sequence in the putative -35 region and was affected by low and high phosphate concentrations dependent on PhoB. In the case of deleted upstream regions, this promoter was also controlled by ExoR. An additional promoter displaying activity in exoR, mucR and phoB mutants under standard conditions was identified upstream of exoF. The putative -35 promoter element of this promoter is covered by a second PHO box-like sequence.
Collapse
Affiliation(s)
- Ingmar Quester
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Bielefeld, Deutschland
| | | |
Collapse
|
17
|
Cheng HP, Yao SY. The key Sinorhizobium meliloti succinoglycan biosynthesis gene exoY is expressed from two promoters. FEMS Microbiol Lett 2004; 231:131-6. [PMID: 14769477 PMCID: PMC3144747 DOI: 10.1016/s0378-1097(03)00952-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2003] [Revised: 11/19/2003] [Accepted: 12/10/2003] [Indexed: 11/16/2022] Open
Abstract
Bacterial exopolysaccharide, succinoglycan, plays an important role in eliciting infection thread formation, which is a key step in the establishment of Sinorhizobium meliloti-alfalfa (Medicago sativa) nitrogen fixing symbiosis. To understand the regulatory mechanisms that control production of succinoglycan, the expression of the key succinoglycan biosynthesis gene, exoY, was analyzed by constructing a set of nested deletions of the exoY promoter region. Two exoY promoters were identified based on the promoter activities and confirmed by direct detection of the transcripts. The expression from both promoters was induced in the exoR95 and exoS96 mutant backgrounds suggesting that both promoters are regulated by the ExoR protein and the ExoS/ChvI two-component signal transduction system. The identification of the exoY promoters provides additional avenue for further analysis of the role of succinoglycan in S. meliloti-alfalfa symbiosis.
Collapse
Affiliation(s)
- Hai-Ping Cheng
- Biological Sciences Department, Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
| | | |
Collapse
|
18
|
Becker A, Bergès H, Krol E, Bruand C, Rüberg S, Capela D, Lauber E, Meilhoc E, Ampe F, de Bruijn FJ, Fourment J, Francez-Charlot A, Kahn D, Küster H, Liebe C, Pühler A, Weidner S, Batut J. Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:292-303. [PMID: 15000396 DOI: 10.1094/mpmi.2004.17.3.292] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Sinorhizobium meliloti is an alpha-proteobacterium that alternates between a free-living phase in bulk soil or in the rhizosphere of plants and a symbiotic phase within the host plant cells, where the bacteria ultimately differentiate into nitrogen-fixing organelle-like cells, called bacteroids. As a step toward understanding the physiology of S. meliloti in its free-living and symbiotic forms and the transition between the two, gene expression profiles were determined under two sets of biological conditions: growth under oxic versus microoxic conditions, and in free-living versus symbiotic state. Data acquisition was based on both macro- and microarrays. Transcriptome profiles highlighted a profound modification of gene expression during bacteroid differentiation, with 16% of genes being altered. The data are consistent with an overall slow down of bacteroid metabolism during adaptation to symbiotic life and acquisition of nitrogen fixation capability. A large number of genes of unknown function, including potential regulators, that may play a role in symbiosis were identified. Transcriptome profiling in response to oxygen limitation indicated that up to 5% of the genes were oxygen regulated. However, the microoxic and bacteroid transcriptomes only partially overlap, implying that oxygen contributes to a limited extent to the control of symbiotic gene expression.
Collapse
Affiliation(s)
- Anke Becker
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fraysse N, Couderc F, Poinsot V. Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1365-80. [PMID: 12653992 DOI: 10.1046/j.1432-1033.2003.03492.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When the rhizosphere is nitrogen-starved, legumes and rhizobia (soil bacteria) enter into a symbiosis that enables the fixation of atmospheric dinitrogen. This implies a complex chemical dialogue between partners and drastic changes on both plant roots and bacteria. Several recent works pointed out the importance of rhizobial surface polysaccharides in the establishing of the highly specific symbiosis between symbionts. Exopolysaccharides appear to be essential for the early infection process. Lipopolysaccharides exhibit specific roles in the later stages of the nodulation processes such as the penetration of the infection thread into the cortical cells or the setting up of the nitrogen-fixing phenotype. More generally, even if active at different steps of the establishing of the symbiosis, all the polysaccharide classes seem to be involved in complex processes of plant defense inhibition that allow plant root invasion. Their chemistry is important for structural recognition as well as for physico-chemical properties.
Collapse
Affiliation(s)
- Nicolas Fraysse
- Laboratoire des IMRCP, UMR5623 UPS/CNRS, 118 route de Narbonne, F-31062 Toulouse, France
| | | | | |
Collapse
|
20
|
Mazur A, Król JE, Wielbo J, Urbanik-Sypniewska T, Skorupska A. Rhizobium leguminosarum bv. trifolii PssP protein is required for exopolysaccharide biosynthesis and polymerization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:388-397. [PMID: 12026178 DOI: 10.1094/mpmi.2002.15.4.388] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rhizobium leguminosarum bv. trifolii produces an acidic exopolysaccharide (EPS) that is important for the induction of nitrogen-fixing nodules on clover. Recently, three genes, pssN, pssO, and pssP, possibly involved in EPS biosynthesis and polymerization were identified. The predicted protein product of the pssP gene shows a significant sequence similarity to other proteins belonging to the PCP2a family that are involved in the synthesis of high-molecular-weight EPS. An R. leguminosarum bv. trifolii TA1 mutant with the entire coding region of pssP deleted did not produce the EPS. A pssP mutant with the 5' end of the gene disrupted produced exclusively low-molecular-weight EPS. A mutant that synthesized a functional N-terminal periplasmic domain but lacked the C-terminal part of PssP produced significantly reduced amounts of EPS with a slightly changed low to high molecular form ratio. Mutants affected in the PssP protein carrying a stable plasmid with a constitutively expressed gusA gene induced nodules on red clover that were not fully occupied by bacteria. A mutant with the entire pssP gene deleted infected only a few plant cells in the nodule. The pssP promoter-gusA reporter fusion was active in bacteroids during nodule development.
Collapse
Affiliation(s)
- Andrzej Mazur
- Department of General Microbiology, M. Curie-Skłodowska University, Lublin, Poland
| | | | | | | | | |
Collapse
|
21
|
Abstract
Sinorhizobium meliloti and host legumes enter into a nitrogen-fixing, symbiotic relationship triggered by an exchange of signals between bacteria and plant. S. meliloti produces Nod factor, which elicits the formation of nodules on plant roots, and succinoglycan, an exopolysaccharide that allows for bacterial invasion and colonization of the host. The biosynthesis of these molecules is well defined, but the specific regulation of these compounds is not completely understood. Bacteria control complex regulatory networks by the production of ppGpp, the effector molecule of the stringent response, which induces physiological change in response to adverse growth conditions and can also control bacterial development and virulence. Through detailed analysis of an S. meliloti mutant incapable of producing ppGpp, we show that the stringent response is required for nodule formation and regulates the production of succinoglycan. Although it remains unknown whether these phenotypes are connected, we have isolated suppressor strains that restore both defects and potentially identify key downstream regulatory genes. These results indicate that the S. meliloti stringent response has roles in both succinoglycan production and nodule formation and, more importantly, that control of bacterial physiology in response to the plant and surrounding environment is critical to the establishment of a successful symbiosis.
Collapse
Affiliation(s)
- Derek H Wells
- Department of Biological Sciences, 371 Serra Mall, Stanford University, Stanford, CA 94305-5020, USA
| | | |
Collapse
|
22
|
Wei X, Bauer WD. Tn5-induced and spontaneous switching of Sinorhizobium meliloti to faster-swarming behavior. Appl Environ Microbiol 1999; 65:1228-35. [PMID: 10049888 PMCID: PMC91169 DOI: 10.1128/aem.65.3.1228-1235.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tn5 mutants of Sinorhizobium meliloti RMB7201 which swarmed 1.5 to 2. 5 times faster than the parental strain in semisolid agar, moist sand, and viscous liquid were identified. These faster-swarming (FS) mutants outgrew the wild type 30- to 40-fold within 2 days in mixed swarm colonies. The FS mutants survived and grew as well as or better than the wild type under all of the circumstances tested, except in a soil matrix subjected to air drying. Exopolysaccharide (EPS) synthesis was reduced in each of the FS mutants when they were grown on defined succinate-nitrate medium, but the extent of reduction was different for each. It appears that FS behavior likely results from a modest, general derepression of motility involving an increased proportion of motile and flagellated cells and an increased average number of flagella per cell and increased average flagellar length. Spontaneous FS variants of RMB7201 were obtained at a frequency of about 1 per 10,000 to 20,000 cells by either enrichment from the periphery of swarm colonies or screening of colonies for reduced EPS synthesis on succinate-nitrate plates. The spontaneous FS variants and Tn5 FS mutants were symbiotically effective and competitive in alfalfa nodulation. Reversion of FS variants to wild-type behavior was sporadic, indicating that reversion is affected by unidentified environmental factors. Based on phenotypic and molecular differences between individual FS variants and mutants, it appears that there may be multiple genetic configurations that result in FS behavior in RMB7201. The facile isolation of spontaneous FS variants of Escherichia coli and Pseudomonas aeruginosa indicates that switching to FS behavior may be fairly common among bacterial species. The substantial growth advantage of FS mutants and variants wherever nutrient gradients exist suggests that switching to FS forms may be an important behavioral adaptation in natural environments.
Collapse
Affiliation(s)
- X Wei
- Department of Plant Biology, Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
23
|
Lellouch AC, Geremia RA. Expression and study of recombinant ExoM, a beta1-4 glucosyltransferase involved in succinoglycan biosynthesis in Sinorhizobium meliloti. J Bacteriol 1999; 181:1141-8. [PMID: 9973339 PMCID: PMC93490 DOI: 10.1128/jb.181.4.1141-1148.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we report on the overexpression and in vitro characterization of a recombinant form of ExoM, a putative beta1-4 glucosyltransferase involved in the assembly of the octasaccharide repeating subunit of succinoglycan from Sinorhizobium meliloti. The open reading frame exoM was isolated by PCR and subcloned into the expression vector pET29b, allowing inducible expression under the control of the T7 promoter. Escherichia coli BL21(DE3)/pLysS containing exoM expressed a novel 38-kDa protein corresponding to ExoM in N-terminal fusion with the S-tag peptide. Cell fractionation studies showed that the protein is expressed in E. coli as a membrane-bound protein in agreement with the presence of a predicted C-terminal transmembrane region. E. coli membrane preparations containing ExoM were shown to be capable of transferring glucose from UDP-glucose to glycolipid extracts from an S. meliloti mutant strain which accumulates the ExoM substrate (Glcbeta1-4Glcbeta1-3Gal-pyrophosphate-polyprenol). Thin-layer chromatography of the glycosidic portion of the ExoM product showed that the oligosaccharide formed comigrates with an authentic standard. The oligosaccharide produced by the recombinant ExoM, but not the starting substrate, was sensitive to cleavage with a specific cellobiohydrolase, consistent with the formation of a beta1-4 glucosidic linkage. No evidence for the transfer of multiple glucose residues to the glycolipid substrate was observed. It was also found that ExoM does not transfer glucose to an acceptor substrate that has been hydrolyzed from the polyprenol anchor. Furthermore, neither glucose, cellobiose, nor the trisaccharide Glcbeta1-4Glcbeta1-3Glc inhibited the transferase activity, suggesting that some feature of the lipid anchor is necessary for activity.
Collapse
Affiliation(s)
- A C Lellouch
- Centre de Recherches sur les Macromolécules Végétales, CNRS, and Joseph Fourier University, F38041 Grenoble, France.
| | | |
Collapse
|
24
|
González JE, Semino CE, Wang LX, Castellano-Torres LE, Walker GC. Biosynthetic control of molecular weight in the polymerization of the octasaccharide subunits of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti. Proc Natl Acad Sci U S A 1998; 95:13477-82. [PMID: 9811825 PMCID: PMC24844 DOI: 10.1073/pnas.95.23.13477] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/1997] [Accepted: 09/14/1998] [Indexed: 11/18/2022] Open
Abstract
Succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti, is composed of polymerized octasaccharide subunits, each of which consists of one galactose and seven glucoses with succinyl, acetyl, and pyruvyl modifications. Production of specific low molecular weight forms of R. meliloti exported and surface polysaccharides, including succinoglycan, appears to be important for nodule invasion. In a previous study of the roles of the various exo gene products in succinoglycan biosynthesis, exoP, exoQ, and exoT mutants were found to synthesize undecaprenol-linked fully modified succinoglycan octasaccharide subunits, suggesting possible roles for their gene products in polymerization or transport. Using improved techniques for analyzing succinoglycan biosynthesis by these mutants, we have obtained evidence indicating that R. meliloti has genetically separable systems for the synthesis of high molecular weight succinoglycan and the synthesis of a specific class of low molecular weight oligosaccharides consisting of dimers and trimers of the octasaccharide subunit. Models to account for our unexpected findings are discussed. Possible roles for the ExoP, ExoQ, and ExoT proteins are compared and contrasted with roles that have been suggested on the basis of homologies to key proteins involved in the biosynthesis of O-antigens and of certain exported or capsular cell surface polysaccharides.
Collapse
Affiliation(s)
- J E González
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
25
|
Niehaus K, Becker A. The role of microbial surface polysaccharides in the Rhizobium-legume interaction. Subcell Biochem 1998; 29:73-116. [PMID: 9594645 DOI: 10.1007/978-1-4899-1707-2_3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- K Niehaus
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Germany
| | | |
Collapse
|
26
|
Pollock TJ, van Workum WA, Thorne L, Mikolajczak MJ, Yamazaki M, Kijne JW, Armentrout RW. Assignment of biochemical functions to glycosyl transferase genes which are essential for biosynthesis of exopolysaccharides in Sphingomonas strain S88 and Rhizobium leguminosarum. J Bacteriol 1998; 180:586-93. [PMID: 9457861 PMCID: PMC106925 DOI: 10.1128/jb.180.3.586-593.1998] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/1997] [Accepted: 11/19/1997] [Indexed: 02/06/2023] Open
Abstract
Glycosyl transferases which recognize identical substrates (nucleotide-sugars and lipid-linked carbohydrates) can substitute for one another in bacterial polysaccharide biosynthesis, even if the enzymes originate in different genera of bacteria. This substitution can be used to identify the substrate specificities of uncharacterized transferase genes. The spsK gene of Sphingomonas strain S88 and the pssDE genes of Rhizobium leguminosarum were identified as encoding glucuronosyl-(B1-->4)-glucosyl transferases based on reciprocal genetic complementation of mutations in the spsK gene and the pssDE genes by segments of cloned DNA and by the SpsK-dependent incorporation of radioactive glucose (Glc) and glucuronic acid (GlcA) into lipid-linked disaccharides in EDTA-permeabilized cells. By contrast, glycosyl transferases which form alternative sugar linkages to the same substrate caused inhibition of polysaccharide synthesis or were deleterious or lethal in a foreign host. The negative effects also suggested specific substrate requirements: we propose that spsL codes for a glucosyl-(beta1-->4)-glucuronosyl transferase in Sphingomonas and that pssC codes for a glucuronosyl-(beta1-->4)-glucuronosyl transferase in R. leguminosarum. Finally, the complementation results indicate the order of attachment of sphingan main-chain sugars to the C55-isoprenylphosphate carrier as -Glc-GlcA-Glc-isoprenylpyrophosphate.
Collapse
Affiliation(s)
- T J Pollock
- Shin-Etsu Bio, Inc., San Diego, California 92121, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Becker A, Pühler A. Specific amino acid substitutions in the proline-rich motif of the Rhizobium meliloti ExoP protein result in enhanced production of low-molecular-weight succinoglycan at the expense of high-molecular-weight succinoglycan. J Bacteriol 1998; 180:395-9. [PMID: 9440529 PMCID: PMC106895 DOI: 10.1128/jb.180.2.395-399.1998] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The production of the acidic exopolysaccharide succinoglycan (EPS I) by Rhizobium meliloti exoP* mutants expressing an ExoP protein lacking its C-terminal cytoplasmic domain and by mutants characterized by specific amino acid substitutions in the proline-rich motif (RX4PX2PX4SPKX9IXGXMXGXG) located from positions 443 to 476 of the ExoP protein was analyzed. The absence of the C-terminal cytoplasmic ExoP domain (positions 484 to 786) and the substitution of both arginine443 by isoleucine443 and proline457 by serine457 within the proline-rich motif resulted in enhanced production of low-molecular-weight (LMW) EPS I at the expense of high-molecular-weight (HMW) EPS I. The ratios of HMW to LMW EPS I of the wild type and mutant strains increased with osmolarity.
Collapse
Affiliation(s)
- A Becker
- Lehrsthul für Genetik, Fakultät für Biologie, Universität Bielefeld, Germany.
| | | |
Collapse
|
28
|
Cheng HP, Walker GC. Succinoglycan production by Rhizobium meliloti is regulated through the ExoS-ChvI two-component regulatory system. J Bacteriol 1998; 180:20-6. [PMID: 9422587 PMCID: PMC106843 DOI: 10.1128/jb.180.1.20-26.1998] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/1997] [Accepted: 10/25/1997] [Indexed: 02/05/2023] Open
Abstract
The Rhizobium meliloti exoS gene is involved in regulating the production of succinoglycan, which plays a crucial role in the establishment of the symbiosis between R. meliloti Rm1021 and its host plant, alfalfa. The exoS96::Tn5 mutation causes the upregulation of the succinoglycan biosynthetic genes, thereby resulting in the overproduction of succinoglycan. Through cloning and sequencing, we found that the exoS gene is a close homolog of the Agrobacterium tumefaciens chvG gene, which has been proposed to encode the sensor protein of the ChvG-ChvI two-component regulatory system, a member of the EnvZ-OmpR family. Further analyses revealed the existence of a newly discovered A. tumefaciens chvI homolog located just upstream of the R. meliloti exoS gene. R. meliloti ChvI may serve as the response regulator of ExoS in a two-component regulatory system. By using ExoS-specific antibodies, it was found that the ExoS protein cofractionated with membrane proteins, suggesting that it is located in the cytoplasmic membrane. By using the same antibodies, it was shown that the exoS96::Tn5 allele encodes an N-terminal truncated derivative of ExoS. The cytoplasmic histidine kinase domain of ExoS was expressed in Escherichia coli and purified, as was the R. meliloti ChvI protein. The ChvI protein autophosphorylated in the presence of acetylphosphate, and the ExoS cytoplasmic domain fragment autophosphorylated at a histidine residue in the presence of ATP. The ChvI protein was phosphorylated in the presence of ATP only when the histidine kinase domain of ExoS was also present. We propose a model for regulation of succinoglycan production by R. meliloti through the ExoS-ChvI two-component regulatory system.
Collapse
Affiliation(s)
- H P Cheng
- Biology Department, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
29
|
Barnett MJ, Swanson JA, Long SR. Multiple genetic controls on Rhizobium meliloti syrA, a regulator of exopolysaccharide abundance. Genetics 1998; 148:19-32. [PMID: 9475718 PMCID: PMC1459771 DOI: 10.1093/genetics/148.1.19] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exopolysaccharides (EPS) are produced by a wide assortment of bacteria including plant pathogens and rhizobial symbionts. Rhizobium meliloti mutants defective in EPS production fail to invade alfalfa nodules. Production of EPS in R. meliloti is likely controlled at several levels. We have characterized a new gene of this regulatory circuit. syrA was identified by its ability to confer mucoid colony morphology and by its ability to suppress the colonial phenotype of an exoD mutant. Here we show that syrA encodes a 9-kD hydrophobic protein that has sequence similarity to two other EPS regulatory proteins: ExoX of Rhizobium NGR234 and R. meliloti, and Psi of R. leguminosarum bv. phaseoli. The syrA transcription start site lies 522 nucleotides upstream of a non-canonical TTG start codon. The syrA promoter region is similar to the promoter region of the nodulation regulatory protein, nodD3. We found that in free-living bacteria, syrA expression is activated by the regulatory locus, syrM, but not by nodD3. In planta, syrM is not required for expression of syrA. Instead, expression of the nitrogen fixation (nifHDKE) genes upstream of syrA plays a role. Specific and distinct sets of genetic controls may operate at different times during nodule invasion.
Collapse
Affiliation(s)
- M J Barnett
- Department of Biological Sciences, Stanford University, California 94305, USA
| | | | | |
Collapse
|
30
|
Paulsen IT, Beness AM, Saier MH. Computer-based analyses of the protein constituents of transport systems catalysing export of complex carbohydrates in bacteria. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 8):2685-2699. [PMID: 9274022 DOI: 10.1099/00221287-143-8-2685] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacteria synthesize and secrete an array of complex carbohydrates including exopolysaccharides (EPSs), capsular polysaccharides (CPSs), lipopolysaccharides (LPSs), lipo-oligosaccharides (LOSs) and teichoic acids (TCAs). We have analysed the families of homologous proteins that appear to mediate excretion of complex carbohydrates into or across the bacterial cell envelope. Two principal families of cytoplasmic-membrane transport systems appear to drive polysaccharide export: polysaccharide-specific transport (PST) systems and ATP-binding cassette-2 (ABC-2) systems. We present evidence that the secretion of CPSs and EPSs, but not of LPSs, LOSs or TCAs via a PST or ABC-2 system requires the presence of a cytoplasmic-membrane-periplasmic auxiliary protein (MPA1 or MPA2, respectively) in both Gram-negative and Gram-positive bacteria as well as an outer-membrane auxiliary (OMA) protein in Gram-negative bacteria. While all OMA proteins are included within a single family, MPA1 and MPA2 family proteins are not demonstrably homologous to each other, even though they share common topological features. Moreover, MPA1 family proteins (which function with PST systems), but not MPA2 family proteins (which function with ABC-2 systems), possess cytoplasmic ATP-binding domains that may either exist as separate polypeptide chains (for those from Gram-positive bacteria) or constitute the C-terminal domain of the MPA1 polypeptide chain (for those from Gram-negative bacteria). The sizes, substrate specificities and regions of relative conservation and hydrophobicity are defined allowing functional and structural predictions as well as delineation of family-specific sequence motifs. Each family is characterized phylogenetically.
Collapse
Affiliation(s)
- Ian T Paulsen
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Alison M Beness
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H Saier
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
31
|
Ichige A, Walker GC. Genetic analysis of the Rhizobium meliloti bacA gene: functional interchangeability with the Escherichia coli sbmA gene and phenotypes of mutants. J Bacteriol 1997; 179:209-16. [PMID: 8982000 PMCID: PMC178681 DOI: 10.1128/jb.179.1.209-216.1997] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Rhizobium meliloti bacA gene encodes a function that is essential for bacterial differentiation into bacteroids within plant cells in the symbiosis between R. meliloti and alfalfa. An Escherichia coli homolog of BacA, SbmA, is implicated in the uptake of microcin B17, microcin J25 (formerly microcin 25), and bleomycin. When expressed in E. coli with the lacZ promoter, the R. meliloti bacA gene was found to suppress all the known defects of E. coli sbmA mutants, namely, increased resistance to microcin B17, microcin J25, and bleomycin, demonstrating the functional similarity between the two proteins. The R. meliloti bacA386::Tn(pho)A mutant, as well as a newly constructed bacA deletion mutant, was found to show increased resistance to bleomycin. However, it also showed increased resistance to certain aminoglycosides and increased sensitivity to ethanol and detergents, suggesting that the loss of bacA function causes some defect in membrane integrity. The E. coli sbmA gene suppressed all these bacA mutant phenotypes as well as the Fix- phenotype when placed under control of the bacA promoter. Taken together, these results strongly suggest that the BacA and SbmA proteins are functionally similar and thus provide support for our previous hypothesis that BacA may be required for uptake of some compound that plays an important role in bacteroid development. However, the additional phenotypes of bacA mutants identified in this study suggest the alternative possibility that BacA may be needed for membrane integrity, which is likely to be critically important during the early stages of bacterial differentiation within plant cells.
Collapse
Affiliation(s)
- A Ichige
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
32
|
Coronado C, S�nchez-And�jar B, Palomares AJ. Rhizobium extracellular structures in the symbiosis. World J Microbiol Biotechnol 1996; 12:127-36. [DOI: 10.1007/bf00364677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Roest HP, Bloemendaal CJ, Wijffelman CA, Lugtenberg BJ. Isolation and characterization of ropA homologous genes from Rhizobium leguminosarum biovars viciae and trifolii. J Bacteriol 1995; 177:4985-91. [PMID: 7545151 PMCID: PMC177275 DOI: 10.1128/jb.177.17.4985-4991.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
ropA encodes a 36-kDa outer membrane protein of Rhizobium leguminosarum bv. viciae strain 248 which constitutes the low-M(r) part of antigen group III (R.A. de Maagd, I.H.M. Mulders, H.C.J. Canter Cremers, B.J.J. Lugtenberg, J. Bacteriol. 174:214-221, 1992). We observed that genes homologous to ropA are present in strain 248 as well as in other R. leguminosarum strains, and we describe the cloning and characterization of two of these genes. Sequencing of a 2.2-kb Bg/II fragment from R. leguminosarum bv. viciae strain 248 that hybridizes with ropA revealed one large open reading frame of 1,074 bp encoding a mature protein of 38.096 kDa. Homology between this gene and ropA is 91.8% on the DNA level. Homology on the amino acid level is only 69.9% as a result of a frameshift. On the basis of homology and immunochemical characteristics, we conclude that this gene encodes the high-M(r) part of the outer membrane protein antigen group III that is repressed during symbiosis. We named this gene ropA2. The second gene that we cloned was the ropA homologous gene of R. leguminosarum bv. trifolii strain LPR5020. Except for amino acid 43, the N-terminal part of the corresponding protein appeared to be identical to the first 51 amino acids of RopA of strain 248. The transcription start sites of both genes were determined, and the promoter regions were compared with that of ropA of strain 248. No clear consensus sequence could be deduced. The relationship of ropA and ropA2 of R. leguminosarum bv. viciae strain 248 with two similar genes from Brucella abortus is discussed.
Collapse
Affiliation(s)
- H P Roest
- Institute of Molecular Plant Sciences, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
34
|
Becker A, Niehaus K, Pühler A. Low-molecular-weight succinoglycan is predominantly produced by Rhizobium meliloti strains carrying a mutated ExoP protein characterized by a periplasmic N-terminal domain and a missing C-terminal domain. Mol Microbiol 1995; 16:191-203. [PMID: 7565082 DOI: 10.1111/j.1365-2958.1995.tb02292.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The membrane topology of the Rhizobium meliloti 2011 ExoP protein involved in polymerization and export of succinoglycan was analysed by translational fusions of lacZ and phoA reporter genes to the exoP gene. Based on this analysis, the ExoP protein could be divided into an N-terminal domain mainly located in the periplasmic space and a C-terminal domain located in the cytoplasm. Whereas the C-terminal domain of ExoP is characterized by a potential nucleotide-binding motif, the N-terminal ExoP domain contains the sequence motif 'PX2PX4SPKX11GXMXG', which is also present in proteins involved in the determination of O-antigen chain length. R. meliloti strains carrying mutated exoP* genes, exclusively encoding the N-terminal ExoP domain, produced a reduced amount of succinoglycan. This reduction could be suppressed by a mutation in the regulatory gene exoR. The ratio of low-molecular-weight to high-molecular-weight succinoglycan was significantly increased in the exoP* mutant strain. In the exoP*/exoR mutant strain only low-molecular-weight succinoglycan could be detected. Based on sequence homologies and similar hydropathic profiles, the N-terminal domain of ExoP was proposed to be a member of a protein family thought to be involved in polysaccharide chain-length determination.
Collapse
Affiliation(s)
- A Becker
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Germany
| | | | | |
Collapse
|
35
|
Abstract
Rhizobium, Bradyrhizobium, and Azorhizobium species are able to elicit the formation of unique structures, called nodules, on the roots or stems of the leguminous host. In these nodules, the rhizobia convert atmospheric N2 into ammonia for the plant. To establish this symbiosis, signals are produced early in the interaction between plant and rhizobia and they elicit discrete responses by the two symbiotic partners. First, transcription of the bacterial nodulation (nod) genes is under control of the NodD regulatory protein, which is activated by specific plant signals, flavonoids, present in the root exudates. In return, the nod-encoded enzymes are involved in the synthesis and excretion of specific lipooligosaccharides, which are able to trigger on the host plant the organogenic program leading to the formation of nodules. An overview of the organization, regulation, and function of the nod genes and their participation in the determination of the host specificity is presented.
Collapse
Affiliation(s)
- P van Rhijn
- F.A. Janssens Laboratory of Genetics, KU Leuven, Heverlee, Belgium
| | | |
Collapse
|
36
|
Abstract
Rhizobia are soil bacteria that can become endosymbionts, reducing atmospheric nitrogen within nodules formed on the roots of legume plants. During tissue and cell invasion, bacterial cell-surface components adapt the bacterium to survive as an endophyte without eliciting host-defence responses. The structures of many of these components have been established recently, allowing their possible roles in invasion to be defined more clearly.
Collapse
Affiliation(s)
- E L Kannenberg
- LB Mikrobiologie, Biologisches Institut, Universität Tübingen, Germany
| | | |
Collapse
|
37
|
Glucksmann MA, Reuber TL, Walker GC. Genes needed for the modification, polymerization, export, and processing of succinoglycan by Rhizobium meliloti: a model for succinoglycan biosynthesis. J Bacteriol 1993; 175:7045-55. [PMID: 8226646 PMCID: PMC206832 DOI: 10.1128/jb.175.21.7045-7055.1993] [Citation(s) in RCA: 157] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The major acidic exopolysaccharide of Rhizobium meliloti, termed succinoglycan, is required for nodule invasion and possibly nodule development. Succinoglycan is a polymer of octasaccharide subunits composed of one galactose residue, seven glucose residues, and acetyl, succinyl, and pyruvyl modifications, which is synthesized on an isoprenoid lipid carrier. A cluster of exo genes in R. meliloti are required for succinoglycan production, and the biosynthetic roles of their gene products have recently been determined (T.L. Reuber and G. C. Walker, Cell 74:269-280, 1993). Our sequencing of 16 kb of this cluster of exo genes and further genetic analysis of this region resulted in the discovery of several new exo genes and has allowed a correlation of the genetic map with the DNA sequence. In this paper we present the sequences of genes that are required for the addition of the succinyl and pyruvyl modifications to the lipid-linked intermediate and genes required for the polymerization of the octasaccharide subunits or the export of succinoglycan. In addition, on the basis of homologies to known proteins, we suggest that ExoN is a uridine diphosphoglucose pyrophosphorylase and that ExoK is a beta(1,3)-beta (1,4)-glucanase. We propose a model for succinoglycan biosynthesis and processing which assigns roles to the products of nineteen exo genes.
Collapse
Affiliation(s)
- M A Glucksmann
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
38
|
Glucksmann MA, Reuber TL, Walker GC. Family of glycosyl transferases needed for the synthesis of succinoglycan by Rhizobium meliloti. J Bacteriol 1993; 175:7033-44. [PMID: 8226645 PMCID: PMC206831 DOI: 10.1128/jb.175.21.7033-7044.1993] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rhizobium meliloti produces an acidic exopolysaccharide, termed succinoglycan or EPS I, that is important for invasion of the nodules that it elicits on its host, Medicago sativa. Succinoglycan is a high-molecular-weight polymer composed of repeating octasaccharide subunits. These subunits are synthesized on membrane-bound isoprenoid lipid carriers, beginning with a galactose residue followed by seven glucose residues, and modified by the addition of acetate, succinate, and pyruvate. Biochemical characterizations of lipid-linked succinoglycan biosynthetic intermediates from previously identified exo mutant strains have been carried out in our laboratory (T. L. Reuber and G. C. Walker, Cell 74:269-280, 1993) to determine where each mutation blocks the biosynthetic pathway. We have carried out a fine structure genetic analysis of a portion of the cluster of exo genes present on the second symbiotic megaplasmid of R. meliloti and have identified several new genes. In addition, the DNA sequence of 16 kb of the exo cluster was determined and the genetic map was correlated with the DNA sequence. In this paper we present the sequence of a family of glycosyl transferases required for the synthesis of succinoglycan and discuss their functions.
Collapse
Affiliation(s)
- M A Glucksmann
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
39
|
Glazebrook J, Ichige A, Walker GC. A Rhizobium meliloti homolog of the Escherichia coli peptide-antibiotic transport protein SbmA is essential for bacteroid development. Genes Dev 1993; 7:1485-97. [PMID: 8393417 DOI: 10.1101/gad.7.8.1485] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Alfalfa nodules induced by a Rhizobium meliloti strain carrying the bacA386::TnphoA mutation (formerly fix386::TnphoA) were examined by light and electron microscopy. These ineffective nodules were found to contain bacteria within infection threads, but no mature bacteroids were observed. A closer examination revealed that there were undeveloped senescent bacteroids in the plant cells of the nodule invasion zone, strongly suggesting that the symbiotic defect of the bacA386::TnphoA mutant is attributable to an early block in bacteroid development. The expression of the bacA gene in effective nodules was monitored with a bacA-phoA fusion and found to be strongest in the region where developing bacteroids are found. The bacA+ gene was cloned and sequenced. Sequence analysis indicated that BacA is probably an integral inner membrane protein with seven transmembrane domains and that it is extremely homologous to Escherichia coli SbmA, an inner membrane protein required for the uptake of microcin B17, a peptide antibiotic. Southern blotting experiments indicate that a gene closely related to bacA/sbmA is found in many bacteria, including some that invade eukaryotic cells. Possible roles for BacA in symbiosis are discussed.
Collapse
Affiliation(s)
- J Glazebrook
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
40
|
Reuber TL, Walker GC. Biosynthesis of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti. Cell 1993; 74:269-80. [PMID: 8343955 DOI: 10.1016/0092-8674(93)90418-p] [Citation(s) in RCA: 232] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The exo genes of Rhizobium meliloti are needed for the synthesis of an acidic exopolysaccharide, succinoglycan. We have assigned biosynthetic roles to the products of the exo genes by characterizing succinoglycan biosynthetic intermediates from exo mutant strains. We propose a model of succinoglycan biosynthesis in which the products of the exoY and exoF genes function in the addition of the first sugar, galactose, to the lipid carrier; the products of the exoA, exoL, exoM, exoO, exoU, and exoW genes function in subsequent sugar additions; and the product of the exoV gene functions in the addition of pyruvate. The products of the exoP, exoQ, and exoT genes are required for polymerization of the octasaccharide subunits or transport of the completed polymer.
Collapse
Affiliation(s)
- T L Reuber
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
41
|
Reuber TL, Walker GC. The acetyl substituent of succinoglycan is not necessary for alfalfa nodule invasion by Rhizobium meliloti Rm1021. J Bacteriol 1993; 175:3653-5. [PMID: 8501069 PMCID: PMC204767 DOI: 10.1128/jb.175.11.3653-3655.1993] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Rhizobium meliloti Rm1021 requires a Calcofluor-binding exopolysaccharide, termed succinoglycan or EPS I, to invade alfalfa nodules. We have determined that a strain carrying a mutation in the exoZ locus produces succinoglycan that lacks the acetyl substituent. The exoZ mutant nodules alfalfa normally.
Collapse
Affiliation(s)
- T L Reuber
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
42
|
Becker A, Kleickmann A, Arnold W, Pühler A. Analysis of the Rhizobium meliloti exoH/exoK/exoL fragment: ExoK shows homology to excreted endo-beta-1,3-1,4-glucanases and ExoH resembles membrane proteins. MOLECULAR & GENERAL GENETICS : MGG 1993; 238:145-54. [PMID: 8479421 DOI: 10.1007/bf00279541] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nucleotide sequencing of a 4.15 kb DNA fragment from megaplasmid 2 of Rhizobium meliloti 2011 revealed the location of the genes exoH, exoK and exoL. The putative proteins encoded by these genes have molecular weights of 41, 30, and 44 kDa, respectively. The hydrophobicity profile of the ExoH amino acid sequence resembles that of transmembrane proteins. The predicted exoL gene product does not contain hydrophobic regions, indicating a cytoplasmic localization. The exoK gene product is characterized by a putative signal peptide and exhibits significant homology to endo-beta-1,3-1,4-glucanases of bacilli and Clostridium thermocellum. R. meliloti exoK mutants induced pink nodules and synthesized a reduced amount of exopolysaccharide (EPS). Colonies of this mutant showed a delay in the appearance of the Calcofluor white fluorescence. In addition, the formation of the characteristic halo was strongly delayed. R. meliloti exoL and exoH mutants induced pseudonodules. The exoH, but not the exoL mutant, synthesized an EPS that could be precipitated by cetyl pyridinium chloride (CPC) and also by ethanol. Plasmid integration mutagenesis revealed promoter regions preceding exoH, exoK and exoL.
Collapse
Affiliation(s)
- A Becker
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, FRG
| | | | | | | |
Collapse
|
43
|
Whitfield C, Valvano MA. Biosynthesis and expression of cell-surface polysaccharides in gram-negative bacteria. Adv Microb Physiol 1993; 35:135-246. [PMID: 8310880 DOI: 10.1016/s0065-2911(08)60099-5] [Citation(s) in RCA: 176] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- C Whitfield
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | |
Collapse
|
44
|
Milner JL, Araujo RS, Handelsman J. Molecular and symbiotic characterization of exopolysaccharide-deficient mutants of Rhizobium tropici strain CIAT899. Mol Microbiol 1992; 6:3137-47. [PMID: 1453954 DOI: 10.1111/j.1365-2958.1992.tb01770.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We studied the symbiotic behaviour of 20 independent Tn5 mutants of Rhizobium tropici strain CIAT899 that were deficient in exopolysaccharide (EPS) production. The mutants produced non-mucoid colonies, were motile, grew in broth cultures at rates similar to those of the parent, and produced significantly less EPS than did CIAT899 in broth culture. A genomic library of strain CIAT899, constructed in pLA2917, was mobilized into all of the mutants, and cosmids that restored EPS production were identified. EcoRI restriction digests of the cosmids revealed nine unique inserts. Mutant complementation and hybridization analysis showed that the mutations affecting EPS production fell into six functional and physical linkage groups. On bean, the mutants were as efficient in nodulation and as effective in acetylene reduction as strain CIAT899, induced a severe interveinal chlorosis, and all but one were less competitive than CIAT899. On siratro, CIAT899 induced nodules that were ineffective in acetylene reduction, whereas the EPS-deficient mutants induced effective nodules. Microscopic examination of thin sections showed that nodules from both siratro and bean plants inoculated with either CIAT899 or an EPS-deficient mutant contained infected cells. These data indicate that EPS is not required for normal nodulation of bean by R. tropici, that it may contribute to competitiveness of R. tropici on bean, and that the loss of EPS production is accompanied by acquisition of the ability to reduce acetylene on siratro.
Collapse
Affiliation(s)
- J L Milner
- Department of Plant Pathology, University of Wisconsin-Madison 53706
| | | | | |
Collapse
|
45
|
Wilmes-Riesenberg MR, Wanner BL. TnphoA and TnphoA' elements for making and switching fusions for study of transcription, translation, and cell surface localization. J Bacteriol 1992; 174:4558-75. [PMID: 1378054 PMCID: PMC206251 DOI: 10.1128/jb.174.14.4558-4575.1992] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We describe a set of elements based on the transposon TnphoA for making transcriptional fusions to the lacZ gene and for making translational fusions to the phoA or lacZ structural gene. Each element can be switched, one for another, by homologous recombination, thereby allowing testing for transcription, translation, or cell surface localization determinants at the same site within a gene. We describe three kinds of elements for making each fusion type. Two kinds are transposition proficient (Tnp+): one encodes kanamycin resistance, and the other encodes tetracycline resistance. The third kind is transposition defective (Tnp-) and encodes kanamycin resistance. In addition, we describe one Tnp- element that has no reporter gene and encodes chloramphenicol resistance; this element is used primarily as a tool to aid in switching fusions. Switching is efficient because each element has in common 254 bp of DNA at the phoA end and 187 bp (or more) of DNA at the IS50R end of TnphoA, and switching is straightforward because individual elements encode different drug resistances. Thus, switched recombinants can be selected as drug-resistant transductants, and they can be recognized as ones that have lost the parental drug resistance and fusion phenotype. Further, switching Tnp+ elements to Tnp- elements reduces problems due to transposition that can arise in P1 crosses or cloning experiments. Some TnphoA and TnphoA' elements cause polar mutations, while others provide an outward promoter for downstream transcription. This feature is especially useful in the determination of operon structures. Strategies for the use of TnphoA and TnphoA' elements in gene analysis are also described.
Collapse
|
46
|
Gray JX, Rolfe BG. Regulation study of exopolysaccharide synthesis, exoX and exoY in Rhizobium sp. strain NGR234. Arch Microbiol 1992. [DOI: 10.1007/bf00276772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Nagpal P, Khanuja SP, Stanfield SW. Suppression of the ndv mutant phenotype of Rhizobium meliloti by cloned exo genes. Mol Microbiol 1992; 6:479-88. [PMID: 1560776 DOI: 10.1111/j.1365-2958.1992.tb01492.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ndvA and ndvB genes of Rhizobium meliloti are involved in the export and synthesis, respectively, of the small cyclic polysaccharide beta(1,2)glucan. We have previously shown that spontaneous symbiotic pseudorevertants of ndv mutants do not produce periplasmic beta(1,2)glucan. Here we show that the pseudorevertants also do not produce extracellular beta(1,2)glucan, but do show alterations in the amount of the major acidic exopolysaccharide produced. This exopolysaccharide is not detectably different from that produced by the wild type or by the ndv mutants. A cosmid which suppresses the symbiotic defect of both ndvA and ndvB mutants was isolated from a gene bank prepared from DNA of an ndvA pseudorevertant. This cosmid contains a number of exo genes, including exoH and exoF. Subcloning and Tn5 mutagenesis were used to show that the widely separated exoH and exoF genes are both involved in suppression of the ndv mutant phenotype and that the 3.5 kb DNA fragment which contains the exoH gene does not carry the mutation responsible for second site suppression.
Collapse
Affiliation(s)
- P Nagpal
- Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0634
| | | | | |
Collapse
|
48
|
Reuber TL, Urzainqui A, Glazebrook J, Reed JW, Walker GC. Rhizobium meliloti exopolysaccharides. Structures, genetic analyses, and symbiotic roles. Ann N Y Acad Sci 1991; 646:61-8. [PMID: 1809206 DOI: 10.1111/j.1749-6632.1991.tb18564.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- T L Reuber
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | | | |
Collapse
|
49
|
Reed JW, Capage M, Walker GC. Rhizobium meliloti exoG and exoJ mutations affect the exoX-exoY system for modulation of exopolysaccharide production. J Bacteriol 1991; 173:3776-88. [PMID: 2050634 PMCID: PMC208008 DOI: 10.1128/jb.173.12.3776-3788.1991] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
R. meliloti Rm1021 normally produces an acidic Calcofluor-binding exopolysaccharide, called succinoglycan or EPS I, which is required for successful nodulation of alfalfa by this strain. At least 13 loci affecting production of EPS I were previously mapped to a cluster on the second of two symbiotic megaplasmids in Rm1021, pRmeSU47b. A putative regulatory region was originally defined by the exoG and exoJ mutations. exoG and exoJ mutants produced less exopolysaccharide than wild-type strains and induced nitrogen-fixing nodules on alfalfa with reduced efficiency compared with the wild type. These mutants appeared to produce only a low-molecular-weight form of EPS I. Mutations called exoX cause an increase in exopolysaccharide production and map in the same region as the exoG and exoJ mutations. The DNA sequence of this region reveals that it contains two open reading frames, called exoX and exoY, which have homologs in other Rhizobium species. Interestingly, the exoG insertion mutations fall in an intergenic region and may affect the expression of exoX or exoY. The exoJ mutation falls in the 3' portion of the exoX open reading frame and is probably an allele of exoX that results in altered function. exoG and exoJ mutations limit EPS I production in the presence of exoR95 or exoS96 mutations, which cause overproduction of EPS I. Gene regulation studies suggest that ExoX and ExoY constitute a system that modulates exopolysaccharide synthesis at a posttranslational level. The deduced sequence of ExoY is homologous to a protein required for an early step in xanthan gum biosynthesis, further suggesting that the modulatory system may affect the exopolysaccharide biosynthetic apparatus.
Collapse
Affiliation(s)
- J W Reed
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
50
|
Reed JW, Glazebrook J, Walker GC. The exoR gene of Rhizobium meliloti affects RNA levels of other exo genes but lacks homology to known transcriptional regulators. J Bacteriol 1991; 173:3789-94. [PMID: 1711027 PMCID: PMC208009 DOI: 10.1128/jb.173.12.3789-3794.1991] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rhizobium meliloti strains mutant in the exoR gene overproduce an exopolysaccharide called succinoglycan or EPS I. Protein fusions to several different exo genes required for EPS I biosynthesis are expressed at a higher level in an exoR strain than in a wild-type strain, showing that the overproduction of EPS I in exoR strains results at least in part from increased gene expression. This regulation is important to nodulation, since exoR mutants fail to invade alfalfa nodules unless secondary suppressor mutations that cause a decrease in EPS I production occur. Here, we show that an exoR strain contains higher levels of mRNA for other exo genes than does the wild-type parental strain. ExoR therefore most probably exerts its regulatory effect at the level of transcription. In addition, we have localized, subcloned, and sequenced the exoR gene. A newly constructed insertion allele of exoR has the same phenotype as the original mutant. The deduced sequence of ExoR is 268 amino acids long but does not show homology to other sequenced genes.
Collapse
Affiliation(s)
- J W Reed
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|